

FCC C2PC Test Report

Equipment	:	802.11 bgn PCle Module
Brand Name	:	Senao
Model No.	:	PCE3200AH
FCC ID	:	U2M-PCE3200AH
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
Equipment Class	:	DTS
Applicant	:	Senao Networks, Inc. 3F, No. 529, Chung Cheng Rd., Hsintien,Taipei,Taiwan

The product sample received on Jul. 06, 2013 and completely tested on Aug. 08, 2013. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

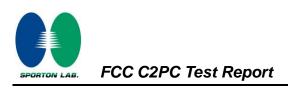
The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	Test Channel Frequencies Configuration	9
2.3	The Worst Case Power Setting Parameter	9
2.4	The Worst Case Measurement Configuration	
2.5	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	6dB Bandwidth	
3.3	RF Output Power	17
3.4	Power Spectral Density	21
3.5	Emissions in non-restricted frequency bands	
3.6	Transmitter Radiated Unwanted Emissions	
4	TEST EQUIPMENT AND CALIBRATION DATA	62
APPE	NDIX A. TEST PHOTOS	A1-A4
APPE	NDIX B. PHOTOGRAPHS OF EUT	B1-B8


Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result			
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.486MHz 36.37 (Margin 9.86dB) - AV 43.22 (Margin 13.01dB) - QP	FCC 15.207	Complied			
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M: 17.57 / 40M: 36.41	≥500kHz	Complied			
3.3	15.247(b)	RF Output Power (Maximum Conducted (Average) Output Power)	Power [dBm]: 27.86	Power [dBm]: 30	Complied			
3.4	15.247(e)	Power Spectral Density	PSD [dBm/30kHz]: 4.13	PSD [dBm/3kHz]: 4.23	Complied			
3.5	15.247(d)	Emissions in non-restricted frequency bands	Out-of -band emissions are 30dB below the highest power	Non-Restricted Bands: > 30 dBc Restricted Bands: FCC 15.209	Complied			
3.6	15.247(d)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 2483.50MHz 52.97 (Margin 1.03dB) - AV	Non-Restricted Bands: > 30 dBc Restricted Bands: FCC 15.209	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR371206	Rev. 01	Initial issue of report	Aug. 30, 2013

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information								
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊤x})	RF Output Power (dBm)	Co-location			
2400-2483.5	b	2412-2462	1-11 [11]	3	27.86	N/A			
2400-2483.5	g	2412-2462	1-11 [11]	3	25.80	N/A			
2400-2483.5	n (HT-20)	2412-2462	1-11 [11]	3	26.41	N/A			
2400-2483.5	n (HT-40)	2422-2452	3-9 [7]	3	19.00	N/A			

Note 1: RF output power specifies that Maximum Conducted (Average) Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note:

This is a C2PC report. The difference between original and C2PC report is only measurement guidance (KDB 558074) version. This report is using latest version of measurement guidance which published at Apr,9,2013.

1.1.2 Antenna Information

Antenna Category							
Equipment placed on the market without antennas							
ntegral antenna (antenna permanently attached)							
Temporary RF connector provided							
No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.							
External antenna (dedicated antennas)							
Single power level with corresponding antenna(s).							
Multiple power level and corresponding antenna(s).							
RF connector provided							
Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)							
Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)							

Antenna General Information						
No. Ant. Cat. Ant. Type Gain (dBi) Transmit Chains (NTX)						
1	External	Dipole	5	3		

1.1.3 Type of EUT

	Identify EUT					
EUT	Serial Number	N/A				
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype				
		Type of EUT				
\square	Stand-alone					
	Combined (EUT where the radio part is fully integrated within another device)					
	Combined Equipment - Brand Name / Model No.:					
	Plug-in radio (EUT intended for a variety of host systems)					
	Host System - Brand Name / Model No.:					
	Other:					

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle					
Operated normally mode for worst duty cycle					
Operated test mode for worst duty cycle					
Test Signal Duty Cycle (x)Power Duty Factor [dB] – (10 log 1/x)					
🖾 100% - IEEE 802.11b	0				
🛛 98.26% - IEEE 802.11g	0.08				
🛛 98.14% - IEEE 802.11n (HT-20)	0.08				
🛛 95.26% - IEEE 802.11n (HT-40)	0.21				

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC (5 Vdc)
Type of DC Source	Internal DC supply	External DC adapter S From Host

1.2 Support Equipment

	Support Equipment							
No.	No. Equipment Brand Name Model Name Remarks							
1	Notebook	DELL	E6430	DoC				
2	2 Power Supply GW		GPL-6030D					
3	Extender card	N/A	adapter	N/A				

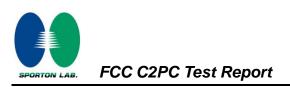
1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911
- FCC KDB 412172

1.4 Testing Location Information

	Testing Location						
\square	Sporton ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.						en, Taiwan, R.O.C.
	Lab	TEL	:	886-3-327-345	6 FAX : 886	6-3-318-0055	
\bowtie	ADD : No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsein 333, Taiwan (R.O.C.)						⁄uan Hsein 333,
		TEL	:	886-3-271-866	6 FAX : 886	-3-318-0155	
Те	est Conditio	on	Т	est Site No.	Test Engineer	Test Environment	Test Date
R	RF Conducted TH01-HY Ian Du 23°C / 62% Jul. 31, 2013					Jul. 31, 2013	
*A	*AC Conduction CO01-WS Skys Huang 23°C / 53% Aug. 08, 2013					Aug. 08, 2013	
*Ra	*Radiated Emission 03CH01-WS Skys Huang 24°C / 67% Jul. 09 ~ Jul. 26, 2013						Jul. 09 ~ Jul. 26, 2013
	Test site registered number [657002] with FCC. Test site registered number [10807A-1] with IC.						


Note: * Sporton Lab subcontracts this test item to ICC lab (TAF: 2732). ICC lab is a TAF accreditation test firm and also is an approved provider of Sporton lab.

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Test Item	Test Item						
AC power-line conducted emissions		±2.80 dB	N/A				
Emission bandwidth, 6dB bandwidth		±1.42 %	N/A				
RF output power, conducted		±0.63 dB	N/A				
Power density, conducted	±0.81 dB	N/A					
All emissions, radiated	30 – 1000 MHz	±3.9 dB	N/A				
	Above 1GHz	±4.2 dB	N/A				
Temperature		±0.8 °C	N/A				
Humidity		±3 %	N/A				
DC and low frequency voltages		±3 %	N/A				
Time	±1.42 %	N/A					
Duty Cycle		±1.42 %	N/A				

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing								
Modulation Mode	Transmit Chains (Ν _{τx})	Data Rate / MCS	Worst Data Rate / MCS	RF Output Power (dBm)				
11b,1-11Mbps	3	1-11 Mbps	1 Mbps	27.86				
11g,6-54Mbps	3	6-54 Mbps	6 Mbps	25.80				
HT-20	3	M0-23	MCS 0	26.41				
HT-40	3	M0-23	MCS 0	19.00				

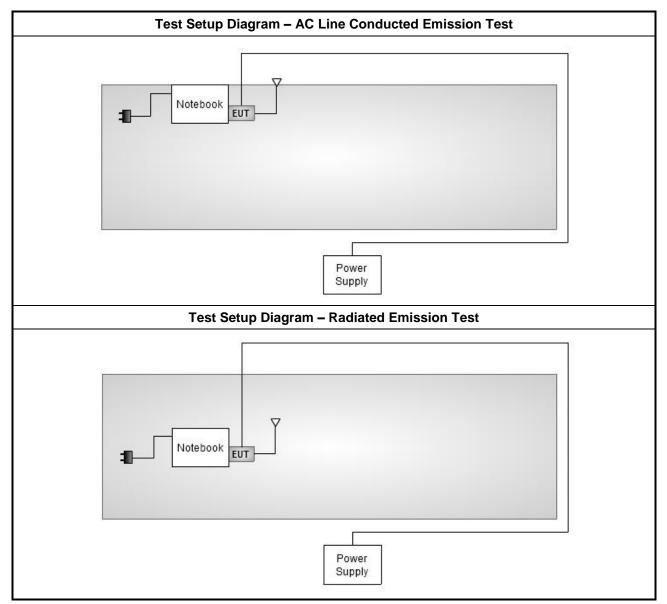
2.2 Test Channel Frequencies Configuration

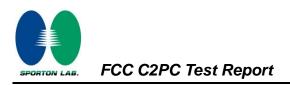
Test Channel Frequencies Configuration					
IEEE Std. 802.11 Test Channel Frequencies (MHz)					
b, g, n (HT-20)	2412-(F1), 2437-(F2), 2462-(F3)				
n (HT-40)	2422-(F4), 2437-(F5), 2452-(F6)				

2.3 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (2400-2483.5MHz band)								
Test Software Version	ART	ART2-GUI V2.3						
		Test Frequency (MHz)						
Modulation Mode	N _{TX}		NCB: 20MHz			NCB: 40MHz		
		2412	2437	2462	2422	2437	2452	
11b	3	18.5	25	22	-	-	-	
11g	3	16	20.5	16	-	-	-	
HT-20,M0-23	3	14.5	21	14.5	-	-	-	
HT-40,M0-23	3	-	-	-	9	13	9	

2.4 The Worst Case Measurement Configuration


T	The Worst Case Mode for Following Conformance Tests						
Tests Item AC power-line conducted emissions							
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz							
Operating Mode Operating Mode Description							
1	Radio link (WLAN)						


The Worst Case Mode for Following Conformance Tests						
Tests Item	Tests Item RF Output Power, Power Spectral Density, 6 dB Bandwidth					
Test Condition	Conducted measurement at transmit chains					
Modulation Mode 11b, 11g, HT-20, HT-40						

Th	e Worst Case Mode for Fo	bllowing Conformance Te	sts				
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions						
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.						
	EUT will be placed in	fixed position.					
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed three orthogonal planes. The worst planes is X.						
User Fosition	EUT will be operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst plane is X.						
	☑ 1. Radio link (WLAN)						
Modulation Mode	11b, 11g, HT-20, HT-40						
	X Plane	Y Plane	Z Plane				
Orthogonal Planes of EUT	of						

2.5 Test Setup Diagram

Transmitter Test Result 3

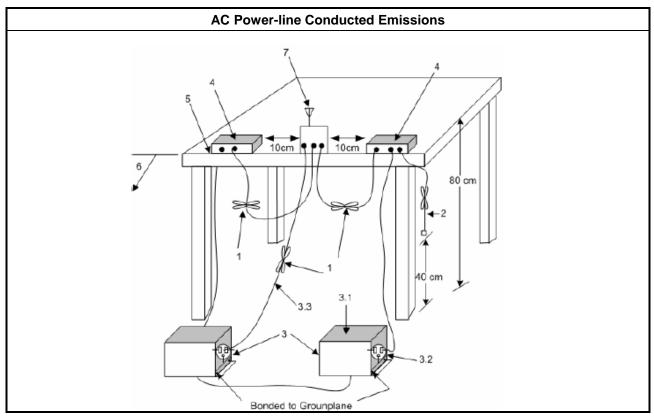
3.1 **AC Power-line Conducted Emissions**

3.1.1 AC Power-line Conducted Emissions Limit

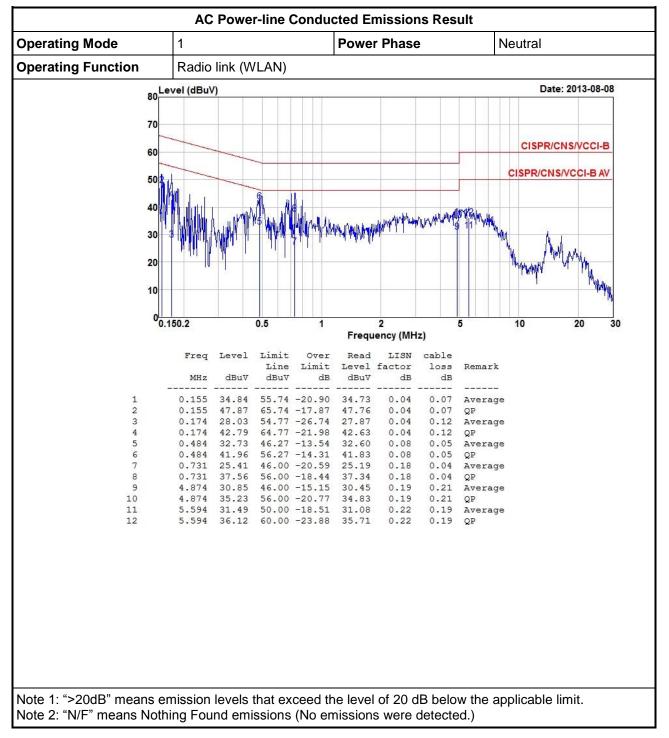
AC Power-line Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5	66 - 56 *	56 - 46 *					
0.5-5	56	46					
5-30 60 50							
5-30 60 50 Note 1: * Decreases with the logarithm of the frequency.							

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

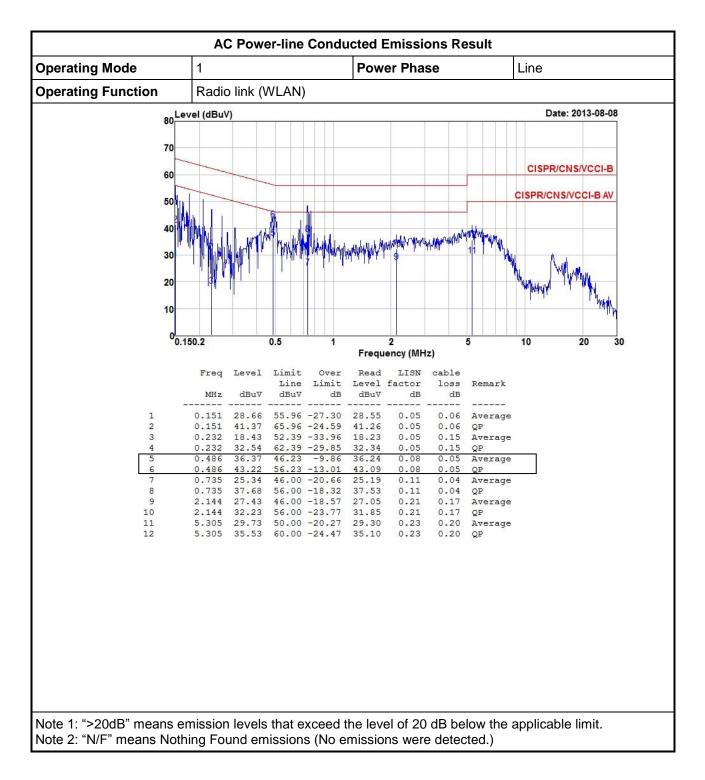

Refer a test equipment and calibration data table in this test report.

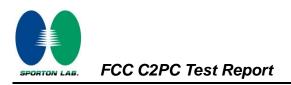
3.1.3 Test Procedures


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup





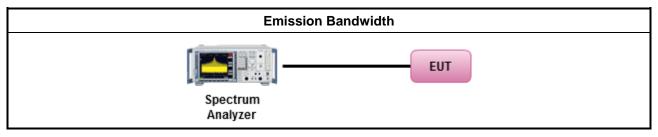
3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit	
Systems using digital modulation techniques:	

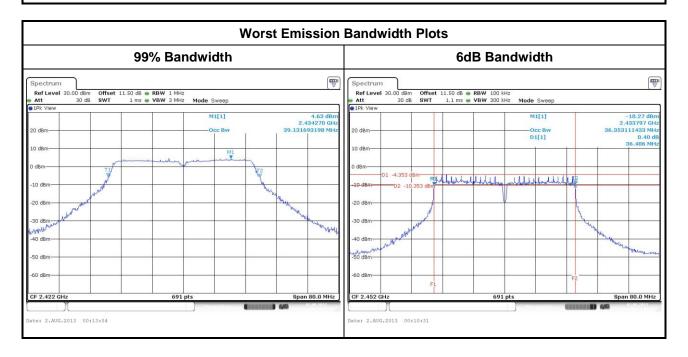
G dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

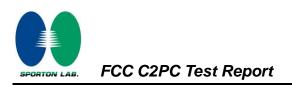
3.2.3 Test Procedures

	Test Method								
\square	For	r the emission bandwidth shall be measured using one of the options below:							
	\square	Refe	er as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.						
		Refe	er as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.						
		Refe	er as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						
\boxtimes	For	cond	ucted measurement.						
	\square	The	EUT supports single transmit chain and measurements performed on this transmit chain.						
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
	\square	The EUT supports multiple transmit chains using options given below:							
			Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.						
			Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.						


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Emission Bandwidth Result										
Condi		Emission Bandwidth (MHz)								
Modulation		Frag	99% Bandwidth			6dB Bandwidth				
Modulation	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	-	Chain- Port 1	Chain- Port 2	Chain- Port 3	-
11b	3	2412	13.89	13.95	13.89	-	10.09	10.03	10.09	-
11b	3	2437	14.07	14.12	14.01	-	9.80	10.09	10.09	-
11b	3	2462	13.95	13.84	13.89	-	10.09	10.03	10.03	-
11g	3	2412	17.19	17.02	16.90	-	16.29	16.29	16.29	-
11g	3	2437	17.13	17.02	16.85	-	16.29	16.29	16.29	-
11g	3	2462	17.19	17.02	16.85	-	16.35	16.41	16.35	-
HT-20	3	2412	18.23	18.00	18.00	-	17.57	17.57	17.57	-
HT-20	3	2437	18.23	18.18	17.95	-	17.57	17.57	17.33	-
HT-20	3	2462	18.29	18.12	18.06	-	17.57	17.57	17.57	-
HT-40	3	2422	39.13	38.55	38.32	-	36.29	36.29	36.06	-
HT-40	3	2437	38.90	38.44	38.21	-	36.41	36.06	36.29	-
HT-40	3	2452	39.02	38.55	38.44	-	36.41	36.29	36.41	-
Limit				N/A ≥500 kHz						
Result						Com	plied			
Note 1: $N_{TX} = Nur$	Note 1: N_{TX} = Number of Transmit Chains									

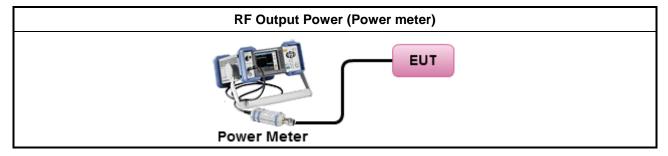

3.3 RF Output Power

3.3.1 RF Output Power Limit

		RF Output Power Limit
Max	kimu	m Peak Conducted Output Power or Maximum Conducted Output Power Limit
\boxtimes	240	0-2483.5 MHz Band:
	\square	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
		Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
	\square	Point-to-point systems (P2P): If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$
		Smart antenna system (SAS):
		Single beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$
e.i.r	.р. Р	ower Limit:
\square	240	0-2483.5 MHz Band
	\square	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
	\square	Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$
		Smart antenna system (SAS)
		Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		□ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.

RF Output Power Limit - IC

Max	Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit and e.i.r.p.							
\boxtimes	2400-2483.5 MHz Band:							
	\boxtimes	Point-to-multipoint systems (P2M): $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$; $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$						
	\boxtimes	Point-to-point systems (P2P): If $P_{eirp} > 36 \text{ dBm}$, $G_{TX} \leq P_{Out}$						
		Smart antenna system (SAS): If $P_{eirp} > 36 \text{ dBm}$, $G_{TX} \le P_{Out}$						
		Single beam: follow P2M, P2P limits						
		Overlap beam: follow P2M limit						
		Aggregate power on all beams: follow P2M limit + 8dB						
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.						


3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method				
	Max	imum Peak Conducted Output Power				
		Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW ≥ EBW method).				
		Refer as FCC KDB 558074, clause 9.1.2 Option 2 (integrated band power method).				
		Refer as FCC KDB 558074, clause 9.1.3 Option 3 (peak power meter for VBW ≥ DTS BW)				
\square	Мах	ximum Conducted (Average) Output Power				
		Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).				
		Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)				
		Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).				
		Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)				
RF power meter and average over on/off periods with duty factor or gated trigger						
	\square	Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM-G (using a gated RF average power meter)				
\boxtimes	For	conducted measurement.				
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain.				
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.				
	\boxtimes	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.				
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG				

3.3.4 Test Setup

Directional Gain (DG) Result						
Transmit Chains No.		1	2	3	-	
Maximum G _{ANT} (dBi)		5	5	5	-	
Modulation Mode	Ν _{τχ}	N _{ss}	STBC	Array Gain (dB)		
11b,1-11Mbps	5	3	1	-	-	
11g,6-54Mbps	3	1	-	-		
HT-20,M0-M23	3	1	-	-		
HT-40,M0-M23	5	3	1	-	-	
 Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = G_{ANT} + 10 log(N_{TX}) All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain =10 log[(10^{G1/20} + + 10^{GN/20})² /N_{TX}] All transmit signals are completely uncorrelated, Directional Gain = 10 log[(10^{G1/10} + + 10^{GN/10})/N_{TX}] Note 3: For Spatial Multiplexing, Directional Gain (DG) = G_{ANT} + 10 log(N_{TX}/N_{SS}), where Nss = the number of independent spatial streams data. Note 4: For CDD transmissions, directional gain is calculated as power measurements: Directional Gain (DG) = G_{ANT} + Array Gain, where Array Gain is as follows: Array Gain = 0 dB (i.e., no array gain) for N_{TX} ≤ 4; Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{TX}; 						

3.3.5 Directional Gain for Power Measurement

Maximum Conducted Output Power											
Cond	RF Output Power (dBm)										
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	-	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11b	3	2412	18.37	18.62	19.04	-	23.46	30.00	5.00	28.46	36.00
11b	3	2437	22.68	22.84	23.67	-	27.86	30.00	5.00	32.86	36.00
11b	3	2462	22.14	21.32	21.63	-	26.48	30.00	5.00	31.48	36.00
11g	3	2412	16.82	16.93	17.13	-	21.73	30.00	5.00	26.73	36.00
11g	3	2437	20.44	21.23	21.36	-	25.80	30.00	5.00	30.80	36.00
11g	3	2462	16.76	16.03	16.02	-	21.06	30.00	5.00	26.06	36.00
HT-20	3	2412	15.37	15.12	15.11	-	19.97	30.00	5.00	24.97	36.00
HT-20	3	2437	21.35	21.84	21.71	-	26.41	30.00	5.00	31.41	36.00
HT-20	3	2462	15.42	14.71	14.63	-	19.71	30.00	5.00	24.71	36.00
HT-40	3	2422	10.08	9.97	10.19	-	14.85	30.00	5.00	19.85	36.00
HT-40	3	2437	14.13	14.25	14.29	-	19.00	30.00	5.00	24.00	36.00
HT-40	3	2452	9.38	10.12	9.87	-	14.57	30.00	5.00	19.57	36.00
Result						C	Complie	d			

3.3.6 Test Result of Maximum Conducted Output Power

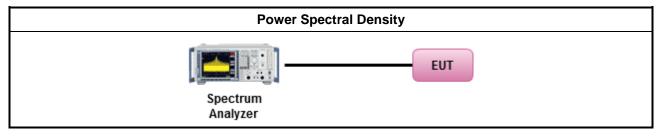
3.4 **Power Spectral Density**

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit

Power Spectral Density (PSD) \leq 8 dBm/3kHz

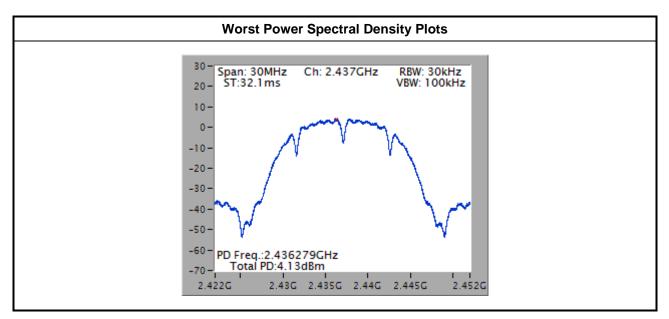
3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method						
	pow proc whe dem	Power spectral density procedures that the same method as used to determine the conducted output power shall be used to determine the power spectral density. In addition, the use of a peak PSD procedure will always result in a "worst-case" measured level for comparison to the limit. Therefore, whenever the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to demonstrate compliance to the PSD limit, regardless of how the fundamental output power was measured. For the power spectral density shall be measured using below options:						
		Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=30kHz; detector=peak)						
		Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging). For 11b / g / HT20 mode						
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)						
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).						
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed) For HT40 mode						
\square	For	conducted measurement.						
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain.						
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	\square	The EUT supports multiple transmit chains using options given below:						
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.						
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.						

3.4.4 Test Setup



		F	Power Spectral Density Result			
Cond	lition		Power Spectral Density			
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain (dBm/30kHz)	Power Limit (dBm/3kHz)		
11b	3	2412	-0.30	4.23		
11b	3	2437	4.13	4.23		
11b	3	2462	2.79	4.23		
11g	3	2412	-3.78	4.23		
11g	3	2437	0.01	4.23		
11g	3	2462	-4.19	4.23		
HT-20	3	2412	-5.45	4.23		
HT-20	3	2437	0.32	4.23		
HT-20	3	2462	-5.92	4.23		
HT-40	3	2422	-13.28	4.23		
HT-40	3	2437	-9.20	4.23		
HT-40	3	2452	-13.25	4.23		
Res	sult		Com	plied		

3.4.5 Test Result of Power Spectral Density

Note: Directional gain= $5+10 \times \log(3/1) = 9.77 \text{ dBi} > 6 \text{dBi}$, Limit shall be reduced to 8 dBm - (9.77 dBi - 6 dBi) = 4.23 dBm

3.5 Emissions in non-restricted frequency bands

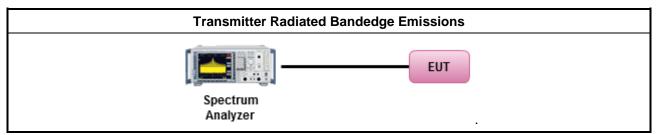
3.5.1 Emissions in non-restricted frequency bands limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

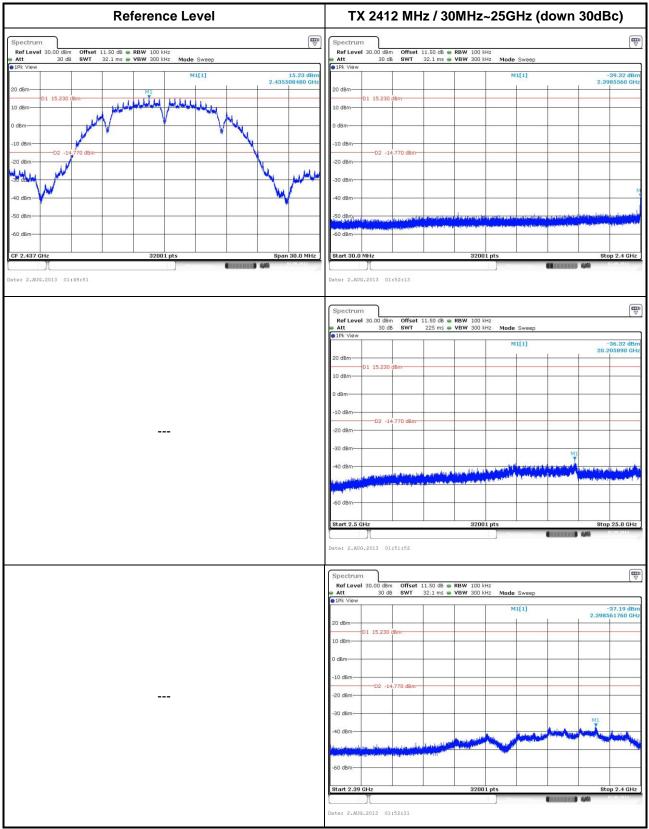

Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz , Detector = Peak, Sweep time = Auto
- 2. Trace = max hold , Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

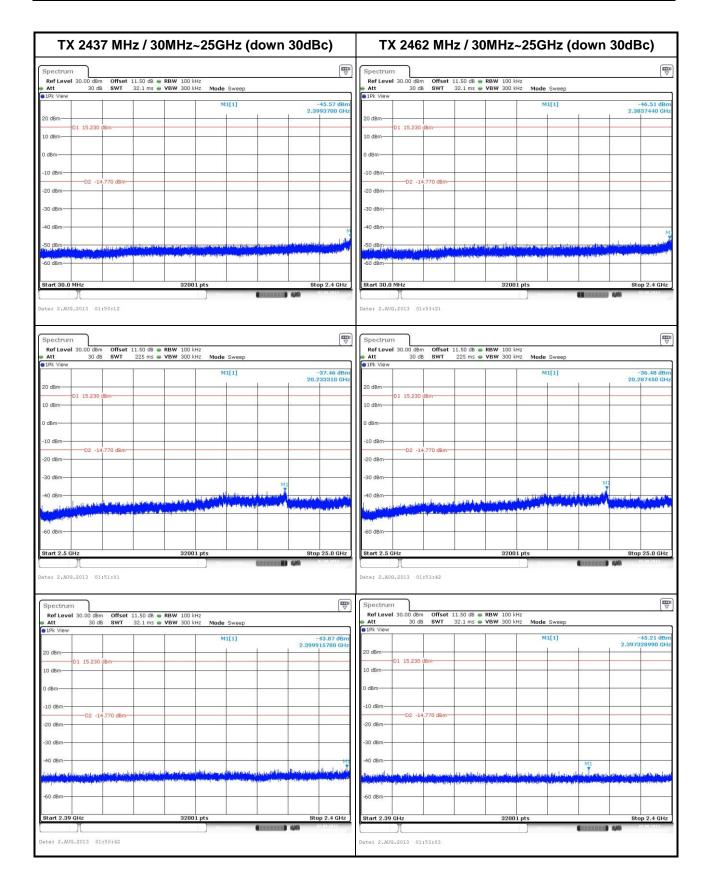
Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz , Detector = Peak, Sweep time = Auto
- 2. Trace = max hold , Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level

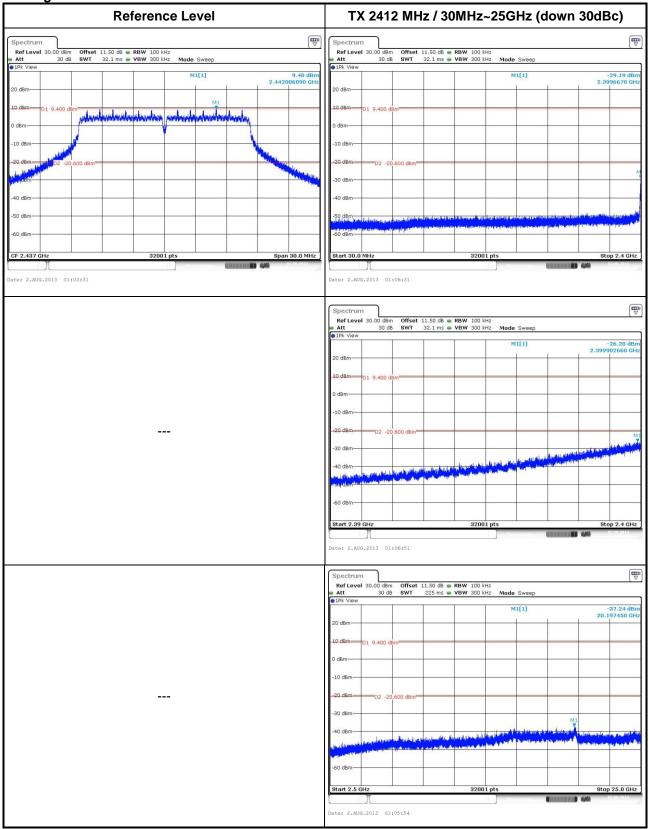
3.5.4 Test Setup

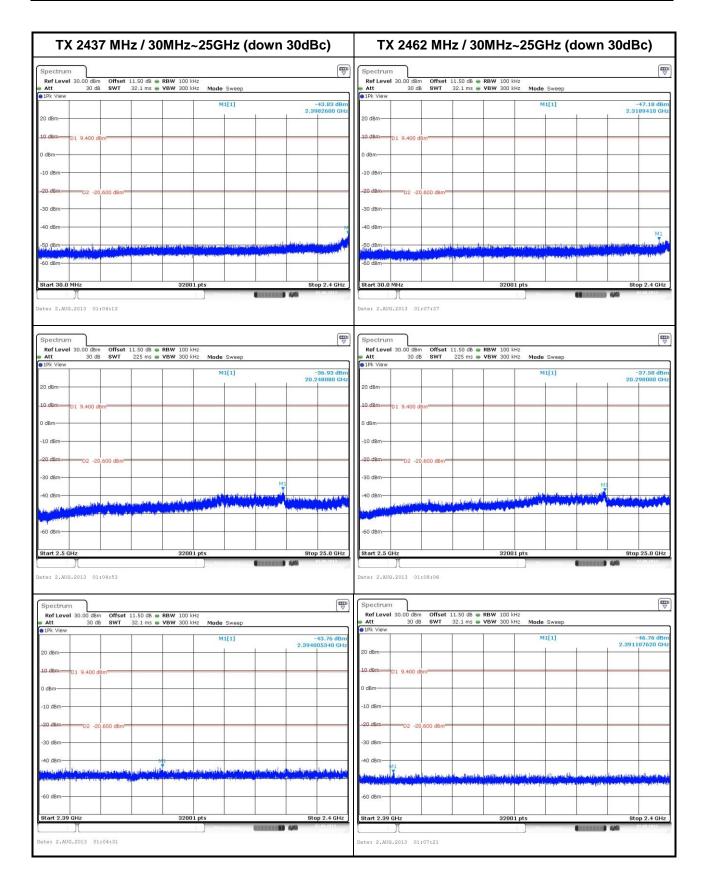


3.5.5 Test Result of Emissions in non-restricted frequency bands

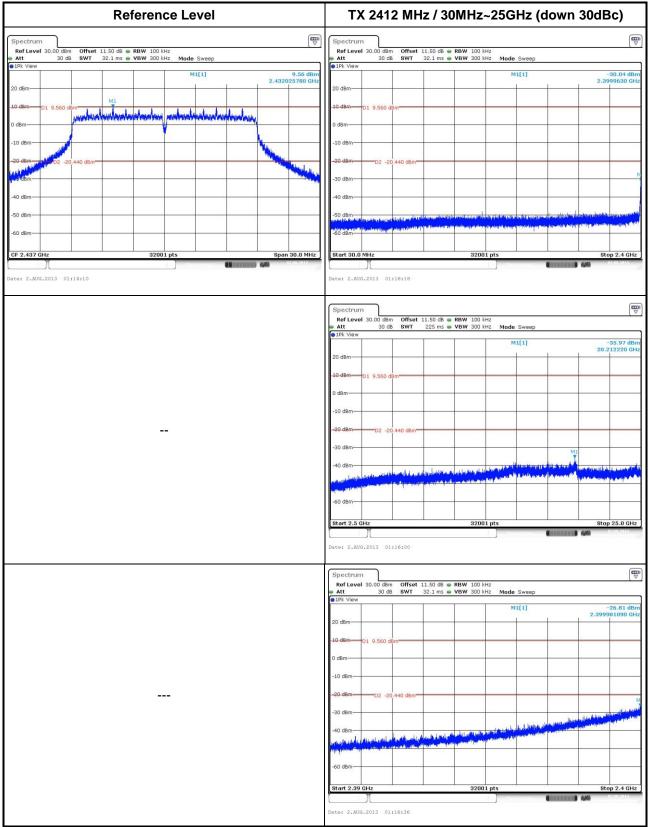

This test item is performed on each TX output individually without summing or adding 10 $\log(N_{ANT})$ since measurements are made relative to the in-band emissions on the individual outputs. Only worst test result of each operating mode is presented.

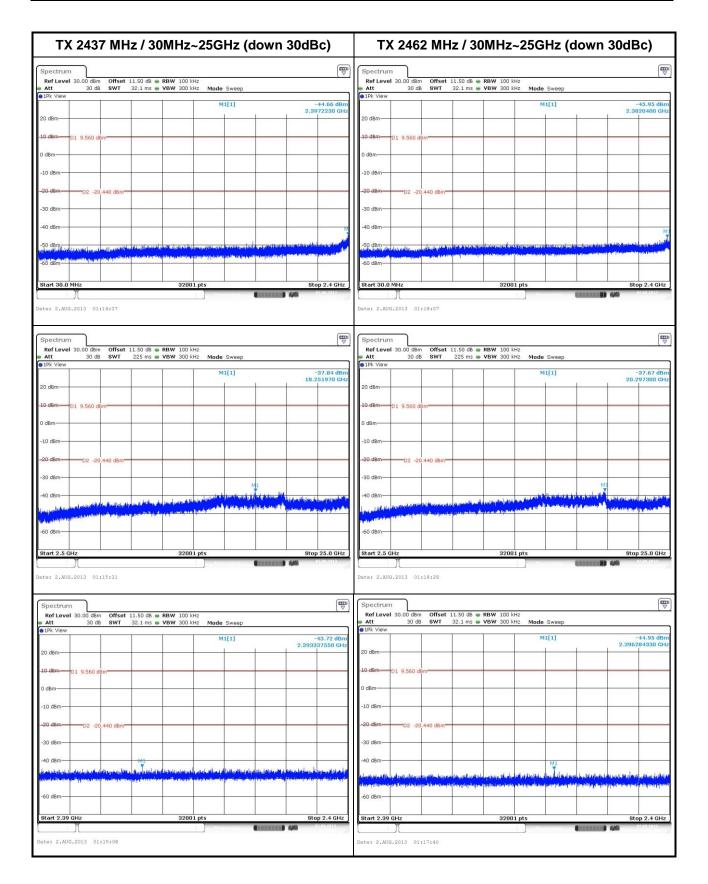
802.11b



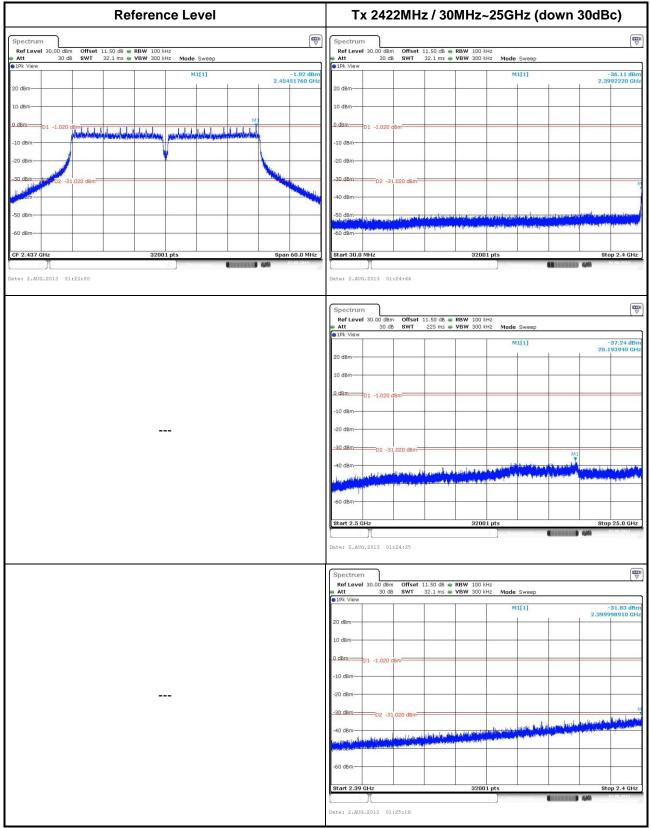


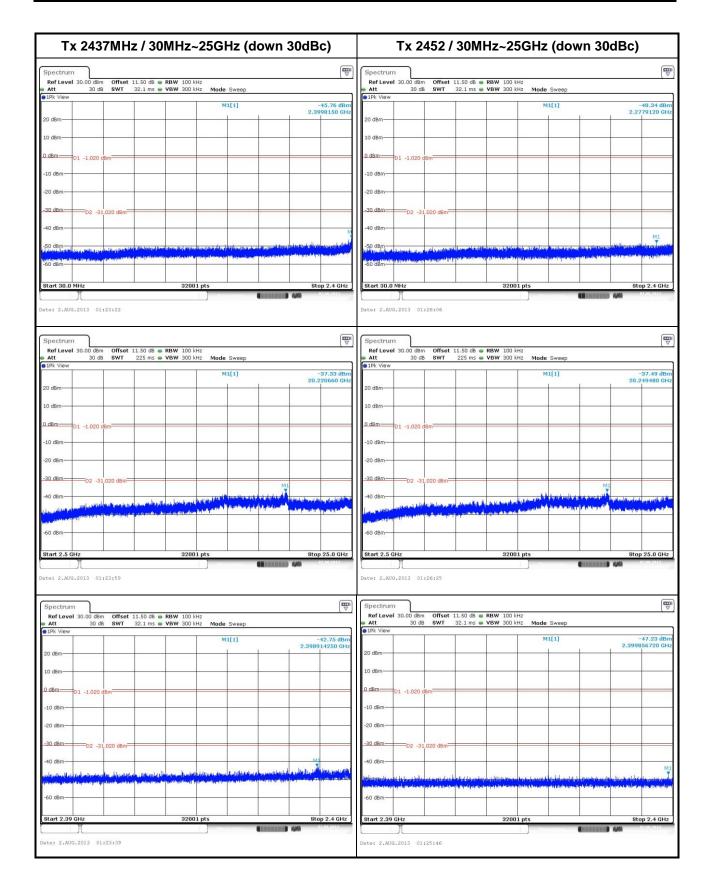
802.11g





802.11n HT20





802.11n HT40

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit							
Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
2400/F(kHz)	48.5 - 13.8	300					
24000/F(kHz)	33.8 - 23	30					
30	29	30					
100	40	3					
150	43.5	3					
200	46	3					
500	54	3					
	Field Strength (uV/m) 2400/F(kHz) 24000/F(kHz) 30 100 150 200	Field Strength (uV/m) Field Strength (dBuV/m) 2400/F(kHz) 48.5 - 13.8 24000/F(kHz) 33.8 - 23 30 29 100 40 150 43.5 200 46					

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

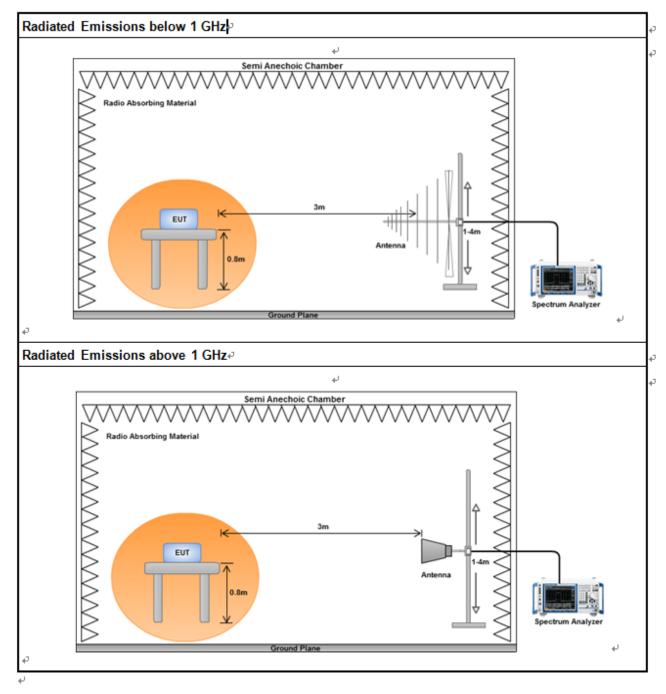
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Band Emissions Limit						
RF output power procedure	Limit (dB)					
Peak output power procedure	20					
Average output power procedure	30					
 Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level. Note 2: If the average output power procedure is used to measure the fundamental emission power to 						

demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

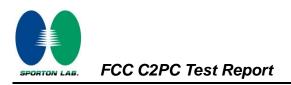
Refer a test equipment and calibration data table in this test report.

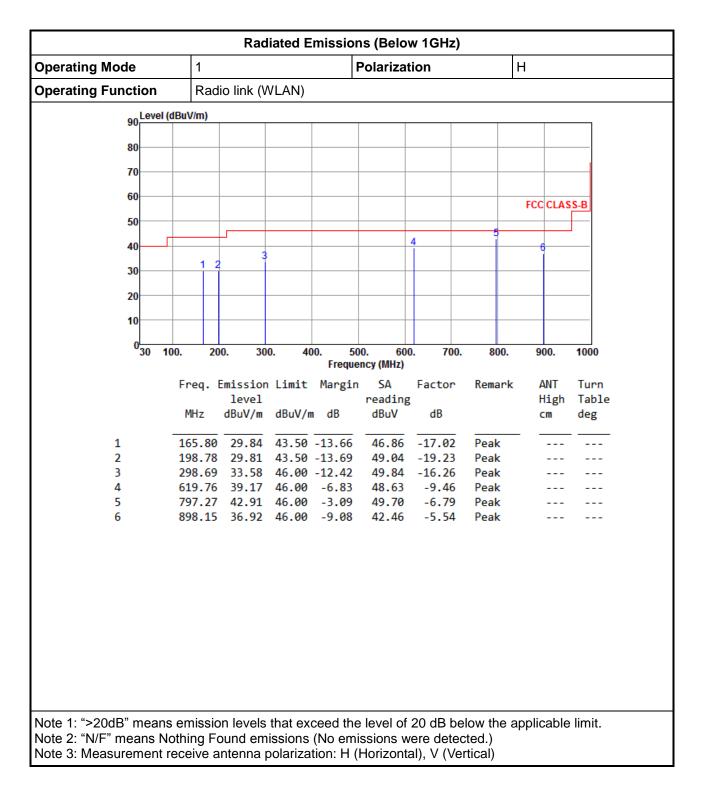


3.6.3 Test Procedures

		Test Method					
\boxtimes	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).						
\square	For	the transmitter unwanted emissions shall be measured using following options below:					
	\square	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.					
	\square	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.					
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)					
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).					
		Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).					
		□ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time					
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.					
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.					
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.					
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.					
	\square	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.					
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.					
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.					
	For	conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 10.2.2.					
		For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.					
		For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB					

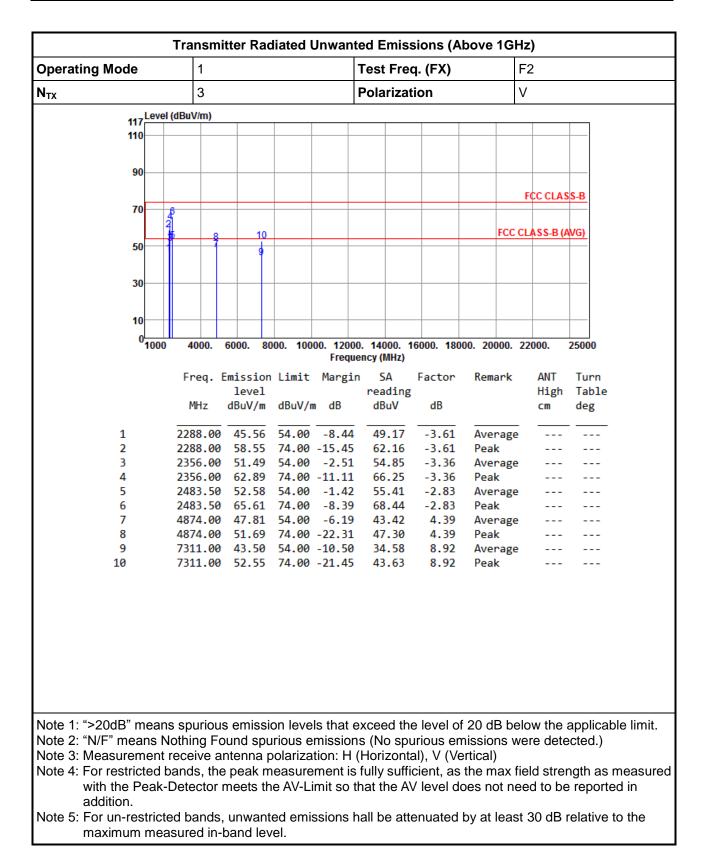
3.6.4 Test Setup


3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

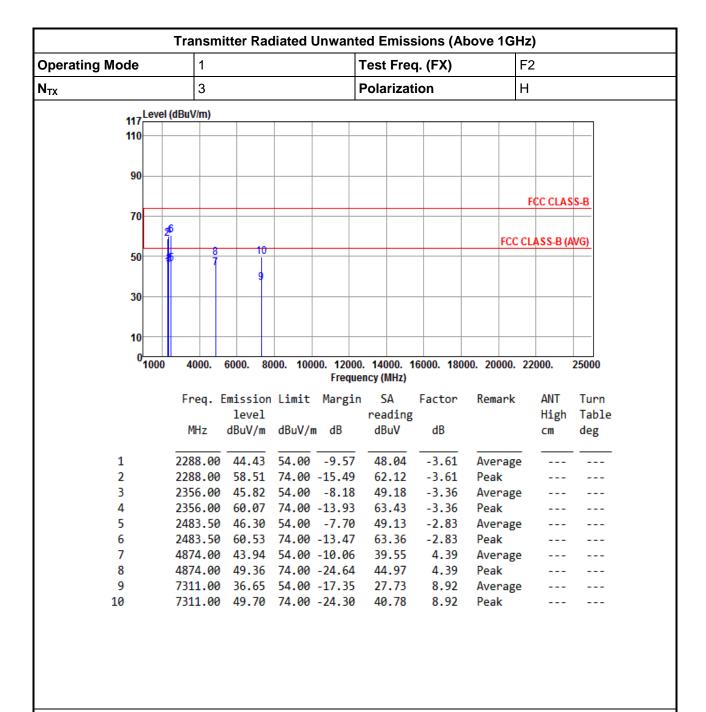

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Radiated Emissions (Below 1GHz) **Operating Mode** 1 Polarization V **Operating Function** Radio link (WLAN) 90 Level (dBuV/m) 80 70 60 FCC CLASS-B 50 23 40 30 20 10 0<mark>___</mark> 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 Frequency (MHz) ANT SA Turn Freq. Emission Limit Margin Factor Remark reading High Table level MHz dBuV/m dBuV/m dB dBuV dB deg cm -22.66 34.70 43.50 -8.80 57.36 Peak 1 92.08 ------39.16 46.00 2 764.29 46.24 -7.08 -6.84 Peak ------39.54 46.00 46.45 -6.91 3 782.72 -6.46 Peak _ _ _ _ _ _ 50.47 -6.77 798.22 43.70 46.00 -2.30 OP 4 ------5 832.19 41.73 46.00 -4.27 48.08 -6.35 Peak ---_ _ _ 866.14 41.51 46.00 -4.49 47.44 -5.93 6 Peak ------Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found emissions (No emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

3.6.6 Radiated Emissions (Below 1GHz)

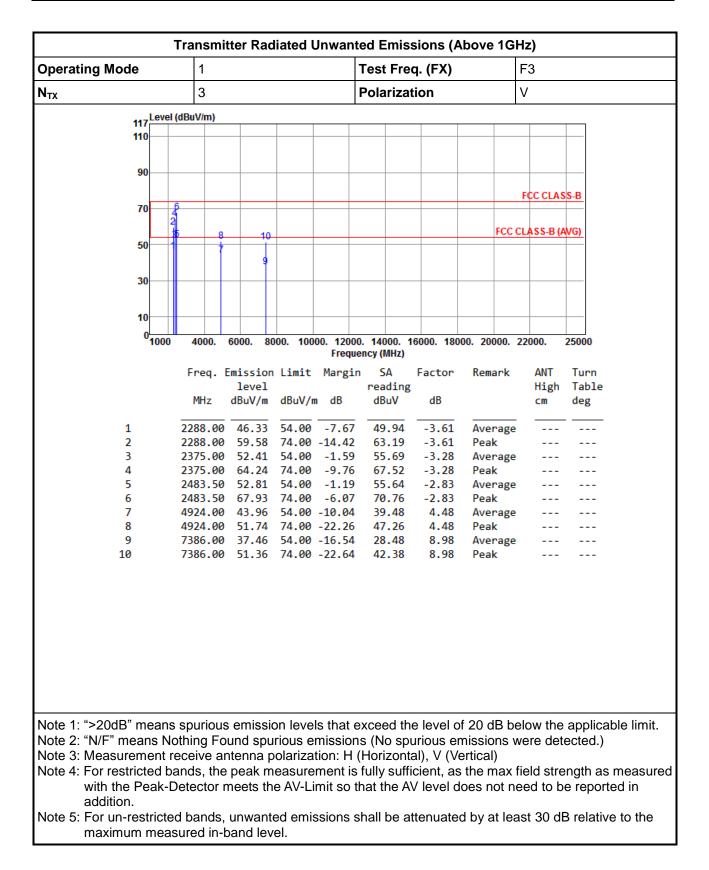

perating Mode	1			٦	Test Fre	q. (FX)		F	-1	
тх	3			F	Polarizat	tion		١	/	
Lev	el (dBuV/m)									
117										
90										
									FCC CLAS	S-B
70	8 4					_				
	1							FCC C	LASS-B (A	WG)
50										
	9									
30										
10										
0 <mark>0</mark> 100	0 4000.	6000. 80	00. 100		. 14000. 1 ncy (MHz)	6000. 180	000. 200	00. 2	2000.	25000
	Fred	Emission	limit			Factor	Rema	nk	ANT	Turn
		level	CIMIC	Hui Sti	reading		TC-III.	II K	High	Table
	MHz	dBuV/m	dBuV/r	m dB	dBuV	dB			cm	deg
1	2288.00			-7.85	49.76	-3.61	Aver	<u> </u>		
2 3	2288.00 2327.00			-14.53 -5.05	63.08 52.42	-3.61 -3.47	Peak Aver			
4	2327.00			-13.08	64.39	-3.47	Peak	-		
5	2390.00		54.00		51.84	-3.22	Aver			
6	2390.00	61.28	74.00	-12.72	64.50	-3.22	Peak	٠ ⁻		
7	2500.00				55.30	-2.76	Aver	-		
8	2500.00				68.63	-2.76	Peak			
9 10	4824.00	38.87		-15.13	34.56 43.95	4.31 4.31	Aver Peak	-		
10	4024.00	40.20	74.00	-23.74	43.95	4.51	rear			
ote 1: ">20dB" mear		e omiecie		le that a	voord th		f 20 d		ow tho	applicat
te 2: "N/F" means l										
te 3: Measurement										ecieu.)
ote 4: For restricted									eld stre	nath as
with the Peak										
	20.00.01									
addition.										
	ted bands	, unwante	ed emi	ssions sl	hall be at	ttenuate	d by a	t leas	st 30 dE	3 relative

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11b

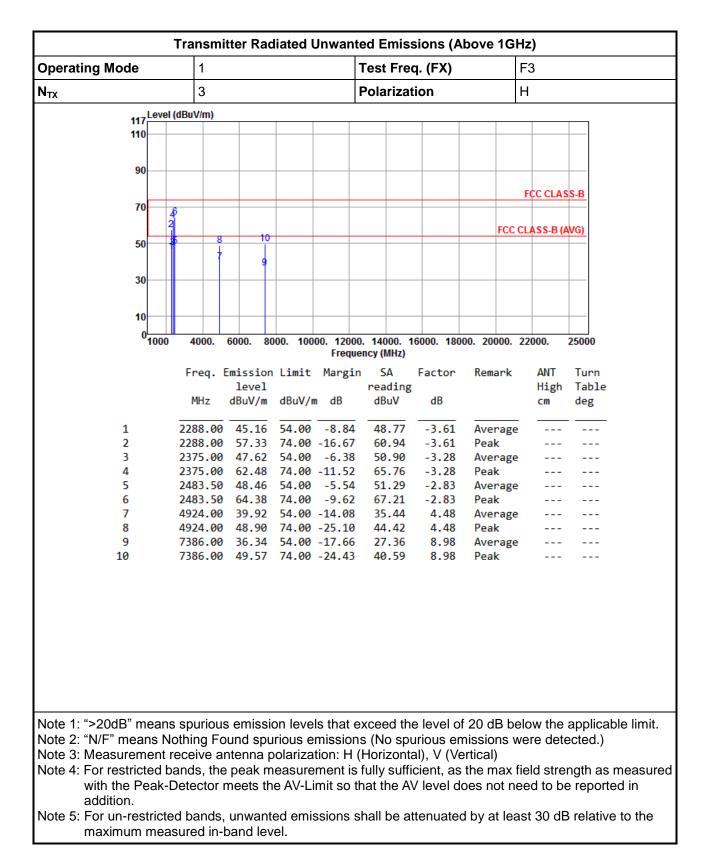


N _{TX}		1				Test	req. (FX)		F	I	
INTX		3				Polariz	ation		Н		
447	Level (d	IBuV/m)									
117											
110											
90											
										FCC CLAS	SS-B
70	8										
	2								CC CI	ASS-B (AVG)
50		10									
30											
10											
U	1000	4000.	6000. 80	00. 100)0. 14000 Jency (MH)	. 16000. 18 ()	000. 200	00. 22	2000.	25000
		Erea F	Emission	limit	-		Factor	Rema	nk	ANT	Turn
		1164.1	level	LIMIC	nai gi	readi		Nellia		High	Table
		MHz		dBuV/ı	n dB	dBuV	-			cm	deg
1		2288.00			-8.77				<u> </u>		
2		2288.00									
3		2327.00 2327.00							<u> </u>		
4 5			43.88								
6		2390.00							-		
7			47.25								
8		2500.00	62.47	74.00	-11.53	65.2	3 -2.76		<u> </u>		
9		4824.00					1 4.31	Aver	age		
10		4824.00	45.66	74.00	-28.34	41.3	5 4.31	Peak			
					1 4	-		<u> </u>			
Note 1: ">20dB" n											
lote 2: "N/F" mea									s we	re dete	ected.)
Note 3: Measuren									w fie	ld otro	anth an
Note 4: For restric with the P											
addition.	eak-D	elector		e Av-L	iiiii 50	ulat tile		1062 110	nee		report
auuuuuu.											
lote 5: For un-res	stricter	d hande	unwant	ed emi	ssions	shall he	attenuate	d hv at	least	130 dB	relativ

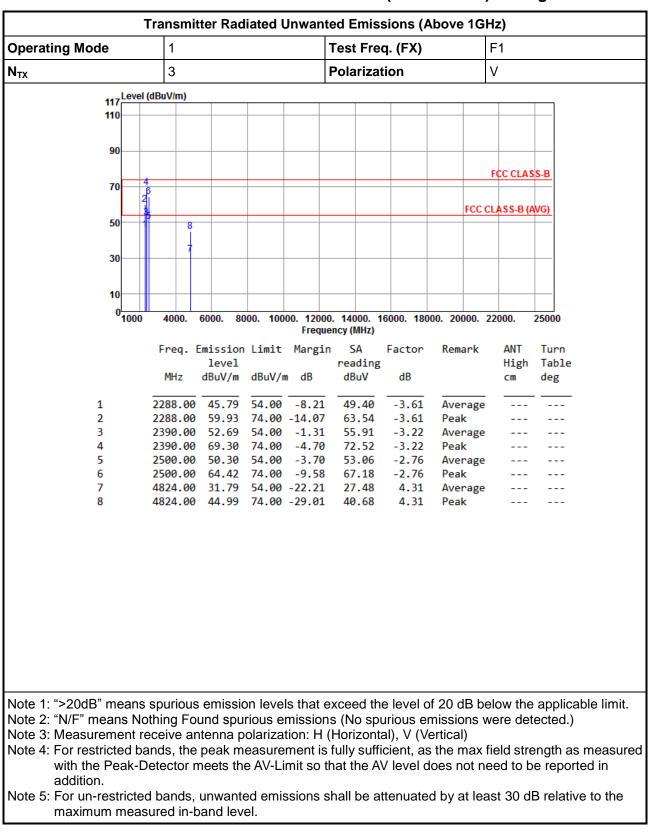
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

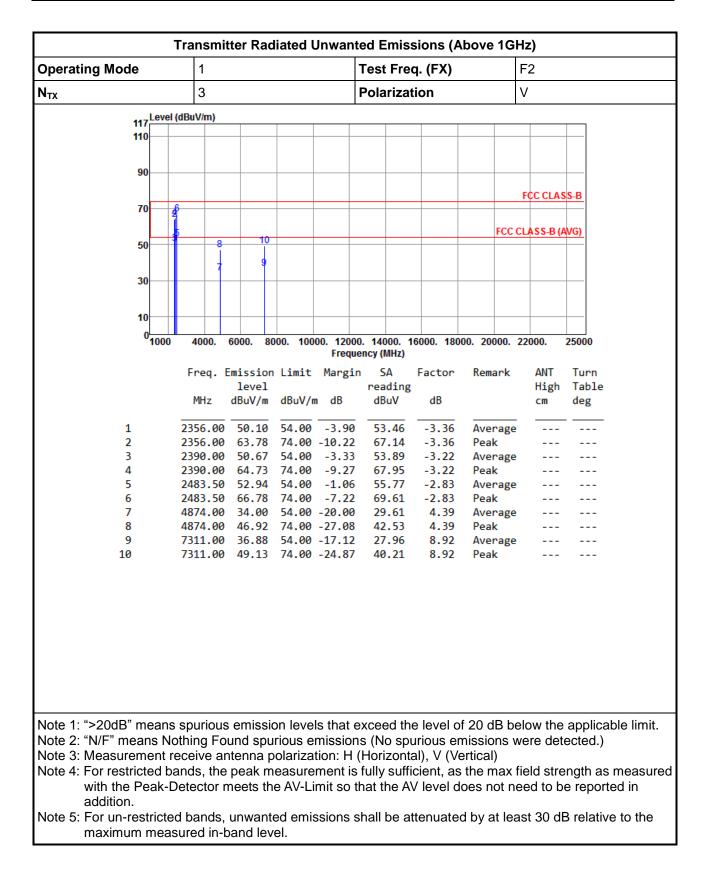

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

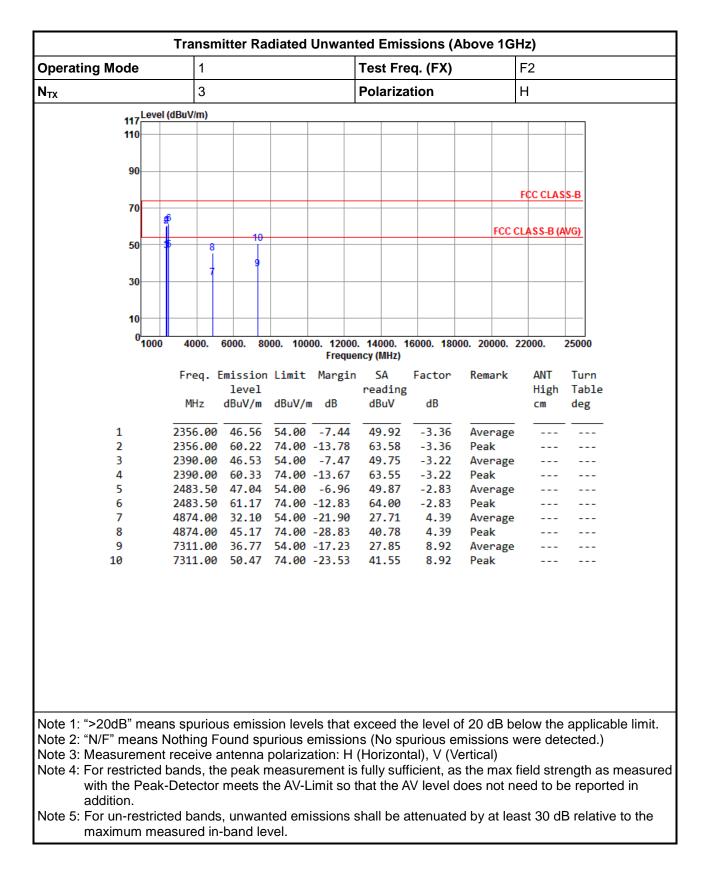

Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

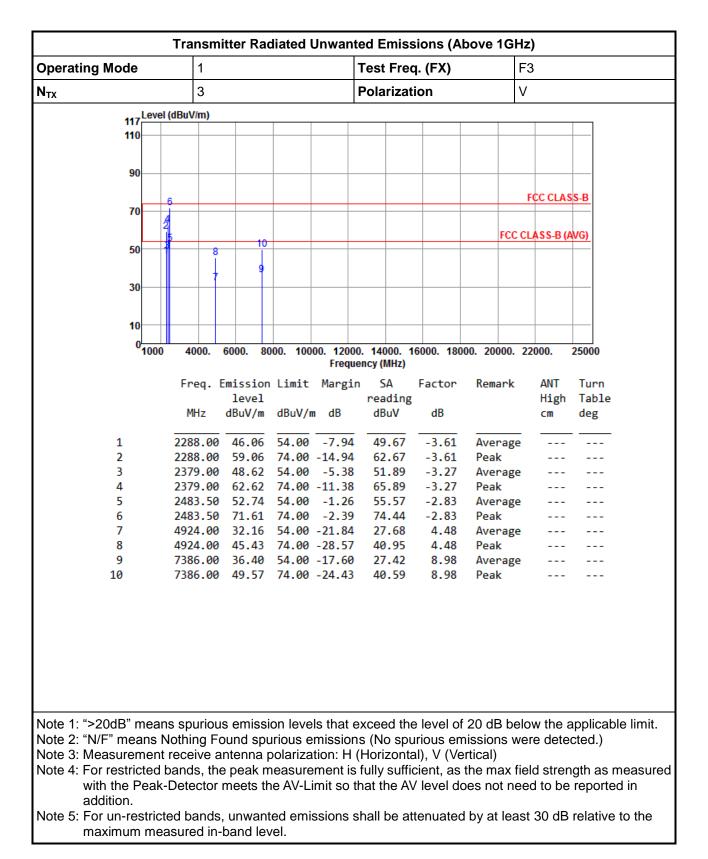


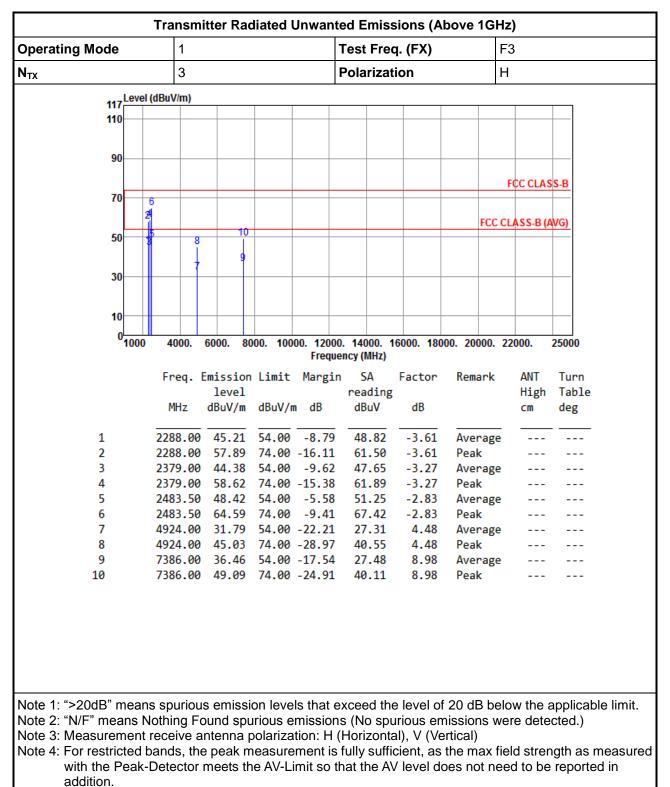


3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11g

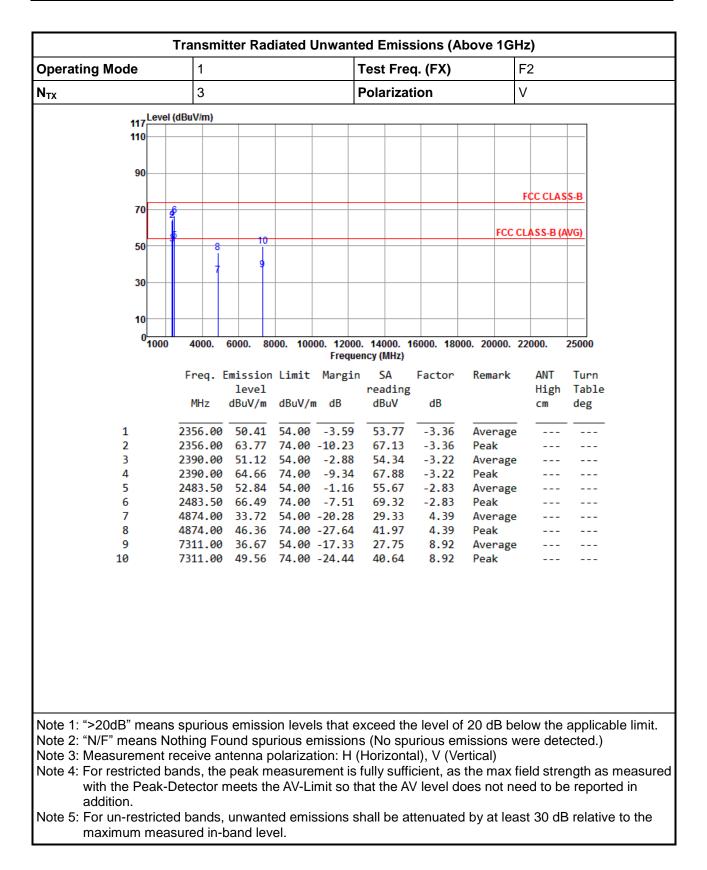


Operating	Mode		1			ŀ	Test Fr	eq. (FX)		F	1		
N _{TX}			3				Polariz	ation		F	1		
	117	/el (dBi	uV/m)										
	117												
	110												
	90												
										F	CC CLAS	S-B	
	70	4											
		2									ASS-B (A	MGN	
	50		8								133-0 (1		
			Ĭ										
	30		1										
	50												
	10												
	0 <mark></mark>)0	4000.	6000. 80	00. 100	00. 12000	. 14000.	16000. 180	000. 200	00. 22	2000.	25000	
						Freque	ency (MHz)					
		F	Freq. E	Emission	Limit	Margin	SA SA	Factor	Rema	rk	ANT	Turn	
				level			readir	•			High	Table	
			MHz	dBuV/m	dBuV/r	n dB	dBuV	dB			cm	deg	
	1	22	288.00	44.28	51 00	_9 72	47.89	-3.61	Aver	200			
	2		288.00				61.26		Peak	-			
	3		390.00			-5.45	51.77		Aver				
	4	23	390.00	64.85	74.00	-9.15	68.07	-3.22		-			
	5	25	500.00	46.52	54.00	-7.48	49.28		Aver	age			
	6		500.00			-13.43			Peak				
	7		324.00	31.64			27.33		Aver	-			
	8	48	\$24.00	44.83	74.00	-29.17	40.52	4.31	Peak				
Note 1. "> (0dD"	no or		omicai	n lour	la that -	voced	ha lavel -	vt 00 -1		014 th c	opplicat	
	20dB" mea												ie im
	'F" means easuremen											ected.)	
											ald atro	nath an r	no
	r restricted h the Peak												
	n the Peak dition.	-Dele			= AV-LI	mit so ti	iat the		ides no	1166		e reporte	um
	r un-restric	tod h	anda	unwonte	d omi	ecione e	hall ha	attonuato	d by at		+ 30 45	R relativa	to th
NULE () E()	เนา-เยอแได	นธน ม		unvante		SAULTS S		<u></u>					10 111

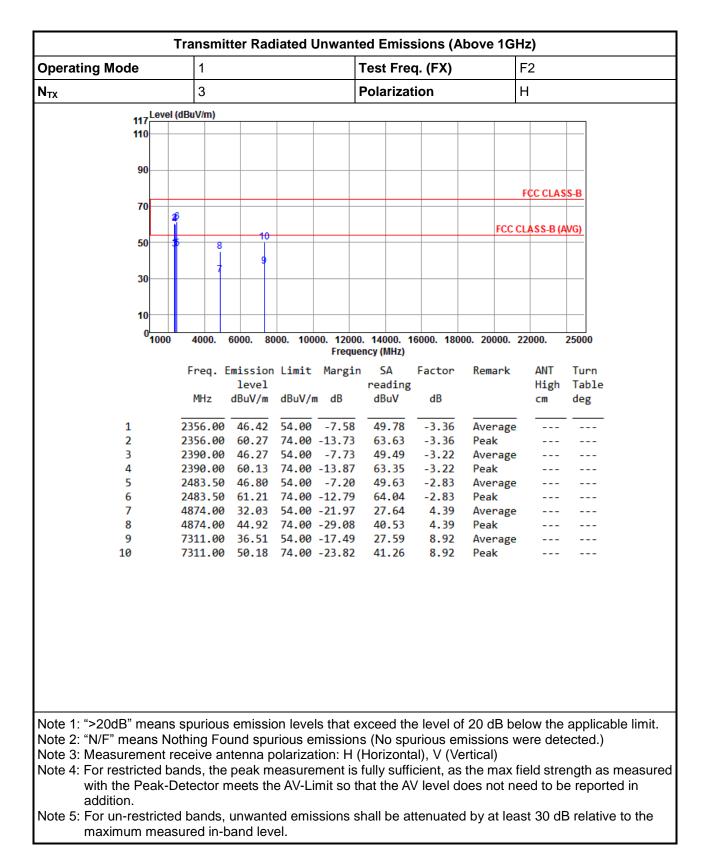




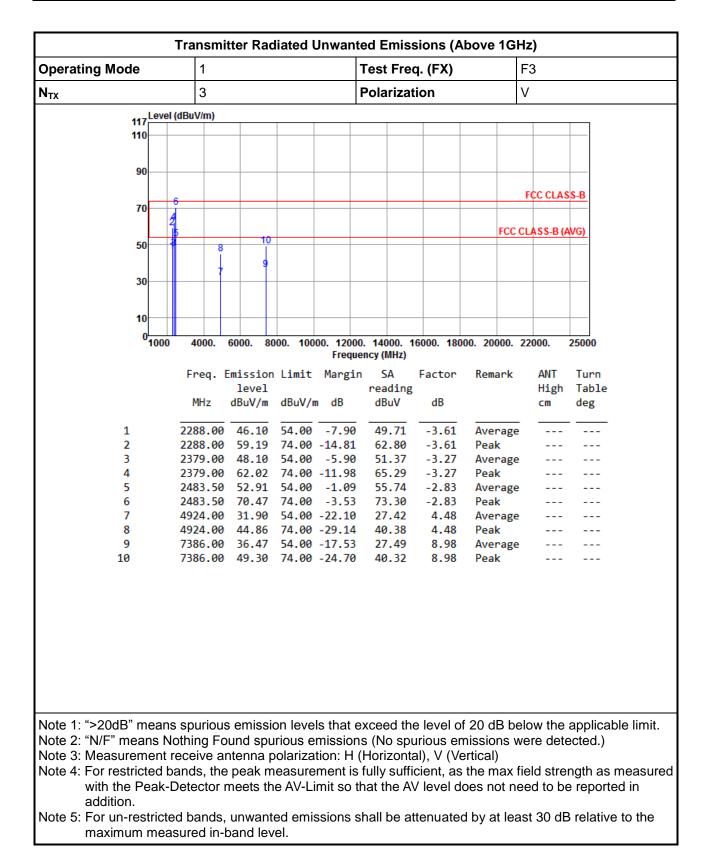
Note 5: For un-restricted bands, unwanted emissions shall be attenuated by at least 30 dB relative to the maximum measured in-band level.

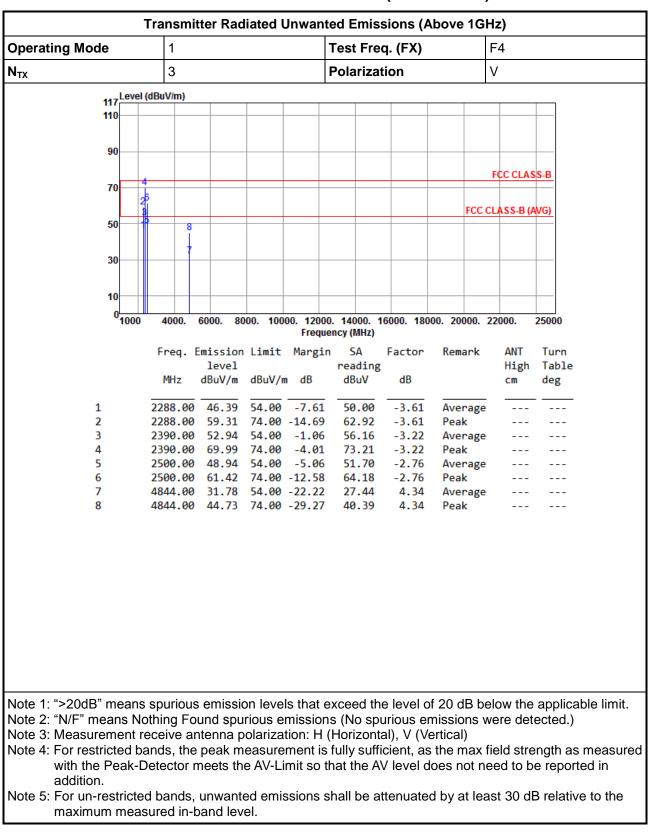

	Transm	itter Rad	iated l	Jnwant	ed Emis	sions (A	bove 1G	Hz)	
Operating Mode	1			-	Fest Fre	q. (FX)		F1	
N _{TX}	3			I	Polarizat	tion		V	
Level	(dBuV/m)								
117									
90									
30									
70	4							FCC CLAS	SS-B
10	6 21								
50							FCC	CLASS-B (A	AVG)
50	8								
	1								
30									
10									
0 ¹ 1000	4000.	6000. 80	00. 100	00. 12000	. 14000. 1	6000. 180	00. 20000.	22000.	25000
				Freque	ncy (MHz)				
	Freq.	Emission	Limit	Margin		Factor	Remark	ANT	Turn
	MU	level	10.1/		reading			High	
	MHz	dBuV/m	abuv/n	n ab	dBuV	dB		CM	deg
1	2288.00	46.17	54.00	-7.83	49.78	-3.61	Average		
2	2288.00			-14.51	63.10	-3.61	Peak		
3	2390.00				55.68	-3.22	Average		
4	2390.00				75.01	-3.22	Peak		
5	2500.00	49.65 64.16			52.41 66.92	-2.76 -2.76	Average Peak		
7		31.69				4.31	Average		
8	4824.00	44.90	74.00	-29.10		4.31	Peak		
lote 1: ">20dB" means	souriou	s emissio	n leve	ls that a	yceed th	م امریما م	f 20 dB b	olow the	annlicable limit
lote 2: "N/F" means N lote 3: Measurement r	othing Fo eceive a	ound spui ntenna p	rious e olariza	mission: tion: H (s (No spi Horizont	urious er al), V (Ve	nissions v ertical)	vere det	ected.)
ote 4: For restricted b with the Peak-I addition.									
lote 5: For un-restricte maximum mea				ssions s	hall be a	ttenuate	d by at lea	ast 30 dl	B relative to the

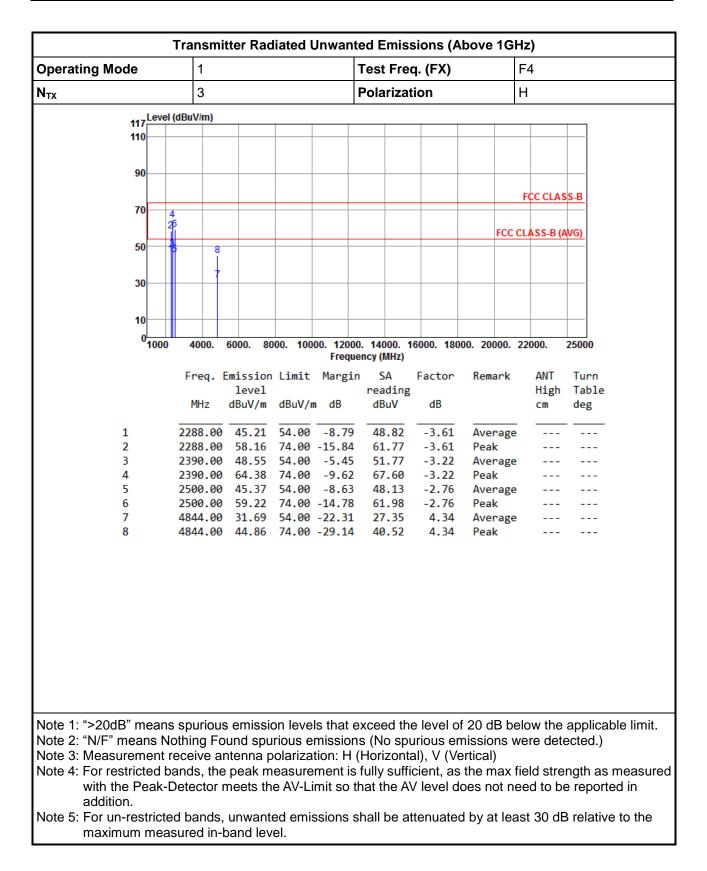
3.6.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT-20

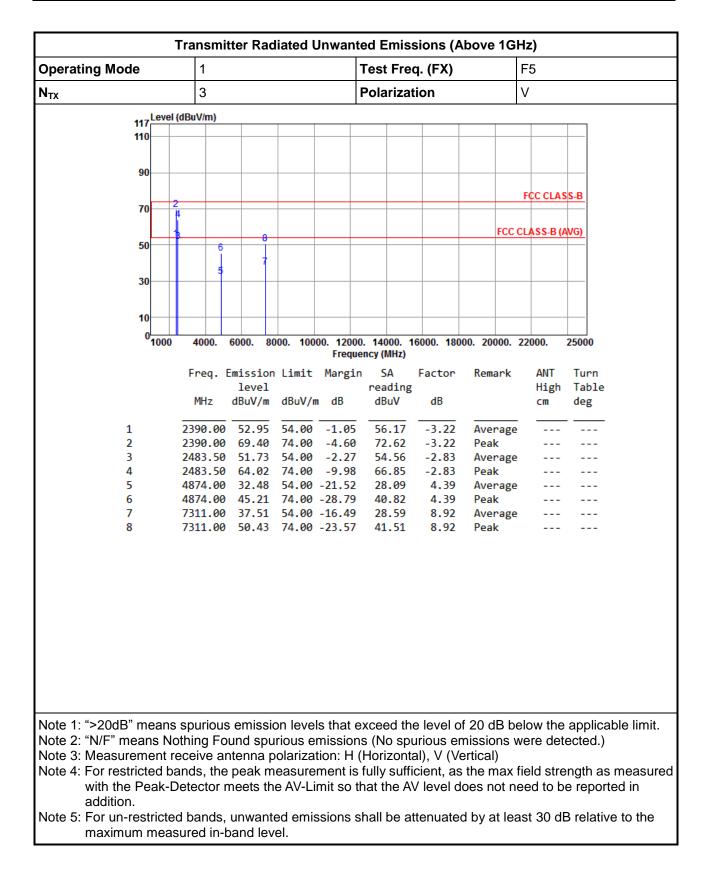


Operating Mode	1				Test Fre	eq. (FX)		F1	
N _{TX}	3				Polariza	ation		Н	
Leve	el (dBuV/m)								
110									
90									
								FCC CLAS	SS-B
70	4								
	2						TCC	CLASS DU	
50							FCU	CLASS-B (AVG)
50	1 8								
	7								
30									
10									+
0) 4000.	6000. 80	00 400	00 42004	14000	46000 400	00. 20000.	22000	25000
1000	, 4000.	0000. 80	100. 100		ency (MHz)	10000. 180	. 20000.	22000.	23000
	Freq. 1	Emission	limit	Margir	s SA	Factor	Remark	ANT	Turn
		level			reading			High	
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg
1	2288.00			-9.69	47.92		Average	e	
2	2288.00			-16.18	61.43	-3.61	Peak		
3	2390.00		54.00		51.34	-3.22	Average	e	
4 5	2390.00 2500.00		74.00		67.59 49.04		Peak Average		
6	2500.00			-13.84	62.92		Peak		
7	4824.00			-22.31			Average	e	
8	4824.00	44.89	74.00	-29.11	40.58	4.31	Peak		
Note 1: ">20dB" mean									
Note 2: "N/F" means Note 3: Measurement Note 4: For restricted I with the Peak- addition.	lothing Fo receive ar bands, the	und spu ntenna p peak m	rious e olariza easure	mission tion: H (ment is	s (No sp (Horizon fully suf	ourious ei tal), V (V ficient, as	missions ertical) s the max	were det	ected.) ength as meas
Note 5: For un-restrict maximum mea				ssions s	hall be a	attenuate	d by at le	ast 30 dl	B relative to th

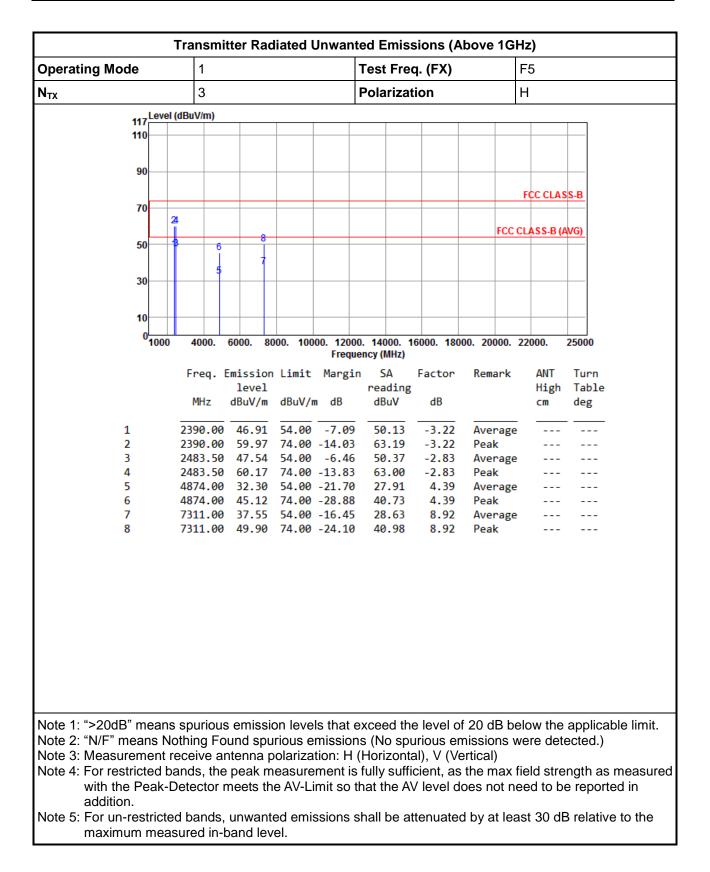


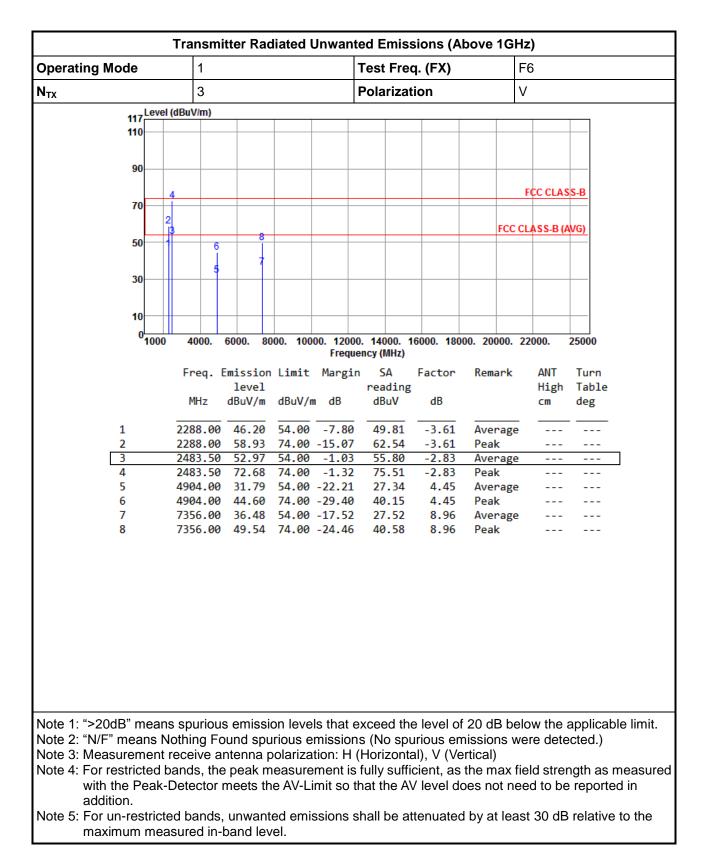


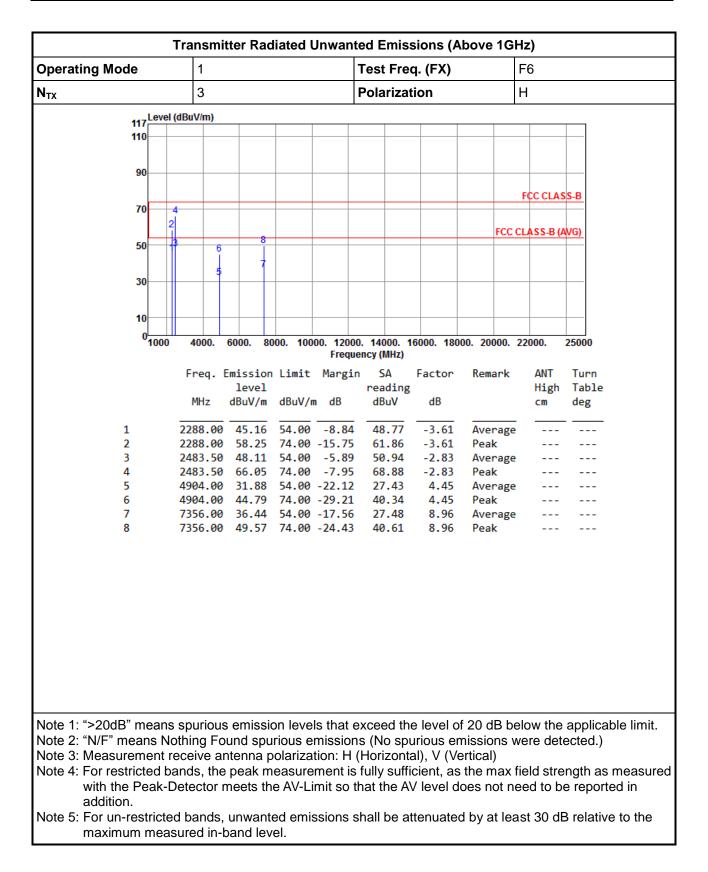

$ \frac{11}{12} \frac{11}{12} \frac{11}{100} \frac{1}{100} \frac{1}{1000} \frac$	Operating Mode		1				Test Fr	eq. (FX)		F3	
110	I _{TX}		3				Polariza	ation		Н	
110		vel (dBuV	//m)								
90 90 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
FCC CLASS-B FCC CLASS-B FCC CLASS-B (AVG) GO 0 FCC CLASS-B (AVG) GO 0 FCC CLASS-B (AVG) O 0 FCC CLASS-B (AVG) FCC CLASS-B (AVG) FCC CLASS-B (AVG) FCC C	110										
FCC CLASS-B FCC CLASS-B FCC CLASS-B (AVG) GO 0 FCC CLASS-B (AVG) GO 0 FCC CLASS-B (AVG) O 0 FCC CLASS-B (AVG) FCC CLASS-B (AVG) FCC CLASS-B (AVG) FCC C											
To FCC CLASS-B (AVG) 50 8 1000 10000 10000 12000 14000 16000 18000 20000 22000 25000 Freq. Emission Limit Margin SA Factor Remark ANT Turn level Remark ANT Turn High Table cm deg 1 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -10.52 66.31 -2.83 Average 5 2483.50 63.48 74.00 -10.52 66.31 -2.83 Average 7 4924.00 <t< td=""><td>90—</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	90—										
Image: second										FCC CLAS	SS-B
Image: state of the state	70—										
30 30 <td< td=""><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td>FCC</td><td>CLASS-B (</td><td>WG)</td></td<>		2							FCC	CLASS-B (WG)
10 4000. 6000. 8000. 10000. 12000. 16000. 18000. 20000. 22000. 25000 Freq. Emission Limit Margin SA Factor reading MHz dBuV/m dBuV/m dB dBuV dB Factor Remark High Table cm deg 1 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Average 2 2288.00 57.95 74.00 -15.19 62.08 -3.27 Average 2 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 4 2379.00 54.40 -10.52 66.31 -2.83 Average 5 2483.50 63.48 74.00 -10.52 66.31 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Average 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average	50	-	8	10 10							+
10 4000. 6000. 8000. 10000. 12000. 16000. 18000. 20000. 22000. 25000 Freq. Emission Limit Margin SA Factor reading MHz dBuV/m dBuV/m dB dBuV dB Factor Remark High Table cm deg 1 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Average 2 2288.00 57.95 74.00 -15.19 62.08 -3.27 Average 2 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 4 2379.00 54.40 -10.52 66.31 -2.83 Average 5 2483.50 63.48 74.00 -10.52 66.31 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Average 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average				9							
0 1000 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 25000 Frequency (MHz) Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading High Table MHz dBuV/m dBuV/m dB dBuV dB cm High Table 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average	30		+ 1	_							
0 1000 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 25000 Frequency (MHz) Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading High Table MHz dBuV/m dBuV/m dB dBuV dB cm High Table 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average											
0 1000 4000. 6000. 8000. 10000. 12000. 14000. 16000. 18000. 20000. 22000. 25000 Frequency (MHz) Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading High Table MHz dBuV/m dBuV/m dB dBuV dB cm High Table 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average	10			_							<u> </u>
Frequency (MHz) Frequency (MHz) Freq. Emission Limit Margin SA level Factor Remark ANT Turn High Table cm level reading dBuV dB dB dB cm High Table deg 1 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average											
Freq. Emission Limit Margin level SA reading reading Remark dBuV ANT High Table deg MHz dBuV/m dBuV/m dB dBuV dB dB 1 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -29.15 40.37 4.48 Average 8 4924.00 44.85 74.00 -29.15	~10	00 40	000.	6000. 80	000. 100				00. 20000.	22000.	25000
level reading High Table MHz dBuV/m dBuV/m dB dBuV dB cm deg 1 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48		Fn	ea F	mission	imi+	-			Remark	ΔΝΤ	Turn
MHz dBuV/m dBuV/m dB dBuV dB cm deg 1 2288.00 45.37 54.00 -8.63 48.98 -3.61 Average 2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00			-4. 1		CIMIC	i lai gi			Nemai K		
2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average		м	Hz	dBuV/m	dBuV/ı	m dB		-		-	
2 2288.00 57.95 74.00 -16.05 61.56 -3.61 Peak 3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average	-										
3 2379.00 44.49 54.00 -9.51 47.76 -3.27 Average 4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average										e	
4 2379.00 58.81 74.00 -15.19 62.08 -3.27 Peak 5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average										 	
5 2483.50 48.02 54.00 -5.98 50.85 -2.83 Average 6 2483.50 63.48 74.00 -10.52 66.31 -2.83 Peak 7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average											
7 4924.00 32.00 54.00 -22.00 27.52 4.48 Average 8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average										e	
8 4924.00 44.85 74.00 -29.15 40.37 4.48 Peak 9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average											
9 7386.00 36.59 54.00 -17.41 27.61 8.98 Average									-	e	
	10	750	5.00	-77.32	,4.00	24.00	-0.04	0.50	. cur		
											onnliaghl
ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable											icieu.)
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)										field stree	nath as n
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)											
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as m	addition.								000 100 110		
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as m with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported		iotod by	anda	unwont	od omi					of 20 4D	rolativo
ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as m with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported	iole 5. Foi un-resi	icleu pa	anus	, unwani	eu em	SSIONS	snall be	attenuated	a by at lea	asi ou ud	relative



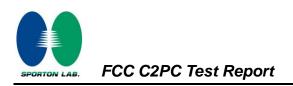
3.6.10 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT-40







4 Test Equipment and Calibration Data


Test Item	Conducted Emission				
Test Site	Conduction room 1 / (C	:001-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
EMC Receiver	R&S	ESCS 30	100169	Oct. 02, 2012	Oct. 01, 2013
LISN	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Dec. 04, 2012	Dec. 03, 2013
LISN (Support Unit)	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2012	Dec. 03, 2013
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 25, 2012	Dec. 24, 2013
50 ohm terminal	NA	50	01	Apr. 22, 2013	Apr. 21, 2014
50 ohm terminal	NA	50	02	Apr. 22, 2013	Apr. 21, 2014
50 ohm terminal	NA	50	03	Apr. 22, 2013	Apr. 21, 2014
50 ohm terminal (Support Unit)	NA	50	04	Apr. 22, 2013	Apr. 21, 2014

Radiated Emission above 1GHz **Test Item** 966 chamber1 / (03CH01-WS) **Test Site** Instrument **Calibration Date Calibration Until** Manufacturer Model No. Serial No. 3m semi-anechoic CHAMPRO SAC-03 03CH01-WS Jan. 04, 2013 Jan. 03, 2014 chamber FSV40 101498 Spectrum Analyzer R&S Jan. 24, 2013 Jan. 23, 2014 Receiver R&S ESR3 101658 Jan. 28, 2013 Jan. 27, 2014 SCHWARZBECK VULB9168 VULB9168-522 **Bilog Antenna** Jan. 11, 2013 Jan. 10, 2014 Horn Antenna Feb. 17, 2014 SCHWARZBECK BBHA 9120 D BBHA 9120 D 1096 Feb. 18, 2013 1G-18G Horn Antenna SCHWARZBECK **BBHA 9170** BBHA 9170517 Jan. 14, 2013 Jan. 13, 2014 18G-40G Amplifier BPA-530 100219 Nov. 28, 2012 Burgeon Nov. 27, 2013 Amplifier Agilent 83017A MY39501308 Dec. 18, 2012 Dec. 17, 2013 **RF** Cable HUBER+SUHNER SUCOFLEX104 MY16014/4 Dec. 25, 2012 Dec. 24, 2013 **RF** Cable HUBER+SUHNER SUCOFLEX104 MY16019/4 Dec. 25, 2012 Dec. 24, 2013 **RF** Cable HUBER+SUHNER SUCOFLEX104 MY16139/4 Dec. 25, 2012 Dec. 24, 2013 RF Cable-R03m Woken CFD400NL-LW CFD400NL-001 Dec. 25, 2012 Dec. 24, 2013 RF Cable-R10m CFD400NL-002 Dec. 24, 2013 Woken CFD400NL-LW Dec. 25, 2012 **EM Electronics** EM1000 60612 N/A N/A control Note: Calibration Interval of instruments listed above is one year.

 Loop Antenna
 R&S
 HFH2-Z2
 100330
 Nov. 15, 2012
 Nov. 14, 2014

 Amplifier
 MITEQ
 AMF-6F-260400
 9121372
 Apr. 19, 2013
 Apr. 18, 2015

 Note: Calibration Interval of instruments listed above is two year.
 Fit and the second seco

Test Item	RF Conducted				
Test Site	TH01-HY				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014
Spectrum Analyzer	R&S	FSP 40	100305	Mar. 20, 2013	Mar. 19, 2014
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	Nov. 21, 2012	Nov. 20, 2013
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 14, 2014
Power Sensor	Anritsu	MA2411B	0917017	Feb. 02, 2013	Feb. 01, 2014
Power Meter	Anritsu	ML2495A	0949003	Feb. 02, 2013	Feb. 01, 2014