

# FCC Test Report

| Equipment             | : | Wireless 802.11 ac/a/b/g/n Access Point                                                  |
|-----------------------|---|------------------------------------------------------------------------------------------|
| Brand Name            | : | Senao Networks                                                                           |
| Model No.             | : | CAP7252AG, CAP7253AG                                                                     |
| FCC ID                | : | U2M-CAP7252AG                                                                            |
| Standard              | : | 47 CFR FCC Part 15.407                                                                   |
| <b>Operating Band</b> | : | 5725 MHz – 5850 MHz                                                                      |
| FCC Classification    | : | NII                                                                                      |
| Applicant             | : | Senao Networks, Inc.<br>3F, No. 529, Chung Cheng Rd., Hsintien, Taipei, Taiwan,<br>R.O.C |

The product sample received on Apr. 16, 2014 and completely tested on Aug. 27, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

**Reviewed by:** 

James Fan / Assistant Manager





## **Table of Contents**

| 1    | GENERAL DESCRIPTION                                   | 5      |
|------|-------------------------------------------------------|--------|
| 1.1  | Information                                           | 5      |
| 1.2  | Accessories and Support Equipment                     | 7      |
| 1.3  | Testing Applied Standards                             | 8      |
| 1.4  | Testing Location Information                          | 8      |
| 1.5  | Measurement Uncertainty                               | 9      |
| 2    | TEST CONFIGURATION OF EUT                             | 10     |
| 2.1  | The Worst Case Modulation Configuration               | 10     |
| 2.2  | The Worst Case Power Setting Parameter                | 10     |
| 2.3  | The Worst Case Measurement Configuration              | 11     |
| 2.4  | Test Setup Diagram                                    | 13     |
| 3    | TRANSMITTER TEST RESULT                               | 14     |
| 3.1  | AC Power-line Conducted Emissions                     | 14     |
| 3.2  | Emission Bandwidth                                    | 23     |
| 3.3  | RF Output Power                                       | 28     |
| 3.4  | Peak Power Spectral Density                           | 32     |
| 3.5  | Transmitter Radiated Unwanted Emissions and Band Edge | 36     |
| 3.6  | Frequency Stability                                   | 83     |
| 4    | TEST EQUIPMENT AND CALIBRATION DATA                   | 86     |
| APPI | ENDIX A. TEST PHOTOS                                  | A1-A12 |



# Summary of Test Result

|                  | Conformance Test Specifications |                                                                     |                                                                                                                               |                                                                           |          |  |
|------------------|---------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|--|
| Report<br>Clause | Ref. Std.<br>Clause             | Description                                                         | Measured                                                                                                                      | Limit                                                                     | Result   |  |
| 1.1.3            | 15.203                          | Antenna Requirement                                                 | Antenna connector<br>mechanism complied                                                                                       | FCC 15.203                                                                | Complied |  |
| 3.1              | 15.207                          | AC Power-line<br>Conducted Emissions                                | [dBuV]: 0.375MHz<br>47.04 (Margin 1.35dB) – AV<br>52.56 (Margin 5.83dB) – QP                                                  | FCC 15.207                                                                | Complied |  |
| 3.2              | 15.407(a)                       | Emission Bandwidth                                                  | 26dB Bandwidth [MHz]<br>20M: 45.51 / 40M: 61.91<br>80M: 93.91<br>6dB Bandwidth [MHz]<br>20M: 16.35 / 40M: 36.41<br>80M: 75.83 | Information only for<br>26dB bandwidth<br>500kHz for 6dB<br>bandwidth     | Complied |  |
| 3.3              | 15.407(a)                       | RF Output Power<br>(Maximum Conducted<br>(Average) Output<br>Power) | Power [dBm]<br>5725-5850MHz: 25.94                                                                                            | Power [dBm]<br>5725-5850MHz: 30                                           | Complied |  |
| 3.4              | 15.407(a)                       | Peak Power Spectral<br>Density                                      | PPSD [dBm/MHz]<br>5725-5850MHz: 11.42                                                                                         | PPSD [dBm/500kHz]<br>5725-5850MHz: 30                                     | Complied |  |
| 3.5              | 15.407(b)                       | Transmitter Unwanted<br>Emissions and Band<br>Edge                  | Restricted Bands<br>[dBuV/m at 3m]:<br>5725.00MHz<br>77.20 (Margin 1.00dB) – PK                                               | Non-Restricted<br>Bands: ≤ -27dBm<br>(68.2dBuV/m@3m)<br>Restricted Bands: | Complied |  |
|                  |                                 |                                                                     | 5715.00MHz<br>73.00 (Margin 1.00dB) – PK                                                                                      | FCC 15.209                                                                |          |  |
|                  |                                 |                                                                     | 5850.00MHz<br>77.20 (Margin 1.00dB) – PK                                                                                      |                                                                           |          |  |
|                  |                                 |                                                                     | 5715.00MHz<br>53.00 (Margin 1.00dB) – AV                                                                                      |                                                                           |          |  |
| 3.6              | 15.407(g)                       | Frequency Stability                                                 | 6.6171 ppm                                                                                                                    | Signal shall remain<br>in-band                                            | Complied |  |



# **Revision History**

| Report No.   | Version | Description             | Issued Date   |
|--------------|---------|-------------------------|---------------|
| FR441605ANB4 | Rev. 01 | Initial issue of report | Oct. 03, 2014 |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |



### **1** General Description

### 1.1 Information

#### **1.1.1 Feature of Equipment under Test**

The following models are provided to this EUT.

| Brand Name      | Model Name | Product Name                            | Description             |
|-----------------|------------|-----------------------------------------|-------------------------|
| Senao Networks  | CAP7252AG  |                                         | Internal PIFA antenna   |
| Seriao Networks | CAP7253AG  | Wireless 802.11 ac/a/b/g/n Access Point | External Dipole antenna |

### 1.1.2 RF General Information

|                                                                                                                                                                                                                                                                                                                                                                             | RF General Information |                    |                   |                                       |                          |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|-------------------|---------------------------------------|--------------------------|-------------|
| Frequency<br>Range (MHz)                                                                                                                                                                                                                                                                                                                                                    | IEEE Std. 802.11       | Ch. Freq.<br>(MHz) | Channel<br>Number | Transmit<br>Chains (N <sub>TX</sub> ) | RF Output<br>Power (dBm) | Co-location |
| Internal anten                                                                                                                                                                                                                                                                                                                                                              | na                     |                    |                   |                                       |                          |             |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | а                      | 5745-5825          | 149-165 [5]       | 2                                     | 25.82                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | n(HT20)                | 5745-5825          | 149-165 [5]       | 2                                     | 25.81                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | n(HT40)                | 5755-5795          | 151-159 [2]       | 2                                     | 22.96                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | ac(VHT20)              | 5745-5825          | 149-165 [5]       | 2                                     | 25.94                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | ac(VHT40)              | 5755-5795          | 151-159 [2]       | 2                                     | 23.05                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | ac(VHT80)              | 5775               | 155 [1]           | 2                                     | 15.78                    | Yes         |
| External anter                                                                                                                                                                                                                                                                                                                                                              | ina                    |                    |                   |                                       |                          |             |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | а                      | 5745-5825          | 149-165 [5]       | 2                                     | 25.75                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | n(HT20)                | 5745-5825          | 149-165 [5]       | 2                                     | 25.67                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | n(HT40)                | 5755-5795          | 151-159 [2]       | 2                                     | 23.51                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | ac(VHT20)              | 5745-5825          | 149-165 [5]       | 2                                     | 25.76                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | ac(VHT40)              | 5755-5795          | 151-159 [2]       | 2                                     | 23.62                    | Yes         |
| 5725-5850                                                                                                                                                                                                                                                                                                                                                                   | ac(VHT80)              | 5775               | 155 [1]           | 2                                     | 16.21                    | Yes         |
| Note 1: RF output power specifies that Maximum Conducted (Average) Output Power.<br>Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.<br>Note 3: 802.11ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.<br>Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) |                        |                    |                   |                                       |                          |             |

antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)



### 1.1.3 Antenna Information

|             |                                                 | Antenna Category                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\boxtimes$ | Integral antenna (antenna permanently attached) |                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|             | $\boxtimes$                                     | Temporary RF connector provided                                                                                                                                                                                                                                                                                         |  |  |  |  |
|             |                                                 | No temporary RF connector provided<br>Transmit chains bypass antenna and soldered temporary RF connector provided for connected<br>measurement. In case of conducted measurements the transmitter shall be connected to the<br>measuring equipment via a suitable attenuator and correct for all losses in the RF path. |  |  |  |  |
| $\square$   | External antenna (dedicated antennas)           |                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|             |                                                 | Single power level with corresponding antenna(s).                                                                                                                                                                                                                                                                       |  |  |  |  |
|             | $\square$                                       | Multiple power level and corresponding antenna(s).                                                                                                                                                                                                                                                                      |  |  |  |  |
|             | $\square$                                       | RF connector provided                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|             |                                                 | Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)                                                                                                                                                                                                                                                |  |  |  |  |
|             |                                                 | Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)                                                                                                                                                                                                                                                           |  |  |  |  |

|     | Antenna General Information |        |           |                                                     |           |           |
|-----|-----------------------------|--------|-----------|-----------------------------------------------------|-----------|-----------|
| No. | Model                       | Туре   | Connector | Operating Frequencies (MHz) /<br>Antenna Gain (dBi) |           |           |
|     |                             |        |           | 2400~2483.5                                         | 5150~5250 | 5725~5850 |
| 1   | 5718A0075300                | PIFA   | I-Pex     | 3.52                                                |           |           |
| 2   | 5718A0074300                | PIFA   | I-Pex     | 3.16                                                |           |           |
| 3   | 5718A0077300                | PIFA   | I-Pex     |                                                     | 5.40      | 5.23      |
| 4   | 5718A0076300                | PIFA   | I-Pex     |                                                     | 4.08      | 5.68      |
| 5   | 7102A0300000                | Dipole | R SMA     | 4.42                                                |           |           |
| 6   | 7102A0300000                | Dipole | R SMA     | 4.42                                                |           |           |
| 7   | 7102A0301000                | Dipole | R SMA     |                                                     | 3.18      | 2.95      |
| 8   | 7102A0301000                | Dipole | R SMA     |                                                     | 3.18      | 2.95      |

### 1.1.4 Type of EUT

|             | Identify EUT                                                                  |                                           |  |  |
|-------------|-------------------------------------------------------------------------------|-------------------------------------------|--|--|
| EUT         | Serial Number                                                                 | N/A                                       |  |  |
| Pres        | sentation of Equipment                                                        | Production ;  Pre-Production ;  Prototype |  |  |
|             | Type of EUT                                                                   |                                           |  |  |
| $\boxtimes$ | Stand-alone                                                                   |                                           |  |  |
|             | Combined (EUT where the radio part is fully integrated within another device) |                                           |  |  |
|             | Combined Equipment - Brand Name / Model No.:                                  |                                           |  |  |
|             | Plug-in radio (EUT intended for a variety of host systems)                    |                                           |  |  |
|             | Host System - Brand Name / Model No.:                                         |                                           |  |  |



### 1.1.5 Test Signal Duty Cycle

| Operated Mode for Worst Duty Cycle                                 |      |  |  |  |
|--------------------------------------------------------------------|------|--|--|--|
| Operated normally mode for worst duty cycle                        |      |  |  |  |
| Operated test mode for worst duty cycle                            |      |  |  |  |
| Test Signal Duty Cycle (x)Power Duty Factor<br>[dB] - (10 log 1/x) |      |  |  |  |
| ⊠ 98.26% - IEEE 802.11a                                            | 0.08 |  |  |  |
| 98.15% - IEEE 802.11ac (VHT20)                                     | 0.08 |  |  |  |
| ⊠ 94.93% - IEEE 802.11ac (VHT40)                                   | 0.23 |  |  |  |
| 88.46% - IEEE 802.11ac (VHT80)                                     | 0.53 |  |  |  |

### 1.1.6 EUT Operational Condition

| Supply Voltage | 12Vdc from adapter, 48Vdc from POE |                |                |
|----------------|------------------------------------|----------------|----------------|
| Test Voltage   | 🛛 Vnom (120 V)                     | 🛛 Vmax (138 V) | 🛛 Vmin (102 V) |
| Test Climatic  | Tnom (20°C)                        | 🖂 Tmax (50°C)  | ⊠ Tmin (-30°C) |

### **1.2** Accessories and Support Equipment

|     | Accessories                                                                          |                                                                                                                                                                              |  |  |  |
|-----|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| No. | Equipment                                                                            | Description                                                                                                                                                                  |  |  |  |
| 1   | Power Supply Type 1<br>Adapter                                                       | Brand: Powertron Electronics Corp.<br>Model: PA1015-2I<br>I/P: 100-240Vac, 50-60Hz, 0.4A<br>O/P: 12Vdc, 1.25A, 15W<br>Power line: 1.2m non-shielded with one core            |  |  |  |
| 2   | Power Supply Type 2<br>With POE injector<br>(Model: NPE-5818)<br>**Support unit only | Brand: Powertron Electronics Corp.<br>Model: PA1040-480IB080<br>I/P: 100-240Vac, 50-60Hz, 1.5A<br>O/P: 48Vdc, 0.8A, 38.4W max<br>Power line: 1.5m non-shielded with one core |  |  |  |

|     | Support Equipment                                              |        |          |     |  |  |  |  |  |  |
|-----|----------------------------------------------------------------|--------|----------|-----|--|--|--|--|--|--|
| No. | Equipment         Brand Name         Model Name         FCC ID |        |          |     |  |  |  |  |  |  |
| 1   | Notebook                                                       | DELL   | E6440    | DoC |  |  |  |  |  |  |
| 2   | POE                                                            | Ruckus | NPE-5818 |     |  |  |  |  |  |  |



### **1.3 Testing Applied Standards**

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- 789033 D02 General UNII Test Procedures New Rules v01
- FCC KDB 662911 v02r01
- FCC KDB 412172 v01

### **1.4 Testing Location Information**

|                                                                                                 | Testing Location |                                                                                                   |         |                                                                                                                 |               |                         |               |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|---------------|-------------------------|---------------|--|--|--|--|
| $\boxtimes$                                                                                     | HWA YA           | ADD                                                                                               | :       | No. 52, Hwa Ya 1 <sup>st</sup> Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang,<br>Tao Yuan Hsien, Taiwan, R.O.C. |               |                         |               |  |  |  |  |
|                                                                                                 |                  | TEL                                                                                               | :       | : 886-3-327-3456 FAX : 886-3-327-0973                                                                           |               |                         |               |  |  |  |  |
| $\boxtimes$                                                                                     | ICC Lab          | ADD : No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333,<br>Taiwan, R.O.C. |         |                                                                                                                 |               |                         |               |  |  |  |  |
|                                                                                                 |                  | TEL : 886-3-271-8640 FAX : 886-3-327-0973                                                         |         |                                                                                                                 |               |                         |               |  |  |  |  |
| Те                                                                                              | est Conditio     | on                                                                                                | т       | est Site No.                                                                                                    | Test Engineer | Test Environment        | Test Date     |  |  |  |  |
| R                                                                                               | F Conducte       | d                                                                                                 | TH01-HY |                                                                                                                 | Mark Liao     | 23°C / 64%              | Aug. 27, 2014 |  |  |  |  |
| A                                                                                               | C Conductic      | n                                                                                                 |         | *CO01-WS                                                                                                        | Skys Huang    | 22°C / 63%              | Jul. 24, 2014 |  |  |  |  |
| Radiated Emission *03CH01-WS Anderson Hung 20-23°C / 65-68% Jun. 10 ~ Jul. 17, 2                |                  |                                                                                                   |         |                                                                                                                 |               | Jun. 10 ~ Jul. 17, 2014 |               |  |  |  |  |
| Test site registered number [657002] with FCC<br>Test site registered number [10807A-1] with IC |                  |                                                                                                   |         |                                                                                                                 |               |                         |               |  |  |  |  |

Note: \* Sporton Lab subcontracts this test item to ICC lab (TAF:2732).

ICC lab is a TAF accreditation test firm and also is an approved provider of Sporton Lab.



### 1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

| Measurement Uncertainty           |               |             |       |  |  |  |  |  |
|-----------------------------------|---------------|-------------|-------|--|--|--|--|--|
| Test Item                         |               | Uncertainty | Limit |  |  |  |  |  |
| AC power-line conducted emissions | ±2.92 dB      | N/A         |       |  |  |  |  |  |
| Emission bandwidth                | ±1.42 %       | N/A         |       |  |  |  |  |  |
| RF output power, conducted        | ±0.63 dB      | N/A         |       |  |  |  |  |  |
| Power density, conducted          | ±0.81 dB      | N/A         |       |  |  |  |  |  |
| All emissions, radiated           | 30 – 1000 MHz | ±3.26 dB    | N/A   |  |  |  |  |  |
|                                   | Above 1 GHz   | ±4.94 dB    | N/A   |  |  |  |  |  |
| Humidity                          |               | ±3 %        | N/A   |  |  |  |  |  |
| DC and low frequency voltages     |               | ±3 %        | N/A   |  |  |  |  |  |
| Time                              | lime          |             |       |  |  |  |  |  |
| Duty Cycle                        |               | ±1.42 %     | N/A   |  |  |  |  |  |



# 2 Test Configuration of EUT

### 2.1 The Worst Case Modulation Configuration

| Worst           | Worst Modulation Used for Conformance Testing (5150-5250MHz) |                                         |        |  |  |  |  |  |  |  |  |  |
|-----------------|--------------------------------------------------------------|-----------------------------------------|--------|--|--|--|--|--|--|--|--|--|
| Modulation Mode | Transmit Chains (N <sub>TX</sub> )                           | x) Data Rate / MCS Worst Data Rate / MC |        |  |  |  |  |  |  |  |  |  |
| 11a             | 2                                                            | 6-54Mbps                                | 6 Mbps |  |  |  |  |  |  |  |  |  |
| HT20            | 2                                                            | MCS 0-15                                | MCS 0  |  |  |  |  |  |  |  |  |  |
| HT40            | 2                                                            | MCS 0-15                                | MCS 0  |  |  |  |  |  |  |  |  |  |
| VHT20           | 2                                                            | MCS 0-8                                 | MCS 0  |  |  |  |  |  |  |  |  |  |
| VHT40           | 2                                                            | MCS 0-9                                 | MCS 0  |  |  |  |  |  |  |  |  |  |
| VHT80           | 2                                                            | MCS 0-9                                 | MCS 0  |  |  |  |  |  |  |  |  |  |

### 2.2 The Worst Case Power Setting Parameter

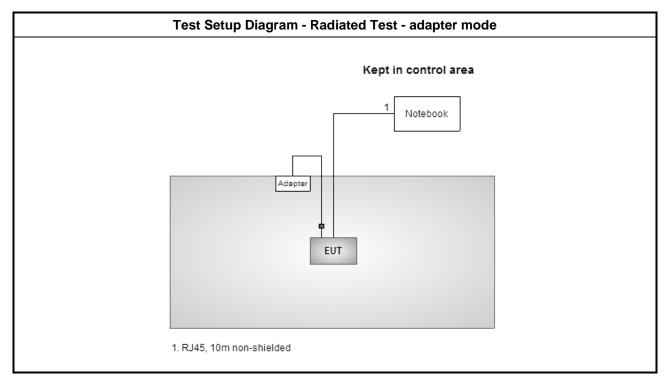
| The              | e Worst | Case Pow    | ver Setting I | Parameter ( | 5150-5250M | Hz band) |            |  |
|------------------|---------|-------------|---------------|-------------|------------|----------|------------|--|
| Test Software    | ART2    | -GUI, Versi | ion: 4_9_575  | 5_5_CS_U3   |            |          |            |  |
| Internal antenna |         |             |               |             |            |          |            |  |
|                  |         |             |               | Test Fre    | quency (Mł | łz)      |            |  |
| Modulation Mode  | Ντχ     |             | NCB: 20MH     | z           | NCB:       | 40MHz    | NCB: 80MHz |  |
|                  |         | 5745        | 5785          | 5825        | 5755       | 5795     | 5775       |  |
| 11a,6-54Mbps     | 2       | 17          | 22            | 17          |            |          |            |  |
| HT20,M0-15       | 2       | 16.5        | 22            | 16.5        |            |          |            |  |
| HT40,M0-15       | 2       |             |               |             | 13.5       | 19.5     |            |  |
| VHT20,M0-8       | 2       | 16.5        | 22            | 16.5        |            |          |            |  |
| VHT40,M0-9       | 2       |             |               |             | 13.5       | 19.5     |            |  |
| VHT80,M0-9       | 2       |             |               |             |            |          | 12         |  |
| External antenna |         |             |               |             |            |          | -          |  |
|                  |         |             |               | Test Fre    | quency (MI | Hz)      |            |  |
| Modulation Mode  | Ντχ     |             | NCB: 20MH     | z           | NCB:       | 40MHz    | NCB: 80MHz |  |
|                  |         | 5745        | 5785          | 5825        | 5755       | 5795     | 5775       |  |
| 11a,6-54Mbps     | 2       | 17          | 21            | 18          |            |          |            |  |
| HT20,M0-15       | 2       | 16.5        | 21            | 17.5        |            |          |            |  |
| HT40,M0-15       | 2       |             |               |             | 14.5       | 20       |            |  |
| VHT20,M0-8       | 2       | 16.5        | 21            | 17.5        |            |          |            |  |
| VHT40,M0-9       | 2       |             |               |             | 14.5       | 20       |            |  |
| VHT80,M0-9       | 2       |             |               |             |            |          | 12         |  |

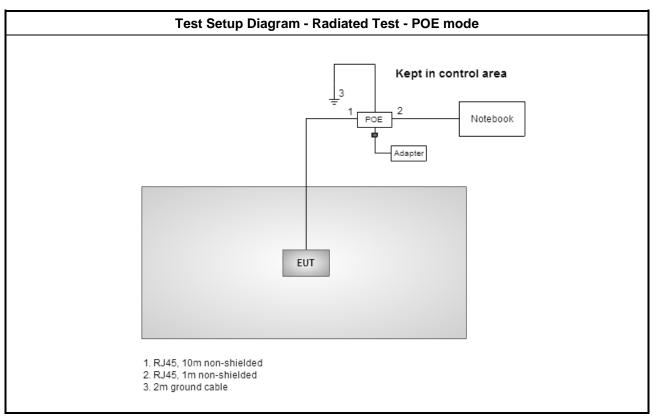


### 2.3 The Worst Case Measurement Configuration

| Th             | e Worst Case Mode for Following Conformance Tests                                       |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| Tests Item     | AC power-line conducted emissions                                                       |  |  |  |  |  |
| Condition      | AC power-line conducted measurement for line and neutral<br>Test Voltage: 120Vac / 60Hz |  |  |  |  |  |
| Operating Mode | Operating Mode Description                                                              |  |  |  |  |  |
|                | 1. Internal antenna with adapter mode                                                   |  |  |  |  |  |
|                | 2. Internal antenna with POE mode                                                       |  |  |  |  |  |
|                | 3. External antenna with adapter mode                                                   |  |  |  |  |  |
|                | 4. External antenna with POE mode                                                       |  |  |  |  |  |

| Tł                                                              | The Worst Case Mode for Following Conformance Tests |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|--|
| Tests Item                                                      | RF Output Power                                     |  |  |  |  |  |  |  |
| Test Condition         Conducted measurement at transmit chains |                                                     |  |  |  |  |  |  |  |
| Modulation Mode 11a, HT20, HT40, VHT20, VHT40, VHT80            |                                                     |  |  |  |  |  |  |  |
| Operating Mode                                                  | Operating Mode Description                          |  |  |  |  |  |  |  |
|                                                                 | 1. Internal antenna with adapter mode               |  |  |  |  |  |  |  |
|                                                                 | 2. External antenna with adapter mode               |  |  |  |  |  |  |  |


| Tł              | e Worst Case Mode for Following Conformance Tests |
|-----------------|---------------------------------------------------|
| Tests Item      | Peak Power Spectral Density, Emission Bandwidth   |
| Test Condition  | Conducted measurement at transmit chains          |
| Modulation Mode | 11a, VHT20, VHT40, VHT80                          |
| Operating Mode  | Operating Mode Description                        |
|                 | 1. Internal antenna with adapter mode             |
|                 | 2. External antenna with adapter mode             |




| Th                          | e Worst Case Mode for Fo                                                                                                                                                                                           | bllowing Conformance Te                                                                | sts                          |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| Tests Item                  | Transmitter Radiated Unwanted Emissions<br>Transmitter Radiated Bandedge Emissions                                                                                                                                 |                                                                                        |                              |  |  |  |  |
| Test Condition              | regardless of spatial multi                                                                                                                                                                                        | antenna assembly (multiple<br>plexing MIMO configuratior<br>antenna gain of each anter | n), the radiated test should |  |  |  |  |
|                             | EUT will be placed in fixed position.                                                                                                                                                                              |                                                                                        |                              |  |  |  |  |
| User Position               | EUT will be placed in mobile position and operating multiple positions. E<br>shall be performed three orthogonal planes. The worst planes are<br>Y-plane for internal antenna and<br>X-plane for external antenna. |                                                                                        |                              |  |  |  |  |
|                             | EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst planes is Z.                                       |                                                                                        |                              |  |  |  |  |
| Operating Mode              | <ul> <li>Internal antenna with adapter mode</li> </ul>                                                                                                                                                             |                                                                                        |                              |  |  |  |  |
|                             | 🛛 2. Internal antenna v                                                                                                                                                                                            | with POE mode                                                                          |                              |  |  |  |  |
|                             | 3. External antenna                                                                                                                                                                                                | with adapter mode                                                                      |                              |  |  |  |  |
|                             | A. External antenna                                                                                                                                                                                                | with POE mode                                                                          |                              |  |  |  |  |
| Modulation Mode             | 11a, VHT20, VHT40, VHT8                                                                                                                                                                                            | 30                                                                                     |                              |  |  |  |  |
|                             | X Plane                                                                                                                                                                                                            | Y Plane                                                                                | Z Plane                      |  |  |  |  |
| Orthogonal Planes of<br>EUT |                                                                                                                                                                                                                    |                                                                                        |                              |  |  |  |  |



### 2.4 Test Setup Diagram







#### **Transmitter Test Result** 3

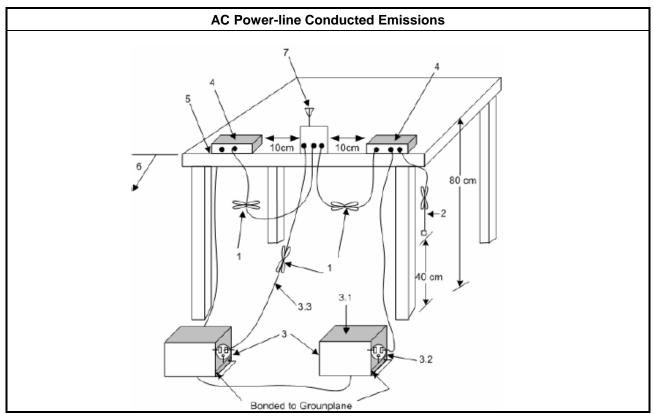
#### 3.1 **AC Power-line Conducted Emissions**

#### 3.1.1 **AC Power-line Conducted Emissions Limit**

| AC Power-line Conducted Emissions Limit                     |           |           |  |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------|-----------|--|--|--|--|--|--|--|
| Frequency Emission (MHz)         Quasi-Peak         Average |           |           |  |  |  |  |  |  |  |
| 0.15-0.5                                                    | 66 - 56 * | 56 - 46 * |  |  |  |  |  |  |  |
| 0.5-5                                                       | 56        | 46        |  |  |  |  |  |  |  |
| 5-30 60 50                                                  |           |           |  |  |  |  |  |  |  |
| 5-30<br>Note 1: * Decreases with the logarithm c            |           | 50        |  |  |  |  |  |  |  |

ecreases with the logarithm of the frequency

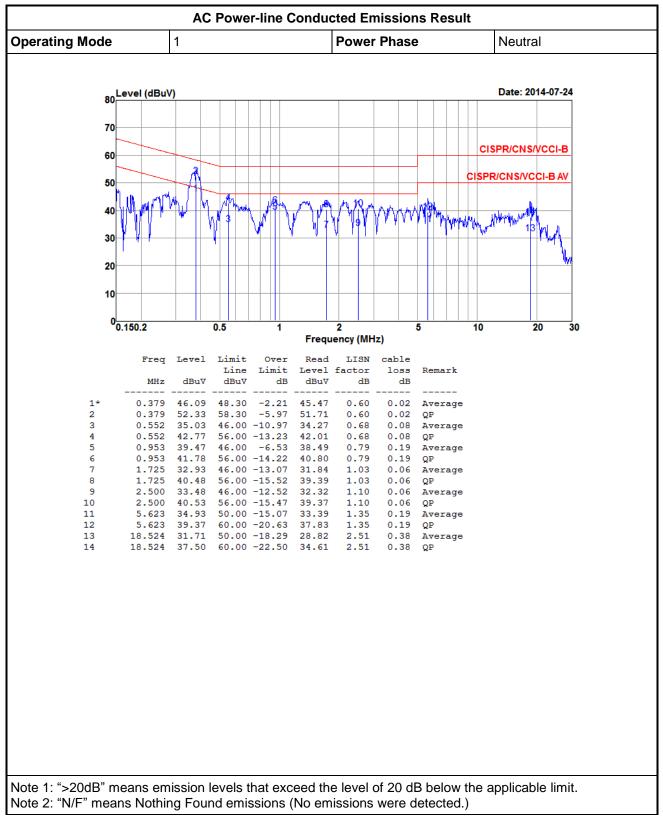
#### 3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

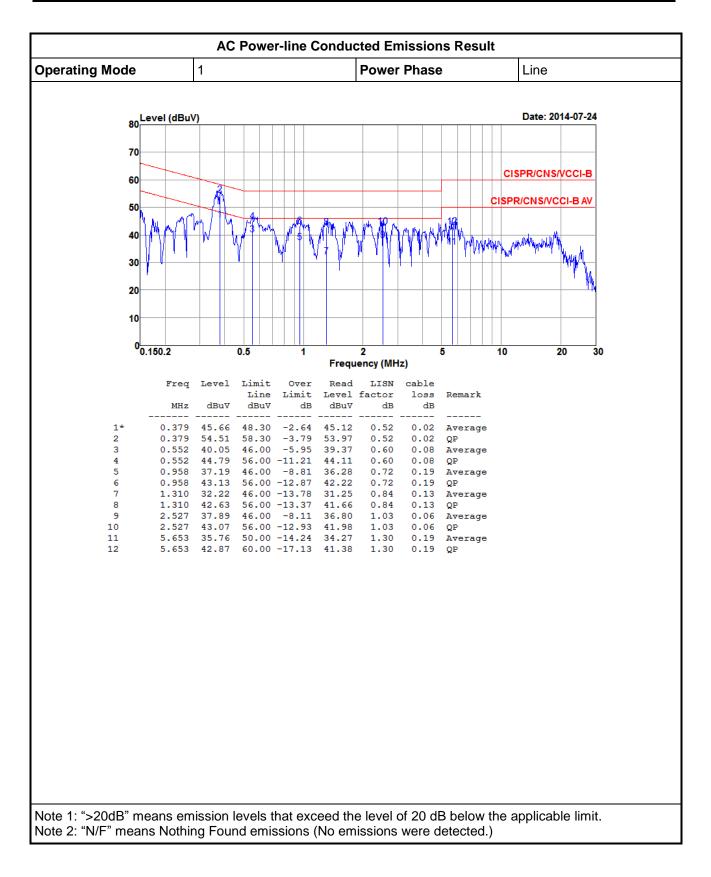
#### 3.1.3 **Test Procedures**

**Test Method** 

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

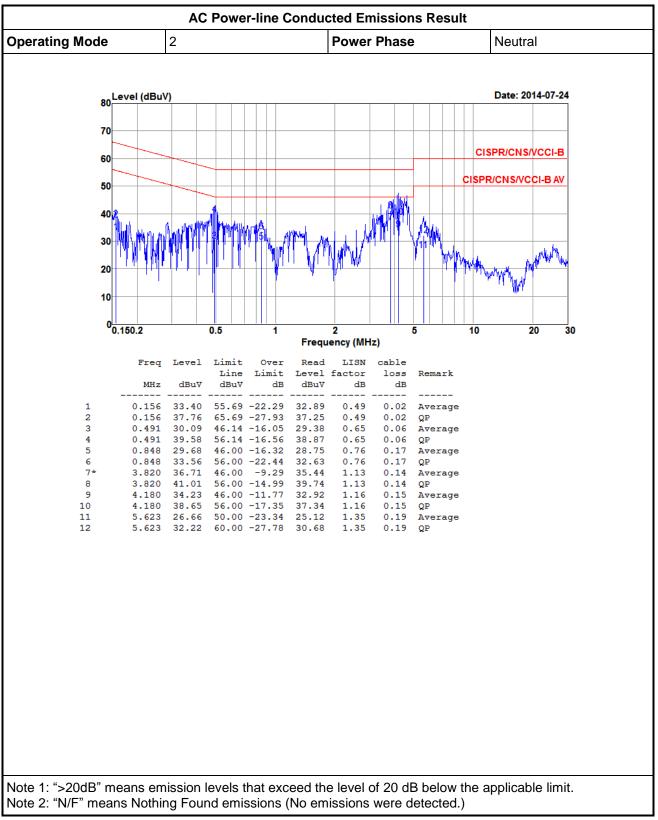

#### 3.1.4 Test Setup



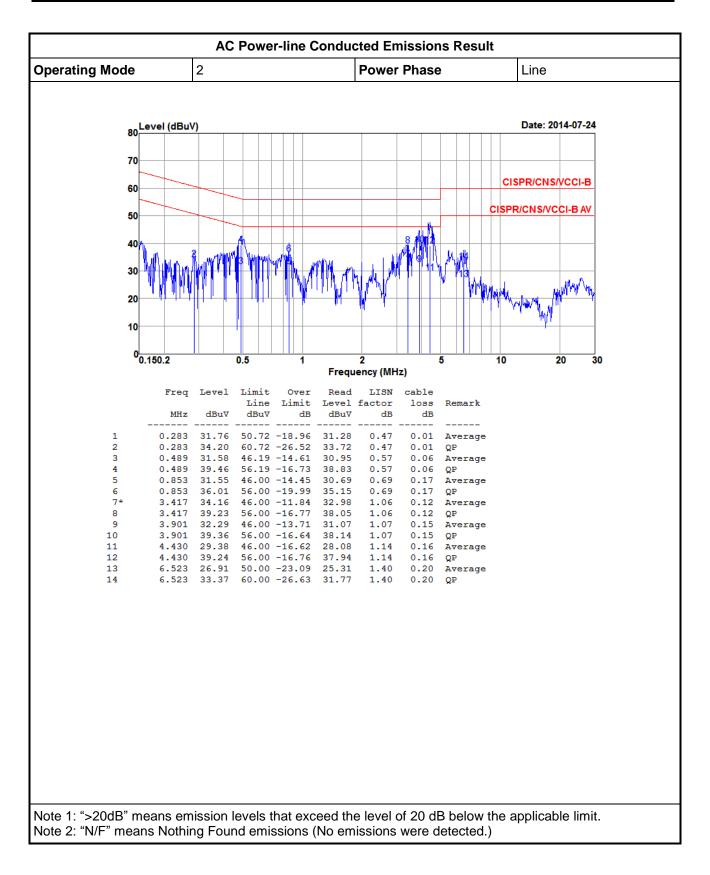



#### 3.1.5 Test Result of AC Power-line Conducted Emissions

#### Mode 1: Internal antenna with adapter mode

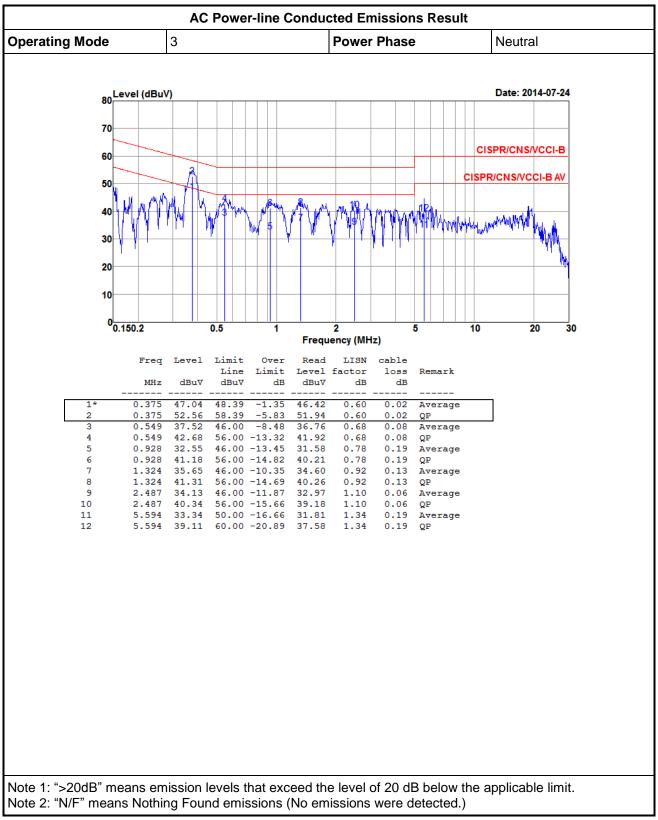




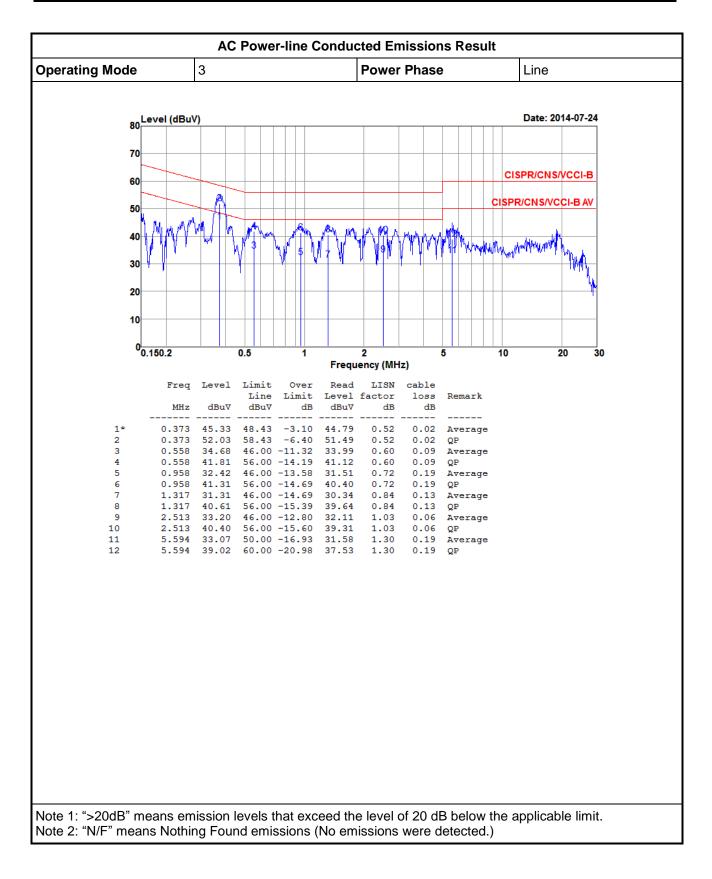






#### Mode 2: Internal antenna with POE mode

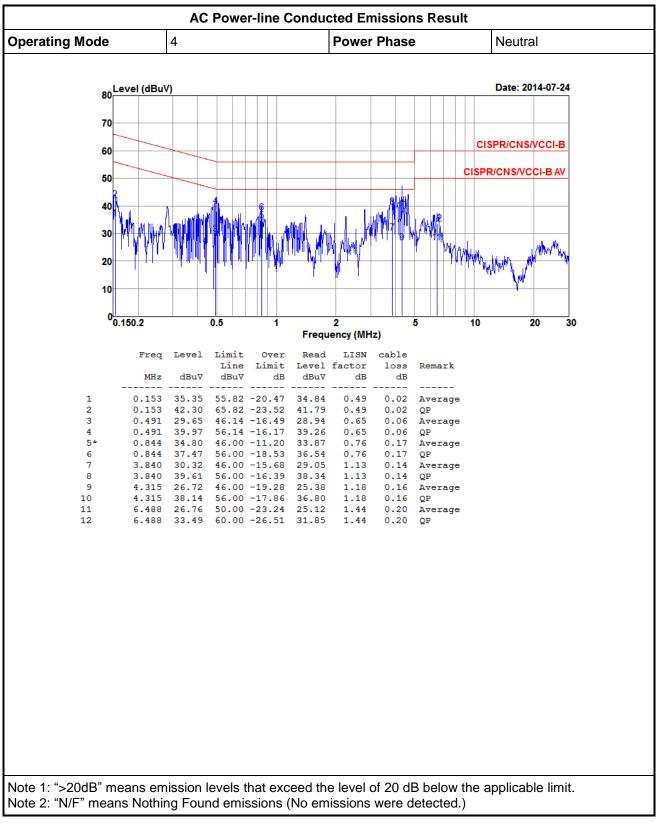




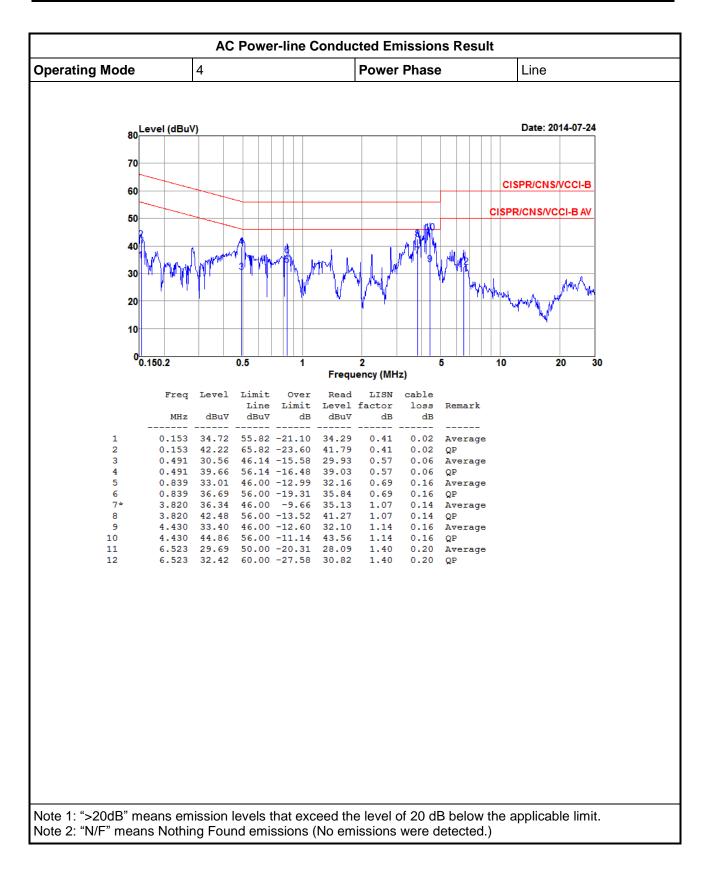






#### Mode 3: External antenna with adapter mode








#### Mode 4: External antenna with POE mode







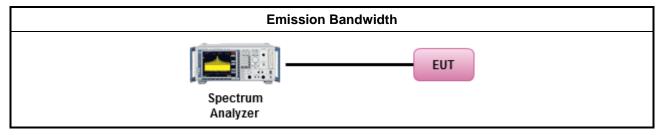


### 3.2 Emission Bandwidth

#### 3.2.1 Emission Bandwidth (EBW) Limit

**Emission Bandwidth (EBW) Limit** 

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz


#### 3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

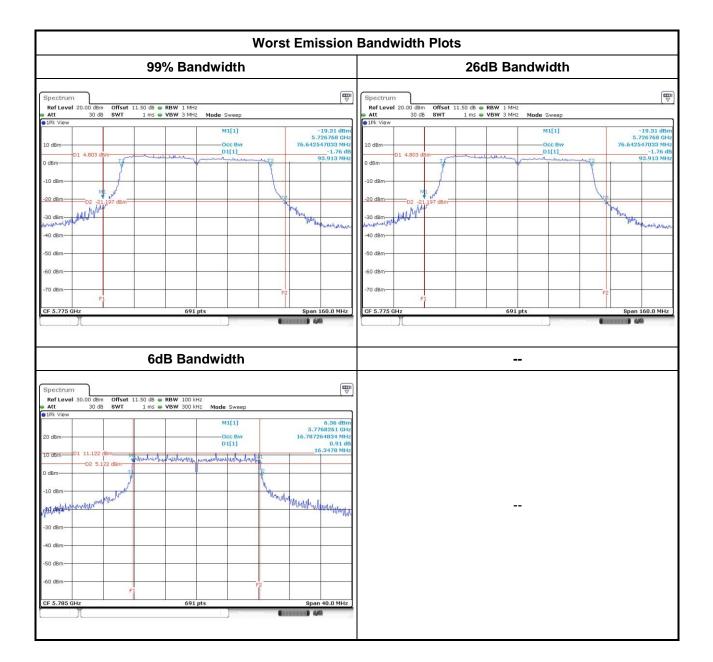
#### 3.2.3 Test Procedures

|             |                            | Test Method                                                                                                                                                                           |  |  |  |  |  |  |  |
|-------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| $\boxtimes$ | For                        | the emission bandwidth shall be measured using one of the options below:                                                                                                              |  |  |  |  |  |  |  |
|             | $\boxtimes$                | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause C for EBW / 6dB bandwidth and clause D for OBW measurement.                                                    |  |  |  |  |  |  |  |
|             |                            | Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.                                                                                                                    |  |  |  |  |  |  |  |
|             | $\boxtimes$                | Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.                                                                                                                                |  |  |  |  |  |  |  |
| $\boxtimes$ | For conducted measurement. |                                                                                                                                                                                       |  |  |  |  |  |  |  |
|             |                            | The EUT supports single transmit chain and measurements performed on this transmit chain.                                                                                             |  |  |  |  |  |  |  |
|             |                            | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                   |  |  |  |  |  |  |  |
|             | $\boxtimes$                | The EUT supports multiple transmit chains using options given below:                                                                                                                  |  |  |  |  |  |  |  |
|             |                            | Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.   |  |  |  |  |  |  |  |
|             |                            | Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains. |  |  |  |  |  |  |  |

#### 3.2.4 Test Setup






#### 3.2.5 Test Result of Emission Bandwidth

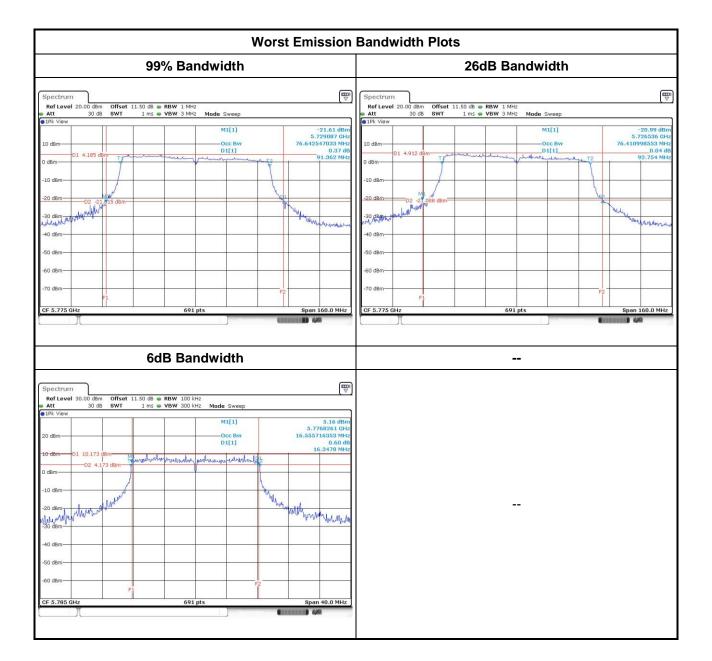
#### Mode 1: Internal antenna with adapter mode

|                      | UNII Emission Bandwidth Result |       |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|----------------------|--------------------------------|-------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Cond                 | Emission Bandwidth (MHz)       |       |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| Modulation           |                                | Freq. | 9                | 9% Ba            | ndwidt           | h                | 2                | 6dB Ba           | andwidt          | :h               | 6                | 6dB Ba           | ndwidtl          | h                |
| Mode N <sub>TX</sub> | Ντχ                            | (MHz) | Chain-<br>Port 1 | Chain-<br>Port 2 | Chain-<br>Port 3 | Chain-<br>Port 4 | Chain-<br>Port 1 | Chain-<br>Port 2 | Chain-<br>Port 3 | Chain-<br>Port 4 | Chain-<br>Port 1 | Chain-<br>Port 2 | Chain-<br>Port 3 | Chain-<br>Port 4 |
| 11a                  | 2                              | 5745  | 17.08            | 16.85            |                  |                  | 23.54            | 22.49            |                  |                  | 16.46            | 16.41            |                  |                  |
| 11a                  | 2                              | 5785  | 20.77            | 17.80            |                  |                  | 42.68            | 30.65            |                  |                  | 16.35            | 16.35            |                  |                  |
| 11a                  | 2                              | 5825  | 17.19            | 16.79            |                  |                  | 23.88            | 22.43            |                  |                  | 16.35            | 16.35            |                  |                  |
| VHT20                | 2                              | 5745  | 18.18            | 17.89            |                  |                  | 24.17            | 23.13            |                  |                  | 17.62            | 16.93            |                  |                  |
| VHT20                | 2                              | 5785  | 21.71            | 19.32            |                  |                  | 45.51            | 41.09            |                  |                  | 17.62            | 17.57            |                  |                  |
| VHT20                | 2                              | 5825  | 18.18            | 18.06            |                  |                  | 24.58            | 24.00            |                  |                  | 17.62            | 17.62            |                  |                  |
| VHT40                | 2                              | 5755  | 37.74            | 37.28            |                  |                  | 49.28            | 47.19            |                  |                  | 36.41            | 36.41            |                  |                  |
| VHT40                | 2                              | 5795  | 37.74            | 37.40            |                  |                  | 54.96            | 46.96            |                  |                  | 36.41            | 36.41            |                  |                  |
| VHT80                | 2                              | 5775  | 76.64            | 76.18            |                  |                  | 93.91            | 89.28            |                  |                  | 75.83            | 75.83            |                  |                  |
| Re                   | sult                           |       |                  |                  |                  |                  |                  | Com              | plied            |                  |                  |                  |                  |                  |










|            |        |       |                  | UN                       | I Emiss          | sion Ba          | ndwidt           | h Resu           | lt               |                  |                  |                  |                  |                  |   |
|------------|--------|-------|------------------|--------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---|
| Cone       | dition |       |                  | Emission Bandwidth (MHz) |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |   |
| Modulation |        |       | Freq.            | g                        | 9% Ba            | ndwidt           | h                | 2                | 6dB Ba           | Indwidt          | h                | 6                | 6dB Ba           | ndwidtl          | h |
| Mode       | Ντχ    | (MHz) | Chain-<br>Port 1 | Chain-<br>Port 2         | Chain-<br>Port 3 | Chain-<br>Port 4 | Chain-<br>Port 1 | Chain-<br>Port 2 | Chain-<br>Port 3 | Chain-<br>Port 4 | Chain-<br>Port 1 | Chain-<br>Port 2 | Chain-<br>Port 3 | Chain-<br>Port 4 |   |
| 11a        | 2      | 5745  | 17.08            | 16.85                    |                  |                  | 23.30            | 22.67            |                  |                  | 16.46            | 16.46            | -                |                  |   |
| 11a        | 2      | 5785  | 18.31            | 18.81                    |                  |                  | 32.68            | 37.68            |                  |                  | 16.35            | 16.35            | -                |                  |   |
| 11a        | 2      | 5825  | 17.13            | 16.90                    |                  |                  | 23.59            | 22.67            |                  |                  | 16.35            | 16.35            |                  |                  |   |
| VHT20      | 2      | 5745  | 18.12            | 18.18                    |                  |                  | 24.35            | 24.35            |                  |                  | 17.57            | 17.62            |                  |                  |   |
| VHT20      | 2      | 5785  | 19.54            | 20.19                    |                  |                  | 40.07            | 42.75            |                  |                  | 17.62            | 17.62            |                  |                  |   |
| VHT20      | 2      | 5825  | 18.29            | 18.12                    |                  |                  | 24.58            | 24.99            |                  |                  | 17.62            | 17.62            |                  |                  |   |
| VHT40      | 2      | 5755  | 37.63            | 37.51                    |                  |                  | 48.46            | 46.61            |                  |                  | 36.41            | 36.41            |                  |                  |   |
| VHT40      | 2      | 5795  | 37.86            | 37.63                    |                  |                  | 54.38            | 61.91            |                  |                  | 36.41            | 36.41            |                  |                  |   |
| VHT80      | 2      | 5775  | 76.64            | 76.41                    |                  |                  | 91.36            | 92.75            |                  |                  | 75.83            | 75.83            |                  |                  |   |
| Re         | sult   |       |                  |                          |                  |                  |                  | Com              | plied            |                  |                  |                  |                  |                  |   |

#### Mode 2: External antenna with adapter mode









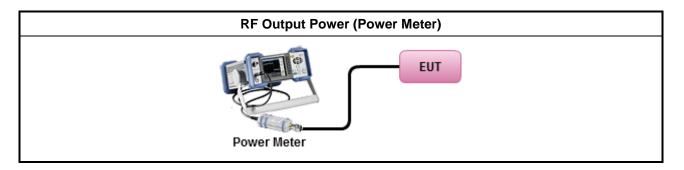
### 3.3 **RF Output Power**

#### 3.3.1 RF Output Power Limit

#### Maximum Conducted Output Power Limit

The maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi

#### 3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

#### 3.3.3 Test Procedures

|           |             | Test Method                                                                                                                                                                                                                                                                                                            |
|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\square$ | Мах         | imum Conducted Output Power                                                                                                                                                                                                                                                                                            |
|           |             | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-1 (spectral trace averaging).                                                                                                                                                                                                       |
|           |             | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)                                                                                                                                                                                        |
|           |             | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-2 (spectral trace averaging).                                                                                                                                                                                                       |
|           |             | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)                                                                                                                                                                                        |
|           | Wid         | eband RF power meter and average over on/off periods with duty factor                                                                                                                                                                                                                                                  |
|           | $\boxtimes$ | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method PM-G (using a gated RF average power meter).                                                                                                                                                                                           |
| $\square$ | For         | conducted measurement.                                                                                                                                                                                                                                                                                                 |
|           |             | The EUT supports single transmit chain and measurements performed on this transmit chain.                                                                                                                                                                                                                              |
|           |             | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                                                                                                                                                    |
|           |             | The EUT supports multiple transmit chains using options given below:<br>Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum<br>approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW)<br>of all ports for each individual sample and save them. |
|           |             | If multiple transmit chains, EIRP calculation could be following as methods:<br>$P_{total} = P_1 + P_2 + + P_n$<br>(calculated in linear unit [mW] and transfer to log unit [dBm])<br>EIRP <sub>total</sub> = P <sub>total</sub> + DG                                                                                  |



#### 3.3.4 Test Setup



#### 3.3.5 Directional Gain for Power Measurement

#### Mode 1: Internal antenna with adapter mode

|                                | Dire        | ectional Gain (D | G) Result       |      |                    |
|--------------------------------|-------------|------------------|-----------------|------|--------------------|
| Transmit Chains No.            |             | 1                | 2               | -    | -                  |
| Maximum G <sub>ANT</sub> (dBi) |             | 5.23             | 5.68            | -    | -                  |
| Modulation Mode                | DG<br>(dBi) | Ν <sub>τχ</sub>  | N <sub>SS</sub> | STBC | Array Gain<br>(dB) |
| 11a,6-54Mbps                   | 5.68        | 2                | 1               | -    | -                  |
| HT20,M0-15                     | 5.68        | 2                | 1               | -    | -                  |
| HT40,M0-15                     | 5.68        | 2                | 1               | -    | -                  |
| VHT20,M0-8                     | 5.68        | 2                | 1               | -    | -                  |
| VHT40,M0-9                     | 5.68        | 2                | 1               | -    | -                  |
| VHT80,M0-9                     | 5.68        | 2                | 1               |      | -                  |

Note: Directional gain may be calculated by using the formulas applicable to equal gain antennas with  $G_{ANT}$  set equal to the gain of the antenna having the highest gain

#### Mode 2: External antenna with adapter mode

|                                | Dire        | ectional Gain (D | G) Result       |      |                    |
|--------------------------------|-------------|------------------|-----------------|------|--------------------|
| Transmit Chains No.            |             | 1                | 2               | -    | -                  |
| Maximum G <sub>ANT</sub> (dBi) |             | 2.95             | 2.95            | -    | -                  |
| Modulation Mode                | DG<br>(dBi) | Ντχ              | N <sub>SS</sub> | STBC | Array Gain<br>(dB) |
| 11a,6-54Mbps                   | 2.95        | 2                | 1               | -    | -                  |
| HT20,M0-15                     | 2.95        | 2                | 1               | -    | -                  |
| HT40,M0-15                     | 2.95        | 2                | 1               | -    | -                  |
| VHT20,M0-8                     | 2.95        | 2                | 1               | -    | -                  |
| VHT40,M0-9                     | 2.95        | 2                | 1               | -    | -                  |
| VHT80,M0-9                     | 2.95        | 2                | 1               |      | -                  |



### 3.3.6 Test Result of Maximum Conducted Output Power

#### Mode 1: Internal antenna with adapter mode

|                    |           | Maxi           | mum Co          | onducte         | d (Avera              | age) Out        | put Pov      | ver            |             |               |               |  |
|--------------------|-----------|----------------|-----------------|-----------------|-----------------------|-----------------|--------------|----------------|-------------|---------------|---------------|--|
| Condi              | Condition |                |                 |                 | RF Output Power (dBm) |                 |              |                |             |               |               |  |
| Modulation<br>Mode | Ντχ       | Freq.<br>(MHz) | Chain<br>Port 1 | Chain<br>Port 2 | Chain<br>Port 3       | Chain<br>Port 4 | Sum<br>Chain | Power<br>Limit | DG<br>(dBi) | EIRP<br>Power | EIRP<br>Limit |  |
| 11a                | 2         | 5745           | 18.31           | 17.58           |                       |                 | 20.97        | 30.00          | 5.68        | 26.65         | 36.00         |  |
| 11a                | 2         | 5785           | 23.39           | 22.14           |                       |                 | 25.82        | 30.00          | 5.68        | 31.50         | 36.00         |  |
| 11a                | 2         | 5825           | 18.51           | 17.42           |                       |                 | 21.01        | 30.00          | 5.68        | 26.69         | 36.00         |  |
| HT20               | 2         | 5745           | 17.89           | 16.95           |                       |                 | 20.46        | 30.00          | 5.68        | 26.14         | 36.00         |  |
| HT20               | 2         | 5785           | 23.21           | 22.35           |                       |                 | 25.81        | 30.00          | 5.68        | 31.49         | 36.00         |  |
| HT20               | 2         | 5825           | 18.06           | 16.95           |                       |                 | 20.55        | 30.00          | 5.68        | 26.23         | 36.00         |  |
| HT40               | 2         | 5755           | 14.69           | 13.64           |                       |                 | 17.21        | 30.00          | 5.68        | 22.89         | 36.00         |  |
| HT40               | 2         | 5795           | 20.34           | 19.51           |                       |                 | 22.96        | 30.00          | 5.68        | 28.64         | 36.00         |  |
| VHT20              | 2         | 5745           | 17.98           | 17.04           |                       |                 | 20.55        | 30.00          | 5.68        | 26.23         | 36.00         |  |
| VHT20              | 2         | 5785           | 23.35           | 22.46           |                       |                 | 25.94        | 30.00          | 5.68        | 31.62         | 36.00         |  |
| VHT20              | 2         | 5825           | 18.14           | 17.01           |                       |                 | 20.62        | 30.00          | 5.68        | 26.30         | 36.00         |  |
| VHT40              | 2         | 5755           | 14.81           | 13.76           |                       |                 | 17.33        | 30.00          | 5.68        | 23.01         | 36.00         |  |
| VHT40              | 2         | 5795           | 20.42           | 19.63           |                       |                 | 23.05        | 30.00          | 5.68        | 28.73         | 36.00         |  |
| VHT80              | 2         | 5775           | 13.21           | 12.28           |                       |                 | 15.78        | 30.00          | 5.68        | 21.46         | 36.00         |  |
| Resi               | ult       |                |                 |                 |                       | C               | Complie      | d              |             |               |               |  |



|                    |      | Maxi           | mum Co                | onducte         | d (Avera        | age) Out        | put Pov      | ver            |             |               |               |
|--------------------|------|----------------|-----------------------|-----------------|-----------------|-----------------|--------------|----------------|-------------|---------------|---------------|
| Condi              | tion |                | RF Output Power (dBm) |                 |                 |                 |              |                |             |               |               |
| Modulation<br>Mode | Ντχ  | Freq.<br>(MHz) | Chain<br>Port 1       | Chain<br>Port 2 | Chain<br>Port 3 | Chain<br>Port 4 | Sum<br>Chain | Power<br>Limit | DG<br>(dBi) | EIRP<br>Power | EIRP<br>Limit |
| 11a                | 2    | 5745           | 18.04                 | 18.86           |                 |                 | 21.48        | 30.00          | 2.95        | 24.43         | 36.00         |
| 11a                | 2    | 5785           | 22.56                 | 22.91           |                 |                 | 25.75        | 30.00          | 2.95        | 28.70         | 36.00         |
| 11a                | 2    | 5825           | 18.82                 | 19.75           |                 |                 | 22.32        | 30.00          | 2.95        | 25.27         | 36.00         |
| HT20               | 2    | 5745           | 17.65                 | 18.31           |                 |                 | 21.00        | 30.00          | 2.95        | 23.95         | 36.00         |
| HT20               | 2    | 5785           | 22.45                 | 22.86           |                 |                 | 25.67        | 30.00          | 2.95        | 28.62         | 36.00         |
| HT20               | 2    | 5825           | 18.24                 | 19.17           |                 |                 | 21.74        | 30.00          | 2.95        | 24.69         | 36.00         |
| HT40               | 2    | 5755           | 14.92                 | 15.45           |                 |                 | 18.20        | 30.00          | 2.95        | 21.15         | 36.00         |
| HT40               | 2    | 5795           | 20.36                 | 20.64           |                 |                 | 23.51        | 30.00          | 2.95        | 26.46         | 36.00         |
| VHT20              | 2    | 5745           | 17.72                 | 18.39           |                 |                 | 21.08        | 30.00          | 2.95        | 24.03         | 36.00         |
| VHT20              | 2    | 5785           | 22.54                 | 22.95           |                 |                 | 25.76        | 30.00          | 2.95        | 28.71         | 36.00         |
| VHT20              | 2    | 5825           | 18.36                 | 19.28           |                 |                 | 21.85        | 30.00          | 2.95        | 24.80         | 36.00         |
| VHT40              | 2    | 5755           | 15.01                 | 15.56           |                 |                 | 18.30        | 30.00          | 2.95        | 21.25         | 36.00         |
| VHT40              | 2    | 5795           | 20.45                 | 20.76           |                 |                 | 23.62        | 30.00          | 2.95        | 26.57         | 36.00         |
| VHT80              | 2    | 5775           | 12.84                 | 13.54           |                 |                 | 16.21        | 30.00          | 2.95        | 19.16         | 36.00         |
| Resu               | ult  |                |                       |                 |                 | C               | Complie      | d              |             |               |               |

#### Mode 2: External antenna with adapter mode



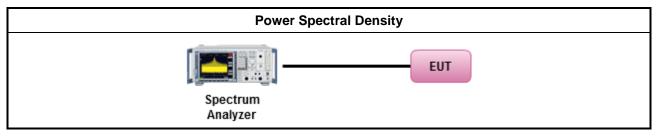
### 3.4 Peak Power Spectral Density

#### 3.4.1 Peak Power Spectral Density Limit

#### **Peak Power Spectral Density Limit**

The maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

#### 3.4.2 Measuring Instruments

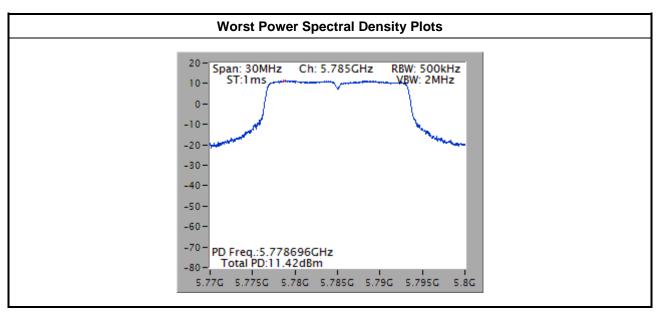

Refer a test equipment and calibration data table in this test report.

#### 3.4.3 Test Procedures

|           |              | Test Method                                                                                                                                                                                                                                                                                                                                               |
|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | outp<br>func | c power spectral density procedures that the same method as used to determine the conducted<br>ut power shall be used to determine the peak power spectral density and use the peak search<br>tion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density<br>be measured using below options:                     |
|           |              | Refer as 789033 D02 General UNII Test Procedures New Rules v01, F)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth                                                                                                                                             |
|           |              | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-1 (spectral trace averaging).                                                                                                                                                                                                                                          |
|           |              | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)                                                                                                                                                                                                                           |
|           |              | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-2 (spectral trace averaging).                                                                                                                                                                                                                                          |
|           |              | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)                                                                                                                                                                                                                           |
| $\bowtie$ | For          | conducted measurement.                                                                                                                                                                                                                                                                                                                                    |
|           |              | The EUT supports single transmit chain and measurements performed on this transmit chain.                                                                                                                                                                                                                                                                 |
|           |              | The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.                                                                                                                                                                                                                                                       |
|           | $\square$    | The EUT supports multiple transmit chains using options given below:                                                                                                                                                                                                                                                                                      |
|           |              | Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911,<br>In-band power measurements. Using the measure-and-sum approach, measured all transmit<br>ports individually. Sum the power (in linear power units e.g., mW) of all ports for each<br>individual sample and save them.                                               |
|           |              | Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit. |
|           |              | If multiple transmit chains, EIRP PPSD calculation could be following as methods:<br>$PPSD_{total} = PPSD_1 + PPSD_2 + + PPSD_n$<br>(calculated in linear unit [mW] and transfer to log unit [dBm])<br>$EIRP_{total} = PPSD_{total} + DG$                                                                                                                 |
|           |              | Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.                                                                                                                                                                                                                                                         |



### 3.4.4 Test Setup



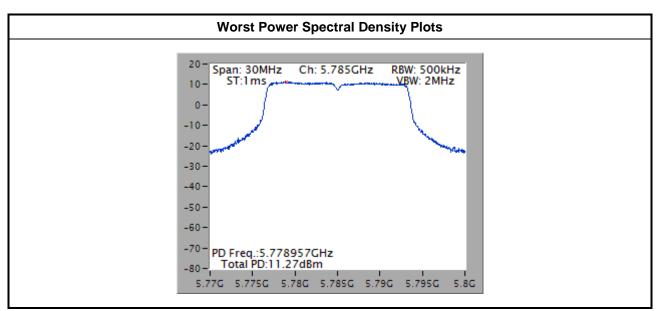



#### 3.4.5 Test Result of Peak Power Spectral Density

#### Mode 1: Internal antenna with adapter mode

|                    |                 |                | Peak Power S                             | pectral Densit | ty Result |          |            |  |  |
|--------------------|-----------------|----------------|------------------------------------------|----------------|-----------|----------|------------|--|--|
| Condi              | ition           |                | Peak Power Spectral Density (dBm/500kHz) |                |           |          |            |  |  |
| Modulation<br>Mode | Ν <sub>τχ</sub> | Freq.<br>(MHz) | Sum Chain                                | PSD Limit      | DG (dBi)  | EIRP PSD | EIRP Limit |  |  |
| 11a                | 2               | 5745           | 6.48                                     | 27.53          | 8.47      | 14.95    | 36.00      |  |  |
| 11a                | 2               | 5785           | 11.42                                    | 27.53          | 8.47      | 19.89    | 36.00      |  |  |
| 11a                | 2               | 5825           | 6.32                                     | 27.53          | 8.47      | 14.79    | 36.00      |  |  |
| VHT20              | 2               | 5745           | 5.80                                     | 27.53          | 8.47      | 14.27    | 36.00      |  |  |
| VHT20              | 2               | 5785           | 10.98                                    | 27.53          | 8.47      | 19.45    | 36.00      |  |  |
| VHT20              | 2               | 5825           | 5.78                                     | 27.53          | 8.47      | 14.25    | 36.00      |  |  |
| VHT40              | 2               | 5755           | -0.58                                    | 27.53          | 8.47      | 7.89     | 36.00      |  |  |
| VHT40              | 2               | 5795           | 5.31                                     | 27.53          | 8.47      | 13.78    | 36.00      |  |  |
| VHT80              | 2               | 5775           | -4.77                                    | 27.53          | 8.47      | 3.70     | 36.00      |  |  |
| Res                | ult             |                |                                          |                | Complied  |          |            |  |  |




Note:

1. Test results are bin-by-bin summing measured value of each TX port. Directional gain =  $10 * \log((10^{5.23/20}+10^{5.68/20})^2/2) = 8.47 \text{ dBi} > 6 \text{ dBi}$ Limit shall be reduced to 30 dBm – (8.47 dBi – 6 dBi) = 27.53 dBm



|                    |      |                | Peak Power S                             | pectral Densit | ty Result |          |            |  |  |
|--------------------|------|----------------|------------------------------------------|----------------|-----------|----------|------------|--|--|
| Condi              | tion |                | Peak Power Spectral Density (dBm/500kHz) |                |           |          |            |  |  |
| Modulation<br>Mode | Ντχ  | Freq.<br>(MHz) | Sum Chain                                | PSD Limit      | DG (dBi)  | EIRP PSD | EIRP Limit |  |  |
| 11a                | 2    | 5745           | 6.69                                     | 30.00          | 5.96      | 12.65    | 36.00      |  |  |
| 11a                | 2    | 5785           | 11.27                                    | 30.00          | 5.96      | 17.23    | 36.00      |  |  |
| 11a                | 2    | 5825           | 7.68                                     | 30.00          | 5.96      | 13.64    | 36.00      |  |  |
| VHT20              | 2    | 5745           | 5.93                                     | 30.00          | 5.96      | 11.89    | 36.00      |  |  |
| VHT20              | 2    | 5785           | 10.85                                    | 30.00          | 5.96      | 16.81    | 36.00      |  |  |
| VHT20              | 2    | 5825           | 7.15                                     | 30.00          | 5.96      | 13.11    | 36.00      |  |  |
| VHT40              | 2    | 5755           | 0.35                                     | 30.00          | 5.96      | 6.31     | 36.00      |  |  |
| VHT40              | 2    | 5795           | 5.28                                     | 30.00          | 5.96      | 11.24    | 36.00      |  |  |
| VHT80              | 2    | 5775           | -4.49                                    | 30.00          | 5.96      | 1.47     | 36.00      |  |  |
| Res                | ult  |                |                                          | -              | Complied  |          |            |  |  |

#### Mode 2: External antenna with adapter mode





### 3.5 Transmitter Radiated Unwanted Emissions and Band Edge

#### 3.5.1 Transmitter Radiated Unwanted Emissions and Band Edge Limit

| Unwanted emiss               | Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit |                          |                         |  |  |  |  |  |
|------------------------------|-------------------------------------------------------------------------------|--------------------------|-------------------------|--|--|--|--|--|
| Frequency Range (MHz)        | Field Strength (uV/m)                                                         | Field Strength (dBuV/m)  | Measure Distance (m)    |  |  |  |  |  |
| 0.009~0.490                  | 2400/F(kHz)                                                                   | 48.5 - 13.8              | 300                     |  |  |  |  |  |
| 0.490~1.705                  | 24000/F(kHz)                                                                  | 33.8 - 23                | 30                      |  |  |  |  |  |
| 1.705~30.0                   | 30                                                                            | 29                       | 30                      |  |  |  |  |  |
| 30~88                        | 100                                                                           | 40                       | 3                       |  |  |  |  |  |
| 88~216                       | 150                                                                           | 43.5                     | 3                       |  |  |  |  |  |
| 216~960                      | 200                                                                           | 46                       | 3                       |  |  |  |  |  |
| Above 960                    | 500                                                                           | 54                       | 3                       |  |  |  |  |  |
| Note 1: Test distance for fr | equencies at or above 30                                                      | MHz. measurements may be | performed at a distance |  |  |  |  |  |

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

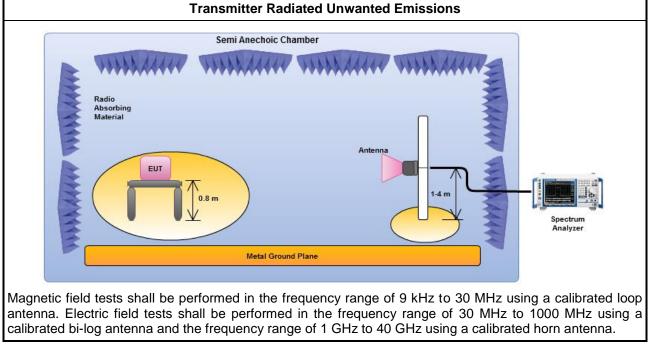
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

| Un-restricted band emissions above 1GHz Limit |                                                                                                                                                                |  |  |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Operating Band                                | Limit                                                                                                                                                          |  |  |  |  |  |
| 5.15 - 5.25 GHz                               | e.i.r.p27 dBm [68.2 dBuV/m@3m]                                                                                                                                 |  |  |  |  |  |
| 5.25 - 5.35 GHz                               | e.i.r.p27 dBm [68.2 dBuV/m@3m]                                                                                                                                 |  |  |  |  |  |
| 5.47 - 5.725 GHz                              | e.i.r.p27 dBm [68.2 dBuV/m@3m]                                                                                                                                 |  |  |  |  |  |
| 5.725 - 5.85 GHz                              | 5.715~ 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m]<br>5.85 ~5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m]<br>Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m] |  |  |  |  |  |

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

#### 3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.




# 3.5.3 Test Procedures

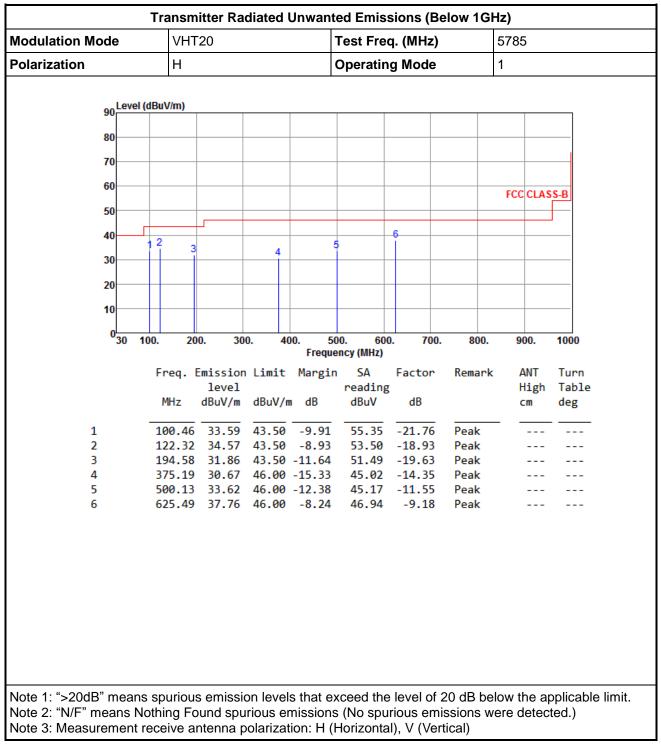
|             |                                                 | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | perfe<br>equi<br>abov<br>are i<br>be e<br>dista | surements may be performed at a distance other than the limit distance provided they are not<br>ormed in the near field and the emissions to be measured can be detected by the measurement<br>pment. Measurements shall not be performed at a distance greater than 30 m for frequencies<br>ve 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less<br>mpractical. When performing measurements at a distance other than that specified, the results shall<br>xtrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear<br>ance for field-strength measurements, inverse of linear distance-squared for power-density<br>surements). |
| $\boxtimes$ | For                                             | the transmitter unwanted emissions shall be measured using following options below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                 | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause G)2) for unwanted emissions into non-restricted bands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                                                 | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause G)1) for unwanted emissions into restricted bands.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                 | Refer as 789033 D02 General UNII Test Procedures New Rules v01, G)6) Method AD (Trace Averaging).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                                                 | Refer as 789033 D02 General UNII Test Procedures New Rules v01, G)6) Method VB<br>(Reduced VBW).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                 | Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW $\geq$ 1/T, where T is pulse time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                 | Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                 | Refer as 789033 D02 General UNII Test Procedures New Rules v01, clause G)5)<br>measurement procedure peak limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                 | Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\square$   | For                                             | radiated measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | $\square$                                       | Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | $\boxtimes$                                     | Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | $\boxtimes$                                     | Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                 | conducted and cabinet radiation measurement, refer as 789033 D02 General UNII Test Procedures<br>Rules v01, clause G)3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                 | For conducted unwanted emissions into non-restricted bands (relative emission limits).<br>Devices with multiple transmit chains:<br>Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative<br>emission limits, tests may be performed on each output individually without summing or adding 10<br>log(N) if the measurements are made relative to the in-band emissions on the individual outputs.                                                                                                                                                                                                                                                                                       |
|             |                                                 | For conducted unwanted emissions into restricted bands (absolute emission limits).<br>Devices with multiple transmit chains using options given below:<br>(1) Measure and sum the spectra across the outputs or<br>(2) Measure and add 10 log(N) dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                 | For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.                                                                                                                                                                                                                                                                                                                                                                                |



## 3.5.4 Test Setup



Note: Test distance is 3m.


## 3.5.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

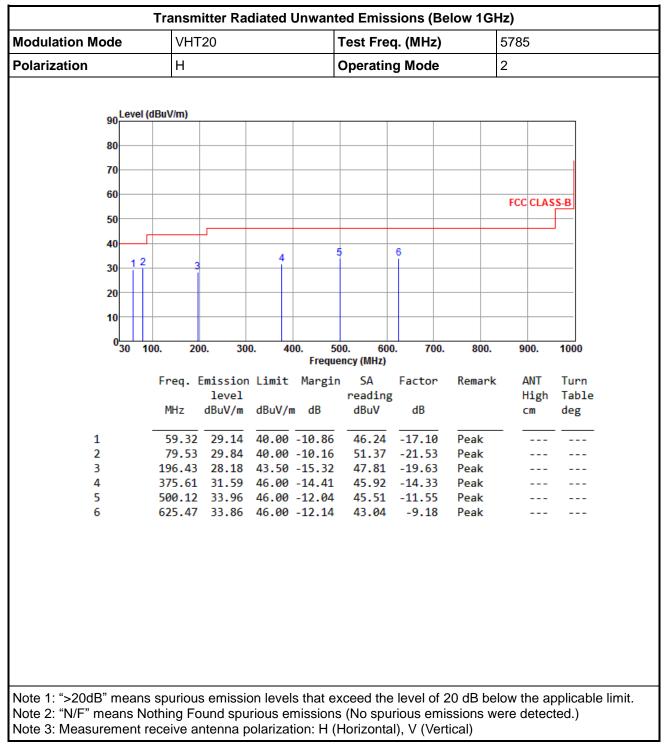
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.



## 3.5.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

### Mode 1: Internal antenna with adapter mode








| Modulation Mode | VHT     | 20             |        | -      | Test Fre  | q. (MHz)         |              | 5785    |      |
|-----------------|---------|----------------|--------|--------|-----------|------------------|--------------|---------|------|
| Polarization    | V       |                |        |        | Operatin  | ng Mode          |              | 1       |      |
| 90<br>Level (   | dBuV/m) |                |        |        |           |                  |              |         |      |
| 90              |         |                |        |        |           |                  |              |         |      |
| 80              |         |                |        |        |           |                  |              |         |      |
| 70              |         |                |        |        |           |                  |              |         |      |
| 60              |         |                |        |        |           |                  |              |         |      |
|                 |         |                |        |        |           |                  |              | FCC CLA | SS-B |
| 50              |         |                |        |        |           |                  |              |         |      |
| 40 1 2          | 3 4     |                |        |        |           | 6                |              |         |      |
| 30              |         |                |        |        |           | -i               |              |         |      |
|                 |         |                |        |        |           |                  |              |         |      |
| 20              |         |                |        |        |           |                  |              |         |      |
| 10              |         |                |        |        |           |                  |              |         |      |
| 030 1           | 00. 20  | 0. 30          | 0 40   | )0. 50 | 0. 60     | 0. 700.          | 800.         | 900.    | 1000 |
| 50 1            | 00. 20  | 0. 50          | U. 4   |        | ncy (MHz) | 0. 100.          | 000.         | 500.    | 1000 |
|                 | Freq. E | Emission       | Limit  | Margin | SA        | Factor           | Remark       |         | Turn |
|                 |         | level          |        |        | reading   |                  |              | High    |      |
|                 | MHz     | dBuV/m         | dBuV/n | I dB   | dBuV      | dB               |              | cm      | deg  |
| 1               | 44.63   | 37.13          | 40.00  | -2.87  | 53.94     | -16.81           | Peak         |         |      |
| 2               |         | 37.68          | 40.00  |        |           | -21.53           | Peak         |         |      |
| 3<br>4          |         | 35.28<br>35.72 |        |        |           | -22.28<br>-19.60 | Peak<br>Peak |         |      |
| 5               |         | 32.87          |        |        |           | -11.55           | Peak         |         |      |
| 6               |         | 33.68          |        |        |           | -9.18            | Peak         |         |      |
|                 |         |                |        |        |           |                  |              |         |      |
|                 |         |                |        |        |           |                  |              |         |      |
|                 |         |                |        |        |           |                  |              |         |      |
|                 |         |                |        |        |           |                  |              |         |      |
|                 |         |                |        |        |           |                  |              |         |      |



### Mode 2: Internal antenna with POE mode





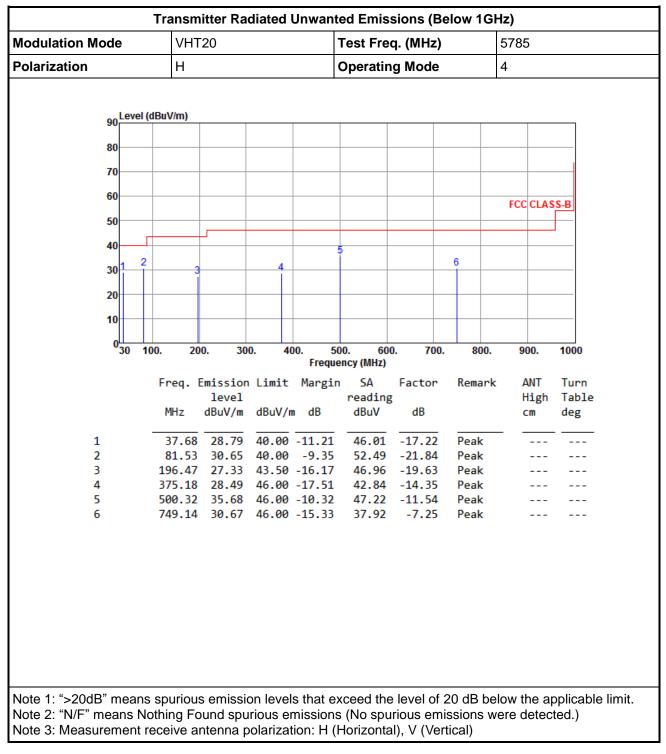


| Polarization       |             | 20             |          | -      | Test Fre           | q. (MHz)         |              | 5785  |        |
|--------------------|-------------|----------------|----------|--------|--------------------|------------------|--------------|-------|--------|
|                    | V           |                |          |        | Operatin           | g Mode           |              | 2     |        |
|                    |             |                |          |        |                    |                  |              |       |        |
| 90 Leve            | el (dBuV/m) |                |          |        |                    |                  |              |       |        |
| 80                 |             |                |          |        |                    |                  |              |       |        |
| 70                 |             |                |          |        |                    |                  |              |       |        |
| 60                 |             |                |          |        |                    |                  |              |       |        |
|                    |             |                |          |        |                    |                  |              | FCC C | LASS-B |
| 50                 |             |                |          |        |                    |                  |              |       |        |
| 40 1               | 2 <br>  3 4 |                |          | 6      |                    |                  |              |       |        |
| 30                 |             | 5              |          |        |                    |                  |              |       |        |
| 20                 |             |                |          |        |                    |                  |              |       |        |
| 10                 |             |                |          |        |                    |                  |              |       |        |
|                    |             |                |          |        |                    |                  |              |       |        |
| 0 <mark></mark> 30 | 100. 20     | 0. 30          | 0. 40    |        | 0. 60<br>ncy (MHz) | 0. 700           | . 800.       | 900.  | 1000   |
|                    | Freq.       | Emission       | Limit    | Margin | SA                 | Factor           | Remar        | k AN  | T Turn |
|                    | MU          | level          | JD. 11/- |        | reading            |                  |              | Hi    | -      |
|                    | MHz         | dBuV/m         | abuv/n   | n ab   | dBuV               | dB               |              | CM    | deg    |
| 1                  | 54.36       |                | 40.00    |        | 52.83              |                  | QP           |       |        |
| 2<br>3             |             | 37.56<br>31.56 |          |        |                    | -21.55<br>-18.04 | Peak<br>Peak |       |        |
| 4                  | 196.65      | 30.18          | 43.50    | -13.32 | 49.82              | -19.64           | Peak         |       |        |
| 5                  | 275.64      | 28.13<br>35.87 |          | -17.87 |                    | -16.86<br>-11.55 | Peak         | -     |        |
| 0                  | 500.11      | 33.0/          | 40.00    | -10.15 | 47.42              | -11.00           | Peak         | -     |        |



| Modulation Mode     |          | VHT   |                 |        |                  |                 | sions (Be<br>q. (MHz) |              | ,<br>5785 |                |
|---------------------|----------|-------|-----------------|--------|------------------|-----------------|-----------------------|--------------|-----------|----------------|
| Polarization        |          | Н     |                 |        |                  | Operatin        | • • •                 |              | 3         |                |
|                     |          |       |                 |        |                  | -               | -                     |              |           |                |
| 90                  | el (dBu\ | //m)  |                 |        |                  |                 |                       |              |           |                |
| 80                  |          |       |                 |        |                  |                 |                       |              |           |                |
| 70                  |          |       |                 |        |                  |                 |                       |              |           |                |
|                     |          |       |                 |        |                  |                 |                       |              |           |                |
| 60                  |          |       |                 |        |                  |                 |                       |              | FCC CL    | ASS-B          |
| 50                  |          |       |                 |        |                  |                 |                       |              |           |                |
| 40                  |          |       |                 |        | 5                | 5               |                       |              |           |                |
| 30                  | 123      | - 4   |                 |        |                  |                 | 6                     |              |           |                |
| 20                  |          |       |                 |        |                  |                 |                       |              |           |                |
| 10                  |          |       |                 |        |                  |                 |                       |              |           |                |
| 0 <mark>0000</mark> | 100.     | 20    | 0. 30           | 0 44   | 0. 50            | 0. 60           | 0. 700.               | 800.         | 900.      | 1000           |
| 50                  | 100.     | 20    | 0. 30           | 0. 40  |                  | ncy (MHz)       | 0. 700.               | 000.         | 900.      | 1000           |
|                     | Fr       | eq. E |                 | Limit  | Margin           |                 | Factor                | Remark       |           |                |
|                     | м        | Hz    | level<br>dBuV/m | dBuV/r | n dB             | reading<br>dBuV | dB                    |              | Hig<br>cm | h Table<br>deg |
|                     |          | 4 75  |                 |        |                  |                 |                       |              |           |                |
| 1<br>2              |          | 9.23  | 29.94<br>30.87  |        | -10.06<br>-12.63 | 51.81<br>52.79  | -21.87<br>-21.92      | Peak<br>Peak |           |                |
| 3                   |          | 2.46  | 31.68           | 43.50  | -11.82           | 50.60           | -18.92                | Peak         |           |                |
| 4                   |          | 5.72  | 27.83<br>33.59  |        | -15.67           | 47.46<br>45.14  | -19.63<br>-11.55      | Peak<br>Peak |           |                |
| 6                   |          |       | 28.41           |        |                  | 37.59           | -9.18                 | Peak         |           |                |
| 6                   | 62       | 25.46 | 28.41           | 46.00  | -17.59           | 37.59           | -9.18                 | Peak         |           |                |
|                     |          |       |                 |        |                  |                 |                       |              |           |                |
|                     |          |       |                 |        |                  |                 |                       |              |           |                |
|                     |          |       |                 |        |                  |                 |                       |              |           |                |
|                     |          |       |                 |        |                  |                 |                       |              |           |                |
|                     |          |       |                 |        |                  |                 |                       |              |           |                |

### Mode 3: External antenna with adapter mode





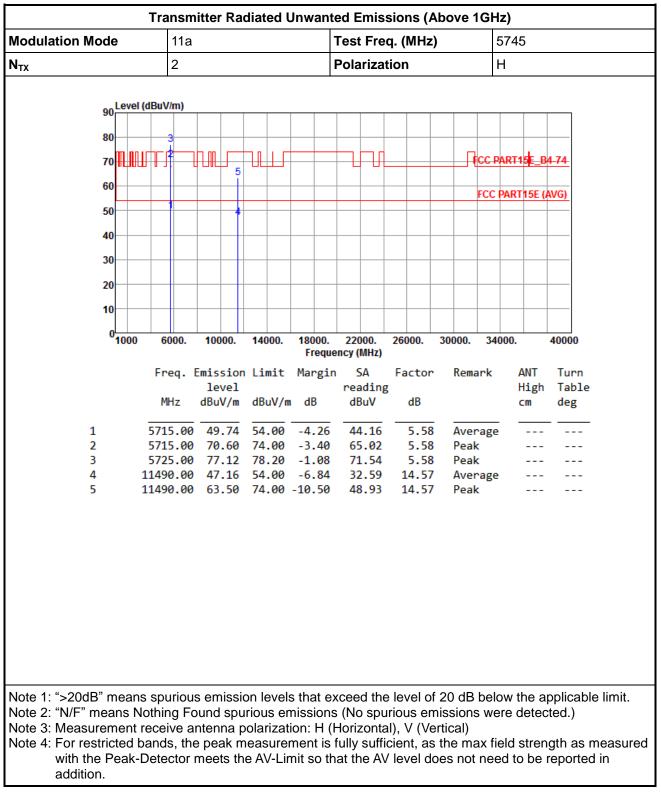

| Modulation Mode | VHT              | 20              |                |        | Test Fre             | q. (MHz)         |              | 5785     |       |              |
|-----------------|------------------|-----------------|----------------|--------|----------------------|------------------|--------------|----------|-------|--------------|
| Polarization    | V                |                 |                |        | Operatin             | g Mode           |              | 3        |       |              |
| Level (         |                  |                 |                |        |                      |                  |              |          |       |              |
| 90 Level (      | ibuv/m)          |                 |                |        |                      |                  |              |          |       |              |
| 80              |                  |                 |                |        |                      |                  |              |          |       | _            |
| 70              |                  |                 |                |        |                      |                  |              |          |       | _            |
| 60              |                  |                 |                |        |                      |                  |              | FCC      | CLASS | B            |
| 50              |                  |                 |                |        |                      |                  |              |          |       | _            |
| 40 1 2          | 4                |                 |                |        |                      |                  |              |          |       | _            |
| 30              | 4                |                 |                | 5      | 3                    |                  |              |          |       |              |
| 20              |                  |                 |                |        |                      |                  |              |          |       |              |
| 10              |                  |                 |                |        |                      |                  |              |          |       |              |
|                 |                  |                 |                |        |                      |                  |              |          |       |              |
| 0 30 10         | 0. 20            | )0. 30          | 0. 40          |        | )0. 60<br>ency (MHz) | 0. 700.          | . 800.       | 90       | 0.    | 1000         |
|                 | Freq.            | Emission        | Limit          | Margir | SA                   | Factor           | Remar        |          |       | Turn         |
|                 | MHz              | level<br>dBuV/m | dBuV/m         | n dB   | reading<br>dBuV      | dB               |              | H:<br>CI | -     | Table<br>deg |
|                 |                  |                 |                |        |                      |                  |              |          |       | ucs          |
| 1<br>2          | 45.27            | 36.43<br>36.94  | 40.00          | -3.57  | 53.21<br>56.92       | -16.78<br>-19.98 | Peak<br>Peak |          |       |              |
| 3               | 96.67            | 33.48           | 43.50          | -10.02 | 55.72                | -22.24           | Peak         |          |       |              |
| 4<br>5          | 172.41<br>453.64 |                 | 43.50<br>46.00 | -8.94  |                      | -17.71<br>-12.45 | Peak<br>Peak |          |       |              |
| 6               |                  | 33.13           |                |        |                      | -11.55           | Peak         |          |       |              |



### Mode 4: External antenna with POE mode








| Polarization         V         Operating Mode         4           90         Level (dBuV/m)         90         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | CLASS-B  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 80<br>70<br>60<br>50<br>40<br>1<br>2<br>40<br>1<br>2<br>40<br>50<br>40<br>50<br>40<br>50<br>50<br>40<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLASS-B  |
| 80<br>70<br>60<br>60<br>50<br>40<br>1<br>2<br>40<br>1<br>2<br>40<br>1<br>2<br>40<br>1<br>2<br>40<br>1<br>2<br>40<br>1<br>2<br>40<br>1<br>2<br>40<br>1<br>2<br>40<br>1<br>40<br>5<br>40<br>5<br>40<br>5<br>40<br>40<br>5<br>40<br>40<br>5<br>40<br>5<br>40<br>40<br>5<br>40<br>5<br>40<br>40<br>5<br>40<br>5<br>40<br>5<br>40<br>5<br>40<br>5<br>40<br>5<br>40<br>5<br>40<br>5<br>40<br>5<br>40<br>5<br>5<br>40<br>5<br>40<br>5<br>5<br>40<br>5<br>5<br>40<br>5<br>5<br>40<br>5<br>5<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CLASS-B  |
| 70<br>60<br>50<br>40<br>1 2<br>3 4<br>5<br>50<br>40<br>1 2<br>50<br>40<br>1 2<br>50<br>40<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CLASS-B  |
| 60<br>50<br>40<br>1 2<br>30<br>3 4<br>5<br>20<br>10<br>30<br>100. 200. 300. 400. 500. 600. 700. 800. 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CLASS-B  |
| 50       6       6       6         40       2       6       6         30       3       4       5         20       3       4       5         10       3       4       5         10       3       4       5         10       3       4       5         30       100       200       300       400       500       600       700       800       900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLASS-B  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 30<br>30<br>20<br>10<br>0<br>30 100. 200. 300. 400. 500. 600. 700. 800. 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| 30<br>30<br>20<br>10<br>0<br>30<br>10. 200. 300. 400. 500. 600. 700. 800. 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 20<br>10<br>0<br>30 100. 200. 300. 400. 500. 600. 700. 800. 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 10<br>0<br>30 100. 200. 300. 400. 500. 600. 700. 800. 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| 0 <mark>30 100. 200. 300. 400. 500. 600. 700. 800. 900</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 0 <mark>-30 100. 200. 300. 400. 500. 600. 700. 800. 900</mark><br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0. 1000  |
| Freq. Emission Limit Margin SA Factor Remark AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NT Turn  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | igh Tabl |
| MHz dBuV/m dBuV/m dB dBuV dB cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n deg    |
| 1 47.34 35.13 40.00 -4.87 51.79 -16.66 Peak -<br>2 74.99 37.28 40.00 -2.72 57.83 -20.55 Peak -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 3 184.76 27.76 43.50 -15.74 46.78 -19.02 Peak -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| 4 262.63 29.85 46.00 -16.15 47.32 -17.47 Peak -<br>5 439.18 28.31 46.00 -17.69 41.08 -12.77 Peak -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| 6 500.37 34.24 46.00 -11.76 45.78 -11.54 Peak -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |



## 3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

### Mode 1: Internal antenna with adapter mode







| 50 5 C                                                                                                                                                                                                                 |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 60                                                                                                                                                                                                                     | RT15E_B4-74  |
|                                                                                                                                                                                                                        | ART15E (AVG) |
|                                                                                                                                                                                                                        |              |
| 40                                                                                                                                                                                                                     |              |
|                                                                                                                                                                                                                        |              |
| 30                                                                                                                                                                                                                     |              |
| 20                                                                                                                                                                                                                     |              |
| 10                                                                                                                                                                                                                     |              |
|                                                                                                                                                                                                                        |              |
| 1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 3400<br>Frequency (MHz)                                                                                                                                           | 0. 40000     |
| Freq. Emission Limit Margin SA Factor Remark                                                                                                                                                                           | ANT Turn     |
| level reading                                                                                                                                                                                                          | High Table   |
| MHz dBuV/m dBuV/m dB dBuV dB                                                                                                                                                                                           | cm deg       |
| 1 5715.00 47.53 54.00 -6.47 41.95 5.58 Average                                                                                                                                                                         |              |
| 2 5715.00 68.37 74.00 -5.63 62.79 5.58 Peak                                                                                                                                                                            |              |
| 3         5725.00         75.42         78.20         -2.78         69.84         5.58         Peak           4         11490.00         46.72         54.00         -7.28         32.15         14.57         Average |              |
| 5 11490.00 62.97 74.00 -11.03 48.40 14.57 Peak                                                                                                                                                                         |              |





|                 | 11a                  |          |                |                  | Test Free            | q. (MHz)      |               | 5785     |         |
|-----------------|----------------------|----------|----------------|------------------|----------------------|---------------|---------------|----------|---------|
| N <sub>TX</sub> | 2                    |          |                |                  | Polarizat            | tion          |               | Н        |         |
| 90 Level (      | (dBuV/m)             |          |                |                  |                      |               |               |          |         |
| 90              |                      |          |                |                  |                      |               |               |          |         |
| 80              |                      |          |                |                  |                      |               |               |          |         |
| 70              |                      |          |                |                  |                      |               |               |          | B4-74   |
|                 |                      |          |                | 10               |                      |               |               |          |         |
| 60              |                      |          |                |                  |                      |               | FC            | C PART15 | E (AVG) |
| 50              |                      |          |                | 9                |                      |               |               |          |         |
|                 |                      |          |                |                  |                      |               |               |          |         |
| 40              |                      |          |                |                  |                      |               |               |          |         |
| 30              |                      |          |                |                  |                      |               |               |          |         |
| 20              |                      |          |                |                  |                      |               |               |          |         |
| 20              |                      |          |                |                  |                      |               |               |          |         |
| 10              |                      |          |                |                  |                      |               |               |          |         |
| 0               |                      |          |                |                  |                      |               |               |          |         |
| <b>~1</b> 000   | 6000.                | 10000.   | 14000.         | 18000.<br>Freque | 22000.<br>ency (MHz) | 26000.        | 30000.        | 34000.   | 40000   |
|                 | Freq. E              | Emission | Limit          | Margir           | SA SA                | Factor        | Remar         | k ANT    | Turn    |
|                 |                      | level    |                |                  | reading              |               |               | Hig      | -       |
|                 | MHz                  | dBuV/m   | dBuV/m         | ı dB             | dBuV                 | dB            |               | cm       | deg     |
| 1               | 5715.00              | 47 45    | 54.00          | -6.55            | 41.87                | 5.58          | Avera         |          |         |
| 2               | 5715.00              |          | 74.00          | -6.76            | 61.66                | 5.58          | Peak          |          |         |
| 3               | 5725.00              | 69.64    | 78.20          | -8.56            | 64.06                | 5.58          | Peak          |          |         |
| 4               | 5850.00              |          | 78.20          | -9.33            | 63.25                | 5.62          | Peak          |          |         |
| 5               | 5860.00              |          | 54.00          | -8.65            | 39.73                | 5.62          | Avera         | ge       |         |
|                 | 5860.00<br>11570.00  |          | 74.00<br>54.00 | -5.60<br>-1.25   | 62.78<br>38.26       | 5.62<br>14.49 | Peak<br>Avera |          |         |
|                 |                      | 52.75    |                | -6.10            | 53.41                | 14.49         | Peak          | Re       |         |
| 7 1             |                      | 67.90    | 14.00          |                  |                      |               |               |          |         |
| 7 1             | 11570.00<br>17355.00 |          | 54.00          | -6.85            | 28.40                | 18.75         | Avera         | ge       |         |

Jote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.





| N <sub>TX</sub><br>90 | 2                    |          |        |                  | Test Free           | q. (MHz)       |               | 578    | 5      |       |
|-----------------------|----------------------|----------|--------|------------------|---------------------|----------------|---------------|--------|--------|-------|
| 90 L                  |                      |          |        |                  | Polarizat           | ion            |               | V      |        |       |
| 90-                   | evel (dBuV/m)        |          |        |                  |                     |                |               |        |        |       |
|                       |                      |          |        |                  |                     |                |               |        |        |       |
| 80                    |                      |          |        |                  |                     |                |               |        |        |       |
| 70                    |                      |          |        |                  |                     |                | - Fc          | C PART | ISE В  | 4-74  |
|                       |                      | Ĭ        |        | 10               |                     |                |               |        | _      |       |
| 60                    |                      |          |        |                  |                     |                | F             |        | 15E (A | AVG)  |
| 50                    |                      |          |        | 9                |                     |                |               |        |        |       |
|                       |                      |          |        |                  |                     |                |               |        |        |       |
| 40                    |                      |          |        |                  |                     |                |               |        |        |       |
| 30                    |                      |          |        |                  |                     |                |               |        |        |       |
| 20                    |                      |          |        |                  |                     |                |               |        |        |       |
| 20                    |                      |          |        |                  |                     |                |               |        |        |       |
| 10                    |                      |          |        |                  |                     |                |               |        |        |       |
| 0.                    |                      |          |        |                  |                     |                |               |        |        |       |
| 1                     | 000 6000.            | 10000.   | 14000. | 18000.<br>Freque | 22000.<br>ncy (MHz) | 26000.         | 30000.        | 34000. |        | 40000 |
|                       | Freq.                | Emission | Limit  | Margin           | SA                  | Factor         | Remar         | k i    | ANT    | Turn  |
|                       |                      | level    |        |                  | reading             |                |               | I      | High   | Table |
|                       | MHz                  | dBuV/m   | dBuV/r | n dB             | dBuV                | dB             |               |        | cm     | deg   |
| 1                     | 5715 00              | 45.33    | 54.00  | -8.67            | 39.75               | 5.58           | Avera         |        |        |       |
| 2                     | 5715.00              |          | 74.00  | -8.88            | 59.54               | 5.58           | Peak          | 8-     |        |       |
| 3                     | 5725.00              | 67.48    | 78.20  | -10.72           | 61.90               | 5.58           | Peak          |        |        |       |
| 4                     | 5850.00              | 66.84    | 78.20  | -11.36           | 61.22               | 5.62           | Peak          |        |        |       |
| 5                     |                      | 43.15    |        |                  | 37.53               | 5.62           | Avera         | ge     |        |       |
| 6                     |                      | 66.36    | 74.00  |                  | 60.74               | 5.62           | Peak          |        |        |       |
| 7                     | 11570.00<br>11570.00 |          |        |                  | 37.74<br>52.80      | 14.49<br>14.49 | Avera<br>Peak | ge     |        |       |
| 9                     | 17355.00             |          | 54.00  | -7.12            | 28.13               | 18.75          | Avera         | ge     |        |       |
| 10                    | 17355.00             |          |        |                  | 42.60               | 18.75          | Peak          | 0-     |        |       |

Iote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measure with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.





| P0<br>Level (dBuV/m)<br>80<br>70<br>70<br>70<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90       Level (dBuV/m)         80       60         70       4         60       6         50       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         60       6         6       6         7 <th>Modulation</th> <th>Мо</th> <th>de</th> <th></th> <th></th> <th>11a</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>Гest</th> <th>Fre</th> <th>q. (</th> <th>MHz</th> <th>)</th> <th></th> <th>582</th> <th>25</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Modulation                 | Мо   | de             |      |       | 11a    |       |          |       |       |       | -       | Гest | Fre   | q. ( | MHz      | )       |      | 582   | 25              |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------|----------------|------|-------|--------|-------|----------|-------|-------|-------|---------|------|-------|------|----------|---------|------|-------|-----------------|-------------|
| 80       70       FCC PARTISE_B4         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       60       60         60       6000       10000         60       6000       10000       18000       22000         6000       6000       10000       18000       22000       30000       34000       40000         Frequency (MHz)       Factor       Remark       ANT       Turn         1evel       reading       reading       cm       deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           3       11650.00       47.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80       70       4       70       FCC PARTISE_B4         60       70       70       FCC PARTISE_CAVG)         70       70       70       FCC PARTISE_B4         60       70       70       70         70       70       70       FCC PARTISE_CAVG)         70       70       70       70         70       70       70       70         70       70       70       70         70       70       70       70         70       70       70       70         70       70       70       70         70       70       70       70         70       70       70       70         70       70       70       71         70       76       78       70       71         70       76       78       70       71       71         70       76 </th <th>N<sub>TX</sub></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>I</th> <th>Pola</th> <th>rizat</th> <th>tior</th> <th>า</th> <th></th> <th></th> <th>Н</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N <sub>TX</sub>            |      |                |      |       | 2      |       |          |       |       |       | I       | Pola | rizat | tior | า        |         |      | Н     |                 |             |
| 80       70       FCC PART15E_B4         60       60       60       60         50       60       60       60         60       60       60       60         60       60       60       60         60       60       60       60         60       60       60       60         60       60       60       60         60       60       60       60         60       60       60       60         60       60       60       60         60       60       600       10000       18000       22000         60       6000       10000       14000       18000       22000       26000       30000       34000         60       6000       10000       14000       18000       22000       26000       30000       34000       40000         Frequency (MHz)       Factor       Remark       ANT       Turn         1evel       reading       reading       cm       deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80       70       4       70       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |      |                | ovol | (dBu) | //m)   |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
| 70       4       4       4       60       FCC PART15E_B4         60       60       60       60       60       FCC PART15E_CAVG)         50       60       60       60       60       FCC PART15E_CAVG)         60       60       60       60       60       FCC PART15E_CAVG)         60       60       60       60       60       FCC PART15E_CAVG)         60       60       60       60       60       60       60         60       60       60       60       60       60       60       60         60       60       6000       10000       14000       18000       22000       26000       30000       34000       40000         60       6000       10000       14000       18000       22000       26000       30000       34000       40000         Freq. Emission Limit Margin SA       Factor Remark ANT Turn High Table Cm deg       High Table Cm deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |      | 90             |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
| 60       7       4       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60       4       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |      | 80             | +    |       | +      |       |          |       |       |       | _       |      |       |      |          |         |      |       |                 |             |
| 50       30       30       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td>50       30       30       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       <td< td=""><td></td><td></td><td>70</td><td></td><td></td><td>Ļ</td><td>IUM</td><td></td><td></td><td></td><td></td><td></td><td></td><td>П</td><td></td><td></td><td></td><td>F</td><td>CC P/</td><td>\R<b>†</b>15E</td><td>_<b>B4</b></td></td<></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50       30       30       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td></td><td></td><td>70</td><td></td><td></td><td>Ļ</td><td>IUM</td><td></td><td></td><td></td><td></td><td></td><td></td><td>П</td><td></td><td></td><td></td><td>F</td><td>CC P/</td><td>\R<b>†</b>15E</td><td>_<b>B4</b></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |      | 70             |      |       | Ļ      | IUM   |          |       |       |       |         |      | П     |      |          |         | F    | CC P/ | \R <b>†</b> 15E | _ <b>B4</b> |
| 50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50 <td< td=""><td>50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       <td< td=""><td></td><td></td><td>60</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50 <td< td=""><td></td><td></td><td>60</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |      | 60             |      |       |        |       |          | 1     |       |       |         |      |       |      |          |         |      |       |                 |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |      | Ļ              |      |       | _      |       | <u> </u> |       |       |       |         |      |       |      |          |         | FCC  | : PAR | T15E (/         | AVG)        |
| 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       40000       30       40000       30       30       30       30       30       40000       30       40000       30       30       30       30       30       30       30       30       40000       30       40000       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td>30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       40000       30       40000       30       30       30       30       30       40000       30       40000       30       30       30       30       30       30       30       30       40000       30       40000       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       <td< td=""><td></td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       40000       30       40000       30       30       30       30       30       40000       30       40000       30       30       30       30       30       30       30       30       40000       30       40000       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td></td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |      | 50             |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
| 20<br>10<br>10<br>10<br>100<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10 | 20<br>10<br>10<br>10<br>100<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10 |                            |      | 40             | +    | +-    |        |       |          |       |       | -     | _       |      |       |      |          |         |      |       |                 |             |
| 10       10       10       1000       10000       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Nargin SA       Factor Remark level       ANT Turn High Table cm       High Table cm       deg         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak           3       11650.00       47.86       54.00       -6.14       33.47       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10       10       10       1000       10000       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Nargin SA       Factor Remark level       ANT Turn High Table cm       High Table cm       deg         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak           3       11650.00       47.86       54.00       -6.14       33.47       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |      | 30             |      | _     |        |       | -        |       | -     |       |         |      |       |      |          |         | -    |       |                 |             |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading High Table<br>MHz dBuV/m dBuV/m dB dBuV dB cm deg<br>1 5850.00 76.87 78.20 -1.33 71.25 5.62 Peak<br>2 5860.00 65.65 68.20 -2.55 60.03 5.62 Peak<br>3 11650.00 47.86 54.00 -6.14 33.47 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading High Table<br>MHz dBuV/m dBuV/m dB dBuV dB cm deg<br>1 5850.00 76.87 78.20 -1.33 71.25 5.62 Peak<br>2 5860.00 65.65 68.20 -2.55 60.03 5.62 Peak<br>3 11650.00 47.86 54.00 -6.14 33.47 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |      | 20             | _    | _     |        |       |          |       |       |       | _       |      |       |      |          |         | _    |       |                 |             |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading MHz dBuV/m dB dBuV dB cm deg<br>1 5850.00 76.87 78.20 -1.33 71.25 5.62 Peak<br>2 5860.00 65.65 68.20 -2.55 60.03 5.62 Peak<br>3 11650.00 47.86 54.00 -6.14 33.47 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading MHz dBuV/m dB dBuV dB cm deg<br>1 5850.00 76.87 78.20 -1.33 71.25 5.62 Peak<br>2 5860.00 65.65 68.20 -2.55 60.03 5.62 Peak<br>3 11650.00 47.86 54.00 -6.14 33.47 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |      | 10             |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
| Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark level       Remark reading dB       ANT Turn High Table cm         MHz       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak           3       11650.00       47.86       54.00       -6.14       33.47       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark level       Factor Remark High Table reading         MHz       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak           3       11650.00       47.86       54.00       -6.14       33.47       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |      | 10             |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
| Freq. Emission Limit Margin SA       Factor Remark reading       ANT       Turn High Table of the deg         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak           3       11650.00       47.86       54.00       -6.14       33.47       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freq. Emission Limit Margin SA       Factor Remark reading       ANT       Turn High Table of the deg         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak           3       11650.00       47.86       54.00       -6.14       33.47       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |      | <sup>0</sup> 1 | 000  | (     | 6000.  | 10    | 000.     | 14    | 000.  |       |         |      |       | 26   | 000.     | 30000.  | 34   | 4000. |                 | 40000       |
| level         reading         High         Table           MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5850.00         76.87         78.20         -1.33         71.25         5.62         Peak             2         5860.00         65.65         68.20         -2.55         60.03         5.62         Peak             3         11650.00         47.86         54.00         -6.14         33.47         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | level         reading         High         Table           MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5850.00         76.87         78.20         -1.33         71.25         5.62         Peak            2         5860.00         65.65         68.20         -2.55         60.03         5.62         Peak            3         11650.00         47.86         54.00         -6.14         33.47         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |      |                |      | Fr    | ea.    | Emis  | sio      | n Li  | mit   |       |         |      |       | Fa   | actor    | Ren     | ark  |       | ANT             | Turn        |
| 1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak           3       11650.00       47.86       54.00       -6.14       33.47       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1       5850.00       76.87       78.20       -1.33       71.25       5.62       Peak           2       5860.00       65.65       68.20       -2.55       60.03       5.62       Peak           3       11650.00       47.86       54.00       -6.14       33.47       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |      |                |      |       | - 1 -  | 16    | evel     |       |       |       | -       | rea  | ding  | ţ.   |          |         |      |       |                 |             |
| 2 5860.00 65.65 68.20 -2.55 60.03 5.62 Peak<br>3 11650.00 47.86 54.00 -6.14 33.47 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 5860.00 65.65 68.20 -2.55 60.03 5.62 Peak<br>3 11650.00 47.86 54.00 -6.14 33.47 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |                |      | N     | ۱Hz    | dBu   | ıV/m     | dB    | 3uV/ı | n c   | dΒ      | dE   | BuV   |      | dB       |         |      |       | cm              | deg         |
| 3 11650.00 47.86 54.00 -6.14 33.47 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 11650.00 47.86 54.00 -6.14 33.47 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 1    |                |      | 585   | 50.00  | 76    | 5.87     | 78    | 3.20  | -1    | 1.33    | 71   | .25   | _    | 5.62     | Pea     | k    | -     |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |                |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
| 4 11050.00 04.02 /4.00 5.50 45.05 14.55 FCak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 11050100 04102 74100 5150 45105 14155 FCak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |      |                |      |       |        |       |          |       |       |       |         |      |       |      |          |         | -    | e     |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | 4    |                |      | 110.  |        | 0-    | +.02     |       |       |       |         | 4.   |       |      | .4.55    | 100     |      |       |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |                |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |                |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |                |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |                |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ote 1 <sup>.</sup> ">2(    | )dB' | m              | ean  | s sn  | urioi  | is er | niss     | ion l | eve   | ls th | nat ex  | cee  | d the |      | velo     | f 20 dF | 3 he | low   | the a           | nnlicat     |
| pte 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ite 1: ">20dB" means sourious emission levels that exceed the level of 20 dB below the applicab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | -" m | ear            | ns N | othi  | ng F   | ound  | d sp     | uriou | us e  | mis   | sions   | (No  | o spu | rio  | us en    | nissior |      |       |                 |             |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicab<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |      |                |      |       |        |       |          | مام   | rizo  | tion  | . ц /і  | 1    |       | 1)   | N/ // /- |         |      |       |                 |             |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)<br>ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lote 3: Mea                |      |                |      |       |        |       |          |       |       |       |         |      |       |      |          |         |      |       |                 | . a.        |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)<br>ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)<br>ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Note 3: Mea<br>Note 4: For | rest | rict           | ed k | banc  | ls, th | е ре  | ak r     | nea   | sure  | me    | nt is f | ully | suffi | cie  | nt, as   | the m   |      |       |                 |             |





| 90 Level (dB            | 2<br>BuV/m)                  |               | Polarization               |                |             |
|-------------------------|------------------------------|---------------|----------------------------|----------------|-------------|
|                         | 3uV/m)                       |               |                            | V              |             |
|                         |                              |               |                            |                |             |
| 00                      |                              |               |                            |                |             |
| 00                      |                              |               |                            |                |             |
| 70                      |                              |               |                            | FCC            | PART15E_B4  |
| 60                      |                              |               |                            | FCC PA         | RT15E (AVG) |
| 50                      |                              |               |                            |                |             |
| 40                      |                              |               |                            |                |             |
| 30                      |                              |               |                            |                |             |
|                         |                              |               |                            |                |             |
| 20                      |                              |               |                            |                |             |
| 10                      |                              |               |                            |                |             |
| 0 <mark></mark><br>1000 | 6000. 10000.                 | 14000. 18000. | 22000. 26000<br>ency (MHz) | ). 30000. 3400 | 0. 40000    |
| ,                       | Freq. Emission               | -             |                            | or Remark      | ANT Turn    |
|                         | level                        | _             | reading                    |                | High Table  |
|                         | MHz dBuV/m                   | dBuV/m dB     | dBuV dB                    | }              | cm deg      |
|                         | 850.00 74.84                 | 78.20 -3.36   | 69.22 5.                   | 62 Peak        |             |
|                         | 860.00 63.56                 |               |                            | 62 Peak        |             |
|                         | .650.00 63.42                |               |                            | -              |             |
|                         | 650.00 47.33<br>650.00 63.42 |               |                            | -              |             |





| x 2 Polarization H<br>x 4 2 Polarization H<br>$y_{0} = \frac{1}{1000} \frac$ | 80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0<br>1000<br>F<br>1<br>57<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | uV/m)                      | 10000.<br>nission<br>level | 14000.<br>n Limit | Frequ<br>Margi | 220<br>ency (I       | 000.<br>MHz) | 26000.   | 30000. | FCC PA   | RT15E (  | AVG)    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-------------------|----------------|----------------------|--------------|----------|--------|----------|----------|---------|
| 80       3       60       5       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0<br>1000<br>F<br>1<br>57<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6000.<br>Treq. En<br>MHz d | 10000.<br>nission<br>level | 14000.<br>n Limit | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   | 30000. | FCC P    | ART15E ( | AVG)    |
| 80       3       60       5       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0<br>1000<br>F<br>1<br>57<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6000.<br>Treq. En<br>MHz d | 10000.<br>nission<br>level | 14000.<br>n Limit | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   | 30000. | FCC P    | ART15E ( | AVG)    |
| 70       1       5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70<br>60<br>50<br>40<br>30<br>20<br>10<br>0<br>1000<br>F<br>1<br>57<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6000.<br>Freq. En          | 10000.<br>nission<br>level | 14000.<br>n Limit | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   | 30000. | FCC P    | ART15E ( | AVG)    |
| 60       5       60       FCC PART15E (AVG)         50       60       60       60       60         50       60       60       60       60       60         60       60       60       60       60       60       60         60       60       600       600       1000       14000       18000       22000       26000       30000       34000       40000         60       6000       10000       14000       18000       22000       26000       30000       34000       40000         60       6000       10000       14000       18000       22000       26000       30000       34000       40000         Freq.       Emission       Limit       Margin       SA       Factor       Remark       ANT       Turn         High       Table       reading       cm       deg         1       5715.00       79.50       54.00       -4.50       43.92       5.58       Average           2       5715.00       72.87       74.00       -1.13       67.29       5.58       Peak           3       5725.00       76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60<br>50<br>40<br>30<br>20<br>10<br>0<br>1000<br>F<br>1<br>57<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6000.<br>Freq. En          | 10000.<br>nission<br>level | 14000.<br>n Limit | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   | 30000. | FCC P    | ART15E ( | AVG)    |
| 60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60 <td< td=""><td>50<br/>40<br/>30<br/>20<br/>10<br/>0<br/>1000<br/>F<br/>1000<br/>F<br/>1000<br/>F<br/>7<br/>2<br/>57<br/>3<br/>57<br/>4<br/>114</td><td>Freq.Em</td><td>10000.<br/>nission<br/>level</td><td>14000.<br/>n Limit</td><td>Frequ<br/>Margi</td><td>ency(l<br/>n S<br/>rea</td><td>MHz)</td><td>Factor</td><td></td><td>340</td><td>00.</td><td>40000</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50<br>40<br>30<br>20<br>10<br>0<br>1000<br>F<br>1000<br>F<br>1000<br>F<br>7<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Freq.Em                    | 10000.<br>nission<br>level | 14000.<br>n Limit | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   |        | 340      | 00.      | 40000   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40<br>30<br>20<br>10<br>0<br>1000<br>F<br>1<br>1<br>1<br>1<br>57<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Freq.Em                    | mission<br>level           | n Limit           | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   |        |          |          |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30<br>20<br>10<br>0<br>1000<br>F<br>1000<br>F<br>1000<br>F<br>1000<br>F<br>1000<br>1000<br>F<br>1000<br>1000<br>1000<br>F<br>1010<br>1000<br>1000<br>1000<br>F<br>1010<br>1000<br>1000<br>1010<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10000<br>1000<br>1000000 | Freq.Em                    | mission<br>level           | n Limit           | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   |        |          |          |         |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>20<br/>10<br/>0<br/>1000<br/>1000<br/>F<br/>1<br/>57<br/>2<br/>57<br/>3<br/>57<br/>4<br/>114</td><td>Freq.Em</td><td>mission<br/>level</td><td>n Limit</td><td>Frequ<br/>Margi</td><td>ency(l<br/>n S<br/>rea</td><td>MHz)</td><td>Factor</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20<br>10<br>0<br>1000<br>1000<br>F<br>1<br>57<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freq.Em                    | mission<br>level           | n Limit           | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   |        |          |          |         |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>20<br/>10<br/>0<br/>1000<br/>F<br/>1<br/>57<br/>2<br/>57<br/>3<br/>57<br/>4<br/>114</td><td>Freq.Em</td><td>mission<br/>level</td><td>n Limit</td><td>Frequ<br/>Margi</td><td>ency(l<br/>n S<br/>rea</td><td>MHz)</td><td>Factor</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20<br>10<br>0<br>1000<br>F<br>1<br>57<br>2<br>57<br>3<br>57<br>4<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Freq.Em                    | mission<br>level           | n Limit           | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   |        |          |          |         |
| 10       10       100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA       Factor Remark 1evel       reading High Table       High Table         MHz       dBuV/m       dBuV/m       dB       dBuV       dB           1       5715.00       49.50       54.00       -4.50       43.92       5.58       Average           2       5715.00       72.87       74.00       -1.13       67.29       5.58       Peak           3       5725.00       76.86       78.20       -1.34       71.28       5.58       Peak           4       11490.00       45.99       54.00       -8.01       31.42       14.57       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>0<br>1000<br>F<br>1 57<br>2 57<br>3 57<br>4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Freq.Em                    | mission<br>level           | n Limit           | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   |        |          |          |         |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading MHz dBuV/m dB dBuV dB cm deg<br>1 5715.00 49.50 54.00 -4.50 43.92 5.58 Average<br>2 5715.00 72.87 74.00 -1.13 67.29 5.58 Peak<br>3 5725.00 76.86 78.20 -1.34 71.28 5.58 Peak<br>4 11490.00 45.99 54.00 -8.01 31.42 14.57 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 <mark>1000</mark><br>F<br>1 57<br>2 57<br>3 57<br>4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Freq.Em                    | mission<br>level           | n Limit           | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   |        |          |          |         |
| Frequency (MHz)         Freq. Emission Limit Margin SA reading Level       Factor Remark High Turn High Table of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F<br>1 57<br>2 57<br>3 57<br>4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Freq.Em                    | mission<br>level           | n Limit           | Frequ<br>Margi | ency(l<br>n S<br>rea | MHz)         | Factor   |        |          |          |         |
| Freq. Emission Limit Nargin level       SA reading reading       Factor reading       Remark dBuV       ANT Turn High Table cm         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       dB          1       5715.00       49.50       54.00       -4.50       43.92       5.58       Average           2       5715.00       72.87       74.00       -1.13       67.29       5.58       Peak           3       5725.00       76.86       78.20       -1.34       71.28       5.58       Peak           4       11490.00       45.99       54.00       -8.01       31.42       14.57       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 57<br>2 57<br>3 57<br>4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MHz d                      | level                      |                   | Margi          | n S<br>rea           | A            |          | Rema   | ark      | ANT      |         |
| level         reading         High         Table           MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5715.00         49.50         54.00         -4.50         43.92         5.58         Average             2         5715.00         72.87         74.00         -1.13         67.29         5.58         Peak             3         5725.00         76.86         78.20         -1.34         71.28         5.58         Peak             4         11490.00         45.99         54.00         -8.01         31.42         14.57         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 57<br>2 57<br>3 57<br>4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MHz d                      | level                      |                   | -              | rea                  |              |          | Rema   | ark      |          |         |
| MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5715.00         49.50         54.00         -4.50         43.92         5.58         Average             2         5715.00         72.87         74.00         -1.13         67.29         5.58         Peak             3         5725.00         76.86         78.20         -1.34         71.28         5.58         Peak             4         11490.00         45.99         54.00         -8.01         31.42         14.57         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 57<br>2 57<br>3 57<br>4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                            |                   | n dB           |                      |              |          |        |          |          |         |
| 2       5715.00       72.87       74.00       -1.13       67.29       5.58       Peak           3       5725.00       76.86       78.20       -1.34       71.28       5.58       Peak           4       11490.00       45.99       54.00       -8.01       31.42       14.57       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 57<br>3 57<br>4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 715.00                     |                            |                   |                | dB                   | _            |          |        |          | -        |         |
| 2       5715.00       72.87       74.00       -1.13       67.29       5.58       Peak           3       5725.00       76.86       78.20       -1.34       71.28       5.58       Peak           4       11490.00       45.99       54.00       -8.01       31.42       14.57       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 57<br>3 57<br>4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.00                      | 49 50                      | 54 00             | -4 50          | 43                   | 92           | 5 58     |        | age      |          |         |
| 4 11490.00 45.99 54.00 -8.01 31.42 14.57 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                            |                   |                |                      |              |          |        | <u> </u> |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        | -        |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        |          |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note 1: ">20dB" means s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | purious                    | emissi                     | ion level         | s that e       | xcee                 | d the        | level of | 20 dB  | belo     | w the a  | pplicat |
| te 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Note 2: "N/F" means Noth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ning Fou                   | ind spu                    | urious er         | mission        | s (No                | spu          | rious em | ission |          |          |         |
| te 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                            |                   |                |                      |              |          |        | ay fio   | ld stror | nath ac |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | with the Peak-Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                            |                   |                |                      |              |          |        |          |          |         |





| N <sub>TX</sub> 2 Polarization V                                                                                      | 15 <u>=_</u> B4_74_<br>15E (AVG) |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 80<br>70<br>60<br>5<br>5<br>5<br>60<br>5<br>60<br>60<br>5<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 |                                  |
| 80<br>70<br>60<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                       |                                  |
| 70 FCC PART1<br>60 5 FCC PART1<br>50 4 FCC PART1<br>50 4 FCC PART1                                                    |                                  |
| 60 5 FCC PART<br>50 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                             |                                  |
| 60 FCC PART<br>50 1 4                                                                                                 | 15E (AVG)                        |
| 50                                                                                                                    |                                  |
| 40                                                                                                                    |                                  |
|                                                                                                                       |                                  |
| 20                                                                                                                    |                                  |
| 30                                                                                                                    |                                  |
| 20                                                                                                                    |                                  |
| 10                                                                                                                    |                                  |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000.                                                      | 40000                            |
| Frequency (MHz)                                                                                                       |                                  |
| 0                                                                                                                     | ANT Turn                         |
|                                                                                                                       | High Table<br>cm deg             |
|                                                                                                                       |                                  |
| 1 5715.00 47.25 54.00 -6.75 41.67 5.58 Average<br>2 5715.00 71.28 74.00 -2.72 65.70 5.58 Peak                         |                                  |
| 3 5725.00 74.57 78.20 -3.63 68.99 5.58 Peak                                                                           |                                  |
| 4 11490.00 45.22 54.00 -8.78 30.65 14.57 Average<br>5 11490.00 61.13 74.00 -12.87 46.56 14.57 Peak                    |                                  |
| 5 11490.00 01.15 /4.00 -12.0/ 40.50 14.5/ Peak                                                                        |                                  |





| N <sub>TX</sub> | de           | VHT                | 20    |     |          |      |             | Т          | est          | Free       | q. (MHz        | )      | 4    | 578   | 5              |       |
|-----------------|--------------|--------------------|-------|-----|----------|------|-------------|------------|--------------|------------|----------------|--------|------|-------|----------------|-------|
|                 |              | 2                  |       |     |          |      |             | Ρ          | ola          | rizat      | ion            |        |      | Η     |                |       |
|                 | 90 Level (d  | BuV/m)             |       |     |          |      |             |            |              |            |                |        |      |       |                |       |
|                 |              |                    |       |     |          |      |             |            |              |            |                |        |      |       |                |       |
|                 | 80           |                    |       | _   |          |      |             |            |              |            |                |        |      |       |                |       |
|                 | 70           |                    |       | 8   |          |      |             |            |              |            |                | I      | CC P | ART   | 15 <b>E_</b> B | 4-74  |
|                 | 60           |                    |       | _   |          |      |             |            |              |            |                |        | FCC  | DV D. | T15E (#        | NVG)  |
|                 | 50           |                    |       | 1   |          |      |             |            |              |            |                |        |      | FAN   |                | AVO)  |
|                 |              |                    |       |     |          |      |             |            |              |            |                |        |      |       |                |       |
|                 | 40           |                    |       |     |          |      |             |            |              |            |                |        |      |       |                |       |
|                 | 30           |                    |       |     |          |      |             |            |              |            |                |        |      |       |                |       |
|                 | 20           |                    |       | _   |          |      |             |            |              |            |                |        |      |       |                |       |
|                 | 10           |                    |       | _   |          |      |             |            |              |            |                |        |      |       |                |       |
|                 | 0            |                    |       |     |          |      |             |            |              |            |                |        |      |       |                |       |
|                 | <b>~1000</b> | 6000.              | 1000  | 00. | 140      | 00.  | 1800<br>Fre | 0.<br>quen | 220<br>cy (1 |            | 26000.         | 30000. | 34   | 000.  |                | 40000 |
|                 |              | Freq.              | Emiss | ion | ı Li     | nit  | Marg        | gin        | S            | A          | Factor         | Rema   | ark  |       | ANT            | Turn  |
|                 |              |                    | lev   | /el |          |      |             |            |              | ding       |                |        |      |       | High           | Table |
|                 |              | MHz                | dBuV  | //m | dB       | uV/m | dB          |            | dB           | uV         | dB             |        |      |       | cm             | deg   |
| 1               | į            | 5715.00            | 46.   | 97  | 54       | .00  | -7.6        | 93         | 41           | . 39       | 5.58           | Aver   | rage |       |                |       |
| 2               |              | 5715.00            |       |     | 74       |      | -7.4        |            |              | .95        | 5.58           |        |      |       |                |       |
| 3               |              | 5725.00<br>5850.00 |       |     | 78<br>78 |      | -10.1       |            |              | .43        | 5.58<br>5.62   |        |      |       |                |       |
| 5               |              | 5860.00            |       |     |          |      | -9.1        |            |              | .24        | 5.62           |        |      |       |                |       |
| 6               |              | 5860.00            |       |     |          |      |             |            |              | .50        | 5.62           |        |      |       |                |       |
| 7               |              | 1570.00<br>1570.00 |       |     | 54<br>74 |      | -1.4        |            |              | .06<br>.71 | 14.49<br>14.49 |        | _    |       |                |       |
| 0               | 1.           | 1570.00            |       | 20  | /4       | .00  | -5.0        |            |              | • • •      | 14.45          | i cai  | •    |       |                |       |





| Polariza      |                                                                                                                                                                | V<br>CC PART15E_B4-74<br>FCC PART15E (AVG)                                                                                 |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                | ECC PART 15E (AVG)                                                                                                         |
|               |                                                                                                                                                                | CC PARTISE (AVG)                                                                                                           |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
| 18000. 22000. | 26000. 30000.                                                                                                                                                  | 34000. 4000                                                                                                                |
|               |                                                                                                                                                                |                                                                                                                            |
| Margin SA     | Factor Rema                                                                                                                                                    |                                                                                                                            |
|               | -                                                                                                                                                              | High Ta                                                                                                                    |
| dB dBuV       | dB                                                                                                                                                             | cm de                                                                                                                      |
| -9.07 39.35   | 5.58 Aver                                                                                                                                                      | age                                                                                                                        |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                |                                                                                                                            |
|               |                                                                                                                                                                | •                                                                                                                          |
|               |                                                                                                                                                                | -                                                                                                                          |
| -6.89 52.62   | 14.49 Peak                                                                                                                                                     |                                                                                                                            |
|               | Frequency (MHz)<br>Margin SA<br>readin<br>dB dBuV<br>-9.07 39.35<br>-9.52 58.90<br>-12.05 60.57<br>-10.47 62.11<br>-11.31 37.07<br>-11.92 56.46<br>-1.92 37.59 | Frequency (MHz)           Margin         SA<br>reading         Factor         Remains           dB         dBuV         dB |





| x         2         Polarization         H           90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90       Level (dBuV/m)         90       60         90       60         90       60         90       60         90       60         90       60         90       60         90       60         90       60         90       60         90       60         90       60         90       60         90       60         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       600         90       71.86         90       71.86         90       71.86         90       71.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n Mode                | VHT20                       |               | Test Fred  | q. (MHz)   |          | 5825       |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|---------------|------------|------------|----------|------------|--------------|
| 80       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70 <td< th=""><th>Note 1: "&gt;20dB" means spurious emission levels that exceed the level of 20 dB below the<br/>Note 1: "&gt;20dB" means spurious emission levels that exceed the level of 20 dB below the<br/>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete</th><th></th><th>2</th><th></th><th>Polarizati</th><th>ion</th><th></th><th>Н</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 2                           |               | Polarizati | ion        |          | Н          |              |
| 80       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70 <td< th=""><th>Note 1: "&gt;20dB" means spurious emission levels that exceed the level of 20 dB below the<br/>Note 1: "&gt;20dB" means spurious emission levels that exceed the level of 20 dB below the<br/>Note 1: "&gt;20dB" means spurious emission levels that exceed the level of 20 dB below the<br/>Note 1: "&gt;20dB" means spurious emission levels that exceed the level of 20 dB below the<br/>Note 1: "&gt;20dB" means spurious emission levels that exceed the level of 20 dB below the<br/>Note 1: "&gt;20dB" means spurious emission levels that exceed the level of 20 dB below the<br/>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br/>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br/>Note 1: "&gt;20dB means spurious emission levels that exceed the level of 20 dB below the<br/>Note 1: "Note 1</th><th>oo Level (dBu\</th><th>V/m)</th><th></th><th></th><th></th><th></th><th></th><th></th></td<> | Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 1: ">20dB means spurious emission levels that exceed the level of 20 dB below the<br>Note 1: "Note 1 | oo Level (dBu\        | V/m)                        |               |            |            |          |            |              |
| 70       1       5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter<br>Note 1: ">P                                                                                                                                                                  |                       |                             |               |            |            |          |            |              |
| 60       5       60       7       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60         5         60         7         60         7         60         7         60         7         7         7         7         7         7         7         7         7         7         7         7         7         8         7         7         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         8         7         7         8         8         8         7         7         8         8         7         7         8         7         7         8         7         7         8         7         7         7         8         7         7         7         8         7         7         7         8         7         7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                             |               |            |            |          |            |              |
| 50       2       40       50       2       40       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50         7         60         7         60         100         1000         1000         14000         18000         22000         26000         30000         34000           10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                    |                             |               |            |            |          | PART15E_   | <u>B4-74</u> |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60                    |                             |               |            |            | FC       | C PART15E  | (AVG)        |
| 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       40000       40000       1000       1000       1000       14000       18000       22000       26000       30000       34000       40000         Freq. Emission Limit Nargin SA       Factor Remark High Table       MHz       dBuV/m dBuV/m dB       dBuV       dB       cm       deg         1       5850.00       77.08       78.20       -1.12       71.46       5.62       Peak           2       5860.00       45.79       54.00       -8.21       40.17       5.62       Average           3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak           4       11650.00       46.68       54.00       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30       30       30       30       30       30       30       30       10       10       10       10       10       10       10       100       1000       14000.       18000.       22000.       26000.       30000.       34000.         Freq. Emission Limit Margin SA       Factor Remark       ANT       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td>50</td><td>2 4</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                    | 2 4                         |               |            |            |          |            |              |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>20       10       1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.         Freq. Emission Limit Margin SA Factor Remark ANT level reading MHz dBuV/m dB dBuV dB cm         1       5850.00       77.08       78.20       -1.12       71.46       5.62       Peak          2       5860.00       45.79       54.00       -8.21       40.17       5.62       Peak          3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak          4       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          <td< td=""><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20       10       1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.         Freq. Emission Limit Margin SA Factor Remark ANT level reading MHz dBuV/m dB dBuV dB cm         1       5850.00       77.08       78.20       -1.12       71.46       5.62       Peak          2       5860.00       45.79       54.00       -8.21       40.17       5.62       Peak          3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak          4       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak <td< td=""><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                    |                             |               |            |            |          |            |              |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>20       100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.         Freq. Emission Limit Margin SA Factor Remark ANT level reading MHz dBuV/m dB dBuV dB cm         1       5859.00       77.08       78.20       -1.12       71.46       5.62       Peak          2       5860.00       68.21       40.17       5.62       Peak          3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak          4       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak      </td><td>30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20       100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.         Freq. Emission Limit Margin SA Factor Remark ANT level reading MHz dBuV/m dB dBuV dB cm         1       5859.00       77.08       78.20       -1.12       71.46       5.62       Peak          2       5860.00       68.21       40.17       5.62       Peak          3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak          4       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                    |                             |               |            |            |          |            |              |
| 10       10       1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA       Factor Remark level       ANT Turn High Table         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       77.08       78.20       -1.12       71.46       5.62       Peak           2       5860.00       45.79       54.00       -8.21       40.17       5.62       Peak           3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak           4       11650.00       46.68       54.00       -7.32       32.29       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       0       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.         Freq. Emission Limit Margin SA Factor Remark ANT level reading MHz dBuV/m dB dBuV dB cm         1       5850.00       77.08       78.20       -1.12       71.46       5.62       Peak          2       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak          3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak          4       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak          5       11650.00       62.93       74.00       -11.07       48.54       14.39       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                             |               |            |            |          |            |              |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading High Table<br>MHz dBuV/m dBuV/m dB dBuV dB cm deg<br>1 5850.00 77.08 78.20 -1.12 71.46 5.62 Peak<br>2 5860.00 45.79 54.00 -8.21 40.17 5.62 Average<br>3 5860.00 68.20 74.00 -5.80 62.58 5.62 Peak<br>4 11650.00 46.68 54.00 -7.32 32.29 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0         1000         6000.         10000.         14000.         18000.         22000.         26000.         30000.         34000.           Freq. Emission Limit Margin SA Factor Remark ANT level reading           MHz         dBuV/m         dB         dBuV         dB         cm           1         5850.00         77.08         78.20         -1.12         71.46         5.62         Peak            2         5860.00         45.79         54.00         -8.21         40.17         5.62         Average            3         5860.00         68.20         74.00         -5.80         62.58         5.62         Peak            4         11650.00         62.93         74.00         -11.07         48.54         14.39         Peak            5         11650.00         62.93         74.00         -11.07         48.54         14.39         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                             |               |            |            |          |            |              |
| Frequency (MHz)         Frequency (MHz)         Freq. Emission Limit level       Margin series       Factor reading deg       Remark reading deg       ANT Turn High Table deg         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       dB          1       5850.00       77.08       78.20       -1.12       71.46       5.62       Peak           2       5860.00       45.79       54.00       -8.21       40.17       5.62       Average           3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak           4       11650.00       46.68       54.00       -7.32       32.29       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency (MHz)         Frequency (MHz)           Freq. Emission Limit Margin SA reading         Factor Remark ANT reading           MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm           1         5850.00         77.08         78.20         -1.12         71.46         5.62         Peak            2         5860.00         45.79         54.00         -8.21         40.17         5.62         Average            3         5860.00         68.20         74.00         -5.80         62.58         5.62         Peak            4         11650.00         46.68         54.00         -7.32         32.29         14.39         Average            5         11650.00         62.93         74.00         -11.07         48.54         14.39         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                    |                             |               |            |            |          |            |              |
| Freq. Emission Limit Nargin level       SA reading reading       Factor reading       Remark       ANT High Table         MHz       dBuV/m       dBuV/m       dB       dBuV       dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Freq.         Emission Limit Margin         SA         Factor reading         Remark         ANT Hig           MHz         dBuV/m         dBuV/m         dBuV/m         dBuV         dB         cm           1         5850.00         77.08         78.20         -1.12         71.46         5.62         Peak            2         5860.00         45.79         54.00         -8.21         40.17         5.62         Average            3         5860.00         68.20         74.00         -5.80         62.58         5.62         Peak            4         11650.00         46.68         54.00         -7.32         32.29         14.39         Average            5         11650.00         62.93         74.00         -11.07         48.54         14.39         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 <mark>1000 6</mark> | 5000. 10000. 1 <sup>.</sup> | 4000. 18000.  | 22000.     | 26000. 3   | 0000. 3  | 4000.      | 40000        |
| level         reading         High         Table           MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5850.00         77.08         78.20         -1.12         71.46         5.62         Peak             2         5860.00         45.79         54.00         -8.21         40.17         5.62         Average             3         5860.00         68.20         74.00         -5.80         62.58         5.62         Peak             4         11650.00         46.68         54.00         -7.32         32.29         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | level         reading         Hig           MHz         dBuV/m         dBuV/m         dBuV         dB         cm           1         5850.00         77.08         78.20         -1.12         71.46         5.62         Peak            2         5860.00         45.79         54.00         -8.21         40.17         5.62         Average            3         5860.00         68.20         74.00         -5.80         62.58         5.62         Peak            4         11650.00         46.68         54.00         -7.32         32.29         14.39         Average            5         11650.00         62.93         74.00         -11.07         48.54         14.39         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                     |                             |               |            | _          |          |            | _            |
| MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       77.08       78.20       -1.12       71.46       5.62       Peak           2       5860.00       45.79       54.00       -8.21       40.17       5.62       Average           3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak           4       11650.00       46.68       54.00       -7.32       32.29       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm           1         5850.00         77.08         78.20         -1.12         71.46         5.62         Peak            2         5860.00         45.79         54.00         -8.21         40.17         5.62         Average            3         5860.00         68.20         74.00         -5.80         62.58         5.62         Peak            4         11650.00         46.68         54.00         -7.32         32.29         14.39         Average            5         11650.00         62.93         74.00         -11.07         48.54         14.39         Peak            10te 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected by the lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected by the lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected by the lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected by the lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected by the lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected by the lote 2: "N/F" means hote the lote 3: "Note the lote 3: "Note the lote the lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fr                    |                             | imit Margi    |            |            | Remark   |            |              |
| 2       5860.00       45.79       54.00       -8.21       40.17       5.62       Average           3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak           4       11650.00       46.68       54.00       -7.32       32.29       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 5860.00 45.79 54.00 -8.21 40.17 5.62 Average<br>3 5860.00 68.20 74.00 -5.80 62.58 5.62 Peak<br>4 11650.00 46.68 54.00 -7.32 32.29 14.39 Average<br>5 11650.00 62.93 74.00 -11.07 48.54 14.39 Peak<br>0 tot 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | м                     |                             | BuV/m dB      | -          |            |          |            |              |
| 2       5860.00       45.79       54.00       -8.21       40.17       5.62       Average           3       5860.00       68.20       74.00       -5.80       62.58       5.62       Peak           4       11650.00       46.68       54.00       -7.32       32.29       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 5860.00 45.79 54.00 -8.21 40.17 5.62 Average<br>3 5860.00 68.20 74.00 -5.80 62.58 5.62 Peak<br>4 11650.00 46.68 54.00 -7.32 32.29 14.39 Average<br>5 11650.00 62.93 74.00 -11.07 48.54 14.39 Peak<br>0 tot 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 585                 | <u> </u>                    | 8 20 _1 12    | 71 /6      | 5.62       | Poak     |            |              |
| 4 11650.00 46.68 54.00 -7.32 32.29 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 11650.00 46.68 54.00 -7.32 32.29 14.39 Average<br>5 11650.00 62.93 74.00 -11.07 48.54 14.39 Peak<br>ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were deter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                             |               |            |            |          | e          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 11650.00 62.93 74.00 -11.07 48.54 14.39 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                             |               |            |            | _        | e          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                             |               |            |            |          |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20dB" means spi       | urious emission             | levels that e | xceed the  | level of 2 | 20 dB be | low the    | applicab     |
| te 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Note 3: Measurement receive antenna polarization: H (Horizontal) \/ (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 'F" means Nothir      | ng Found spuric             | ous emission  | s (No spur | rious emi  | ssions w |            |              |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicab<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                             |               |            |            |          | field atra | nath oc      |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)<br>ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field stre<br>with the Peak-Detector meets the AV-Limit so that the AV level does not need to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                             |               |            |            |          |            |              |





| 90<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Modulation Mo    | ode                 | VHT       | 20       |          | ľ         | Test  | Fred   | ą. (MHz)  | )        | 58       | 325              |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|-----------|----------|----------|-----------|-------|--------|-----------|----------|----------|------------------|---------|
| 80       70       1       5       60       5       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       70       60       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70                                                                                                                                     | N <sub>TX</sub>  |                     | 2         |          |          |           | Pola  | rizat  | ion       |          | V        |                  |         |
| 80       70       1       5       60       5       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       70       60       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70                                                                                                                                     |                  | on Level (d         | dBuV/m)   |          |          |           |       |        |           |          |          |                  |         |
| 70       1       5       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                  |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
| 60       5       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60                                                                                                                                            |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
| 60       2       60       7       60       7       60       7       60       7       60       7       60       7       60       7       60       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                  |                  | 70                  | ╢╏        |          |          |           |       | -44    |           |          | CC PAF   | ₹ <b>T15</b> E_B | 4-74    |
| 50       2       4       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                  |                  | 60                  |           |          |          |           |       |        |           |          | FCC PA   | RT15E (          | AVG)    |
| 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td></td><td>50</td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> |                  | 50                  |           | 4        |          |           |       |        |           |          |          |                  |         |
| 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td></td><td>40</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> |                  | 40                  | 1         |          |          |           |       |        |           |          |          |                  |         |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>    |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
| 10       10       100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA       Factor Remark High Tab:       ANT Turn High Tab:         MHz       dBuV/m       dB uV/m       dB       dBuV       dB       cm       deg         1       5850.00       75.03       78.20       -3.17       69.41       5.62       Peak           2       5860.00       43.71       54.00       -7.94       60.44       5.62       Peak           3       5860.00       46.24       54.00       -7.76       31.85       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading High Tab.<br>MHz dBuV/m dBuV/m dB dBuV dB cm deg<br>1 5850.00 75.03 78.20 -3.17 69.41 5.62 Peak<br>2 5860.00 43.71 54.00 -10.29 38.09 5.62 Average<br>3 5860.00 66.06 74.00 -7.94 60.44 5.62 Peak<br>4 11650.00 46.24 54.00 -7.76 31.85 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 20                  |           |          |          |           |       |        |           |          |          |                  |         |
| Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark level       Factor Remark High Table reading         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       dB       deg         1       5850.00       75.03       78.20       -3.17       69.41       5.62       Peak           2       5860.00       43.71       54.00       -10.29       38.09       5.62       Average           3       5860.00       66.06       74.00       -7.94       60.44       5.62       Peak           4       11650.00       46.24       54.00       -7.76       31.85       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 10                  |           |          |          |           |       |        |           |          |          |                  |         |
| Freq. Emission Limit Margin Limit Margin SA reactor reading       Factor reading       Remark reading       ANT Turn High Table         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       dB       deg         1       5850.00       75.03       78.20       -3.17       69.41       5.62       Peak           2       5860.00       43.71       54.00       -10.29       38.09       5.62       Average           3       5860.00       66.06       74.00       -7.94       60.44       5.62       Peak           4       11650.00       46.24       54.00       -7.76       31.85       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 0 <mark>1000</mark> | 6000.     | 10000.   | 14000.   | 18000.    | 220   | 00.    | 26000.    | 30000.   | 3400     | 0.               | 40000   |
| level         reading         High         Tab.           MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5850.00         75.03         78.20         -3.17         69.41         5.62         Peak             2         5860.00         43.71         54.00         -10.29         38.09         5.62         Average             3         5860.00         66.06         74.00         -7.94         60.44         5.62         Peak             4         11650.00         46.24         54.00         -7.76         31.85         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                     |           |          |          |           |       | MHz)   |           |          |          |                  |         |
| MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5850.00         75.03         78.20         -3.17         69.41         5.62         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                     | Freq. I   |          | n Limit  | Margin    |       |        |           | Rema     | ark      |                  | Turn    |
| 2         5860.00         43.71         54.00         -10.29         38.09         5.62         Average             3         5860.00         66.06         74.00         -7.94         60.44         5.62         Peak             4         11650.00         46.24         54.00         -7.76         31.85         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                     | MHz       |          | dBuV/m   | dB        |       | -      |           |          |          | -                |         |
| 2         5860.00         43.71         54.00         -10.29         38.09         5.62         Average             3         5860.00         66.06         74.00         -7.94         60.44         5.62         Peak             4         11650.00         46.24         54.00         -7.76         31.85         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                |                     | <u></u>   | 75.02    | 79.00    | 2 47      |       | 44     |           | <b>D</b> |          |                  |         |
| 3 5860.00 66.06 74.00 -7.94 60.44 5.62 Peak<br>4 11650.00 46.24 54.00 -7.76 31.85 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                     | 5860.00   | 66.06    | 74.00    | -7.94     |       |        | 5.62      | Peal     | < _      |                  |         |
| J 11050.00 02.54 74.00 111.00 47.55 14.55 Feak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                     |           |          |          |           |       |        |           |          | _        |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                | 1                   | 1050.00   | 02.04    | 74.00    | -11.00    | 4/    |        | 14.33     | rea      |          |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | "                   | opuriour  | . omiooi |          | , that a  |       | d tha  |           | - 00 dD  | holou    | , the e          | nnliagh |
| to 1. "- 20dD" means any issue amission levels that avaged the level of 20 dD below the applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applica<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note 3: Measur   | ement re            | eceive a  | ntenna p | olarizat | ion: H (l | Horiz | onta   | I), V (Ve | ertical) |          |                  |         |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applica<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)<br>ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note 4: For rest | ricted ba           | ands, the | e peak n | neasurer | ment is   | fully | suffic | cient, as | the ma   | ax field | d stren          | igth as |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                     |           |          |          |           |       |        |           |          |          |                  |         |





| Modulation Mode                                 | VHT                  | 40       |                | -                | Fest F           | rec  | ą. (MHz)       | )       | 5        | 575    | 5                        |              |
|-------------------------------------------------|----------------------|----------|----------------|------------------|------------------|------|----------------|---------|----------|--------|--------------------------|--------------|
| N <sub>TX</sub>                                 | 2                    |          |                |                  | Polaria          | zat  | ion            |         | ł        | 4      |                          |              |
| 90 Level (                                      | dBuV/m)              |          |                |                  |                  |      |                |         |          |        |                          |              |
|                                                 |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
| 80                                              |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
| 70                                              | <u>J II J</u> Ŧ I    |          |                |                  |                  | ╘╹╞╴ |                |         | CC P     | ART    | 15 <b>E_</b> B           | 4-74         |
| 60                                              |                      | 5        |                |                  |                  |      |                |         | FCC I    | PART   | Г <b>15</b> Е ( <i>I</i> | AVG)         |
| 50                                              |                      | 4        |                |                  |                  | +    |                |         |          |        |                          |              |
| 40                                              |                      |          |                |                  |                  | -    |                |         |          |        |                          |              |
| 30                                              |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
| 20                                              |                      |          |                |                  |                  | _    |                |         |          |        |                          |              |
| 10                                              |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
| 0                                               |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
| <b>~1000</b>                                    | 6000.                | 10000.   | 14000.         | 18000.<br>Freque | 22000<br>ncy (MH |      | 26000.         | 30000.  | 340      | 000.   |                          | 40000        |
|                                                 | Freq.                | Emission | Limit          | Margin           | SA               |      | Factor         | Rema    | ark      |        | ANT                      | Turn         |
|                                                 | MHz                  | level    | dBuV/m         | dB               | readi<br>dBu\    | -    | dB             |         |          |        | High<br>cm               | Table<br>deg |
|                                                 |                      |          |                |                  |                  | _    |                |         |          |        |                          | ueg          |
| 1<br>2                                          | 5715.00<br>5715.00   |          | 54.00<br>74.00 | -1.84<br>-3.77   | 46.5<br>64.6     |      | 5.58<br>5.58   |         | rage     |        |                          |              |
| 3                                               | 5725.00              |          |                |                  | 71.2             |      | 5.58           |         |          |        |                          |              |
|                                                 | L1510.00<br>L1510.00 |          |                |                  | 29.0<br>40.7     |      | 14.55<br>14.55 |         | rage     |        |                          |              |
| 2                                               | 11510.00             | 55.29    | 74.00          | -10./1           | 40.7             | 4    | 14.00          | real    | <b>C</b> |        |                          |              |
|                                                 |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
|                                                 |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
|                                                 |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
|                                                 |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
|                                                 |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
|                                                 |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
|                                                 |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
| Note 1: ">20dB" means<br>Note 2: "N/F" means No |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
| Note 3: Measurement r                           |                      |          |                |                  |                  |      |                |         | 5 000    | 100    |                          |              |
| Note 4: For restricted b<br>with the Peak-E     |                      |          |                |                  |                  |      |                |         |          |        |                          |              |
| with the Peak-L                                 | Jerector I           | meets th | e av-Lin       | uit so th        | at the           | AV   | ievel do       | bes not | nee      | 201 TC | DR                       | reporte      |





| N <sub>TX</sub><br>90 | 2                  | 40       |        | ٦   ٦            | Fest Fre            | q. (MHz)     | )      | 57     | '55      |       |
|-----------------------|--------------------|----------|--------|------------------|---------------------|--------------|--------|--------|----------|-------|
| 90                    | 2                  |          |        | F                | Polariza            | tion         |        | V      |          |       |
| 30                    | l (dBuV/m)         |          |        |                  |                     |              |        |        |          |       |
|                       |                    |          |        |                  |                     |              |        |        |          |       |
| 80                    |                    |          |        |                  |                     |              |        |        |          |       |
| 70                    | ╟┻┹┥╋╶┙╋           |          |        |                  |                     |              | +!E    | CC PAI | ₹T15E_B  | 4_74_ |
| 60                    |                    | 5        |        |                  |                     |              |        | FCC PA | RT15E (/ | AVG)  |
| 50                    |                    |          |        |                  |                     |              |        |        |          |       |
| 40                    |                    |          |        |                  |                     |              |        |        |          |       |
| 30                    |                    |          |        |                  |                     |              |        |        |          |       |
| 20                    |                    |          |        |                  |                     |              |        |        |          |       |
| 10                    |                    |          |        |                  |                     |              |        |        |          |       |
|                       |                    |          |        |                  |                     |              |        |        |          |       |
| <sup>0</sup> 1000     | ) 6000.            | 10000.   | 14000. | 18000.<br>Freque | 22000.<br>ncy (MHz) | 26000.       | 30000. | 3400   | 0.       | 40000 |
|                       | Frea.              | Emission | Limit  |                  |                     | Factor       | Rema   | irk    | ANT      | Turn  |
|                       |                    | level    |        | -                | reading             | g            |        |        | High     | Table |
|                       | MHz                | dBuV/m   | dBuV/m | dB               | dBuV                | dB           |        |        | CM       | deg   |
| 1                     | 5715.00            |          | 54.00  | -3.63            | 44.79               | 5.58         |        |        |          |       |
| 2<br>3                | 5715.00<br>5725.00 |          |        | -5.45            | 62.97<br>69.38      | 5.58<br>5.58 |        |        |          |       |
| 4                     | 11510.00           | 43.11    | 54.00  | -10.89           | 28.56               | 14.55        | Aver   | age    |          |       |
| 5                     | 11510.00           | 54.86    | 74.00  | -19.14           | 40.31               | 14.55        | Peak   |        |          |       |





| Modulation Mo                    | ode             | VHT                    | 40                |            |                 | Test  | Fred      | ą. (MHz)       | )      | 57       | 95          |               |
|----------------------------------|-----------------|------------------------|-------------------|------------|-----------------|-------|-----------|----------------|--------|----------|-------------|---------------|
| N <sub>TX</sub>                  |                 | 2                      |                   |            |                 | Pola  | rizat     | ion            |        | Н        |             |               |
|                                  | Level           | (dBuV/m)               |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  | 80              |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  | 70              | <u>▋</u> <u>▋</u>      |                   |            |                 |       |           |                | (      | CC PAF   | T15E_B      | 4_74          |
|                                  | 60              |                        | 5                 |            |                 |       |           |                |        | FCC PA   | RT15E (     | AVG)          |
|                                  | 50              |                        | 4                 |            |                 |       |           |                |        |          |             |               |
|                                  | 40              |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  | 30              |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  | 20              |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  | 10              |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  | 0 <mark></mark> | 6000.                  | 10000.            | 14000.     | 18000.          | 220   | 00.       | 26000.         | 30000. | 3400     | 0.          | 40000         |
|                                  |                 |                        |                   |            | Freque          |       |           |                |        |          |             |               |
|                                  |                 | Freq.                  | Emissior<br>level | n Limit    | Margir          |       | A<br>ding | Factor         | Rema   | ark      | ANT<br>High | Turn<br>Table |
|                                  |                 | MHz                    |                   | dBuV/m     | dB              | dB    | -         | dB             |        |          | cm          | deg           |
| 1                                |                 | 5850.00                | 76 52             | 78.20      | -1.68           | 70    | .90       | 5.62           | Peal   |          |             |               |
| 2                                |                 | 5860.00                |                   |            | -1.16           |       | . 22      | 5.62           |        |          |             |               |
| 3                                |                 |                        |                   | 74.00      |                 |       | .88       | 5.62           |        |          |             |               |
| 4                                |                 | 11590.00<br>11590.00   |                   |            | -5.23           |       | .32       | 14.45<br>14.45 |        | _        |             |               |
| -                                |                 |                        | 01.00             |            | 12110           |       |           |                |        | •        |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
|                                  |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
| Note 1: ">20dB                   |                 |                        |                   |            |                 |       |           |                |        |          |             |               |
| Note 2: "N/F" m<br>Note 3: Measu |                 |                        |                   |            |                 |       |           |                |        | swere    | e detec     | cted.)        |
| NULE S. IVIEASU                  | rement          | receive a              | menna p           | Joiarizati | оп. <b>н</b> (I | HOUZ  | onta      | ı), v (Ve      | nucal) |          |             |               |
|                                  |                 | ands the               | e peak n          | neasurer   | nent is         | fullv | suffic    | cient as       | the ma | ax field | d stren     | ath as        |
| Note 4: For res                  | tricted b       | bands, the<br>Detector |                   |            |                 |       |           |                |        |          |             |               |



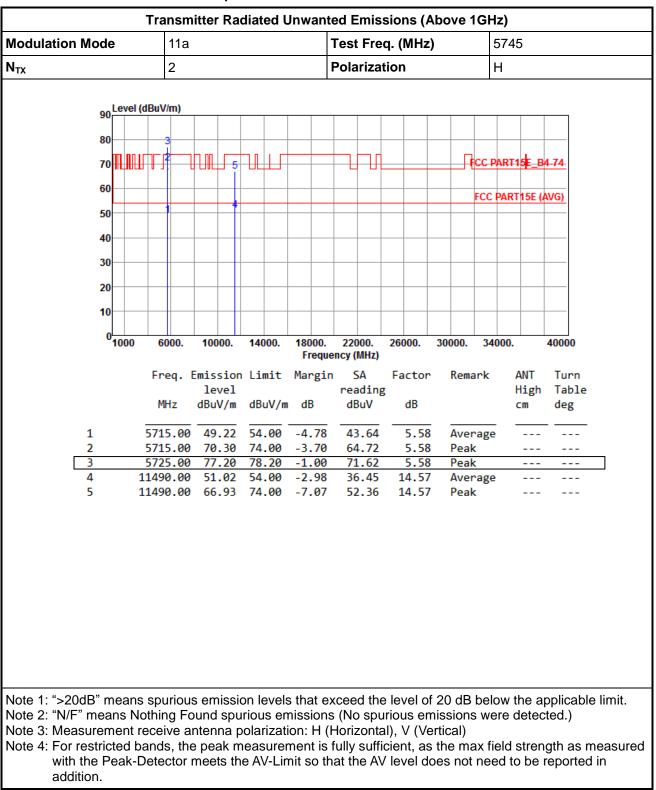


| N <sub>TX</sub> |                                         | VHI    | 40               |         |                | Test | Free       | q. (MHz)     | )      | 5     | 795       |         |
|-----------------|-----------------------------------------|--------|------------------|---------|----------------|------|------------|--------------|--------|-------|-----------|---------|
|                 |                                         | 2      |                  |         |                | Pola | rizat      | ion          |        | V     | /         |         |
|                 | Level (dB                               | uV/m)  |                  |         |                |      |            |              |        |       |           |         |
|                 |                                         |        |                  |         |                |      |            |              |        |       |           |         |
| 80              |                                         | 1      |                  |         |                |      |            |              |        |       | <u> </u>  |         |
| 70              | ┝╫╫╫┼                                   | ┦┦┤    |                  |         |                |      |            |              | (      | CC P/ | RT15      | _B4-74  |
| 60              | )<br>                                   |        |                  | 5       |                |      |            |              |        | FCC P | ART15     | E (AVG) |
| 50              | ) — — — — — — — — — — — — — — — — — — — | 1      |                  |         |                |      |            |              |        |       |           |         |
| 40              |                                         |        |                  |         |                |      |            |              |        |       |           |         |
| 30              |                                         |        |                  |         |                |      |            |              |        |       |           |         |
| 50              |                                         |        |                  |         |                |      |            |              |        |       |           |         |
| 20              |                                         |        |                  |         |                |      |            |              |        |       |           |         |
| 10              |                                         | _      |                  |         |                |      |            |              |        |       |           |         |
| (               | 1000                                    | 6000.  | 10000.           | 14000.  | 18000.         | 220  | 00.        | 26000.       | 30000. | 340   | 00.       | 4000    |
|                 |                                         |        |                  |         | Freque         |      |            |              |        |       |           |         |
|                 | F                                       | req.   | Emissio<br>level | n Limit | Margir         |      | Α          | Factor       | Rema   | ark   | ANT       |         |
|                 |                                         | MHz    |                  | ıdBuV∕m | dB             |      | ding<br>uV | dB           |        |       | Hig<br>cm | -       |
|                 | _                                       |        |                  |         |                |      |            |              |        |       |           |         |
| 1<br>2          |                                         |        | 74.28            | 78.20   | -3.92<br>-3.03 |      | .66        | 5.62<br>5.62 |        |       |           |         |
| 3               |                                         |        |                  | 74.00   |                |      | .91        | 5.62         |        | _     |           |         |
| 4               |                                         |        |                  | 54.00   |                |      | .78        | 14.45        |        | rage  |           |         |
| 5               | 119                                     | 590.00 | 60.96            | 74.00   | -13.04         | 46   | .51        | 14.45        | Peal   | C     |           |         |





| Modulation Mode                                 | VHT                | 80       |                | '                | Test           | Fred       | ą. (MHz)       |              | 5         | 5775   |                 |      |
|-------------------------------------------------|--------------------|----------|----------------|------------------|----------------|------------|----------------|--------------|-----------|--------|-----------------|------|
| N <sub>TX</sub>                                 | 2                  |          |                |                  | Pola           | rizat      | ion            |              | ŀ         | 1      |                 |      |
| 90 Level (d                                     | BuV/m)             |          |                |                  |                |            |                |              |           |        |                 |      |
|                                                 |                    |          |                |                  |                |            |                |              |           |        |                 | ]    |
| 80                                              | 3                  |          |                |                  |                |            |                |              |           |        |                 |      |
| 70                                              |                    |          |                |                  |                |            |                | I            | CC P/     | ART15  | _ <b>B4</b> -74 | :    |
| 60                                              |                    |          | 3              |                  |                |            |                |              | FCC F     | PART15 | E (AVG)         |      |
| 50                                              |                    |          |                |                  |                |            |                |              |           |        |                 |      |
| 40                                              |                    |          |                |                  |                |            |                |              |           |        |                 |      |
|                                                 |                    |          |                |                  |                |            |                |              |           |        |                 |      |
| 30                                              |                    |          |                |                  |                |            |                |              |           |        |                 |      |
| 20                                              |                    |          |                |                  |                |            |                |              |           |        |                 |      |
| 10                                              |                    |          |                |                  |                |            |                |              |           |        |                 |      |
| 0                                               |                    |          |                |                  |                |            |                |              |           |        |                 |      |
| <b>~1000</b>                                    | 6000.              | 10000.   | 14000.         | 18000.<br>Freque | 220<br>ency (N |            | 26000.         | 30000.       | 340       | 000.   | 4000            | 10   |
|                                                 | Freq. E            | Emissio  | n Limit        | Margir           | n S            | Д          | Factor         | Rema         | ark       | AN     | T Tu            | Irn  |
|                                                 |                    | level    |                |                  |                | ding       |                |              |           | Hi     | -               | ble  |
|                                                 | MHz                | dBuV/m   | dBuV/m         | i dB             | dB             | uV         | dB             |              |           | CM     | de              | g    |
| 1                                               | 5715.00            | 52.52    | 54.00          | -1.48            | 46             | .94        | 5.58           | Aver         | rage      | -      |                 |      |
|                                                 | 5715.00            |          |                | -5.66            |                | .76        | 5.58           | Peal         |           | -      |                 |      |
|                                                 | 5725.00<br>5850.00 |          |                |                  |                | .96<br>.47 | 5.58<br>5.62   | Peal<br>Peal |           | -      |                 |      |
|                                                 |                    |          |                | -6.90            |                | .48        | 5.62           |              | rage      | -      |                 |      |
|                                                 |                    |          | 74.00<br>54.00 |                  |                | .30        | 5.62           |              |           | -      |                 |      |
|                                                 |                    |          | 74.00          |                  |                | .35        | 14.50<br>14.50 | Peal         | nage<br>K | -      |                 |      |
|                                                 |                    |          |                |                  |                |            |                |              |           |        |                 |      |
|                                                 |                    |          |                |                  |                |            |                |              |           |        |                 |      |
|                                                 |                    |          |                |                  |                |            |                |              |           |        |                 |      |
|                                                 |                    |          |                |                  |                |            |                |              |           |        |                 |      |
|                                                 |                    |          |                |                  |                |            |                |              |           |        |                 |      |
|                                                 |                    |          |                |                  |                | 1.0        | 11.(           | 00 10        | 11.       |        |                 |      |
| Note 1: ">20dB" means<br>Note 2: "N/F" means No |                    |          |                |                  |                |            |                |              |           |        |                 |      |
| Note 3: Measurement re                          |                    |          |                |                  |                |            |                |              |           |        |                 | ,    |
| Note 4: For restricted ba                       | nds, the           | e peak i | neasure        | ment is          | fully          | suffic     | cient, as      | the ma       |           |        |                 |      |
| with the Peak-D                                 | etector r          | meets t  | ne AV-Lir      | nıt so th        | hat the        | e AV       | level do       | es not       | nee       | d to h | e repo          | orte |






| x       2       Polarization       V         90       Level (dBuV/m)       Image: constraint of the second sec | Modulation Mode       | VHT                    | 80       |           | •         | Test Fred   | ą. (MHz)  |           | 5775   | 5                 |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|----------|-----------|-----------|-------------|-----------|-----------|--------|-------------------|------------|
| 80       3       60       8       FCC PARTISE 04.74         60       8       FCC PARTISE (AVG)       60         60       8       FCC PARTISE (AVG)         60       600.       1000.         7       1000       6000.         7       11550.00       400.0         80       FCC PARTISE (AVG)         6       540.00         7       11550.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N <sub>TX</sub>       | 2                      |          |           |           | Polarizat   | ion       |           | V      |                   |            |
| 80       3       60       8       FCC PARTISE 04.74         60       8       FCC PARTISE (AVG)       60         60       8       FCC PARTISE (AVG)         60       600.       1000.         7       1000       6000.         7       11550.00       400.0         80       FCC PARTISE (AVG)         6       540.00         7       11550.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an Level (            | (dBuV/m)               |          |           |           |             |           |           |        |                   | _          |
| 70       3       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                        |          |           |           |             |           |           |        |                   |            |
| 60       8       8       60       FCC PARTISE (AVG)         50       60       8       60       60       60         40       60       8       60       60       60         30       60       60       60       60       60         10       60       6000       10000       14000       18000       22000       26000       30000       34000         10       6000       10000       14000       18000       22000       26000       30000       34000       40000         10       6000       10000       14000       18000       26000       30000       34000       40000         Frequency (MHz)       Frequency (MHz)       Frequency (MHz)       6000       6000       40000         1       5715.00       50.47       54.00       -3.53       44.89       5.58       Average          2       5715.00       67.28       74.00       -6.72       61.70       5.58       Peak          3       5725.00       74.29       78.20       -3.91       68.71       5.58       Peak          4       5850.00       63.00       78.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | _                      |          |           |           |             |           |           |        |                   | -          |
| 50       8       6       FCC PART15E (AVG)         40       7       1       1       1         30       7       1       1       1       1         20       10       1       1       1       1       1         10       10       1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.         10       10       1       1       1       1       1       1       1       1         10       1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA       Factor Remark ANT Turn High Tab.       mdg       dguV/m dguV/m dguV/m dguV       dguV       mdg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70                    | J ∥ J <mark>≵</mark> ∣ | ╎└╢╟╷┤   |           |           |             |           |           | PART1  | 5 <b>E_</b> B4-74 | L          |
| 50       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60 <td< td=""><td>60</td><td></td><td>8</td><td></td><td></td><td></td><td></td><td>FC</td><td>C PART</td><td>15E (AVG</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                    |                        | 8        |           |           |             |           | FC        | C PART | 15E (AVG          |            |
| 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                    |                        |          |           |           |             |           |           |        |                   | _          |
| 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td>40</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                    |                        | 1        |           |           |             |           |           |        |                   | _          |
| 20       10       100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading MHz         MHz       dBuV/m       dB       dBuV       dB       cm       deg         1       5715.00       50.47       54.00       -3.53       44.89       5.58       Average          2       5715.00       67.28       74.00       -6.72       61.70       5.58       Peak           3       5725.00       74.29       78.20       -3.91       68.71       5.58       Peak           4       5850.00       63.00       78.20       -15.20       57.38       5.62       Peak           5       5860.00       45.29       54.00       -8.71       39.67       5.62       Average           6       5860.00       60.88       74.00       -13.12       55.26       5.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                        |          |           |           |             |           |           |        |                   |            |
| 10       100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA Ievel         10       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA Ievel         MHz       dBuV/m       dB       dBuV       dB       cm       deg         1       5715.00       50.47       54.00       -3.53       44.89       5.58       Average          2       5715.00       67.28       74.00       -6.72       61.70       5.58       Peak          3       5725.00       74.29       78.20       -3.91       68.71       5.58       Peak          4       5850.00       63.00       78.20       -15.20       57.38       5.62       Peak          5       5860.00       45.29       54.00       -8.71       39.67       5.62       Average          6       5860.00       60.88       74.00       -13.12       55.26       5.62       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                    |                        |          |           |           |             |           |           |        |                   |            |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading High Tab<br>MHz dBuV/m dBuV/m dB dBuV dB cm deg<br>1 5715.00 50.47 54.00 -3.53 44.89 5.58 Average<br>2 5715.00 67.28 74.00 -6.72 61.70 5.58 Peak<br>3 5725.00 74.29 78.20 -3.91 68.71 5.58 Peak<br>4 5850.00 63.00 78.20 -15.20 57.38 5.62 Peak<br>5 5860.00 45.29 54.00 -8.71 39.67 5.62 Average<br>6 5860.00 60.88 74.00 -13.12 55.26 5.62 Peak<br>7 11550.00 42.61 54.00 -11.39 28.11 14.50 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                    |                        |          |           |           |             |           |           |        |                   | -          |
| Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark level reading MHz dBuV/m dB V/m dB dBuV       Factor High Table reading reading reading deg         1       5715.00       50.47       54.00       -3.53       44.89       5.58       Average           2       5715.00       67.28       74.00       -6.72       61.70       5.58       Peak           3       5725.00       74.29       78.20       -3.91       68.71       5.58       Peak           4       5850.00       63.00       78.20       -15.20       57.38       5.62       Peak           5       5860.00       45.29       54.00       -8.71       39.67       5.62       Average           6       5860.00       60.88       74.00       -13.12       55.26       5.62       Peak           7       11550.00       42.61       54.00       -11.39       28.11       14.50       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                    |                        |          |           |           |             |           |           |        |                   | _          |
| Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark level reading MHz dBuV/m dB V/m dB dBuV       Factor High Table reading reading reading deg         1       5715.00       50.47       54.00       -3.53       44.89       5.58       Average           2       5715.00       67.28       74.00       -6.72       61.70       5.58       Peak           3       5725.00       74.29       78.20       -3.91       68.71       5.58       Peak           4       5850.00       63.00       78.20       -15.20       57.38       5.62       Peak           5       5860.00       45.29       54.00       -8.71       39.67       5.62       Average           6       5860.00       60.88       74.00       -13.12       55.26       5.62       Peak           7       11550.00       42.61       54.00       -11.39       28.11       14.50       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                     | 0003                   | 10000    | 14000     | 18000     | 22000       | 26000     | 30000 *   | 34000  | 400               |            |
| level         reading         High         Tab.           MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5715.00         50.47         54.00         -3.53         44.89         5.58         Average             2         5715.00         67.28         74.00         -6.72         61.70         5.58         Peak             3         5725.00         74.29         78.20         -3.91         68.71         5.58         Peak             4         5850.00         63.00         78.20         -15.20         57.38         5.62         Peak             5         5860.00         45.29         54.00         -8.71         39.67         5.62         Average             6         5860.00         60.88         74.00         -13.12         55.26         5.62         Peak             7         11550.00         42.61         54.00         -11.39         28.11         14.50         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000                  | 0000.                  | 10000.   | 14000.    |           |             | 20000.    | 50000.    | 4000.  | 400               |            |
| MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5715.00         50.47         54.00         -3.53         44.89         5.58         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | Freq.                  |          | n Limit   | Margin    |             |           | Remar     |        |                   |            |
| 1       5715.00       50.47       54.00       -3.53       44.89       5.58       Average           2       5715.00       67.28       74.00       -6.72       61.70       5.58       Peak           3       5725.00       74.29       78.20       -3.91       68.71       5.58       Peak           4       5850.00       63.00       78.20       -15.20       57.38       5.62       Peak           5       5860.00       45.29       54.00       -8.71       39.67       5.62       Average           6       5860.00       60.88       74.00       -13.12       55.26       5.62       Peak           7       11550.00       42.61       54.00       -11.39       28.11       14.50       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | MHz                    |          | dBuV/m    | dB        | -           |           |           |        | -                 |            |
| 2       5715.00       67.28       74.00       -6.72       61.70       5.58       Peak           3       5725.00       74.29       78.20       -3.91       68.71       5.58       Peak           4       5850.00       63.00       78.20       -15.20       57.38       5.62       Peak           5       5860.00       45.29       54.00       -8.71       39.67       5.62       Average           6       5860.00       60.88       74.00       -13.12       55.26       5.62       Peak           7       11550.00       42.61       54.00       -11.39       28.11       14.50       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                        |          |           |           |             |           |           |        |                   | -g         |
| 3       5725.00       74.29       78.20       -3.91       68.71       5.58       Peak           4       5850.00       63.00       78.20       -15.20       57.38       5.62       Peak           5       5860.00       45.29       54.00       -8.71       39.67       5.62       Average           6       5860.00       60.88       74.00       -13.12       55.26       5.62       Peak           7       11550.00       42.61       54.00       -11.39       28.11       14.50       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                        |          |           |           |             |           |           | ge     |                   |            |
| 4       5850.00       63.00       78.20       -15.20       57.38       5.62       Peak           5       5860.00       45.29       54.00       -8.71       39.67       5.62       Average           6       5860.00       60.88       74.00       -13.12       55.26       5.62       Peak           7       11550.00       42.61       54.00       -11.39       28.11       14.50       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                        |          |           |           |             |           |           |        |                   |            |
| 6 5860.00 60.88 74.00 -13.12 55.26 5.62 Peak<br>7 11550.00 42.61 54.00 -11.39 28.11 14.50 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                        |          |           |           |             |           |           |        |                   |            |
| 7 11550.00 42.61 54.00 -11.39 28.11 14.50 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                        |          |           |           |             |           |           | ge     |                   |            |
| <b>o</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                        |          |           |           |             |           |           | 10     |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                        |          |           |           |             |           |           | 50     |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                        |          |           |           |             |           |           |        |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                        |          |           |           |             |           |           |        |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                        |          |           |           |             |           |           |        |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                        |          |           |           |             |           |           |        |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                        |          |           |           |             |           |           |        |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                        |          |           |           |             |           |           |        |                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | souriou                | s emissi | on levels | s that ex | rceed the   | level of  | 20 dB b   | ow th  | ne annl           | ical       |
| nte 1: "~20dB" means sourious emission levels that exceed the level of 20 dB below the applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                        |          |           |           |             |           |           |        |                   |            |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applica<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note 3: Measurement r | eceive a               | ntenna p | olarizati | on: H (I  | lorizonta   | I), V (Ve | rtical)   |        |                   |            |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                        |          |           |           |             |           |           |        |                   |            |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                        | moote th |           | nit co th | at the //// | LOVOL do  | noc not n | nd the | no ron            | <u>ort</u> |



#### Mode 3: External antenna with adapter mode







| N <sub>TX</sub><br>90 | 2              |                            | 1      | Test Fred       | q. (MHz)     |               | 574    | 15             |              |
|-----------------------|----------------|----------------------------|--------|-----------------|--------------|---------------|--------|----------------|--------------|
| 90                    |                |                            | F      | Polarizat       | ion          |               | V      |                |              |
| 50                    | Level (dBuV/m) |                            |        |                 |              |               |        |                |              |
|                       |                |                            |        |                 |              |               |        |                |              |
| 80                    |                |                            |        |                 |              |               |        |                |              |
| 70                    |                |                            |        |                 |              | ₽C            | CPAR   | 15 <b>E_</b> B | 4_74         |
| 60                    | 2              | Ĭ                          |        |                 |              | F             | CC PAR | T15E (/        | AVG)         |
| 50                    | 1              | +                          |        |                 |              |               |        |                |              |
| 40                    |                |                            |        |                 |              |               |        |                |              |
| 30                    |                |                            |        |                 |              |               |        |                |              |
|                       |                |                            |        |                 |              |               |        |                |              |
| 20                    |                |                            |        |                 |              |               |        |                |              |
| 10                    |                |                            |        |                 |              |               |        |                |              |
| 0                     | 1000 6000.     | 10000. 14000.              | 18000. | 22000.          | 26000.       | 30000.        | 34000  |                | 40000        |
|                       |                |                            |        | ncy (MHz)       |              |               |        |                |              |
|                       | Freq.          | Emission Limit<br>level    | Margin |                 | Factor       | Remar         | rk     | ANT            | Turn         |
|                       | MHz            | dBuV/m dBuV/               | m dB   | reading<br>dBuV | dB           |               |        | High<br>cm     | Table<br>deg |
|                       |                |                            |        |                 |              |               |        |                |              |
| 1<br>2                |                | 45.45 54.00<br>59.43 74.00 |        | 39.87<br>53.85  | 5.58<br>5.58 | Avera<br>Peak | age    |                |              |
| 3                     |                | 66.53 78.20                |        | 60.95           | 5.58         | Peak          |        |                |              |
| 4                     |                | 47.13 54.00                |        | 32.56           | 14.57        | Avera         | age    |                |              |
| 5                     | 11490.00       | 61.88 74.00                | -12.12 | 47.31           | 14.57        | Peak          |        |                |              |





| Iodulation Mode                                                                                                               | 11a                                               |                                                     | Test Fred                                 | q. (MHz)                               |                               | 5785                      |               |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------|---------------------------|---------------|
| Тх                                                                                                                            | 2                                                 |                                                     | Polarizat                                 | ion                                    |                               | Н                         |               |
| Lovel (dP                                                                                                                     | 1)//m)                                            |                                                     |                                           |                                        |                               |                           |               |
| 90 Level (dB                                                                                                                  |                                                   |                                                     |                                           |                                        |                               |                           |               |
| 80                                                                                                                            |                                                   |                                                     |                                           |                                        |                               |                           |               |
| 70                                                                                                                            |                                                   |                                                     |                                           |                                        | Fecc                          | PART15E_E                 | 4-74          |
| 60                                                                                                                            |                                                   |                                                     |                                           |                                        |                               |                           |               |
|                                                                                                                               | - 3                                               |                                                     |                                           |                                        | FC                            | C PART15E (               | AVG)          |
| 50                                                                                                                            |                                                   |                                                     |                                           |                                        |                               |                           |               |
| 40                                                                                                                            |                                                   |                                                     |                                           |                                        |                               |                           |               |
| 30                                                                                                                            |                                                   |                                                     |                                           |                                        |                               |                           |               |
| 20                                                                                                                            |                                                   |                                                     |                                           |                                        |                               |                           |               |
| 20                                                                                                                            |                                                   |                                                     |                                           |                                        |                               |                           |               |
| 10                                                                                                                            |                                                   |                                                     |                                           |                                        |                               |                           |               |
| 0 <mark></mark>                                                                                                               | 6000. 10000.                                      | 14000. 18000.                                       |                                           | 26000. 3                               | 30000. 3                      | 4000.                     | 40000         |
|                                                                                                                               |                                                   | -                                                   | iency (MHz)                               |                                        |                               |                           |               |
| F                                                                                                                             | req. Emission<br>level                            | n Limit Margi                                       | n SA<br>reading                           | Factor                                 | Remark                        | : ANT<br>High             | Turn<br>Table |
|                                                                                                                               |                                                   | dBuV/m dB                                           | dBuV                                      | dB                                     |                               | cm                        | deg           |
| _                                                                                                                             |                                                   |                                                     |                                           |                                        |                               |                           |               |
|                                                                                                                               | 25.00 65.89<br>50.00 64.89                        | 78.20 -12.31<br>78.20 -13.31                        |                                           | 5.58<br>5.62                           | Peak<br>Peak                  |                           |               |
|                                                                                                                               |                                                   | 54.00 -1.48                                         |                                           | 14.49                                  | Averag                        | e                         |               |
|                                                                                                                               |                                                   | 74.00 -5.78                                         |                                           | 14.49                                  | Peak                          |                           |               |
|                                                                                                                               |                                                   |                                                     |                                           |                                        |                               |                           |               |
| ote 1: ">20dB" means s<br>ote 2: "N/F" means Noth<br>ote 3: Measurement rec<br>ote 4: For restricted ban<br>with the Peak-Det | ing Found spu<br>eive antenna p<br>ds, the peak n | rious emission<br>polarization: H<br>neasurement is | s (No spur<br>(Horizontal<br>fully suffic | rious emi<br>I), V (Ver<br>cient, as t | ssions w<br>tical)<br>the max | vere deteo<br>field strer | oted.)        |





| Modulation M                     | ode          | 11a                  |         |         | ٦                | Fest F           | rec  | ą. (MHz)       |              | 57        | '85              |         |
|----------------------------------|--------------|----------------------|---------|---------|------------------|------------------|------|----------------|--------------|-----------|------------------|---------|
| N <sub>TX</sub>                  |              | 2                    |         |         | F                | Polariz          | zati | ion            |              | V         |                  |         |
|                                  | on Level     | (dBuV/m)             |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  | 80           |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  | 70           | <u>╢╢╢</u>           |         |         |                  |                  | ┹    |                | J4           | CC PAF    | ₹ <b>T15</b> E_B | 4-74    |
|                                  | 60           | - 12                 |         |         |                  |                  | _    |                |              | FCC DA    | RT15E (          | AVG)    |
|                                  | 50           |                      | 3       |         |                  |                  | -    |                |              |           |                  | AVO     |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  | 40           |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  | 30           |                      |         |         |                  |                  | +    | _              |              |           |                  |         |
|                                  | 20           |                      |         |         |                  |                  | +    |                |              |           |                  |         |
|                                  | 10           |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  | 0            |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  | <b>~1000</b> | 6000.                | 10000.  | 14000.  | 18000.<br>Freque | 22000<br>ncy (MH |      | 26000.         | 30000.       | 3400      | 0.               | 40000   |
|                                  |              | Freq. E              | missior | n Limit | Margin           | SA               |      | Factor         | Rema         | ark       | ANT              | Turn    |
|                                  |              | -                    | level   |         | _                | readi            | _    |                |              |           | High             |         |
|                                  |              | MHz                  | dBuV/m  | dBuV/m  | ı dB             | dBuV             | /    | dB             |              |           | cm               | deg     |
| 1                                | L            | 5725.00              | 58.30   | 78.20   | -19.90           | 52.7             | 2    | 5.58           | Peal         | <b>c</b>  |                  |         |
| 2                                |              | 5850.00              |         | 78.20   |                  | 53.0             |      | 5.62           | Peal         |           |                  |         |
| 3                                |              | 11570.00<br>11570.00 |         |         | -5.71            | 33.8<br>48.6     |      | 14.49<br>14.49 | Aver<br>Peal | rage<br>K |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
|                                  |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
| Note 1: ">20dE                   |              |                      |         |         |                  |                  |      |                |              |           |                  |         |
| Note 2: "N/F" r<br>Note 3: Measu |              |                      |         |         |                  |                  |      |                |              | s were    | e detec          | cted.)  |
| Note 4: For res                  |              |                      |         |         |                  |                  |      |                |              | ax fiel   | d strer          | ngth as |
| with th                          | e Peak-      | Detector r           |         |         |                  |                  |      |                |              |           |                  |         |
| additio                          | n.           |                      |         |         |                  |                  |      |                |              |           |                  |         |





| Modulation Mode                                 | 11a                |          |           | 1                | <b>Fest</b>    | Fred       | ą. (MHz)     |        | 5         | 825      |         |
|-------------------------------------------------|--------------------|----------|-----------|------------------|----------------|------------|--------------|--------|-----------|----------|---------|
| N <sub>TX</sub>                                 | 2                  |          |           | F                | Polai          | rizat      | ion          |        | F         |          |         |
| 90 Level (d                                     | dBuV/m)            |          |           |                  |                |            |              |        |           |          |         |
| 90                                              |                    |          |           |                  |                |            |              |        |           |          |         |
| 80                                              | 3                  |          |           |                  |                |            |              |        |           |          |         |
| 70                                              |                    | 7        |           |                  |                | ᇺ          |              |        | CC P/     | RT15E_B  | 4-74    |
| 60                                              |                    |          |           |                  |                |            |              |        |           |          |         |
| 50                                              |                    | 6        |           |                  |                |            |              |        | FCC P     | ART15E ( | AVG)    |
| 50                                              | 1                  |          |           |                  |                |            |              |        |           |          |         |
| 40                                              |                    |          |           |                  |                |            |              |        |           |          |         |
| 30                                              |                    |          |           |                  |                |            |              |        |           |          |         |
| 20                                              |                    |          |           |                  |                |            |              |        |           |          |         |
| 10                                              |                    |          |           |                  |                |            |              |        |           |          |         |
| 10                                              |                    |          |           |                  |                |            |              |        |           |          |         |
| 0 <mark>1000</mark>                             | 6000.              | 10000.   | 14000.    | 18000.<br>Freque | 2200<br>ncy (N |            | 26000.       | 30000. | 340       | 00.      | 40000   |
|                                                 | Freq. I            | Emissior | limit     | Margin           | S              | Δ.         | Factor       | Rema   | ark       | ANT      | Turn    |
|                                                 |                    | level    |           |                  |                | ding       |              |        |           | High     |         |
|                                                 | MHz                | dBuV/m   | dBuV/m    | dB               | dBi            | υV         | dB           |        |           | cm       | deg     |
| 1                                               | 3883.30            | 43.39    | 54.00     | -10.61           | 42             | .13        | 1.26         | Ave    | rage      |          |         |
|                                                 | 3883.30            |          | 74.00     |                  |                | .99        | 1.26         | Peal   |           |          |         |
|                                                 | 5850.00<br>5860.00 |          |           | -1.06<br>-5.35   |                | .52<br>.03 | 5.62<br>5.62 | Peal   | k<br>nage |          |         |
|                                                 | 5860.00            |          |           |                  |                | .91        | 5.62         |        | _         |          |         |
|                                                 | 1650.00            |          |           |                  |                | .09        | 14.39        |        | rage      |          |         |
| 7 1                                             | 1650.00            | 67.36    | 74.00     | -6.64            | 52             | .97        | 14.39        | Peal   | ¢         |          |         |
|                                                 |                    |          |           |                  |                |            |              |        |           |          |         |
|                                                 |                    |          |           |                  |                |            |              |        |           |          |         |
|                                                 |                    |          |           |                  |                |            |              |        |           |          |         |
|                                                 |                    |          |           |                  |                |            |              |        |           |          |         |
|                                                 |                    |          |           |                  |                |            |              |        |           |          |         |
|                                                 |                    |          |           |                  |                |            |              |        |           |          |         |
| loto 1: "> 20dP" magaza                         | couriour           | omiaci   | on lovel  | that av          | 0000           | 1 tha      |              | 20 AD  | holo      | w tha a  | nnlingt |
| lote 1: ">20dB" means<br>lote 2: "N/F" means No |                    |          |           |                  |                |            |              |        |           |          |         |
| lote 3: Measurement re                          |                    |          |           |                  |                |            |              |        |           | 2 20101  |         |
| lote 4: For restricted ba                       |                    |          |           |                  |                |            |              |        |           |          |         |
| with the Peak-D                                 | etector i          | meets th | ie AV-Lir | nit so tha       | at the         | e AV       | level do     | es not | nee       | d to be  | reporte |





| Modulation Mod                       | е         | 11a      | 1       |             |       |       |          | Tes    | Fre          | q. (MHz      | :)      | 5         | 582  | 5              |               |
|--------------------------------------|-----------|----------|---------|-------------|-------|-------|----------|--------|--------------|--------------|---------|-----------|------|----------------|---------------|
| N <sub>TX</sub>                      |           | 2        |         |             |       |       |          | Pola   | arizat       | tion         |         | ١         | /    |                |               |
| 91                                   | Level (   | dBuV/m)  |         |             | _     | _     |          |        |              |              |         |           |      |                |               |
|                                      |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
| 80                                   | <b>m</b>  |          | חח ריור |             |       |       |          | 4      |              |              |         | 1         |      |                |               |
| 70                                   | ┝╟╫╢╢╢    |          |         | 7           |       |       |          | L      |              |              |         | CC P      | ART  | 15 <b>E_</b> B | 4-74          |
| 60                                   |           | 2        |         |             |       |       |          |        |              |              |         | FCC F     | PAR  | T15E (/        | AVG)          |
| 50                                   | )         | 4        |         | - 6         |       |       |          |        |              |              |         |           |      |                |               |
| 40                                   |           | 1        | _       |             |       |       |          |        |              |              |         |           |      |                |               |
| 30                                   |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
|                                      |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
| 20                                   |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
| 10                                   |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
| (                                    | 0<br>1000 | 6000.    | 100     | 00.         | 14(   | 000.  | 18000.   |        | 000.         | 26000.       | 30000.  | 340       | )00. |                | 40000         |
|                                      |           | _        |         |             |       |       | -        | ency   |              | _            | _       |           |      |                | _             |
|                                      |           | Freq.    |         | sior<br>vel | n Li  | mit   | Margi    |        | 5A<br>ading  | Factor       | e Rem   | ark       |      | ANT<br>High    | Turn<br>Table |
|                                      |           | MHz      | dBu     |             | dB    | uV/m  | dB       |        | BuV          | ,<br>dB      |         |           |      | cm             | deg           |
| 1                                    |           | 3883.30  | 10      | 53          | 54    | 00    | -13.47   | - 30   | 9.27         | 1.26         |         | rage      |      |                |               |
| 2                                    |           | 3883.3   |         |             |       |       | -20.76   |        | L.98         | 1.20         |         | <u> </u>  |      |                |               |
| 3                                    |           | 5850.00  |         |             |       |       |          |        | 9.62         | 5.62         |         |           |      |                |               |
| 4                                    |           | 5860.00  |         |             |       |       | -8.75    |        | 9.63<br>4.11 | 5.62<br>5.62 |         | rage<br>k |      |                |               |
| 6                                    |           | L1650.00 | 9 47    | .62         | 54    | .00   | -6.38    | 3      | 3.23         | 14.39        | Ave     | rage      |      |                |               |
| 7                                    | 1         | 11650.00 | 62      | .27         | 74    | .00   | -11.73   | 4      | 7.88         | 14.39        | ) Pea   | k         |      |                |               |
|                                      |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
|                                      |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
|                                      |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
|                                      |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
| ote 1: ">20dB" n<br>ote 2: "N/F" mea |           |          |         |             |       |       |          |        |              |              |         |           |      |                |               |
| lote 3: Measuren                     |           |          |         |             |       |       |          |        |              |              |         | 0 110     |      |                |               |
| lote 4: For restric                  | cted b    | ands, th | ie pea  | ak n        | neas  | sure  | ment is  | fully  | suffi        | cient, as    | s the m |           |      |                |               |
| with the D                           | vook_F    | )etector | meet    | ts th       | ۱e A۱ | ∨-Lir | nit so t | nat th | ne AV        | / Ievel d    | oes not | nee       | d to | o be i         | reporte       |





| Iodulatio       | n Mode                 |           | VHT            | 20    |      |          |      |         | Т          | est | Fre               | q. (N | /Hz          | )      |                 | 574   | 5              |        |
|-----------------|------------------------|-----------|----------------|-------|------|----------|------|---------|------------|-----|-------------------|-------|--------------|--------|-----------------|-------|----------------|--------|
| I <sub>TX</sub> |                        |           | 2              |       |      |          |      |         | Ρ          | ola | rizat             | tion  |              |        |                 | Н     |                |        |
|                 | 1.0                    | und (dDu  | (/ma)          |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 | 90                     | evel (dBu | v/m)           |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 | 80                     |           | 3              |       |      |          |      |         | -          |     |                   |       |              |        |                 |       |                |        |
|                 | 70                     |           | ſ I            |       | 5    |          |      |         | _          |     |                   |       |              |        | <b>FCC</b>      | PART  | 15 <b>E_</b> B | 4-74   |
|                 | 60                     |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 | Ļ                      |           |                |       | 4    |          |      |         |            |     |                   |       |              |        | FCO             | : PAR | T15E (/        | AVG)   |
|                 | 50                     |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 | 40                     |           |                |       |      |          |      |         |            |     |                   |       | -            |        |                 |       |                |        |
|                 | 30                     |           | _              |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 | 20                     |           | _              |       |      |          |      |         |            |     |                   |       |              |        | _               |       |                |        |
|                 | 10                     |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 |                        |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 | <sup>0</sup> 10        | 000       | 6000.          | 100   | 00.  | 140      | 00.  | 1800    | 0.<br>quen | 220 |                   | 260   | 00.          | 30000. | 3               | 4000. |                | 40000  |
|                 |                        | E         | req.           | Fmico | ion  |          | ni+  |         |            |     | ап <i>2)</i><br>А | Far   | ctor         | Ror    | ıark            |       | ANT            | Turn   |
|                 |                        |           |                |       | vel  |          |      | i lai e |            |     | ding              |       |              | i i ci |                 |       | High           |        |
|                 |                        | 1         | MHz            | dBu\  | V/m  | dB       | uV/m | dB      |            | dB  | uV                | 0     | dB           |        |                 |       | cm             | deg    |
|                 | 1                      | 57:       | 15.00          | 50.   | .05  | 54       | .00  | -3.9    | 95         | 44  | .47               | _     | 5.58         | Ave    | erag            | e     |                |        |
|                 | 2                      |           | 15.00          |       |      |          | .00  | -1.6    |            |     | .42               | 1     | 5.58         | Pea    |                 |       |                |        |
|                 | 3<br>4                 |           | 25.00<br>90.00 |       |      | 78<br>54 |      | -1.2    |            |     | .42<br>.99        |       | 5.58<br>4.57 |        | ak<br>erag      | 6     |                |        |
|                 | 5                      |           | 90.00          |       |      |          |      |         |            |     | .85               |       | 4.57         |        | -               | C     |                |        |
|                 |                        |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 |                        |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 |                        |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 |                        |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 |                        |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 |                        |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
| te 1: ">2       | 20dB" me               | ans sp    | uriou          | s em  | issi | on le    | evel | s that  | exc        | cee | d the             | e lev | el of        | 20 dE  | 3 be            | low   | the a          | pplica |
|                 | F" means               |           |                |       |      |          |      |         |            |     |                   |       |              |        | ns w            | ere   | detec          | ted.)  |
|                 | asureme<br>r restricte |           |                |       |      |          |      |         |            |     |                   |       |              |        | ax <sup>†</sup> | field | stren          | ath as |
|                 | h the Pea              |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                |        |
|                 | dition.                |           |                |       |      |          |      |         |            |     |                   |       |              |        |                 |       |                | -      |





| Modulation Mode                                                                                          | VHT                | 20                |                        | -                     | Гest         | Fred        | ą. (MHz)              |                     | 57       | 45         |              |
|----------------------------------------------------------------------------------------------------------|--------------------|-------------------|------------------------|-----------------------|--------------|-------------|-----------------------|---------------------|----------|------------|--------------|
| N <sub>TX</sub>                                                                                          | 2                  |                   |                        | I                     | Pola         | izat        | ion                   |                     | V        |            |              |
| Lovel (dD                                                                                                | 11/1001            |                   |                        |                       |              |             |                       |                     |          |            |              |
| 90 <mark>Level (dB</mark>                                                                                |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
| 80                                                                                                       |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
| 70                                                                                                       | 3                  |                   |                        |                       |              |             |                       |                     | CC PAR   | T15E_B     | 4-74         |
| 60                                                                                                       | 2                  | 5                 |                        |                       |              |             |                       |                     |          |            |              |
|                                                                                                          |                    |                   |                        |                       |              |             |                       |                     | FCC PA   | RT15E (/   | AVG)         |
| 50                                                                                                       |                    | 4                 |                        |                       |              |             |                       |                     |          |            |              |
| 40                                                                                                       | _                  |                   |                        |                       |              |             |                       |                     |          |            |              |
| 30                                                                                                       |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
| 20                                                                                                       |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
| 20                                                                                                       |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
| 10                                                                                                       |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
| 0 <mark></mark><br>1000                                                                                  | 6000.              | 10000.            | 14000.                 | 18000.                | 220          | )0.         | 26000.                | 30000.              | 34000    | ).         | 40000        |
|                                                                                                          |                    |                   |                        | Freque                | ncy (N       | IHz)        |                       |                     |          |            |              |
| F                                                                                                        | req. E             |                   |                        | Margin                |              |             | Factor                | Rema                | ark      | ANT        | Turn         |
|                                                                                                          | MHz                | level<br>dBuV/m   | dBuV/n                 | n dB                  | rea<br>dB    | ling<br>v   | dB                    |                     |          | High<br>cm | Table<br>deg |
|                                                                                                          |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
|                                                                                                          |                    | 46.72             |                        | -7.28                 |              | .14         | 5.58                  |                     | <u> </u> |            |              |
|                                                                                                          |                    |                   | 74.00<br>78.20         |                       |              | .10<br>.57  | 5.58<br>5.58          | Peal<br>Peal        |          |            |              |
|                                                                                                          |                    |                   |                        | -7.19                 |              | .24         | 14.57                 |                     |          |            |              |
| 5 114                                                                                                    | 90.00              | 61.45             | 74.00                  | -12.55                | 46           | .88         | 14.57                 | Peak                | Ċ        |            |              |
|                                                                                                          |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
|                                                                                                          |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
|                                                                                                          |                    |                   |                        |                       |              |             |                       |                     |          |            |              |
| ote 1: ">20dB" means s<br>ote 2: "N/F" means Noth<br>ote 3: Measurement rec<br>ote 4: For restricted ban | iing Fo<br>eive ar | und spi<br>ntenna | urious ei<br>polarizat | missions<br>ion: H (H | (No<br>Horiz | spu<br>onta | rious em<br>I), V (Ve | nissions<br>rtical) | s were   | detec      | ted.)        |





| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | ion    | Polarizati |          |          | VHT      |                     |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|------------|----------|----------|----------|---------------------|----|
| 80       70       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                             | ECC PART15E_B4-74     |        |            |          |          | 2        |                     | тх |
| 80       70       FCC PART15       B4 74         60       3       60       FCC PART15       CAVG)         50       60       60       60       60       60       60         30       60       60       60       60       60       60       60         10       60       600       1000       1400       1800       22000       2600       3000       3400       400         100       6000       10000       14000       18000       22000       26000       30000       34000       400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ECC PART15E_B4-74     |        |            |          |          | (dBuV/m) | l evel (d           |    |
| 70       FCC PART15E_B4.74         60       70         60       70         60       70         70       FCC PART15E_B4.74         60       70         70       FCC PART15E_B4.74         60       70         70       FCC PART15E_B4.74         60       70         70       FCC PART15E_AVG)         50       70         70       70         70       FCC PART15E_AVG)         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70       70         70                                                                                                                                                                                                                          | CC PART15E_B4-74      |        |            |          |          |          | 90                  |    |
| 60       3       60       3       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       6 | ECC-PART15E_B4-74     |        |            |          |          |          |                     |    |
| 50<br>50<br>40<br>30<br>20<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |        |            |          | ┍┶║Ļ┚╶╅╴ |          | 70                  |    |
| 50<br>40<br>30<br>20<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ECC PART15E (AVG)     |        |            |          |          |          | 60                  |    |
| 30<br>20<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |            |          |          |          | 50                  |    |
| 30<br>20<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |        |            |          |          |          | 40                  |    |
| 20<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |        |            |          |          |          |                     |    |
| 10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 400<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |        |            |          |          |          |                     |    |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 400<br>Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |        |            |          |          |          | 20                  |    |
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |        |            |          |          |          | 10                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 30000. 34000. 40000 | 26000. |            | 14000.   | 10000.   | 6000.    | 0 <mark>1000</mark> |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |        |            |          |          |          |                     |    |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | Factor |            | Limit /  |          | Freq. E  |                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | dB     | -          | dBuV/m   | dBuV/m   | MHz      |                     |    |
| 1 5725.00 68.13 78.20 -10.07 62.55 5.58 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 5.58   | 62.55      | 78.20 -: | 68.13    | 5725.00  | Ţ                   | 1  |
| 2 5850.00 67.00 78.20 -11.20 61.38 5.62 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62 Peak               | 5.62   | 61.38      | 78.20 -1 | 67.00    | 5850.00  | !                   |    |
| 3 11570.00 52.78 54.00 -1.22 38.29 14.49 Average<br>4 11570.00 68.00 74.00 -6.00 53.51 14.49 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                     |        |            |          |          |          |                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |        |            |          |          | 11070100 |                     |    |





| $\frac{1}{11570.00}$ $\frac{2}{4}$ $\frac{2}{11570.00}$ $\frac{2}{4}$ | 80<br>70<br>60<br>50<br>40<br>30<br>20<br>10 | BuV/m)           |                |              |             |           | PART15E_B4   |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|----------------|--------------|-------------|-----------|--------------|------------|
| 80       70       4       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80<br>70<br>60<br>50<br>40<br>30<br>20<br>10 |                  |                |              |             |           |              |            |
| 80       70       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80<br>70<br>60<br>50<br>40<br>30<br>20<br>10 |                  |                |              |             |           |              |            |
| 70       4       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70<br>60<br>50<br>40<br>30<br>20<br>10       |                  |                |              |             |           |              |            |
| 60       2       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60<br>50<br>40<br>30<br>20<br>10             |                  |                |              |             |           |              |            |
| 50       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>40<br>30<br>20<br>10                   |                  |                |              |             | FCC       | PART 15E (A) | <u>VG)</u> |
| 50       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td>40<br/>30<br/>20<br/>10</td><td>6000. 10000.</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40<br>30<br>20<br>10                         | 6000. 10000.     |                |              |             |           |              |            |
| 30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30       30 <td< td=""><td>30<br/>20<br/>10</td><td>6000. 10000.</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30<br>20<br>10                               | 6000. 10000.     |                |              |             |           |              |            |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>20<br/>10</td><td>6000. 10000.</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>10                                     | 6000. 10000.     |                |              |             |           |              |            |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>20<br/>10</td><td>6000. 10000.</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>10                                     | 6000. 10000.     |                |              |             |           |              |            |
| 10       0       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA Factor NHz       Frequency (MHz)       Frequency (MHz)       11000       11000       6000.       10000       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA Factor Remark Inverties       MHz       MUV/m       dBuV/m       dB       dBuV       dB       dB       cm       deg         1       5725.00       59.88       78.20       -18.32       54.30       5.58       Peak           2       5850.00       59.23       78.20       -18.97       53.61       5.62       Peak           3       11570.00       48.67       54.00       -5.33       34.18       14.49       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                           | 6000. 10000.     |                |              |             |           |              |            |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading High Table<br>MHz dBuV/m dBuV/m dB dBuV dB cm deg<br>1 5725.00 59.88 78.20 -18.32 54.30 5.58 Peak<br>2 5850.00 59.23 78.20 -18.97 53.61 5.62 Peak<br>3 11570.00 48.67 54.00 -5.33 34.18 14.49 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              | 6000. 10000.     |                |              |             |           |              |            |
| Frequency (MHZ)         Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       High Table cm         1       5725.00       59.88       78.20       -18.32       54.30       5.58       Peak           2       5850.00       59.23       78.20       -18.97       53.61       5.62       Peak           3       11570.00       48.67       54.00       -5.33       34.18       14.49       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 <mark></mark>                              | 6000. 10000.     |                |              |             |           |              |            |
| Frequency (MHZ)         Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading         MHz       dBuV/m       dBuV/m       dBuV       dB       High Table cm         1       5725.00       59.88       78.20       -18.32       54.30       5.58       Peak          2       5850.00       59.23       78.20       -18.97       53.61       5.62       Peak          3       11570.00       48.67       54.00       -5.33       34.18       14.49       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                  |                |              | 26000. 3    | 30000. 34 | 1000. 4      | 10000      |
| level         reading         High         Table           MHz         dBuV/m         dBuV/m         dBuV         dB         cm         deg           1         5725.00         59.88         78.20         -18.32         54.30         5.58         Peak             2         5850.00         59.23         78.20         -18.97         53.61         5.62         Peak             3         11570.00         48.67         54.00         -5.33         34.18         14.49         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                  |                |              | -           |           |              | _          |
| MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5725.00       59.88       78.20       -18.32       54.30       5.58       Peak           2       5850.00       59.23       78.20       -18.97       53.61       5.62       Peak           3       11570.00       48.67       54.00       -5.33       34.18       14.49       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                  | n Limit Mar    |              |             | Remark    |              |            |
| 2         5850.00         59.23         78.20         -18.97         53.61         5.62         Peak             3         11570.00         48.67         54.00         -5.33         34.18         14.49         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                  | dBuV/m dB      |              |             |           | -            |            |
| 2 5850.00 59.23 78.20 -18.97 53.61 5.62 Peak<br>3 11570.00 48.67 54.00 -5.33 34.18 14.49 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 -                                          | 5725.00 59.88    | 78,20 -18,     | 32 54.30     | 5.58        | Peak      |              |            |
| <b>o</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                  |                |              |             |           |              |            |
| 4 11570.00 05.55 74.00 -10.45 45.00 14.45 FEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                  |                |              |             | -         | 2            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 11                                         | 1970.00 09.99    | 74.00 -10.     | 45 45.00     | 14.49       | reak      |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oto 1: "> 20dP" moone                        |                  | on lovala that | t avagad the |             |           | ow the en    | nliagh     |
| oto 1: "> 20dP" means spurious opission lovels that exceed the lovel of 20 dP below the applicab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |                  |                |              |             |           |              |            |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                  |                |              |             |           |              | 00.)       |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicab<br>ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)<br>ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                  |                |              |             |           |              |            |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | with the Peak-De<br>addition.                | etector meets th | e AV-Limit so  | o that the A | / level doe | es not ne | ed to be re  | eporte     |





| TX         2         Polarization         H           90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Modulation M    | ode           | VHT          | 20       |            |           | Test   | Free  | q. (MHz) |          | 58      | 25      |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|--------------|----------|------------|-----------|--------|-------|----------|----------|---------|---------|----------|
| 80       70       60       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6                                                                                                                                                                                                | N <sub>TX</sub> |               | 2            |          |            |           | Pola   | rizat | ion      |          | Н       |         |          |
| 80       70       60       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6                                                                                                                                                                                                |                 | Laurel (dD    |              |          |            |           |        |       |          |          |         |         |          |
| 70       1       5       1       6       6       6       6       7       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                  |                 | 90 Level (dBi | <u>IV/m)</u> |          |            |           |        |       |          |          |         |         |          |
| 60       2       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4                                                                                                                                                                                                  |                 | 80            |              |          |            |           |        |       |          |          |         |         |          |
| 60       2       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4                                                                                                                                                                                                  |                 |               | -1           |          |            |           |        |       |          | l n      |         | т14 в   | 4 74     |
| 50       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                  |                 |               | 1. 1         |          |            |           |        |       |          |          | CC FAIL |         |          |
| 50       2       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4                                                                                                                                                                                                  |                 | 60            |              |          |            |           |        |       |          |          | FCC PAI | RT15E ( | AVG)     |
| 40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <td< td=""><td></td><td>50</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> |                 | 50            | 2            |          |            |           |        |       |          |          |         |         |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |              |          |            |           |        |       |          |          |         |         |          |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td></td><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>  |                 | 40            |              |          |            |           |        |       |          |          |         |         |          |
| 10       0       0       1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading MHz dBuV/m dB uV/m dB dBuV       SA Factor Remark ANT Turn High Table cm deg         1       5850.00       77.20       78.20       -1.00       71.58       5.62       Peak          2       5860.00       49.17       54.00       -4.83       43.55       5.62       Average          3       5860.00       71.72       74.00       -2.28       66.10       5.62       Peak          4       11650.00       50.97       54.00       -3.03       36.58       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 30            |              |          |            |           |        |       |          |          |         |         |          |
| 10       0       0000       10000       14000       18000       22000       26000       30000       34000       40000         Freq. Emission Limit Margin SA Factor Remark ANT Turn Level reading MHz dBuV/m dB uV/m dB dBuV       SA Factor Remark ANT Turn High Table cm deg         1       5850.00       77.20       78.20       -1.00       71.58       5.62       Peak          2       5860.00       49.17       54.00       -4.83       43.55       5.62       Average          3       5860.00       71.72       74.00       -2.28       66.10       5.62       Peak          4       11650.00       50.97       54.00       -3.03       36.58       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 20            |              |          |            |           |        |       |          |          |         |         |          |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Turn<br>level reading MHz dBuV/m dB dBuV dB cm deg<br><u>1 5850.00 77.20 78.20 -1.00 71.58 5.62 Peak</u><br>2 5860.00 49.17 54.00 -4.83 43.55 5.62 Average<br>3 5860.00 71.72 74.00 -2.28 66.10 5.62 Peak<br>4 11650.00 50.97 54.00 -3.03 36.58 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 20            |              |          |            |           |        |       |          |          |         |         |          |
| Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading MHz dBuV/m dB dBuV dB         MHz       dBuV/m       dBuV/m       dB       cm       High Table deg         1       5850.00       77.20       78.20       -1.00       71.58       5.62       Peak          2       5860.00       49.17       54.00       -4.83       43.55       5.62       Average          3       5860.00       71.72       74.00       -2.28       66.10       5.62       Peak          4       11650.00       50.97       54.00       -3.03       36.58       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 10            |              |          |            |           |        |       |          |          |         |         | <u> </u> |
| Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading MHz dBuV/m dB dBuV dB         MHz       dBuV/m       dBuV/m       dB       cm       High Table deg         1       5850.00       77.20       78.20       -1.00       71.58       5.62       Peak          2       5860.00       49.17       54.00       -4.83       43.55       5.62       Average          3       5860.00       71.72       74.00       -2.28       66.10       5.62       Peak          4       11650.00       50.97       54.00       -3.03       36.58       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 0             |              |          |            |           |        |       |          |          |         | _       |          |
| Freq. Emission Limit Margin Limit Margin SA reading MHz       Factor MHz       Remark Margin Table deg       ANT Turn High Table deg         1       5850.00       77.20       78.20       -1.00       71.58       5.62       Peak          2       5860.00       49.17       54.00       -4.83       43.55       5.62       Average          3       5860.00       71.72       74.00       -2.28       66.10       5.62       Peak          4       11650.00       50.97       54.00       -3.03       36.58       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 1000          | 6000.        | 10000.   | 14000.     |           |        |       | 26000.   | 30000.   | 34000   | ).      | 40000    |
| level         reading         High         Table           MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         deg           1         5850.00         77.20         78.20         -1.00         71.58         5.62         Peak            2         5860.00         49.17         54.00         -4.83         43.55         5.62         Average            3         5860.00         71.72         74.00         -2.28         66.10         5.62         Peak            4         11650.00         50.97         54.00         -3.03         36.58         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | F             | rea          | Fmissio  | n limit    |           |        |       | Factor   | Roma     | nk      | ΔΝΤ     | Turn     |
| MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5850.00       77.20       78.20       -1.00       71.58       5.62       Peak           2       5860.00       49.17       54.00       -4.83       43.55       5.62       Average           3       5860.00       71.72       74.00       -2.28       66.10       5.62       Peak           4       11650.00       50.97       54.00       -3.03       36.58       14.39       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |               |              |          |            | nu gri    |        |       |          | ricine   |         |         |          |
| 2         5860.00         49.17         54.00         -4.83         43.55         5.62         Average             3         5860.00         71.72         74.00         -2.28         66.10         5.62         Peak             4         11650.00         50.97         54.00         -3.03         36.58         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |               | MHz          | dBuV/m   | dBuV/m     | dB        |        | -     |          |          |         | _       |          |
| 2         5860.00         49.17         54.00         -4.83         43.55         5.62         Average             3         5860.00         71.72         74.00         -2.28         66.10         5.62         Peak             4         11650.00         50.97         54.00         -3.03         36.58         14.39         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |               |              |          |            |           |        |       |          |          |         |         |          |
| 3 5860.00 71.72 74.00 -2.28 66.10 5.62 Peak<br>4 11650.00 50.97 54.00 -3.03 36.58 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
| 4 11650.00 50.97 54.00 -3.03 36.58 14.39 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               |              |          |            |           |        |       |          |          | _       |         |          |
| 5 11650.00 66.84 74.00 -7.16 52.45 14.39 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5               |               |              |          |            |           | 52     | .45   |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |              |          |            |           |        |       |          |          |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ote 1: ">20dE   | " means s     | ouriou       | s emiss  | ion levels | s that ex | kceed  | the   | level of | 20 dB    | below   | the a   | pplicabl |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ote 2: "N/F" n  | neans Noth    | ing Fo       | ound spi | urious er  | nissions  | s (No  | spu   | rious em | nissions |         |         |          |
| ote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |               |              |          |            |           |        |       |          |          |         |         |          |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)<br>ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |               |              |          |            |           |        |       |          |          |         |         |          |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)<br>ote 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)<br>ote 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | with the        | e Peak-Det    | ector        | meets th | ne AV-Lir  | nit so th | at the | e AV  | level do | oes not  | need    | to be   | reported |
| ote 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |               |              |          |            |           |        |       |          |          |         |         | -        |





| Modulation Mode                                                                                                        | VHT                                | 20                               |                                   |                                  | Test                    | Free                    | q. (MHz)                            | )                             | 5              | 5825                |                   |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------|-------------------------|-------------------------------------|-------------------------------|----------------|---------------------|-------------------|
| N <sub>TX</sub>                                                                                                        | 2                                  |                                  |                                   |                                  | Pola                    | rizat                   | ion                                 |                               | ١              | /                   |                   |
| 90 Level                                                                                                               | (dBuV/m)                           |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
|                                                                                                                        |                                    |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
| 80                                                                                                                     |                                    |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
| 70                                                                                                                     | <u>J I J1 I</u>                    | 5                                |                                   |                                  |                         |                         |                                     |                               | CC P           | ART15E_             | <u>84-74-</u>     |
| 60                                                                                                                     |                                    |                                  |                                   |                                  |                         |                         |                                     |                               | FCC I          | PART15E             | (AVG)             |
| 50                                                                                                                     | 2                                  | 4                                |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
| 40                                                                                                                     |                                    |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
| 30                                                                                                                     |                                    |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
| 20                                                                                                                     |                                    |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
|                                                                                                                        |                                    |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
| 10                                                                                                                     |                                    |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
| 0 <mark></mark><br>1000                                                                                                | 6000.                              | 10000.                           | 14000.                            | 18000.                           | 220                     |                         | 26000.                              | 30000.                        | 340            | 000.                | 40000             |
|                                                                                                                        | Enor                               | mission                          | n Limit                           | Freque                           |                         | MHZ)<br>A               | Factor                              | Rema                          | nk             | ANT                 | Turn              |
|                                                                                                                        | rreq. i                            | level                            |                                   | nargi                            |                         | ding                    |                                     | Kellia                        | II'K           | High                |                   |
|                                                                                                                        | MHz                                | dBuV/m                           | dBuV/m                            | dB                               | dB                      | uV                      | dB                                  |                               |                | cm                  | deg               |
| 1                                                                                                                      | 5850.00                            | 66.81                            | 78.20                             | -11.39                           | 61                      | .19                     | 5.62                                | Peal                          | <b>,</b>       |                     |                   |
| 2                                                                                                                      | 5860.00                            |                                  |                                   |                                  |                         | .17                     | 5.62                                |                               | _              |                     |                   |
| 3                                                                                                                      | 5860.00<br>11650.00                |                                  |                                   |                                  |                         | .58                     | 5.62<br>14.39                       | Peal<br>Aver                  |                |                     |                   |
|                                                                                                                        | 11650.00                           |                                  |                                   |                                  |                         | .18                     | 14.39                               | Peal                          | _              |                     |                   |
|                                                                                                                        |                                    |                                  |                                   |                                  |                         |                         |                                     |                               |                |                     |                   |
| Note 1: ">20dB" means<br>Note 2: "N/F" means N<br>Note 3: Measurement r<br>Note 4: For restricted b<br>with the Peak-I | othing Fo<br>eceive a<br>ands, the | ound spu<br>ntenna p<br>e peak n | urious er<br>polarizat<br>neasure | nissions<br>ion: H (l<br>ment is | s (No<br>Horiz<br>fully | spui<br>conta<br>suffic | rious err<br>I), V (Ve<br>cient, as | nissions<br>rtical)<br>the ma | s we<br>ax fie | re dete<br>eld stre | cted.)<br>ngth as |





| Modulation Mode                                    | VHT40          |                     | Test Free      | ą. (MHz)      |              | 5755      |         |
|----------------------------------------------------|----------------|---------------------|----------------|---------------|--------------|-----------|---------|
| N <sub>TX</sub>                                    | 2              |                     | Polarizat      | ion           |              | Н         |         |
| 90                                                 | IV/m)          |                     |                |               |              |           |         |
| 90                                                 |                |                     |                |               |              |           |         |
| 80                                                 |                |                     |                |               |              |           |         |
| 70                                                 |                |                     |                |               |              | FCC PAR   | T15E    |
| 60                                                 |                | 7                   |                |               |              |           |         |
|                                                    | I I I          |                     |                |               | FC           | C PART15E | (AVG)   |
| 50                                                 |                | 6                   |                |               |              |           |         |
| 40                                                 |                |                     |                |               |              |           |         |
| 30                                                 |                |                     |                |               |              |           |         |
|                                                    |                |                     |                |               |              |           |         |
| 20                                                 |                |                     |                |               |              |           |         |
| 10                                                 |                |                     |                |               |              |           |         |
| 0                                                  | 6000. 10000.   | 14000. 18000        | . 22000.       | 26000.        | 30000. 3     | 4000.     | 40000   |
| 1000                                               | 0000. 10000.   |                     | uency (MHz)    | 20000.        | 50000. 5     | 4000.     | 40000   |
| F                                                  | req. Emissio   | n Limit Margi       | n SA           | Factor        | Remark       | ANT       | Turn    |
|                                                    | level          | _                   | reading        |               |              | High      |         |
| ļ                                                  | MHz dBuV/m     | dBuV/m dB           | dBuV           | dB            |              | cm        | deg     |
| 1 51                                               | 50.00 47.60    | 54.00 -6.40         | 42.04          | 5.56          | Averag       |           |         |
|                                                    |                | 74.00 -10.59        |                | 5.56          | Peak         |           |         |
|                                                    | 50.00 46.93    |                     |                | 5.71          | Averag       | ge        |         |
|                                                    |                | 74.00 -14.08        |                | 5.71<br>15.21 | Peak<br>Peak |           |         |
|                                                    |                | 54.00 -8.87         |                | 14.31         | Averag       |           |         |
|                                                    | 90.00 58.78    | 74.00 -15.22        |                | 14.31         | Peak         |           |         |
|                                                    |                |                     |                |               |              |           |         |
|                                                    |                |                     |                |               |              |           |         |
|                                                    |                |                     |                |               |              |           |         |
|                                                    |                |                     |                |               |              |           |         |
|                                                    |                |                     |                |               |              |           |         |
|                                                    |                |                     |                |               |              |           |         |
|                                                    |                |                     |                |               |              |           |         |
|                                                    |                |                     |                |               |              |           |         |
| lote 1: ">20dB" means sp                           |                | on lovola that      | avood the      | lovel of      | 20 dP ha     | low the c | nnliagh |
| lote 1: >200B means sp<br>lote 2: "N/F" means Noth |                |                     |                |               |              |           |         |
| lote 3: Measurement rece                           |                |                     |                |               |              |           |         |
| lote 4: For restricted band                        | ds, the peak n | neasurement is      | s fully suffic | cient, as     | the max      |           |         |
| with the Peak-Det                                  | t - u - u t t  | A) / 1 los 14 a a 4 | hat the AV     | loval da      | oc not na    | and to be | roporto |





| ATX         2         Polarization         V           90         Level (dBuV/m)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                          | Modulation Mod   | le          | VHT      | 40        |                   | -         | Test   | Fred | ą. (MHz) | )       | 5     | 755        |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|----------|-----------|-------------------|-----------|--------|------|----------|---------|-------|------------|---------------|
| 80       70       3       5       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       7                                                                                                                                                                         | N <sub>TX</sub>  |             | 2        |           |                   | I         | Polar  | izat | ion      |         | V     | /          |               |
| 80       70       3       5       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       7                                                                                                                                                                         | 0                | o Level (dB | uV/m)    |           |                   |           |        |      |          |         |       |            |               |
| 70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                        |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
| 60       5       5       60       FCC PART15E (AVG)         50       60       60       60       60       60       60         60       60       60       60       60       60       60       60         60       60       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         60       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         60       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq.       Emission Limit Margin SA Factor Remark ANT Turn High Table Cm deg       High Table Cm deg       1       5715.00       46.22       54.00       -7.78       40.64       5.58       Average           1       5715.00       58.73       74.00       -15.27       53.15       5.58       Peak           3       5725.00       63.91       78.20       -14.29       58.33       5.58       Peak           4       11510.00       45.02                                                                                                                                                                 |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
| 50       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       600       600       600       100       600       1000       1400       1800       2000       20       20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 </td <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CC PA</td> <td>VKI154E_</td> <td><u>B4-74</u></td> |                  |             | 3        |           |                   |           |        |      |          |         | CC PA | VKI154E_   | <u>B4-74</u>  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                | 0           | 1        |           |                   |           |        |      |          |         | FCC P | ART15E     | (AVG)         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                | 0           |          | 4         | +                 |           |        |      |          |         |       |            |               |
| 20       10       10       10       1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin SA reading         MHz       dBuV/m       dB       dBuV       dB       cm       deg         1       5715.00       46.22       54.00       -7.78       40.64       5.58       Average           2       5715.00       58.73       74.00       -15.27       53.15       5.58       Peak           3       5725.00       63.91       78.20       -14.29       58.33       5.58       Peak           4       11510.00       45.02       54.00       -8.98       30.47       14.55       Average                                                                                                                                                                                                                                                                                                                                                                                              | 4                | 0           |          |           |                   |           |        |      |          |         |       |            |               |
| 10       10       100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       40000         Freq. Emission Limit Margin Level       Frequency (MHz)       SA       Factor Remark High Table Cm       ANT Turn High Table Cm         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       Cm       deg         1       5715.00       46.22       54.00       -7.78       40.64       5.58       Average          2       5715.00       58.73       74.00       -15.27       53.15       5.58       Peak          3       5725.00       63.91       78.20       -14.29       58.33       5.58       Peak          4       11510.00       45.02       54.00       -8.98       30.47       14.55       Average                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                | 0           |          |           |                   |           |        |      |          |         |       |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                | 0           |          |           |                   |           |        |      |          |         |       |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                | 0           |          |           |                   |           |        |      |          |         |       |            |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 0           |          |           |                   |           |        |      |          |         |       |            |               |
| level         reading         High         Table           MHz         dBuV/m         dBuV/m         dBuV         dB         cm         deg           1         5715.00         46.22         54.00         -7.78         40.64         5.58         Average             2         5715.00         58.73         74.00         -15.27         53.15         5.58         Peak             3         5725.00         63.91         78.20         -14.29         58.33         5.58         Peak             4         11510.00         45.02         54.00         -8.98         30.47         14.55         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1000        | 6000.    | 10000.    | 14000.            |           |        |      | 26000.   | 30000.  | 340   | 00.        | 40000         |
| MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       5715.00       46.22       54.00       -7.78       40.64       5.58       Average           2       5715.00       58.73       74.00       -15.27       53.15       5.58       Peak           3       5725.00       63.91       78.20       -14.29       58.33       5.58       Peak           4       11510.00       45.02       54.00       -8.98       30.47       14.55       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | F           | req. I   |           |                   | Margin    |        |      |          | Rema    | ark   |            |               |
| 1       5715.00       46.22       54.00       -7.78       40.64       5.58       Average           2       5715.00       58.73       74.00       -15.27       53.15       5.58       Peak           3       5725.00       63.91       78.20       -14.29       58.33       5.58       Peak           4       11510.00       45.02       54.00       -8.98       30.47       14.55       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             | MHz      |           |                   | dB        |        | -    |          |         |       | -          |               |
| 2       5715.00       58.73       74.00       -15.27       53.15       5.58       Peak           3       5725.00       63.91       78.20       -14.29       58.33       5.58       Peak           4       11510.00       45.02       54.00       -8.98       30.47       14.55       Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | _           |          |           |                   |           |        |      |          |         |       |            |               |
| 3 5725.00 63.91 78.20 -14.29 58.33 5.58 Peak<br>4 11510.00 45.02 54.00 -8.98 30.47 14.55 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                | 57          | 725.00   | 63.91     | 78.20             | -14.29    | 58.    | 33   | 5.58     | Peal    | c     |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |          |           |                   |           |        |      |          |         | -     |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Note 1: ">20dB"  | means s     | puriou   | s emiss   | ion levels        | s that ex | ceed   | the  | level of | 20 dB   | belo  | w the      | applical      |
| lote 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Note 2: "N/F" me | ans Noth    | ning Fo  | ound sp   | urious er         | nissions  | (No    | spu  | rious en | nission |       |            |               |
| Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicabl<br>Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |             |          |           |                   |           |        |      |          |         |       | - سئم امان | الدم          |
| Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)<br>Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |             |          |           |                   |           |        |      |          |         |       |            |               |
| Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WITH THAN        |             | iector i | TIPPIC II | 1 <u>0 AV-I I</u> | nir so m  | AT 104 | AV   | IEVEL N  | Jes not | nee   | 0 10 04    | 1 6 1 1 1 1 1 |





| Modulation Mo    | de              | VHT                  | 40                |           | -              | Test | Fred       | ą. (MHz)       | )        | 57      | 95         |              |
|------------------|-----------------|----------------------|-------------------|-----------|----------------|------|------------|----------------|----------|---------|------------|--------------|
| N <sub>TX</sub>  |                 | 2                    |                   |           |                | Pola | rizat      | ion            |          | Н       |            |              |
|                  | Level           | (dBuV/m)             |                   |           |                |      |            |                |          |         |            |              |
|                  | 90              |                      |                   |           |                |      |            |                |          |         |            |              |
|                  | 80              |                      |                   |           |                |      |            |                |          |         | 1.         |              |
|                  | 70              | ▋▋                   | ┞╜╟┼╴╸            |           |                |      |            |                | I ŧ      | CC PAR  | T15E_B     | 4-74         |
|                  | 60              |                      |                   |           |                |      |            |                |          |         | RT15E (/   | AVG)         |
|                  | 50              |                      | 4                 |           |                |      |            |                |          |         |            |              |
|                  | 40              |                      |                   |           |                |      |            |                |          |         |            |              |
|                  |                 |                      |                   |           |                |      |            |                |          |         |            |              |
|                  | 30              |                      |                   |           |                |      |            |                |          |         |            |              |
|                  | 20              |                      |                   |           |                |      |            |                |          |         |            |              |
|                  | 10              |                      |                   |           |                |      |            |                |          |         | _          |              |
|                  | 0 <mark></mark> | 6000.                | 10000.            | 14000.    | 18000.         | 220  | 00.        | 26000.         | 30000.   | 3400    | ).         | 40000        |
|                  |                 |                      |                   |           | Freque         |      |            |                |          |         |            |              |
|                  |                 | Freq.                | Emission<br>level | n Limit   | Margin         |      |            | Factor         | Rema     | irk     | ANT        | Turn         |
|                  |                 | MHz                  |                   | dBuV/m    | dB             | dB   | ding<br>uV | dB             |          |         | High<br>cm | Table<br>deg |
|                  |                 |                      |                   |           |                |      |            |                |          |         |            |              |
| 1                |                 |                      | 75.90<br>52.23    |           | -2.30<br>-1.77 |      | .28<br>.61 | 5.62<br>5.62   |          |         |            |              |
| 3                |                 | 5860.00              | 72.73             | 74.00     | -1.27          | 67   | .11        | 5.62           | Peak     | :       |            |              |
| 4                |                 | 11590.00<br>11590.00 |                   |           | -3.27<br>-7.52 |      | .28<br>.03 | 14.45<br>14.45 |          | _       |            |              |
| ,                |                 | 11390.00             | 00.40             | 74.00     | -7.52          | 52   | .05        | 14.45          | rear     |         |            |              |
|                  |                 |                      |                   |           |                |      |            |                |          |         |            |              |
|                  |                 |                      |                   |           |                |      |            |                |          |         |            |              |
|                  |                 |                      |                   |           |                |      |            |                |          |         |            |              |
|                  |                 |                      |                   |           |                |      |            |                |          |         |            |              |
|                  |                 |                      |                   |           |                |      |            |                |          |         |            |              |
|                  |                 |                      |                   |           |                |      |            |                |          |         |            |              |
| Note 1: ">20dB'  | mean            | s spuriou            | s emissi          | on levels | that ex        | ceed | d the      | level of       | 20 dB    | below   | the a      | pplicabl     |
| Note 2: "N/F" m  | eans N          | othing Fo            | ound spu          | urious en | nissions       | (No  | spu        | rious en       | nissions |         |            |              |
| Note 3: Measure  |                 |                      |                   |           |                |      |            |                |          | w field | 1 otron    | ath oo r     |
| Note 4: For rest |                 | Detector             |                   |           |                |      |            |                |          |         |            |              |
| with the         | I Can-          | Delector             |                   |           | 111 30 11      | atur |            | ievei uu       | 563 1101 | nocu    |            | reported     |





| Modulation Mode | VHT                | 40       |        | -                | Test Fre            | q. (MHz) | )      | 579    | 95                    |       |
|-----------------|--------------------|----------|--------|------------------|---------------------|----------|--------|--------|-----------------------|-------|
| N <sub>TX</sub> | 2                  |          |        | I                | Polariza            | tion     |        | V      |                       |       |
| Lev             | el (dBuV/m)        |          |        |                  |                     |          |        |        |                       |       |
|                 |                    |          |        |                  |                     |          |        |        |                       |       |
| 80              |                    |          |        |                  |                     |          |        |        |                       |       |
| 70              |                    | 5        |        |                  |                     |          |        | C PAR  | Г15 <mark>Е_</mark> В | 4-74  |
| 60              |                    |          |        |                  |                     |          | F      | CC PAF | RT15E (/              | AVG)  |
| 50              | - 2                | 4        |        |                  |                     |          |        |        |                       |       |
| 40              |                    |          |        |                  |                     |          |        |        | _                     |       |
| 30              |                    |          |        |                  |                     |          |        |        | _                     |       |
| 20              |                    |          |        |                  |                     |          |        |        |                       |       |
| 10              |                    |          |        |                  |                     |          |        |        |                       |       |
| 10              |                    |          |        |                  |                     |          |        |        |                       |       |
| 0               | 0 6000.            | 10000.   | 14000. | 18000.<br>Freque | 22000.<br>ncy (MHz) | 26000.   | 30000. | 34000  |                       | 40000 |
|                 | Frea.              | Emission | Limit  | -                |                     | Factor   | Remar  | rk     | ANT                   | Turn  |
|                 | -                  | level    |        | _                | readin              | g        |        |        | High                  | Table |
|                 | MHz                | dBuV/m   | dBuV/m | dB               | dBuV                | dB       |        |        | cm                    | deg   |
| 1               | 5850.00            |          | 78.20  |                  | 59.46               |          |        |        |                       |       |
| 2               | 5860.00<br>5860.00 |          |        |                  | 41.02<br>56.00      |          |        | _      |                       |       |
| 4               | 11590.00           | 46.90    | 54.00  | -7.10            | 32.45               | 14.45    | Avera  | age    |                       |       |
| 5               | 11590.00           | 61.13    | 74.00  | -12.87           | 46.68               | 14.45    | Peak   |        |                       |       |





| NTX         2         Polarization         H           90         Level (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 80<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Top       FCC PART15E_B4-74         60       8         60       60         50       60         40       60         30       60         20       60         10       6000.         100       6000.         1000.       14000.         18000.       22000.         2000.       30000.         900.       10000.         1000.       14000.         18000.       22000.         26000.       30000.         30000.       34000.         4000         Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 60       8       8       60       FCC PART 15E (AVG)         50       7       9       7       9       9         40       7       9       9       9       9         30       7       9       9       9       9         10       9       9       9       9       9         10       9       9       9       9       9         10       9       9       9       9       9         10       9       9       9       9       9         10       9       9       9       9       9         100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.         Frequency (MHz)       7       9       9       9       9       9       9         Freq. Emission Limit Margin       SA       Factor Remark ANT Tu       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 |
| 60       60       60       FCC PART 15E (AVG)         50       7       7       7       7         40       7       7       7       7         30       7       7       7       7         10       7       7       7       7         10       7       7       7       7         10       7       7       7       7         10       7       7       7       7         10       7       7       7       7         10       7       7       7       7         100       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.         Frequency (MHz)       7       7       7       7       7       7         1000       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       4000         Frequency (MHz)       7       7       7       7       7       7                                                                                                                                       |
| 50       6       7       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       |
| 40<br>30<br>20<br>10<br>10<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30<br>20<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20<br>10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10<br>0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 4000<br>Frequency(MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Frequency (MHz)</b><br>Freq. Emission Limit Margin SA Factor Remark ANT Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Freq. Emission Limit Margin SA Factor Remark ANT Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MHz dBuV/m dBuV/m dB dBuV dB cm de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1         5715.00         53.00         54.00         -1.00         47.42         5.58         Average          -           2         5715.00         68.78         74.00         -5.22         63.20         5.58         Peak          -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 5725.00 75.35 78.20 -2.85 69.77 5.58 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 5850.00 63.07 78.20 -15.13 57.45 5.62 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5 5860.00 47.27 54.00 -6.73 41.65 5.62 Average<br>6 5860.00 61.34 74.00 -12.66 55.72 5.62 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7 11550.00 47.15 54.00 -6.85 32.65 14.50 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8 11550.00 62.75 74.00 -11.25 48.25 14.50 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





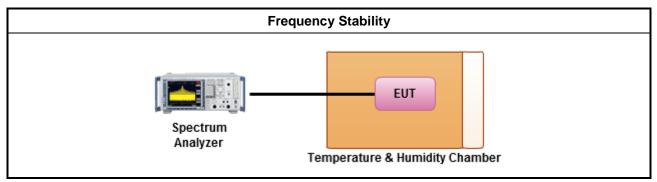
| 50       50       50       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60 <td< th=""><th></th><th>VHT80</th><th></th><th>Test Freq. (MHz)</th><th>5775</th></td<>                                                        |                     | VHT80       |                  | Test Freq. (MHz) | 5775               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|------------------|------------------|--------------------|
| 80       70       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                      | 4                   | 2           |                  | Polarization     | V                  |
| 80       70       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                      | oo Level (dB        | uV/m)       |                  |                  |                    |
| 70       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                       |                     |             |                  |                  |                    |
| 60       3       8       2       2       FCC PART 15E (AVG         50       0       0       0       0       0       0         40       0       0       0       0       0       0         20       0       0       0       0       0       0       0         10       0       0       0       0       0       0       0       0         10       0       0       0       0       0       0       0       0       0         10       0       0       0       0       0       0       0       0       0       0         10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td> <td>- c</td> <td></td> <td></td> <td></td>                                                                                                                                                                                     |                     | - c         |                  |                  |                    |
| 50         6         7         1         6         7         1         6         7         1         1         6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                             | 70                  | i HU        |                  |                  | FCC PART15E_B4-74  |
| 40<br>30<br>40<br>30<br>40<br>30<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                  |             | 8                |                  | FCC PART15E (AVG)  |
| 30       20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>50</td><td></td><td>-</td><td></td><td></td></td<>                                                                              | 50                  |             | -                |                  |                    |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>40</td><td></td><td></td><td></td><td></td></td<>                                                                               | 40                  |             |                  |                  |                    |
| 20       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>30</td><td></td><td></td><td></td><td></td></td<>                                                                               | 30                  |             |                  |                  |                    |
| 10       0       6000.       10000.       14000.       18000.       22000.       26000.       30000.       34000.       400         Frequency (MHz)       Frequency (MHz)       Frequency (MHz)       Frequency (MHz)       1000       1000       1000       1000       1000       1000       14000.       18000.       22000.       26000.       30000.       34000.       400         Frequency (MHz)       Frequency (MHz)       Frequency (MHz)       Frequency (MHz)       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       10000       10000       10000       10000< |                     |             |                  |                  |                    |
| 0<br>1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 400<br>Frequency (MHz)<br>Freq. Emission Limit Margin SA Factor Remark ANT T<br>level reading High T<br>MHz dBuV/m dBuV/m dB dBuV dB cm d<br>1 5715.00 46.80 54.00 -7.20 41.22 5.58 Average<br>2 5715.00 61.24 74.00 -12.76 55.66 5.58 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                  |             |                  |                  |                    |
| Frequency (MHz)           Freq. Emission Limit Margin SA Factor Remark ANT T<br>level reading MHz dBuV/m dBuV/m dB dBuV dB         Factor Remark High T<br>mHz dBuV/m dBuV/m dB dBuV dB         ANT T<br>m dd           1         5715.00         46.80         54.00         -7.20         41.22         5.58         Average             2         5715.00         61.24         74.00         -12.76         55.66         5.58         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                  |             |                  |                  |                    |
| Freq. Emission Limit Margin Ilevel       SA reading reading       Factor Remark reading       ANT T High T cm         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       dB       dB         1       5715.00       46.80       54.00       -7.20       41.22       5.58       Average          2       5715.00       61.24       74.00       -12.76       55.66       5.58       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 <mark>1000</mark> | 6000. 10000 | ). 14000. 18000. | 22000. 26000.    | 30000. 34000. 4000 |
| level         reading         High         T           MHz         dBuV/m         dBuV/m         dBuV         dB         cm         d           1         5715.00         46.80         54.00         -7.20         41.22         5.58         Average             2         5715.00         61.24         74.00         -12.76         55.66         5.58         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |             | -                |                  |                    |
| MHz         dBuV/m         dBuV/m         dB         dBuV         dB         cm         d           1         5715.00         46.80         54.00         -7.20         41.22         5.58         Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l l                 |             | -                |                  |                    |
| 2 5715.00 61.24 74.00 -12.76 55.66 5.58 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |                  | -                |                    |
| 2 5715.00 61.24 74.00 -12.76 55.66 5.58 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 5                 | 15 00 16 9  | 20 54 00 7 20    | 41 22 5 58       |                    |
| 3 5725.00 62.86 78.20 -15.34 57.28 5.58 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |             |                  |                  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |             |                  |                  | Peak               |
| 4 5850.00 59.81 78.20 -18.39 54.19 5.62 Peak<br>5 5860.00 46.21 54.00 -7.79 40.59 5.62 Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |             |                  |                  |                    |
| 6 5860.00 58.72 74.00 -15.28 53.10 5.62 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 58                | 60.00 58.7  | 2 74.00 -15.28   | 53.10 5.62       | Peak               |
| 7 11550.00 43.08 54.00 -10.92 28.58 14.50 Average<br>8 11550.00 57.36 74.00 -16.64 42.86 14.50 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |             |                  |                  | -                  |
| 5 11550.00 57.50 74.00 -10.04 42.00 14.50 Feak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 11.               |             | 10.04            | 42.00 14.90      | 1 Cak              |



# 3.6 Frequency Stability

# 3.6.1 Frequency Stability Limit

| Frequency Stability Limit                                                                                             |                     |
|-----------------------------------------------------------------------------------------------------------------------|---------------------|
| UNII Devices                                                                                                          |                     |
| In-band emission is maintained within the band of operation under all conditions of r specified in the user's manual. | normal operation as |
| LE-LAN Devices                                                                                                        |                     |
| ⊠ N/A                                                                                                                 |                     |
| IEEE Std. 802.11n-2009                                                                                                |                     |
| The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 0 ppm maximum for the 2.4 GHz band.    | GHz band and ± 25   |


## 3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

### 3.6.3 Test Procedures

|             | Test Method                                                                                                                                                       |       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $\boxtimes$ | Refer as ANSI C63.10, clause 6.8 for frequency stability tests                                                                                                    |       |
|             | Frequency stability with respect to ambient temperature                                                                                                           |       |
|             | Frequency stability when varying supply voltage                                                                                                                   |       |
| $\boxtimes$ | For conducted measurement.                                                                                                                                        |       |
|             | For conducted measurements on devices with multiple transmit chains:<br>Measurements need only to be performed on one of the active transmit chains (antenna outp | uts)  |
|             | For radiated measurement. The equipment to be measured and the test antenna shall be orient obtain the maximum emitted power level.                               | əd to |

# 3.6.4 Test Setup





# 3.6.5 Test Result of Frequency Stability

### Mode 1: Internal antenna with adapter mode

| Frequency Stability Result                                                  |      |                                      |         |  |  |  |
|-----------------------------------------------------------------------------|------|--------------------------------------|---------|--|--|--|
| Мо                                                                          | de   | Frequency Stability (ppm)            |         |  |  |  |
| Condition         Freq. (MHz)           T <sub>20°C</sub> Vmax         5785 |      | Test Frequency (MHz) Frequency Stabi |         |  |  |  |
|                                                                             |      | 5784.99704                           | -0.5117 |  |  |  |
| $T_{20^\circ C}$ Vmin                                                       | 5785 | 5785.02677                           | 4.6275  |  |  |  |
| T <sub>50°C</sub> Vnom                                                      | 5785 | 5785.02544                           | 4.3976  |  |  |  |
| $T_{40^\circ C}$ Vnom                                                       | 5785 | 5785.02875                           | 4.9697  |  |  |  |
| T <sub>30°C</sub> Vnom                                                      | 5785 | 5784.99030                           | -1.6768 |  |  |  |
| T <sub>20°C</sub> Vnom                                                      | 5785 | 5785.01066<br>5785.00853             | 1.8427  |  |  |  |
| T <sub>10°C</sub> Vnom                                                      | 5785 |                                      | 1.4745  |  |  |  |
| $T_{0^{\circ}C}Vnom$                                                        | 5785 | 5785.00206                           | 0.3561  |  |  |  |
| T <sub>-10°C</sub> Vnom                                                     | 5785 | 5785.00419                           | 0.7243  |  |  |  |
| T <sub>-20°C</sub> Vnom                                                     | 5785 | 5785.00678                           | 1.1720  |  |  |  |
| T. <sub>30°C</sub> Vnom 5785                                                |      | 5784.99437                           | -0.9732 |  |  |  |
| Limit (ppm)                                                                 |      |                                      | 20      |  |  |  |
| Result                                                                      |      | Complied                             |         |  |  |  |



| Frequency Stability Result |      |                      |                           |  |  |  |
|----------------------------|------|----------------------|---------------------------|--|--|--|
| Мо                         | de   | Frequency S          | y Stability (ppm)         |  |  |  |
| Condition Freq. (MHz)      |      | Test Frequency (MHz) | Frequency Stability (ppm) |  |  |  |
| T <sub>20°C</sub> Vmax     | 5785 | 5785.01009           | 1.7442<br>4.5964          |  |  |  |
| T <sub>20°C</sub> Vmin     | 5785 | 5785.02659           |                           |  |  |  |
| T <sub>50°C</sub> Vnom     | 5785 | 5785.03828           | 6.6171                    |  |  |  |
| T <sub>40°C</sub> Vnom     | 5785 | 5785.00306           | 0.5290                    |  |  |  |
| T <sub>30°C</sub> Vnom     | 5785 | 5785.01939           | 3.3518                    |  |  |  |
| T <sub>20°C</sub> Vnom     | 5785 | 5785.02286           | 3.9516                    |  |  |  |
| T <sub>10°C</sub> Vnom     | 5785 | 5785.01859           | 3.2135                    |  |  |  |
| $T_{0^{\circ}C}$ Vnom      | 5785 | 5785.00866           | 1.4970                    |  |  |  |
| T <sub>-10°C</sub> Vnom    | 5785 | 5785.01307           | 2.2593                    |  |  |  |
| T <sub>-20°C</sub> Vnom    | 5785 | 5784.99031           | -1.6750                   |  |  |  |
| T <sub>-30°C</sub> Vnom    | 5785 | 5785.01298           | 2.2437                    |  |  |  |
| Limit (                    | ppm) | 20                   |                           |  |  |  |
| Res                        | ult  | Complied             |                           |  |  |  |

#### Mode 2: External antenna with adapter mode

Note 2: The nominal voltage refer test report clause 1.1.6 for EUT operational condition.



# 4 Test Equipment and Calibration Data

| Test Item               | Radiated Emissions         |             |                  |                  |                   |  |
|-------------------------|----------------------------|-------------|------------------|------------------|-------------------|--|
| Test Site               | 966 chamber1 / (03CH01-WS) |             |                  |                  |                   |  |
| Instrument              | Manufacturer               | Model No.   | Serial No.       | Calibration Date | Calibration Until |  |
| Spectrum Analyzer       | R&S                        | FSV40       | 101498           | Jan. 25, 2014    | Jan. 24, 2015     |  |
| Receiver                | R&S                        | ESR3        | 101658           | Jan. 10, 2014    | Jan. 09, 2015     |  |
| Bilog Antenna           | SCHWARZBECK                | VULB9168    | VULB9168-522     | Jan. 02, 2014    | Jan. 01, 2015     |  |
| Horn Antenna<br>1G-18G  | SCHWARZBECK                | BBHA 9120 D | BBHA 9120 D 1096 | Feb. 13, 2014    | Feb. 12, 2015     |  |
| Horn Antenna<br>18G-40G | SCHWARZBECK                | BBHA 9170   | BBHA 9170517     | Dec. 27, 2013    | Dec. 26, 2014     |  |
| Preamplifier            | Burgeon                    | BPA-530     | SN:100219        | Nov. 28, 2013    | Nov. 27, 2014     |  |
| Preamplifier            | Agilent                    | 83017A      | MY39501308       | Dec. 16, 2013    | Dec. 15, 2014     |  |
| Preamplifier            | WM                         | TF-130N-R1  | 923365           | Oct. 23, 2013    | Oct. 22, 2014     |  |
| RF Cable                | HUBER+SUHNER               | SUCOFLEX104 | MY16014/4        | Dec. 16, 2013    | Dec. 15, 2014     |  |
| RF Cable                | HUBER+SUHNER               | SUCOFLEX104 | MY16019/4        | Dec. 16, 2013    | Dec. 15, 2014     |  |
| RF Cable                | HUBER+SUHNER               | SUCOFLEX104 | MY16139/4        | Dec. 16, 2013    | Dec. 15, 2014     |  |
| LF cable 3M             | Woken                      | CFD400NL-LW | CFD400NL-001     | Dec. 16, 2013    | Dec. 15, 2014     |  |
| LF cable 10M            | Woken                      | CFD400NL-LW | CFD400NL-002     | Dec. 16, 2013    | Dec. 15, 2014     |  |

| Loop Antenna            | R&S                      | HFH2-Z2              | 100330 | Nov. 15, 2012 | Nov. 14, 2014 |
|-------------------------|--------------------------|----------------------|--------|---------------|---------------|
| Note: Calibration Inter | val of instruments liste | d above is two year. |        |               |               |

| Test Item                                                           | m Conducted Emission          |                  |               |                  |                   |  |
|---------------------------------------------------------------------|-------------------------------|------------------|---------------|------------------|-------------------|--|
| Test Site                                                           | Conduction room 1 / (CO01-WS) |                  |               |                  |                   |  |
| Instrument                                                          | Manufacturer                  | Model No.        | Serial No.    | Calibration Date | Calibration Until |  |
| EMC Receiver                                                        | R&S                           | ESCS 30          | 100169        | Oct. 15, 2013    | Oct. 14, 2014     |  |
| LISN                                                                | SCHWARZBECK                   | Schwarzbeck 8127 | 8127-667      | Nov. 23, 2013    | Nov. 22, 2014     |  |
| LISN<br>(Support Unit)                                              | SCHWARZBECK                   | Schwarzbeck 8127 | 8127-666      | Dec. 04, 2013    | Dec. 03, 2014     |  |
| RF Cable-CON                                                        | Woken                         | CFD200-NL        | CFD200-NL-001 | Apr. 23, 2014    | Apr. 22, 2015     |  |
| 50 ohm terminal<br>(Support Unit)                                   | NA                            | 50               | 04            | Apr. 18, 2014    | Apr. 17, 2015     |  |
| Note: Calibration Interval of instruments listed above is one year. |                               |                  |               |                  |                   |  |



| 1-HY<br>Manufacturer | Model No.                                | Serial No.                                           |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Model No.                                | Carial Na                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                          | Serial No.                                           | Calibration Date                                                                                                                                                                                                                           | Calibration Until                                                                                                                                                                                                                                                                                                                                        |
| R&S                  | FSV 40                                   | 101063                                               | Feb. 17, 2014                                                                                                                                                                                                                              | Feb. 16, 2015                                                                                                                                                                                                                                                                                                                                            |
| Giant Force          | GTH-225-20-SP-SD                         | MAA1112-007                                          | Nov. 21, 2013                                                                                                                                                                                                                              | Nov. 20, 2014                                                                                                                                                                                                                                                                                                                                            |
| R&S                  | SMB100A                                  | 175727                                               | Jan. 07, 2014                                                                                                                                                                                                                              | Jan. 06, 2015                                                                                                                                                                                                                                                                                                                                            |
| Anritsu              | MA2411B                                  | 1207366                                              | Oct. 24, 2013                                                                                                                                                                                                                              | Oct. 23, 2014                                                                                                                                                                                                                                                                                                                                            |
| Anritsu              | ML2495A                                  | 1241002                                              | Oct. 24, 2013                                                                                                                                                                                                                              | Oct. 23, 2014                                                                                                                                                                                                                                                                                                                                            |
| G.W.                 | GPS-3030DD                               | GEN865896                                            | Nov. 21, 2013                                                                                                                                                                                                                              | Nov. 20, 2014                                                                                                                                                                                                                                                                                                                                            |
| G.W                  | APS-9102                                 | EL920581                                             | Jul. 15, 2014                                                                                                                                                                                                                              | Jul. 14, 2015                                                                                                                                                                                                                                                                                                                                            |
|                      | R&S<br>Anritsu<br>Anritsu<br>G.W.<br>G.W | R&SSMB100AAnritsuMA2411BAnritsuML2495AG.W.GPS-3030DD | R&S         SMB100A         175727           Anritsu         MA2411B         1207366           Anritsu         ML2495A         1241002           G.W.         GPS-3030DD         GEN865896           G.W         APS-9102         EL920581 | R&S         SMB100A         175727         Jan. 07, 2014           Anritsu         MA2411B         1207366         Oct. 24, 2013           Anritsu         ML2495A         1241002         Oct. 24, 2013           G.W.         GPS-3030DD         GEN865896         Nov. 21, 2013           G.W         APS-9102         EL920581         Jul. 15, 2014 |