

FCC C2PC Test Report

Equipment	:	802.11 an PCIe Module
Brand Name	:	Senao
Model No.	:	PCE3500AH
FCC ID	:	U2M-PCE3500AH
Standard	:	47 CFR FCC Part 15.407
Operating Band	:	5150 MHz – 5250 MHz
FCC Classification	:	NII
Applicant	:	Senao Networks, Inc. 3F, No. 529, Chung Cheng Rd., Hsintien,Taipei,Taiwan

The product sample received on Jun. 22, 2013 and completely tested on Aug. 16, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

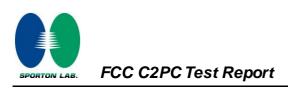
The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	. 5
1.1	Information	. 5
1.2	Support Equipment	. 7
1.3	Testing Applied Standards	. 7
1.4	Testing Location Information	. 7
1.5	Measurement Unœrtainty	. 8
2	TEST CONFIGURATION OF EUT	. 9
2.1	The Worst Case Modulation Configuration	. 9
2.2	The Worst Case Power Setting Parameter	. 9
2.3	The Worst Case Measurement Configuration	10
2.4	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	12
3 3.1	TRANSMITTER TEST RESULT. AC Power-line Conducted Emissions.	
-		12
3.1	AC Power-line Conducted Emissions	12 15
3.1 3.2	AC Power-line Conducted Emissions Emission Bandwidth	12 15 18
3.1 3.2 3.3	AC Power-line Conducted Emissions Emission Bandwidth RF Output Power	12 15 18 22
3.1 3.2 3.3 3.4	AC Power-line Conducted Emissions Emission Bandwidth RF Output Power Peak Power Spectral Density	12 15 18 22 25
3.1 3.2 3.3 3.4 3.5	AC Power-line Conducted Emissions Emission Bandwidth RF Output Power Peak Power Spectral Density Peak Excursion	12 15 18 22 25 27
3.1 3.2 3.3 3.4 3.5 3.6	AC Power-line Conducted Emissions Emission Bandwidth RF Output Power Peak Power Spectral Density Peak Excursion Transmitter Radiated Unwanted Emissions and Band Edge	12 15 18 22 25 27 48


Summary of Test Result

		Conform	nance Test Specifications		
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0489MHz 40.69 (Margin 5.50dB) - AV 43.32 (Margin 12.87dB) - QP	FCC 15.207	Complied
3.2	15.407(a)	Emission Bandwidth	Bandwidth [MHz] 20M: 23.94 / 40M: 49.86	Information only	Complied
3.3	15.407(a)	RF Output Power (Maximum Conducted Output Power)	Power[dBm] 5150-5250MHz: 13.85	Power [dBm] 5150-5250MHz: 17	Complied
3.4	15.407(a)	Peak Power Spectral Density	PPSD [dBm/MHz] 5150-5250MHz: -1.80	PPSD [dBm/MHz] 5150-5250MHz: 4	Complied
3.5	15.407(a)	Peak Excursion	9.11 dB	13 dB	Complied
3.6	15.407(b)	Transmitter Unwanted Emissions and Band Edge	Restricted Bands [dBuV/m at 3m]:5150.00MHz 52.52 (Margin 1.48dB) - AV	Non-Restricted Bands: ≤ -27dBm (68.3dBuV/m@3m) Restricted Bands: FCC 15.209	Complied
3.7	15.407(g)	Frequency Stability	3.6 ppm	Signal shall remain in-band	Complied

Revision History

Report No.	Version	Description	Issued Date
FR371207AN	Rev. 01	Initial issue of report	Sep. 23, 2013

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information								
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (Ν _{TX})	RF Output Power (dBm)	Co-location		
5150-5250	а	5180-5240	36-48 [4]	3	10.25	N/A		
5150-5250	n (HT20)	5180-5240	36-48 [4]	3	10.11	N/A		
5150-5250	n (HT40)	5190-5230	38-46 [2]	3	13.85	N/A		

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note:

This is a C2PC report. The difference between original and C2PC report is only measurement guidance (KDB 789033) version. This report is using latest version of measurement guidance which published at Apr. 08, 2013.

1.1.2 Antenna Information

	Antenna Category							
	Equ	Equipment placed on the market without antennas						
	Integral antenna (antenna permanently attached)							
		Temporary RF connector provided						
		No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.						
⊠	Exte	ernal antenna (dedicated antennas)						
		Single power level with corresponding antenna(s).						
		Multiple power level and corresponding antenna(s).						
	RF connector provided							
		Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)						
		Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)						

	Antenna General Information								
No. Ant. Cat. Model Ant. Type Gain _(dBi) Manufacturer Transmit (N _{TX})						Application			
1	External	98618UNXX000	Dipole	7	Master Wave Technology Co.,Ltd	3	P to MP		

1.1.3 Type of EUT

	Identify EUT				
EU	T Serial Number	N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
] Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
⊠	Plug-in radio				
	Other:				

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle					
	Operated normally mode for worst duty cycle					
⊠	Operated test mode for worst duty cycle					
	Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)				
⊠	100% - IEEE 802.11a	0				
⊠	100% - IEEE 802.11n (HT20)	0				
⊠	100% - IEEE 802.11n (HT40)	0				

1.1.5 EUT Operational Condition

Supply Voltage		AC mains	⊠	DC (5 Vdc)		
Type of DC Source		Internal DC supply		External DC adapter	Ø	From Host
Test Voltage	⊠	Vnom (110 V)	⊠	Vmax (126.5 V)		Vmin (93.5 V)
Test Climatic	Ø	Tnom (20°C)	Ø	Tmax (55°C)	Ø	Tmin (-30°C)

1.2 Support Equipment

	Support Equipment							
No.	o. Equipment Brand Name Model Name Remarks							
1	Notebook	DELL	E6430	DoC				
2	Power Supply	GW	GPL-6030D					
3	Extender card	N/A	adapter	N/A				

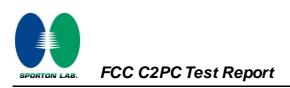
1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 789033 v01r03
- FCC KDB 662911 v02

1.4 Testing Location Information

	Testing Location							
	Sporton	orton ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.						
	Lab	TEL	:	886-3-327-345	6 FAX : 886	6-3-318-0055		
⊠	ICC Lab	ADD	:	No.3-1, Lane 6 Taiwan (R.O.C		vei Shan Hsiang, Taoʻ	Yuan Hsein 333,	
		TEL	:	886-3-271-866	66 FAX : 886	6-3-318-0155		
Т	est Conditi	on	Т	est Site No.	Test Engineer	Test Environment	Test Date	
R	RF Conducte	əd		TH01-HY	Ian Du	22.1°C / 61%	Jul. 24 ~ Aug. 16, 2013	
*A	C Conduct	ion		CO01-WS	Skys Huang	23°C / 65%	Aug. 13, 2013	
*Ra	*Radiated Emission 03CH01-WS Mark Liao Anderson Hong 22°C / 65~69% Jul. 23 ~ Aug. 09, 2013						Jul. 23 ~ Aug. 09, 2013	
	Test site registered number [657002] with FCC. Test site registered number [10807A-1] with IC.							


Note: * Sporton Lab subcontracts this test item to ICC lab (TAF: 2732). ICC lab is a TAF accreditation test firm and also is an approved provider of Sporton lab.

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Test Item	Test Item						
AC power-line conducted emissions		±2.26 dB	N/A				
Emission bandwidth	±1.42 %	N/A					
RF output power, conducted		±0.63 dB	N/A				
Power density, conducted	±0.81 dB	N/A					
All emissions, radiated	30 – 1000 MHz	±3.9 dB	N/A				
	Above 1GHz	±4.2 dB	N/A				
Temperature		±0.8 °C	N/A				
Humidity		±3 %	N/A				
DC and low frequency voltages	±3 %	N/A					
Time	±1.42 %	N/A					
Duty Cycle		±1.42 %	N/A				

2 Test Configuration of EUT

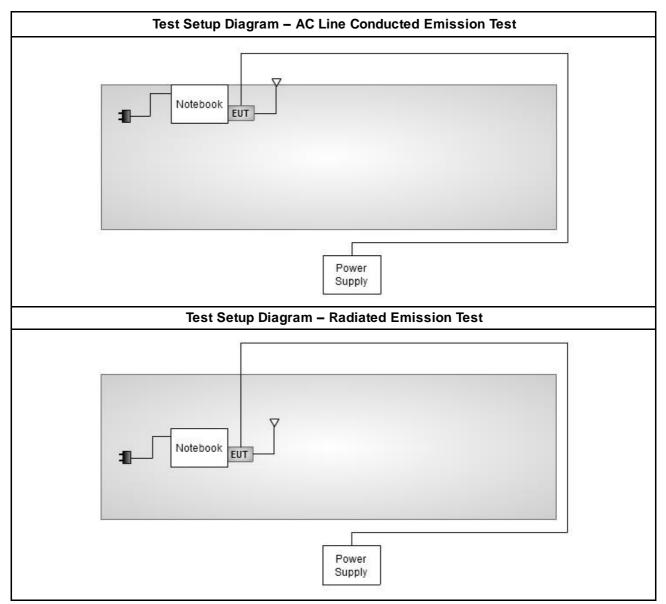
2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing								
Modulation Mode Transmit Chains (N _{TX}) Data Rate / MCS Worst Data Rate / M								
11a	3	6-54 Mbps	6 Mbps					
HT20	3	M0-23	MCS 0					
HT40	3	M0-23	MCS 0					

2.2 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (5150-5250MHz band)										
Test Software Version	ART	NRT2-GUI V2.3								
			z)							
Modulation Mode	N _{TX}	1	NCB: 20MH	z	NCB: 4	-				
		5180	5200	5240	5190	5230	-			
11a	3	5.5	5.5	5.5	-	-	-			
HT20	3	5.5 5.5 5.5		-	-	-				
HT40	3	-	-	-	8	9	-			

2.3 The Worst Case Measurement Configuration


The Worst Case Mode for Following Conformance Tests						
Tests Item AC power-line conducted emissions						
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz					
Operating Mode	Operating Mode Description					
1	Radio link (WLAN)					

The Worst Case Mode for Following Conformance Tests						
Tests Item	RF Output Power, Peak Power Spectral Density, Emission Bandwidth, Peak Excursion					
Test Condition	Conducted measurement at transmit chains					
Modulation Mode	11a, HT20, HT40					

The	Worst C	Case Mode for Fo	bllowing Conformance Te	sts					
Tests Item		Fransmitter Radiated Unwanted Emissions Fransmitter Radiated Bandedge Emissions							
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.								
	D EUT	will be placed in	fixed position.						
	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes. The worst planes is X.								
User Position	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst planes is X.								
	🛛 Rad	lio link (WLAN)							
Modulation Mode	11a, HT2	20, HT40							
	X Plane Y Plane Z Plane Orthogonal Planes of EUT Image: Comparison of the second secon								
-									

2.4 Test Setup Diagram

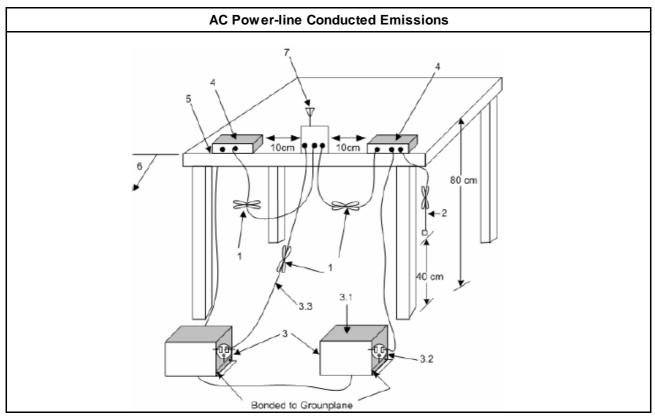
Transmitter Test Result 3

3.1 **AC Power-line Conducted Emissions**

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit								
Frequency Emission (MHz) Quasi-Peak Average								
0.15-0.5	66 - 56 *	56 - 46 *						
0.5-5	56	46						
5-30 60 50								
Note 1: * Decreases with the logarithm of the frequency.								

3.1.2 Measuring Instruments

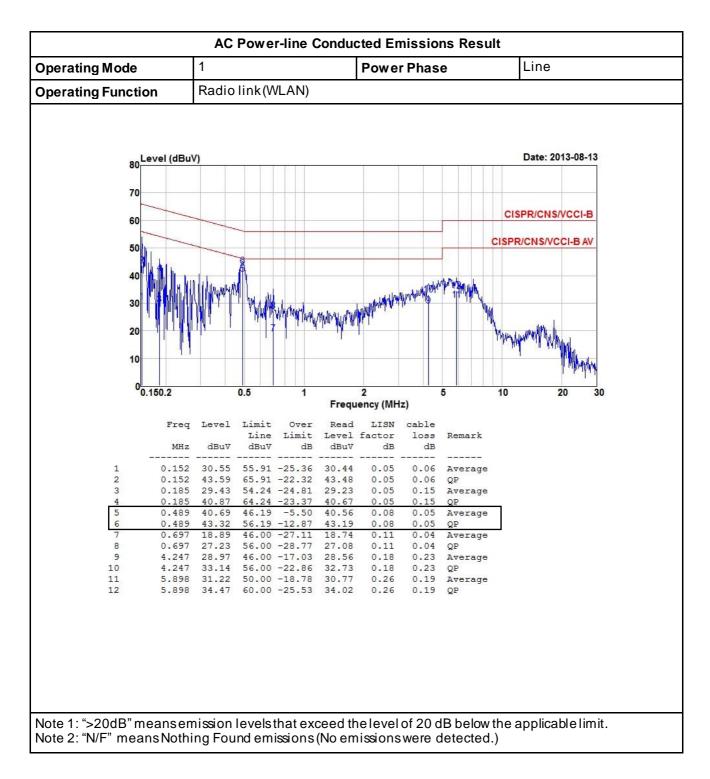

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 **Test Setup**



perating Mod	е	1	1 Power Phase Neutral									
perating Fund	ction	Radio link (WLAN)										
	Level (dBu)	0								Date: 2	013-08-13	
80	Level (dBu\									Date. 2		
70									-			
60			_							CISPR/CNS	VCCI-B	
-									СІ	SPR/CNS/VO	CI-B AV	
50			A									
40	WINNER.	Hund	A .			-		TAN MANDI	10.00		-	
30		MWY.	15 M	1.6.6		WWW	WHYMMALI	12	Mar.			
20				WANNA WANT	phalphalphalph	Wate			M.	LANG		
20		1	a a						¶⊦ I	they have a share	What .	
10											T WILMAN	
(0.150.2		0.5	1		2		5	1	0	20 30	
					Frequ	ency (MH	z)					
	Freq	Level		Over Limit	Read		cable loss	Remar)	c.			
	MHz	dBuV	dBuV	dB	dBuV	dB	dB		_			
1	0.156	32.48		-23.17	32.36	0.04	0.08	Avera	le			
2 3	0.255	46.35 21.96	51.60	-19.30 -29.64	46.23 21.78	0.04	0.08	QP Averaç	je			
4	0.255	31.29 29.72		-30.31	31.11 29.59	0.05	0.13	QP Averaç	Te			
6	0.481	40.78		-15.54		0.08	0.05	QP				
7	0.481			-15.38	40.81	0.08	0.05					
8		17.57 31.86		-28.43		0.13		Avera	le			
10		32.72		-17.28	32.32	0.13	0.04		Te			
	5.221	35.80		-24.20	35.40	0.20	0.20	QP				
11	6.878	26.62	50.00	-23.38	26.16	0.30	0.16	Avera	je			
11 12		22 00	60.00	-26.94	32.60	0.30	0.16	QP				

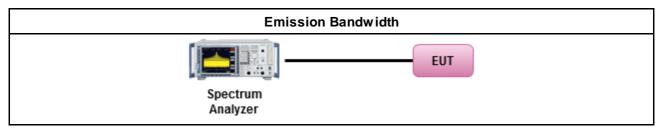
3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth (EBW) Limit

	Emission Bandwidth (EBW) Limit
UN	II Devices
⊠	For the 5.15-5.25 GHz band, the maximum conducted output power shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.
	For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.
	For the 5.725-5.825 GHz band, the maximum conducted output power shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz
LE	LAN Devices
Ø	For the band 5.15-5.25 GHz, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

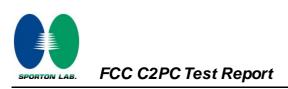
3.2.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

			Test Method						
⊠	For	the e	mission bandwidth shall be measured using one of the options below:						
	\boxtimes	Ref	er as FCC KDB 789033 v01r03, clause C for EBW and clause D for OBW measurement.						
		Referas ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.							
	⊠	Referas IC RSS-Gen, clause 4.6 for bandwidth testing.							
⊠	For	conc	lucted measurement.						
		The	EUT supports single transmit chain and measurements performed on this transmit chain.						
		The	EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	⊠	The	EUT supports multiple transmit chains using options given below:						
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.						
		⊠	Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.						

3.2.4 Test Setup



	UNII Emission Bandwidth Result (5150-5250MHz band)												
Condi	tion			Emission Bandwidth (MHz)									
Modulation		Freq.	9	9% Ba	ndwidt	h	2	6dB Ba	ndwidt	th	Powe	r Limit	
Mode	N _{TX}	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	99% BW	26dB BW	
11a	3	5180	16.90	16.48	16.67	-	23.01	22.49	21.91	-	16.17	17.00	
11a	3	5200	16.96	16.79	16.73	-	22.90	21.97	22.03	-	16.23	17.00	
11a	3	5240	16.96	16.79	16.73	-	23.13	22.20	22.32	-	16.23	17.00	
HT20	3	5180	18.06	18.00	17.95	-	23.94	22.43	23.13	-	16.54	17.00	
HT20	3	5200	18.06	17.83	17.89	-	23.94	22.96	23.48	-	16.51	17.00	
HT20	3	5240	18.00	18.06	17.89	-	23.88	23.54	23.59	-	16.53	17.00	
HT40	3	5190	37.63	37.63	37.40	-	49.86	46.79	47.30	-	17.00	17.00	
HT40	3	5230	37.86	37.40	37.51	-	49.28	47.07	48.70	-	17.00	17.00	
Res	Result						Com	plied					

3.2.5 Test Result of Emission Bandwidth

3.3 **RF Output Power**

3.3.1 RF Output Power Limit

	Maximum Conducted Output Power Limit							
UN	II Devices							
Ø	For the 5.15-5.25 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.							
	For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 - (G_{TX} - 6).							
	For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.							
	For the 5.725-5.825 GHz band:							
	Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$.							
	Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$.							
LE-	LAN Devices							
⊠	For the 5.15-5.25 GHz band, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.							
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz							
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz							
	For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.							
	Point-to-multipoint systems (P2M): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.							
	□ Point-to-point systems (P2P): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. If e.i.r.p. > 36 dBm, G _{TX} ≤P _{Out}							
	_t = maximum conducted output power in dBm, = the maximum transmitting antenna directional gain in dBi.							

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method						
⊠	Мах	ximum Conducted Output Power						
	[dut	y cycle ≥98% or external video / power trigger]						
		Refer as FCC KDB 789033 v01r03, clause E Method SA-1 (spectral trace averaging).						
		Refer as FCC KDB 789033 v01r03, dause E Method SA-1 Alt. (RMS detection with slow sweep speed)						
	duty	cycle < 98% and average over on/off periods with duty factor						
		Refer as FCC KDB 789033 v01r03, clause E Method SA-2 (spectral trace averaging).						
	Refer as FCC KDB 789033 v01r03, dause E Method SA-2 Alt. (RMS detection with slow swe speed)							
	Wid	eband RF power meter and average over on/off periods with duty factor						
	⊠	Refer as FCC KDB 789033 v01r03, clause E Method PM (using an RF average power meter).						
⊠	For	conducted measurement.						
		The EUT supports single transmit chain and measurements performed on this transmit chain.						
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.						
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit[dBm]) EIRP _{total} = P _{total} + DG						

3.3.4 Test Setup

RF Output Power (Power Meter)							
EUT Power Meter							

3.3.5 Directional Gain for Power Measurement

Directional Gain (DG) Result							
Transmit Chains No.		1	2	3	-		
Maximum G _{ANT} (dBi)		7	7	7	-		
Modulation Mode	DG (dBi)	N _{TX}	N _{SS}	STBC	Array Gain (dB)		
11a,6-54Mbps	7	3	1	-	-		
HT20,M0-23	7	3	1	-	-		
HT40,M0-23	7	3	1	-	-		
Note 1: For CDD transmissions, di Directional Gain (DG) = G Array Gain = 0 dB (i.e., no Array Gain = 0 dB (i.e., no	_{ANT} + Arr array ga	ray Gain, where a ain) for N _{TX} ≤4;	Array Gainisasf	ollows:			

Maximum Conducted Output Power (5150-5250MHz band)											
Condi	tion				F	RF Outp	ut Pow	er (dBm)		
Modulation Mode	N _{TX}	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11a	3	5180	5.92	4.67	4.14	-	9.75	16.00	7.00	16.75	23.00
11a	3	5200	6.52	5.15	4.51	-	10.25	16.00	7.00	17.25	23.00
11a	3	5240	6.60	4.20	4.06	-	9.89	16.00	7.00	16.89	23.00
HT20	3	5180	6.01	4.58	4.02	-	9.72	16.00	7.00	16.72	23.00
HT20	3	5200	6.52	5.04	4.12	-	10.11	16.00	7.00	17.11	23.00
HT20	3	5240	6.38	4.36	4.11	-	9.85	16.00	7.00	16.85	23.00
HT40	3	5190	8.73	8.51	6.52	-	12.80	16.00	7.00	19.80	23.00
HT40	3	5230	10.24	9.14	7.39	-	13.85	16.00	7.00	20.85	23.00
Resu	ult				-	C	Complie	d		-	

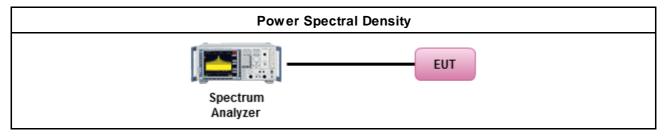
3.3.6 Test Result of Maximum Conducted Output Power

3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

	Peak Power Spectral Density Limit
UN	II Devices
⊠	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) $\leq 4 \text{ dBm/MHz}$. If $G_{TX} > 6 \text{ dBi}$, then PPSD = 4 – ($G_{TX} - 6$).
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 – (G _{TX} – 6).
	For the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 – (G _{TX} – 6).
	For the 5.725-5.825 GHz band:
	Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 17 - (G _{TX} - 6).
	Point-to-point systems (P2P): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If G _{TX} > 23 dBi, then PPSD = 17 – (G _{TX} – 23).
LE	LAN Devices
⊠	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz and the e.i.r.p. peakpower spectral density (PPSD) \leq 10 dBm/MHz.
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peakpower spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peakpower spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.725-5.825 GHz band, the peak power spectral density (PPSD) \leq 17 dBm/MHz and the e.i.r.p. peakpower spectral density (PPSD) \leq 23 dBm/MHz.
ро	SD = peak power spectral density that he same method as used to determine the conducted output wer shall be used to determine the power spectral density. And power spectral density in dBm/MHz $_{x}$ = the maximum transmitting antenna directional gain in dBi.

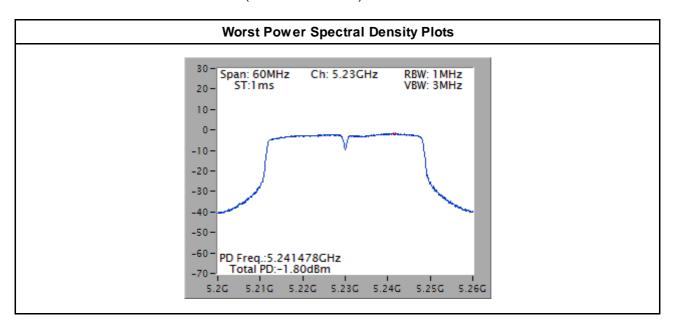
3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method				
	outp func	k power spectral density procedures that the same method as used to determine the conducted out power shall be used to determine the peak power spectral density and use the peak search stion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density I be measured using below options:				
		Refer as FCC KDB 789033 v01r03, F)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth				
	[dut	y cycle ≥98% or external video / power trigger]				
	⊠	Refer as FCC KDB 789033 v01r03, clause E Method SA-1 (spectral trace averaging).				
		Refer as FCC KDB 789033 v01r03, dause E Method SA-1 Alt. (RMS detection with slow sweep speed)				
	duty	cycle < 98% and average over on/off periods with duty factor				
		Refer as FCC KDB 789033 v01r03, clause E Method SA-2 (spectral trace averaging).				
		Refer as FCC KDB 789033 v01r03, dause E Method SA-2 Alt. (RMS detection with slow sweep speed)				
⊠	For conducted measurement.					
		The EUT supports single transmit chain and measurements performed on this transmit chain.				
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.				
	⊠	The EUT supports multiple transmit chains using options given below:				
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.				
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.				
	Ø	If multiple transmit chains, EIRP PPSD calculation could be following as methods: PPSD _{total} = PPSD ₁ + PPSD ₂ + + PPSD _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = PPSD _{total} + DG				
		Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.				

3.4.4 Test Setup



Power Spectral Density Result							
Cond	ition		Peak Power S	pectral Density			
Modulation Mode	N _{TX}	Freq. (MHz)	Sum Chain (dBm/1MHz)	Power Limit (dBm/1MHz)			
11a	3	5180	-1.95	-1.77			
11a	3	5200	-1.86	-1.77			
11a	3	5240	-2.14	-1.77			
HT20	3	5180	-1.88	-1.77			
HT20	3	5200	-2.04	-1.77			
HT20	3	5240	-2.03	-1.77			
HT40	3	5190	-2.79	-1.77			
HT40	3	5230	-1.80	-1.77			
Res	ult		Com	plied			

3.4.5 Test Result of Peak Power Spectral Density

Note:

 Test result is bin-by-bin summing measured value of each TX port
 Directional gain = 7 + 10*log(3/1)=11.77 dBi > 6 dBi Limit shall be reduced to 4 dBm - (11.77 dBi - 6 dBi) = -1.77 dBm

3.5 Peak Excursion

3.5.1 Peak Excursion Limit

Peak Excursion Limit

UN	III Devices
Ø	Peak excursion ≤ 13 dB. The ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed 13 dB. (Earlier proœdures that required computing the ratio of the two spectra at each frequency across the emission bandwidth can lead to unintended failures at band edges and will no longer be required.)

LE-LAN Devices

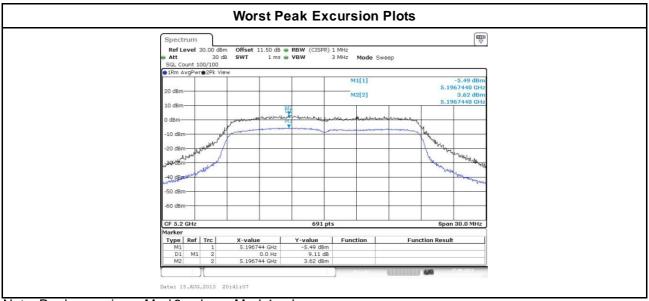
N/A

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
⊠	Refer as FCC KDB 789033 v01r03, clause G peakexcursion method.
	Testing each modulation mode on a single channel is sufficient to demonstrate compliance with the peakexcursion requirement
⊠	For conducted measurement.
	Testing a single output port is sufficient to demonstrate compliance with the peak excursion.


3.5.4 Test Setup

Peak Excursion							
Spectrum Analyzer	EUT						

3.5.5 Test Result of Peak Excursion

UNII Peak Excursion Result								
Condi	ition				Peak Excu	rsion (dB)		
Modulation Mode	N _{TX}	Freq. (MHz)	BPSK	QPSK	16QAM	64QAM	256QAM	Limit
11a	3	5240	8.22	8.69	8.89	8.54	-	13.0
HT20	3	5200	7.41	8.15	8.31	9.11	-	13.0
HT40	3	5230	8.01	8.14	8.73	9.00	-	13.0
Result					Com	plied		

Note: Peakexcursion = Mark2 value - Mark1 value

3.6 Transmitter Radiated Unwanted Emissions and Band Edge

3.6.1 Transmitter Radiated Unwanted Emissions and Band Edge Limit

Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

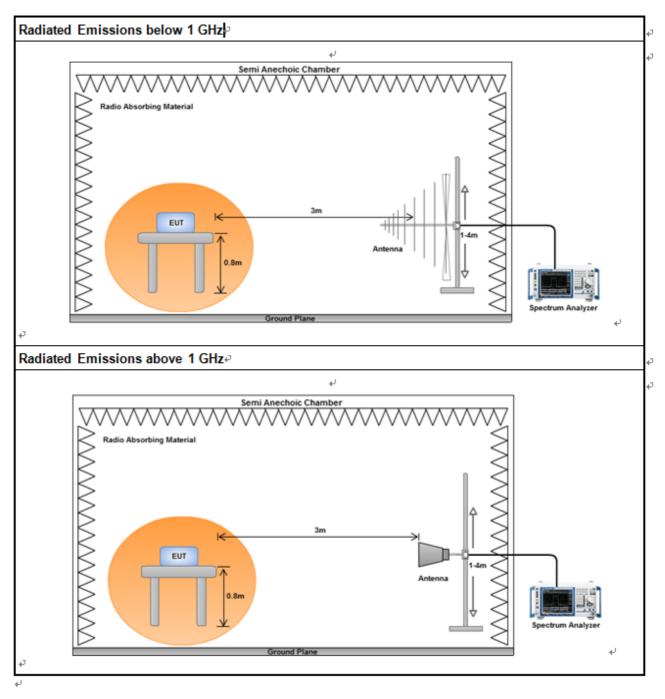
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a doser distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

U	In-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

3.6.2 Measuring Instruments

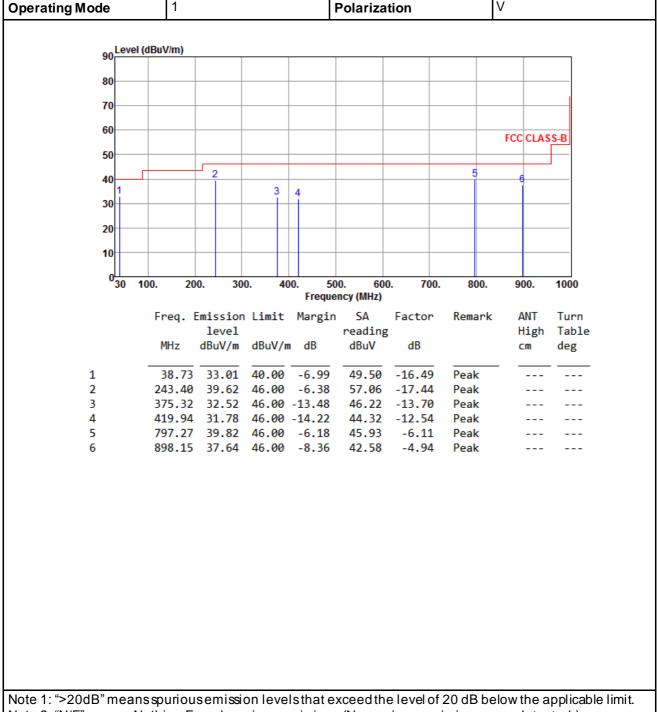
Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures

			Test Method
Ø	perf equi abo are i be e dista	orme ipme ve 30 impra extrap ance	ments may be performed at a distance other than the limit distance provided they are not ed in the near field and the emissions to be measured can be detected by the measurement nt. Measurements shall not be performed at a distance greater than 30 m for frequencies 0 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less actical. When performing measurements at a distance other than that specified, the results shall polated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear for field-strength measurements, inverse of linear distance-squared for power-density ments).
⊠	The	ave	rage emission levels shall be measured in [duty cycle \geq 98 or duty factor].
Ø	For	the ti	ransmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Ref	er as FCC KDB 789033 v01r03, clause H)2) for unwanted emissions into non-restricted bands.
	\boxtimes	Ref	er as FCC KDB 789033 v01r03, clause H)1) for unwanted emissions into restricted bands.
			Refer as FCC KDB 789033 v01r03, H)6) Method AD (Trace Averaging).
			Refer as FCC KDB 789033 v01r03, H)6) Method VB (Reduced VBW).
		⊠	Referas ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW≥ 1/T, where T is pulse time.
			Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		⊠	Refer as FCC KDB 789033 v01r03, clause H)5) measurement procedure peak limit.
			Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peaklimit.
\boxtimes	For	radia	ated measurement.
	Ø	Ref	er as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	Ø	Ref	er as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	⊠	Ref	er as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.
	For	cond	lucted and cabinet radiation measurement, refer as FCC KDB 789033 v01r03, clause H)3).
		Dev Ref emi	conducted unwanted emissions into non-restricted bands (relative emission limits). rices with multiple transmit chains: er as FCC KDB 662911, when testing out-of-band and spurious emissions against relative ssion limits, tests may be performed on each output individually without summing or adding 10 (N) if the measurements are made relative to the in-band emissions on the individual outputs.
		Dev (1) I	conducted unwanted emissions into restricted bands (absolute emission limits). rices with multiple transmit chains using options given below: Measure and sum the spectra across the outputs or Measure and add 10 log(N) dB
		resu con	FCC KDB 662911 The methodology described here may overestimate array gain, thereby Ilting in apparent failures to satisfy the out-of-band limits even if the device is actually apliant. In such cases, compliance may be demonstrated by performing radiated tests around frequencies at which the apparent failures occurred.

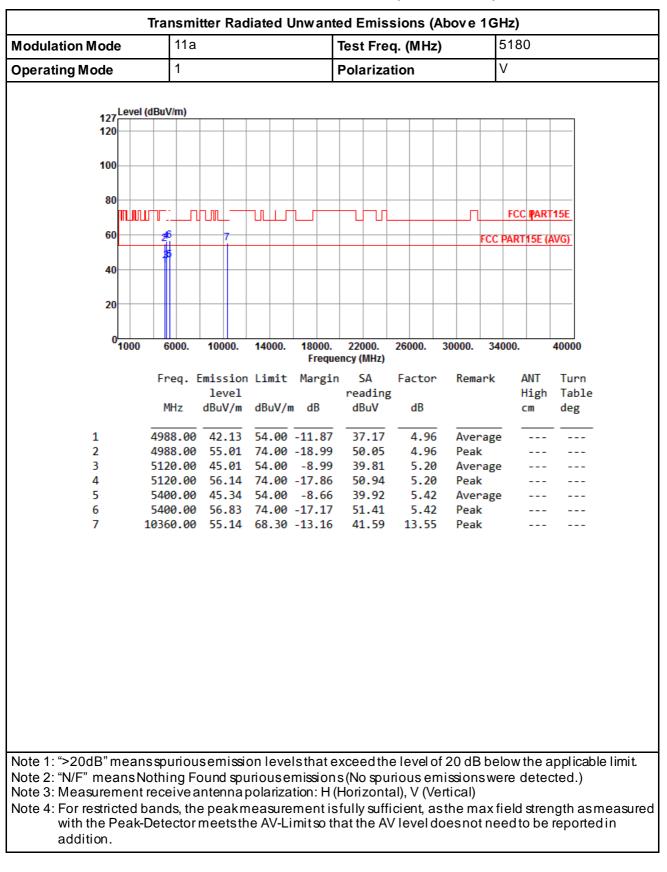
3.6.4 Test Setup



3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 30 dB below the permissible value has no need to be reported.

3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)Transmitter Radiated Unwanted Emissions (Below 1GHz)Modulation ModeHT 40Test Freq. (MHz)5230Operating Mode1PolarizationV


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

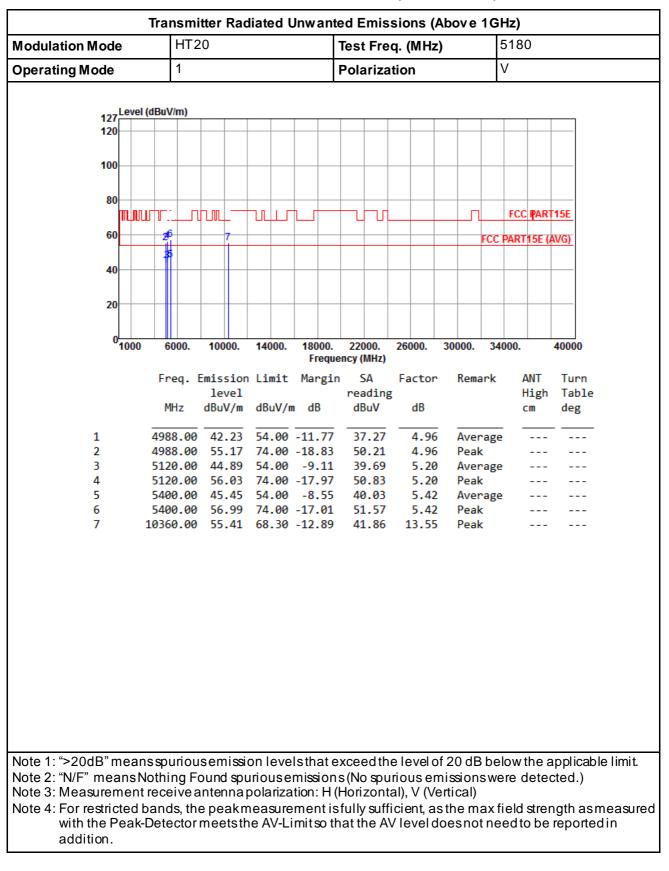
Operating Mode 1 Polarization H 90 Level (dBuV/m) Image: state s	SS-B
80 70 60 50 40 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SS-B
80 70 60 50 40 40 50 40 50 50 50 50 50 50 50 50 50 5	SS-B
70 60 50 40 40 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	SS-B
60 50 40 40 50 40 50 50 50 50 50 50 50 50 50 5	SS-B
40 4 6 6 6	SS-B
40 4 6 6 5 5 5 5 5 5 5 5 5 5	
20	
10	
0 30 100. 200. 300. 400. 500. 600. 700. 800. 900. Frequency (MHz)	1000
Freq. Emission Limit Margin SA Factor Remark ANT	Turn
level reading High	
MHz dBuV/m dBuV/m dB dBuV dB cm	deg
1 98.87 32.45 43.50 -11.05 53.87 -21.42 Peak	
2 180.35 32.09 43.50 -11.41 50.32 -18.23 Peak 3 224.97 32.20 46.00 -13.80 50.55 -18.35 Peak	
4 298.69 38.86 46.00 -7.14 54.47 -15.61 Peak	
5 798.24 34.37 46.00 -11.63 40.47 -6.10 Peak	
6 898.15 39.22 46.00 -6.78 44.16 -4.94 Peak	

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

lodulation Mode	•	1'	la					Т	est	Fre	q. (MHz	z)		Ę	518	0	
Operating Mode		1						F	ola	riza	tion			ł	4		
		dDu\//m															
127 120	Level (C	dBuV/m	,														
100								_									
80			лп	nn —					_						FCC	PART	15E
60																	
		26						-						FCC	PARI	15E (J	AVG)
40		15						_									
20								-									
U	1000	6000). 1	10000.	14	000.	1800 Erec		220 ncy (I		26000.	30	000.	34(000.		40000
		Erea	Fm	iccio		mi+	Marg			Α	Factor		Rema	ank		ANT	Turn
		11 CY		level			nar g	5111		- ding			IVC III			ligh	
		MHz	d	BuV/m	dB	uV/n	n dB		dB	uV	dB				0	cm	deg
1		4988.	00	40.81	54	.00	-13.1	9	35	.85	4.96	5	Ave	rage	-		
2		4988.		53.56			-20.4			.60	4.96		Peal				
3		5120.								.18	5.26			rage			
4		5120. 5400.					-19.9			.82 .37	5.20 5.42		Peal	k rage			
6		5400.					-21.8			.70	5.42		Peal				
7	1	0360.	00	54.12	68	.30	-14.1	8	40	.57	13.55	5	Peal	k			
lote 1: ">20dB" n																	
lote 2: "N/F" mea lote 3: Measurer														swe	ie (Jelec	stea.)
lote 4: For restric														ax fi	eld	strer	ngth as
with the P																	
addition.																	

Modulation Mode)	11	a					Test	Fre	q. (MHz	5	5200	0			
Operating Mode		1						Pola	riza	tion			V	/		
	Lovel (d	Du\//m														
127 120	Level (a	Buv/m))													
	e 1 Polarization V															
100																
80																
	ուսո	┉	ா	<u></u>										FCC	PAR	[15E
60		24		5									FCC F	PART	15E (/	AVG)
		-3														
40																
20																
0	1000	6000). 1	10000.	140	000.				26000.	300	000.	340	00.		40000
		Freq	. Em	ission	Lir	mit	Margir	1 2	A	Factor		Rema	ark	A	ANT	Turn
		MU			JD.				_						_	
		MHZ	a	BUV/M	aBl	uv/m	ab	at	uv	dВ				0	m	deg
1													_			
2 3																
4	!	5400.	90	56.91	74	.00	-17.09	51	.49	5.42	2		-			
5	10	0400.	90	55.29	68	.30	-13.01	41	.66	13.63	}	Peak	C			
Note 2: "N/F" mea	nsNo nentro ted ba	othing eceiv ands,	Fou e an the p	ınd spu tenna peakm	uriou pola neas	use iriza sure	mission tion:H(mentis	s(No Hori fully	spu zonta suffi	rious ei al), V (V icient, a	niss ertio sthe	sion cal) e ma	swe axfi	re d eld	leteo stren	cted.) ngth as

Modulation Mode				11a								q. (M	ę	5200					
perating Mode			1						I	Pola	riza	tion			I	-1			
	Laval (d	D																	
127 120	Level (d	BUV/I	n)																
120																			
100																			
80					_										1	FCC		15E	
60					-														
00		24			5										FCC	PART	15E (/	AVG)	
40		-3																	
20																			
U	1000	60	00.	100	00.	140	000.)00. Teque	220 ncv (l		26000). :	30000.	34(000.		40000	
		Fre	a. F	mis	sion	Lii	mit	Mar	-		Α	Fact	or	Rem	ark		ANT	Turn	
			4		/el				8		 ding						ligh		
		MH	z	dBu	//m	dBi	uV/m	ı dE	3	dB	uV	dE	3			0	cm	deg	
1	-	4988	.00	40	.03	54	.00	-13.	.97	35	.07	4.	.96	Ave	rage	-			
2		4988			.34	74	.00	-20.	.66	48	.38	4.	.96	Pea	k ¯				
3		5400 5400						-12.			.01 .52		.42 .42	Ave Pea	rage ⊬				
5		0400						-14			.46	13.		Pea					
				com	issio	on l	eve	lsth	ate	xcee	dth	eleve	el of	20 dE	3 bel	ow	the a	applica	
lote 1: ">20dB" m	ieans	spu	riou	3611															
lote 2: "N/F" mea	insNo	thin	g Fo	ound	lspu	riou	use	miss		s (No	spu	rious				re c	deteo	cted.)	
lote 2: "N/F" mea lote 3: Measurem	nsNo nentre	otĥin ecei	g Fo ve a	ound nter	lspu nap	rio. oola	use iriza	miss tion:	: H (ŀ	s (No Hori:	spu zont	rious al), V	(Ve	rtical)					
lote 2: "N/F" mea	nsNo nentre ted ba	othin ecei ands	g Fo ve a s, the	ound nter e pe	lspu inap akm	rio ola iea:	use iriza sure	miss tion: mer	:H(H htis	s (No Hori: fully	spu zont suff	rious al), V icient	(Ve , as	rtical) the m	ax fi	eld	strer	ngth as	


Modulation Mode	11a						Tes	t Fre	<mark>q. (</mark> МН	5	5240					
Operating Mode		1						Pola	ariza	tion			V	'		
		D 1//>														
127 120	Level (a	BuV/m)														
120																
100																
80			บบณ	_										FCC	PART	15F
60		24 -24		_												
00		3		5									FCC P	ART	15E (<i>l</i>	WG)
40	_	1														
20	_															
U;	1000	6000.	100	00.	140	00.	18000. Frequ	22 ency (000. MHz)	26000.	300	00.	340	00.		40000
		Frea.	Emiss	sion	Lin	nit	Margi		5A	Factor	∽ R	ema	ark	Δ	NT	Turn
			lev						ading						igh	Table
		MHz	dBu\	//m	dBu	ıV/m	dB	d	BuV	dB				C	m	deg
1	2	4988.00	42.	.28	54.	00	-11.72	37	7.32	4.9	5 A	ver	age	-		
2		4988.00	55.	.17	74.	.00	-18.83	56	9.21	4.9	5 P	'eak	c _			
3		5400.00 5400.00					-8.51		0.07 L.53	5.42 5.42		ver Peak	rage			
5		0480.00 0480.00							L.55	13.8		eak Peak				
Note 1: ">20dB" m	eans	spuriou	ısem	issio	on le	eve	lsthat	exce	edth	elevel	of 20	dB	belo	ow t	he a	pplica
Note 2: "N/F" mea													swei	re d	eteo	cted.)
Note 3: Measurem	nent re	eceive	anten					(Hori	zont	al), V (V	′ertic					
			0 0 0	~~	000	1100	monti	full				m	ov fi	<u></u>	tro m	ath an
Note 4: For restrict with the Po	ted ba	ands, th							/suff	icient, a	sthe					

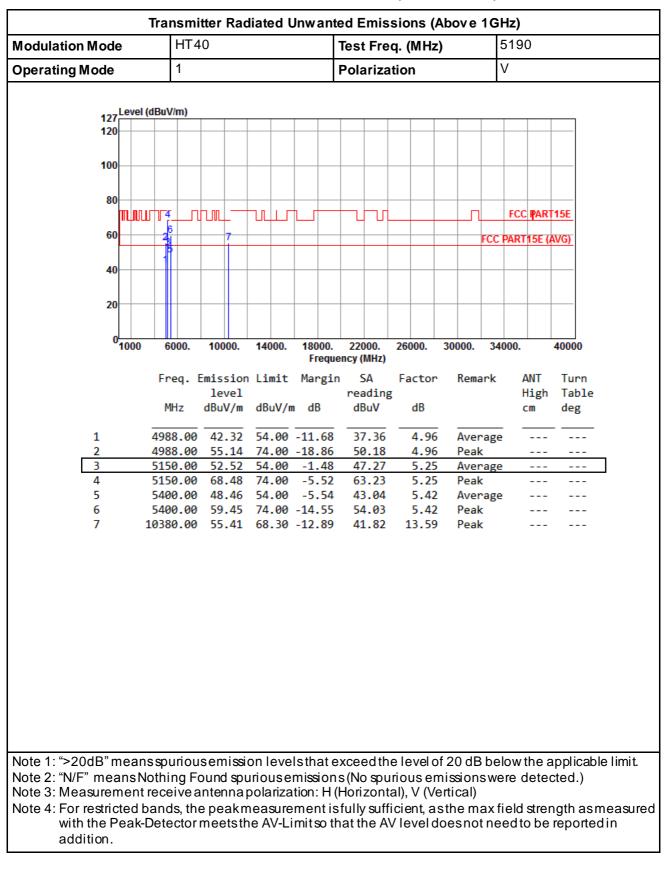
)perating Mode									551	I I C	q. (MH	12)		`	524(0	
		1						Ρ	ola	riza	tion			I	-1		
	aval (d	Dulling															
127 120	_evel (a	BuV/m)															
120																	
100-				_								_	_				
80-			лл	,					_					1	FCC	PART	15E
60									-								
00	_	24		5				_						FCC	PART	15E (/	AVG)
40-	_	13										_	_				
20	_																
0	1000	6000	10	0000.	140	000.	1800 Erec	0. quen	2200 cv (N		26000.	3	0000.	34(000.		40000
		Freq	Fmi	ssion	li	mit	Marg	-	S/	-	Facto)r	Rem	ark	4	ANT	Turn
		iicq.		evel			1101 8			ding			ite in			ligh	
		MHz	dB	uV/m	dB	uV/n	ı dB		dBi	٧u	dB				C	m	deg
1	-	4988.0	0 4	0.21	54	.00	-13.7	9	35	.25	4.9	96	Ave	rage	-		
2		4988.0	0 5	3.69	74	.00	-20.3	1	48	.73	4.9	96	Peal	k ¯			
3 4		5400.0 5400.0					-12.3			.19 .61	5.4		Ave Peal	rage ၊			
5		0480.0								.14	13.8		Peal				
lote 1: ">20dB" m	eans	spurio	ouse	missi	on l	eve	Isthat	tex	cee	dth	eleve	of	20 dE	3 be	ow	the a	applica
lote 2: "N/F" mea	nsNo	thing	Four	ndspu	urio	use	missio	ons	(No	spu	riouse	emi	ssion	swe	re c	lete	cted.)
lote 3: Measurem																-4	
lote 4: For restrict with the Pe																	
addition.	∃ar-D	elecil	, ine	ອເວເເ	ie A	v-Ll	1111.50	uid		G AI	, ievel	uu	63110	i ne	Gui	1 06	iepoil

3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

Modulation Mode	e	H	20					Test	Fre	q. (MHz	:)		518	0	
Operating Mode		1						Pola	riza	tion			Н		
		(Du)//m)													
127 120		1BuV/m)													
120															
100			_	_											
80	munur	+	лл	, —				-				-	FC		[15E
60				<u> </u>											
		26	_	+								FCC	PAR	15E (J	AVG)
40		15										_			
20															
U	1000	6000	10	0000.	140	000.	18000. Frequ)00. MH7)	26000.	30000	. 34	000.		40000
		Enog	Fmi	ccior		mi+	Margir		5A	Factor	Ro	nark		ANT	Turn
		iieq.		evel		III C	Hai gri		ding		nei			High	
		MHz	dB	u V/m	dB	uV/n	ı dB	dE	luV	dB				cm	deg
1		4988.0	0 4	0.22	54	00	-13.78	39	.26	4.96		erage			
2		4988.0					-20.52		3.52	4.96		· · ·	-		
3							-12.78		.02	5.20		erage	2		
4		5120.0 5400.0					-20.26		3.54 5.13	5.20 5.42		ak erage			
6		5400.0					-22.11		.47	5.42		· · ·	-		
7	1	0360.0	0 5	4.16	68	.30	-14.14	46	.61	13.55	Pe	ak			
Note 1: ">20dB" n	noone	enuric		micci	onl	0.10	lethate	vco	dth		f 20 d	Bho		the	nnlica
Note 2: "N/F" mea															
Note 3: Measuren													2.		,
Note 4: For restric	ted ba	ands, t	he p	eakn	nea	sure	mentis	fully	suffi	icient, a	sther	nax f			
with the P addition.	eak-D	etecto	orme	etsth	ne A	V-Li	mitso th	nat th	ne A\	/leveld	loesn	otne	edt	o be	report
addition															

Iodulation Mode	!	HT2	20				-	Test	Fre	q. (MH:	z)		520	0	
Operating Mode		1					I	Pola	riza	tion			V		
		D 1// 1													
127 120	_evel (a	BuV/m)													
120															
100	_											_			
80					น่								FC		145E
60															
		24 3		,								FCO	C PAR	T15E (/	AVG)
40	_	1										_	_		
20	_														
0;	1000	6000.	1000	0.	14000		000. reque	220 ncv (l		26000.	30000). 3	4000.		40000
		Freq.	Emiss	ion	Limit				Α	Factor	n Re	mark		ANT	Turn
			lev				. 8		 ding					High	
		MHz	dBuV	/m	dBuV,	/m d	В	dB	uV	dB				cm	deg
1	2	4988.00	41.	89	54.0	-12	.11	36	.93	4.96	5 Av	erag	e		
2		4988.00	54.	81	74.0	9 -19	.19	49	.85	4.96	5 Pe	ak			
3		5400.00 5400.00				0 -8 0 -17			.05 .33	5.42		erag ak	e		
5		0400.00 0400.00							.89	13.63		ak			
Note 1: ">20dB" m	eans	spuriou	isemi	ssio	n lev	elsth	ate	xcee	dth	elevelo	of 20 d	Bb	elow	the a	applical
lote 2: "N/F" mea	nsNo	thing F	ound	spui	rious	emise	sions	s (No	spu	riouse	missio	nsw	ere	dete	cted.)
	ont re		nton	nan	olariz	ation	· H /ł	-Inri-	zont	$\Lambda V V $	ortica	n –			
Note 3: Measurem													£	-	
Note 3: Measurem Note 4: For restric with the Po	ed ba	ands, th	e pea	km	easu	reme	ntis	fully	suffi	icient, a	sthei	nax			

Modulation Mode	•	HT	20					٦	ſest	Fre	q. (MI	Ηz)		Ę	520	0	
Operating Mode		1						F	Pola	riza	tion			ł	4		
127 120	Level (d	BuV/m)															
120																	
100												_					
80			JUL									-		1	FCC		15F
60														-			
		24		5								+	_	FCC	PARI	15E (/	AVG)
40		13										_	_				
20												-					
0																	
	1000	6000.	100	000.	140	000.	1800 Fre		220 ncy (I		26000		30000.	34(000.		40000
		Freq.	Emis	sion	Lir	mit		-		A	Fact	or	Rem	ark	1	ANT	Turn
				vel				-		ding						ligh	
		MHz	dBu	V/m	dBu	uV/n	ı dB		dB	uV	dB				0	cm	deg
1	2	4988.0					-13.		35	.40	4.	96		rage	-		
2		4988.0 5400.0					-20.			.85 .07	4.	96 42	Pea	k rage			
4		5400.0					-22.			.49	5.		Pea	-			
5	16	0400.0	ð 54	.29	68	.30	-14.	01	40	.66	13.	63	Pea	k			
lote 1: ">20dB" m lote 2: "N/F" mea lote 3: Measurem lote 4: For restric with the P addition.	nsNo nentre ted ba	thing eceive ands, t	Found antei ne pe	dspu nnap akm	iriou pola neas	use iriza sure	missi tion: men	ons H(H tisf	(No Ioriz ully	spu zont suffi	rious al), V icient,	em Vei ast	ission tical) the m	is we ax fi	ere o eld	dete strer	cted.) ngth a:


Iodulation Mode	!	HT2	20				Test	Fre	q. (MHz	:)	5	5240)	
Operating Mode		1					Pola	riza	tion		١	/		
	ovol (d	Du\//m)												
127 120	_ever (a	BuV/m)												
120														
100	_			_										
80-				4							1	FCC	PART	15E
60		-24	5											
	_	3		_							FCCI	PART	15E (A	(VG)
40				_										
20-	_				_									
U.	1000	6000.	10000	. 1	4000.	18000. Freque)00. MH7)	26000.	30000.	340	000.		40000
		Freq	Fmissi	on I	imit	Margir		5A	Factor	Rem	ark	۵	NT	Turn
			leve			1101 811		ding		i cen			igh	Table
		MHz	dBuV/	n d	BuV/r	n dB	dB	BuV	dB			c	m	deg
1	2	4988.00	42.2	8 5	4.00	-11.72	37	.32	4.96	Ave	rage	-		
2	4	4988.00	55.4	1 7	4.00	-18.59	50	.45	4.96		_			
3		5400.00 5400.00				-8.51 -17.04		.07	5.42 5.42		rage			
5						-12.99		.51	13.80					
lote 1: ">20dB" m	eans	spuriou	semis	sion	leve	Isthate	xcee	edth	elevelo	of 20 dl	3 bel	owt	he a	pplica
lote 2: "N/F" mea	nsNo	thing F	ounds	puri	ouse	mission	s (No	spu	riouser	nissior	nswe			
Note 3: Measurem	ient re	eceivea												
			I	-		- 1.4	4	·	alort -		f*	- I - I		
Note 4: For restrict with the Pe	ed ba	ands, th												

127 120 100 80	evel (d	1 BuV/m)						F	Pola	riza	tion			ŀ	H		
127 120 100 80 60																	
127 120 100 80 60																	
100- 80- 60-		T															
80 1 60		T.															
60 -		T										-					
60 -		╹															
60			ՆՈՐ		7 0				_						FCC	PART	[15E
40-		24		5										FCC		15E (/	
40-				Ĭ												ISE (
												-					
20																	
20																	
0 <mark>_</mark> 1/	000	6000.	100	000.	140	000.	180	00.	220	00.	26000.	3	0000.	340	000.		40000
							Fr	eque		/Hz)							
		Freq.		sion vel	Li	mit	Mar	rgin		A ding	Facto	r	Rema	ark		NT ligh	Turn Table
		MHz		iV/m	dB	uV/n	ı dE	3		uV uV	dB					:m	deg
4	-	1000 0/		- 07	F A		42	07				-	-		_		
1		4988.00 4988.00		.03			-13. -20.			.07	4.9 4.9		Peal	rage k			
3	5	5400.00	9 41	.86	54	.00	-12.	.14	36	.44	5.4	2	Ave	rage			
4		5400.00 3480.00		.28						.86 .23	5.4 13.8		Peal Peal				
5	1		, ,,		00		14.	21	40	.25	15.0	•	i cai	•			
lote 1: ">20dB" me	eans	spurio	usen	nissio	on l	eve	lsth	atex	xcee	dth	elevel	of 2	20 dE	8 bel	owt	he a	applical
lote 2: "N/F" mear														swe	re d	leteo	cted.)
lote 3: Measurem lote 4: For restricte														av fi	പപ	etror	ath an
with the Pe																	
addition.									2.0	570		200			5.5.0		

3.6.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40

Modulation Mode	•	HT	40					٦	Fest	Fre	q. (MH	łz)		ţ	519	0	
Operating Mode		1						F	Pola	riza	tion			I	Η		
127 120	Level (d	BuV/m)															
100																	
80			าบแ												FCC		[15E
60				ţ_													
00		28		í						_				FCC	PART	15E (J	AVG)
40			_									_	_				
20			_									-					
0	1000	6000.	10	000.	140	00.	180		220 ncy (I		26000.	3	0000.	34	000.		40000
		Freq.	Emic	cion	1.4.4	+		-		и п <i>2</i>) А	Facto		Rema	ank		ANT	Turn
		Freq.		vel	LTI	ш	mar	вти		н ding		л.	Nema	агк		High	Table
		MHz	dBu	V/m	dBu	ıV/m	dB		dB	uV	dB					cm	deg
1		4988.0	a 12	.15	54	00	-11.	85	37	.19	4.9	<u> </u>	Ave	0000	-		
2		4988.0					-20.			.71	4.9		Peal	<u> </u>			
3		5150.0								.27	5.2	25	Ave	-			
4		5150.0 5400.0					-21.			.15	5.2 5.4		Peal Ave				
6		5400.0					-11.			.00	5.4		Peal	_			
7	1	0380.0								.63	13.9	59	Peal	k			
Note 1: ">20dB" m	ieans	spurio	usen	nissio	on le	eve	lstha	atex	kçee	dth	eleve	of	20 dE	3 be	low	the a	applica
Note 2: "N/F" mea Note 3: Measuren														swe	ere o	deteo	cted.)
Note 4: For restric														ax fi	eld	strer	ngth as
with the P																	
addition.																	

Modulation Mode	•	HT∠	10			Test	Free	q. (MHz)	5	230	
Operating Mode		1				Pola	riza	tion		V	/	
127 120	_evel (d	BuV/m)										
120												
100	_											
80					h (1	FCC PA	RT15F
60		24	5									
		3	Ĭ							FCCP	ART15	<u>= (AVG)</u>
40	_											
20												
0												
-	1000	6000.	10000.	14000.	18000. Freque	220 ncy (I		26000.	30000.	340	00.	40000
		Freq.	Emission	Limit	Margin	S	Α	Factor	Rem	ark	ANT	Turn
			level	15.144	10		ding				Hig	
		MHz	dBuV/m	dBuV/r	n dB	dB	uV	dB			CM	deg
1	2	4988.00	42.27		-11.73		.31	4.96		rage		
2		1988.00	55.12 47.23		-18.88		.16 .81	4.96 5.42		k rage		
4		5400.00 5400.00			-15.34		.24	5.42		<u> </u>		
5	10	0460.00	55.33	68.30	-12.97	41	.58	13.75	Pea	k		
ote 1: ">20dB" m lote 2: "N/F" mea lote 3: Measurem lote 4: For restrict with the Po addition.	nsNo ientre ted ba	thing F eceive a ands, th	ound spu antenna e peakn	uriouse polariza neasure	mission ation:H(ementis	s (No Horiz fully	spu zonta suffi	rious en al), V (Ve cient, as	nission ertical) sthe m	ax fie	re det eld str	ected.) ength as

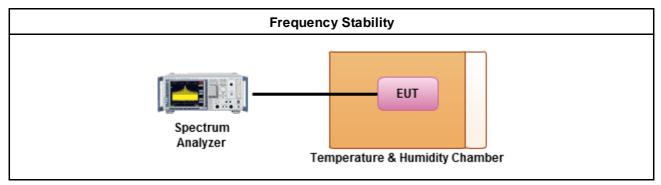
Frequency(MHz) Freq. Emission Limit Margin SA Factor Remark ANT level reading High	Level (dBuV/m)						
120 1000 1100 10000 14000 18000 22000 26000 30000 34000 4 100 6000 10000 14000 18000 22000 26000 30000 34000 4 100 6000 10000 14000 18000 22000 26000 30000 34000 4 100 6000 10000 14000 18000 22000 26000 30000 34000 4 1000 6000 10000 14000 18000 22000 26000 30000 34000 4 1000 6000 10000 14000 18000 22000 26000 30000 34000 4 1000 6000 10000 14000 18000 22000 26000 30000 34000 4 11 49	Level (dBuV/m)		Polarizat	tion		Н	
120 120 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1000 1000 1000 1000 120 100 1000 120 1000	Level (dBuv/m)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12/						
80 9							
60 24 5 FCC PART1 60 24 5 FCC PART15E (AV 40 13 FCC PART15E (AV 90 1000 6000. 10000. 1000 6000. 10000. 18000. 22000. Frequency (MHz) Frequency (MHz) 26000. 30000. 34000. 90 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 90 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 90 Frequency (MHz) Frequency (MHz) FCC Partine ANT High MHz dBuV/m dB dBuV dB Cm Cm 1	100						
60 24 5 FCC PART1 60 24 5 FCC PART15E (AV 40 13 FCC PART15E (AV 90 1000 6000. 10000. 1000 6000. 10000. 18000. 22000. Frequency (MHz) Frequency (MHz) 26000. 30000. 34000. 1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 55.29 74.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>, , , , , , , , , , , , , , , , , , , </u>				FCC PAR	T15F
40 -3 -3 -40<							
20 0 0 1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4 Frequency (MHz) Freq. Emission Limit Margin SA Factor Remark ANT level reading High MHz dBuV/m dBuV/m dB dBuV dB cm 1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak					FCC	: PART15E (AVG)
0 1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4 Frequency (MHz) Freq. Emission Limit Margin SA Factor Remark ANT level reading High MHz dBuV/m dBuV/m dB dBuV dB cm 1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak	40						
0 1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4 Frequency (MHz) Freq. Emission Limit Margin SA Factor Remark ANT level reading High MHz dBuV/m dBuV/m dB dBuV dB cm 1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak							
Frequency (MHZ) Freq. Emission Limit Margin SA Factor Remark ANT level reading MHz dBuV/m dB uV/m dB dBuV dB cm MHz dBuV/m dBuV/m dBuV dB cm 1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak	20						
Frequency (MHZ) Frequency (MHZ) Freq. Emission Limit Margin SA Factor Remark ANT level reading MHz dBuV/m dB dBuV dB Factor Remark ANT High Cm 1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak							
Freq. Emission Limit Margin level SA reactor reading Remark dNT High cm MHz dBuV/m dBuV/m dB dBuV dB cm 1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak	0 <mark>1000 6000. 10000.</mark>			26000.	30000. 3	4000.	40000
level reading High MHz dBuV/m dBuV/m dB dBuV dB cm 1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak	Freq. Emission	-		Factor	Remark	ANT	Turn
1 4988.00 40.29 54.00 -13.71 35.33 4.96 Average 2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak	-						
2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak	MHz dBuV/m	dBuV/m dB	dBuV	dB		cm	deg
2 4988.00 53.63 74.00 -20.37 48.67 4.96 Peak 3 5400.00 42.12 54.00 -11.88 36.70 5.42 Average 4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak	4988.00 40.29	54.00 -13.71	35.33	4.96	Averag	e	
4 5400.00 55.29 74.00 -18.71 49.87 5.42 Peak	4988.00 53.63	74.00 -20.37	48.67	4.96	Peak		
					-	e	
lote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the ap							
lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detect lote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)							ueu.)
Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field streng	stricted bands, the peakme	easurementis	fully suffi	cient, as	the max		
with the Peak-Detector meets the AV-Limit so that the AV level does not need to be readdition.	e Peak-Detector meets the	e AV-Limitsoth	at the AV	/leveldo	pesnotne	ed to be	reporte

3.7 Frequency Stability

3.7.1 Frequency Stability Limit

	Frequency Stability Limit
UN	III Devices
⊠	In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.
LE	-LAN Devices
⊠	N/A
IEE	EE Std. 802.11n-2009

The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band and ± 25 ppm maximum for the 2.4 GHz band.


3.7.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.7.3 Test Procedures

		Test Method
⊠	Refe	er as ANSI C63.10, clause 6.8 for frequency stability tests
	Ø	Frequency stability with respect to ambient temperature
	⊠	Frequency stability when varying supply voltage
	For	conducted measurement.
	Ø	For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to a non- a the maximum emitted power level.

3.7.4 Test Setup

3.7.5 Test Result of Frequency Stability

	r	Frequency Stability Result	
Мо	de	Frequency	Stability (ppm)
Condition	Freq. (MHz)	Test Frequency (MHz)	Frequency Stability (ppm)
T _{20°C} Vmax	5200	5200.01484	2.8538
$T_{20^{\circ}C}Vmin$	5200	5200.01659	3.1904
$T_{55^{\circ}C}$ Vnom	5200	5200.01563	3.0058
$T_{50^{\circ}C}Vnom$	5200	5200.01480	2.8462
T _{40°C} Vnom	5200	5200.00824	1.5846
$T_{30^{\circ}C}$ Vnom	5200	5200.01872	3.6000
$T_{20^{\circ}C}Vnom$	5200	5200.01037	1.9942
T _{10°C} Vnom	5200	5200.01576	3.0308
$T_{0^{\circ}C}Vnom$	5200	5200.01789	3.4404
T _{-10°C} Vnom	5200	5200.01819	3.4981
T _{-20°C} Vnom	5200	5200.01139	2.1904
T _{-30°C} Vnom	5200	5200.01854	3.5654
Limit (ppm)		20
Res	ult	Con	nplied

4 Test Equipment and Calibration Data

Test Item	Conducted Emission Conduction room 1 / (CO01-WS)						
Test Site Instrument							
	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
EMC Receiver	R&S	ESCS 30	100169	Oct. 02, 2012	Oct. 01, 2013		
LISN	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Dec. 04, 2012	Dec. 03, 2013		
LISN (Support Unit)	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2012	Dec. 03, 2013		
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 25, 2012	Dec. 24, 2013		
50 ohm terminal	NA	50	01	Apr. 22, 2013	Apr. 21, 2014		
50 ohm terminal	NA	50	02	Apr. 22, 2013	Apr. 21, 2014		
50 ohm terminal	NA	50	03	Apr. 22, 2013	Apr. 21, 2014		
50 ohm terminal (Support Unit)	NA	50	04	Apr. 22, 2013	Apr. 21, 2014		

Test Item	Radiated Emission above 1GHz 966 chamber1 / (03CH01-WS)						
Test Site							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
3m semi-anechoic chamber	CHAMPRO	SAC-03	03CH01-WS	Jan. 04, 2013	Jan. 03, 2014		
Spectrum Analyzer	R&S	FSV40	101498	Jan. 24, 2013	Jan. 23, 2014		
Receiver	R&S	ESR3	101658	Jan. 28, 2013	Jan. 27, 2014		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jan. 11, 2013	Jan. 10, 2014		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Feb. 18, 2013	Feb. 17, 2014		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Jan. 14, 2013	Jan. 13, 2014		
Amplifier	Burgeon	BPA-530	100219	Nov. 28, 2012	Nov 27, 2013		
Amplifier	Agilent	83017A	MY39501308	Dec. 18, 2012	Dec. 17, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-001	Dec. 25, 2012	Dec. 24, 2013		
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-002	Dec. 25, 2012	Dec. 24, 2013		
control	EM Electronics	EM1000	60612	N/A	N/A		

Loop AntennaR&SHFH2-Z2100330Nov. 15, 2012Nov. 14, 2014AmplifierMITEQAMF-6F-2604009121372Apr. 19, 2013Apr. 18, 2015Note: Calibration Interval of instruments listed above is two year.

Test Item	RF Conducted TH01-HY						
Test Site Instrument							
	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014		
Spectrum Analyzer	R&S	FSP 40	100305	Mar. 20, 2013	Mar. 19, 2014		
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	Nov 21, 2012	Nov 20, 2013		
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014		
Power Sensor	Anritsu	MA2411B	0917017	Feb. 02, 2013	Feb. 01, 2014		
Power Meter	Anritsu	ML2495A	0949003	Feb. 02, 2013	Feb. 01, 2014		
DC Power Source	G.W.	GPC-6030D	C671845	Jun. 21, 2013	Jun. 20, 2014		
AC Power Source	G.W	APS-9102	EL920581	Jul. 16, 2013	Jul. 15, 2014		