

RF EXPOSURE REPORT

REPORT NO.: SA981021L10A **MODEL NO.:** ZF7363

ACCORDING: FCC Guidelines for Human Exposure IEEE C95.1

APPLICANT:	Senao Networks Inc.			
ADDRESS:	3F, No. 529, Chung Cheng Rd., Hsintien, Taipei, Taiwan, R.O.C.			
FCC ID:	U2M-ZF73XX-1			
MANUFACTURER'S COMPANY:	Sanao Natworks Inc			
MANUFACTURER ADDRESS:	, , , , , ,			

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

RF EXPOSURE MEASUREMENT (MOBILE DEVICE)

1. INTRODUCTION

In this document, we try to prove the safety of radiation harmfulness to the human body for our product. The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The Gain of the antenna used in this product is measured in a Fully Anechoic Chamber (FAC) calibrated for antenna measurement in ADT, and also the maximum total power input to the antenna is measured. Through the Friis transmission formula and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis transmission formula is a far field assumption, the calculated result of that is an over-prediction for near field power density. We will take that as the worst case to specify the safety range.

2. RF EXPOSURE LIMIT

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

FREQUENCY RANGE (MHz)	ELECTRIC FIELD STRENGTH (V/m)	MAGNETIC FIELD STRENGTH (A/m)	POWER DENSITY (mW/cm ²)	AVERAGE TIME (minutes)		
(A)LIMITS FOR OCCUPATIONAL / CONTROL EXPOSURES						
300-1500			F/300	6		
1500-100,000			5	6		
(B)LIMITS FOR GENERAL POPULATION / UNCONTROLLED EXPOSURE						
300-1500			F/1500	30		
1500-100,000			1.0	30		

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

F = Frequency in MHz

FCC ID: U2M-ZF73XX-1

3. FRIIS FORMULA

Friis transmission formula : $Pd = (Pout^{*}G) / (4^{*}pi^{*}r^{2})$

where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

If we know the maximum Gain of the antenna and the total power input to the antenna, through the calculation, we will know the MPE value at distance r.

Ref.: David K. Cheng, Field and Wave Electromagnetics, Second Edition,

Page 640, Eq. (11-133).

4. EUT OPERATING CONDITION

The software provided by Manufacturer enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

5. CLASSIFICATION

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. Warning statement to the user for keeping at least 20cm or more separation distance with the antenna should be included in users manual. So, this device is classified as **Mobile Device**.

6. TEST RESULTS

6.1 ANTENNA GAIN

The maximum Gain measured in Fully Anechoic Chamber are 2dBi or 1.585(numeric).

6.2 OUTPUT POWER INTO ANTENNA & RF EXPOSURE VALUE AT DISTANCE 20cm:

For 2.412 ~ 2.462GHz band:

POWER OUTPUT (dBm)		TOTAL	TOTAL POWER	POWER DENSITY	LIMIT OF POWER
CHAIN 0	CHAIN 1	(mW)	(dBm)	(mW/ cm ²)	DENSITY (mW/ cm ²)
19.6	21.1	219.0	23.4	0.069	1.000

For 5.260 ~ 5.320GHz band:

POWER OUTPUT (dBm)		TOTAL POWER	TOTAL POWER	POWER DENSITY	LIMIT OF POWER
CHAIN 0	CHAIN 1	(mW)	(dBm)	(mW/ cm ²)	DENSITY (mW/ cm ²)
16.8	16.8	95.7	19.8	0.030	1.000

For 5.500 ~ 5.700GHz band:

POWER OUTPUT (dBm)		TOTAL POWER	TOTAL POWER	POWER DENSITY	LIMIT OF POWER
CHAIN 0	CHAIN 1	(mW)	(dBm)	(mW/cm ²)	DENSITY (mW/ cm ²)
18.29	19.08	148.4	21.7	0.047	1.000

CONCULSION:

Both of the WLAN 2.4G & 5.0G can transmit simultaneously, the formula of calculated the MPE is: CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

1. WLAN 2.4G + WLAN 5.0G = 0.116

Therefore, the maximum calculation of this situation is 0.116, which is less than the "1" limit.