

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-5229/17-02-17-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com mail@ctcadvanced.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Oticon A/S

Kongebakken 9

2765 Smørum / DENMARK Phone: +45 39 17 71 00

/ Fax:

Contact: Ole Myrtue e-mail: olmy@oticon.dk Phone: +45 3913 7744

Manufacturer

Oticon A/S

Kongebakken 9

2765 Smørum / DENMARK

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: **Hearing Aid Module Aurora ITE 312** Model name: FCC ID: **U28AUITE312** 1350B-AUITE312 IC:

Frequency: 3.84 MHz

Technology tested: Magnetic coupling

Antenna: Integrated ferrite coil antenna

Power supply: 1.1 V to 1.4 V DC by zinc air battery size 312

0°C to +40°C Temperature range:

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

rest report authorized:	rest performea:
Christoph Schneider	Tobias Wittenmeier
Lab Manager	Testing Manager
Radio Communications & EMC	Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gener	al information	
	2.1 2.2	Notes and disclaimerApplication details	3
•	2.3	Test laboratories sub-contracted	
3		tandard/s and references	
4		nvironment	
5	Test it	em	5
	5.1 5.2	General descriptionAdditional information	
6	Descr	iption of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamber	8
7	Seque	ence of testing	10
	7.1 7.2	Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHz	
8	Measu	rement uncertainty	12
9	Summ	nary of measurement results	13
10	Add	litional comments	14
11	Mea	surement results	15
	11.1 11.2 11.3	Occupied bandwidthField strength of the fundamentalField strength of the harmonics and spurious	17
	11.4	Receiver spurious emissions and cabinet radiations	
12	Obs	ervations	23
Anı	nex A	Glossary	24
Anı	nex B	Document history	25
Δni	nex C	Accreditation Certificate	21

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-5229/17-02-17 and dated 2018-04-19.

2.2 Application details

Date of receipt of order: 2017-11-27
Date of receipt of test item: 2017-11-27
Start of test: 2017-11-27
End of test: 2017-11-30

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 25

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 25

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +40 °C during high temperature tests* 0 °C during low temperature tests*
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply :		V _{nom} V _{max} V _{min}	1.4 V DC by zinc air battery size 3121.4 V*1.1 V*

^{*}Manufacturer declaration; no tests under extreme conditions required

5 Test item

5.1 General description

Kind of test item :	Hearing Aid Module
Type identification :	Aurora ITE 312
HMN :	-/-
PMN :	Aurora ITE 312
HVIN :	Aurora ITE 312
FVIN :	-/-
S/N serial number :	TX 48584515 RX 48585335
HW hardware status :	Final LAB
SW software status :	IP503
Frequency band :	3.84 MHz
Type of radio transmission: Use of frequency spectrum:	Modulated carrier
Type of modulation :	MSK
Number of channels :	1
Antenna :	Integrated ferrite coil antenna
Power supply :	1.1 V to 1.4 V DC by zinc air battery size 312
Temperature range :	0°C to +40°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-5229/17-02-11_AnnexA

1-5229/17-02-11_AnnexB 1-5229/17-02-11_AnnexD

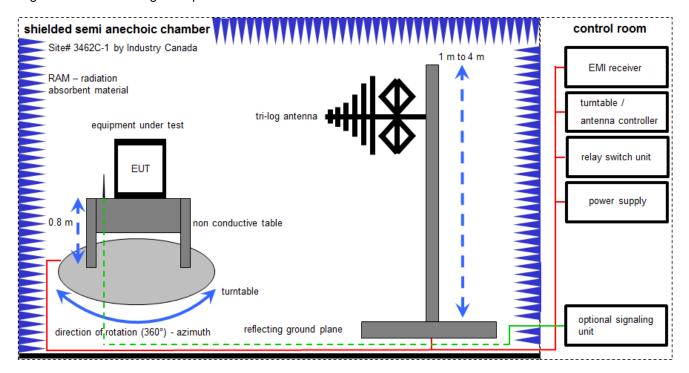
© CTC advanced GmbH Page 5 of 25

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k ne	calibration / calibrated not required (k, ev, izw, zw not required)	EK zw	limited calibration cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 25

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

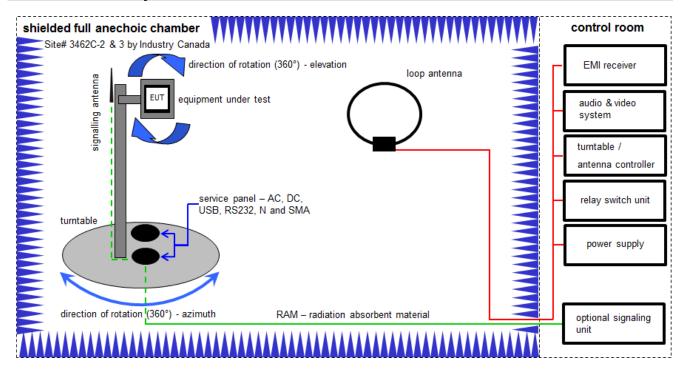
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2017	08.03.2018
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

© CTC advanced GmbH Page 7 of 25

6.2 Shielded fully anechoic chamber

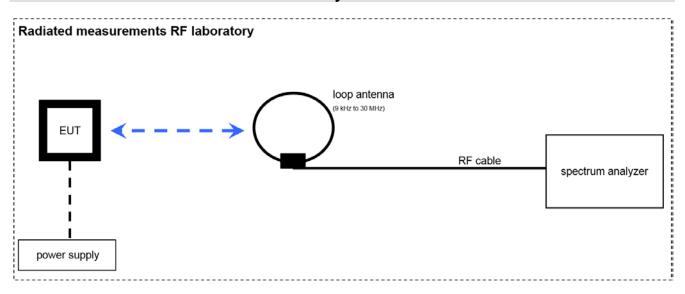
Measurement distance: loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
2	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	Α	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	А	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
5	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
6	А	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
7	Α	PC	ExOne	F+W		300004703	ne	-/-	-/-

© CTC advanced GmbH Page 8 of 25

6.3 Radiated measurements RF laboratory

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.		Last Calibration	Next Calibration
1	А	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	25.01.2017	24.01.2018
2	Α	Loop Antenna		ZEG TS Steinfurt		400001208	ev	-/-	-/-
3	Α	RF Cable BNC	RG58	Huber & Suhner		400001209	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 25

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 10 of 25

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 11 of 25

8 Measurement uncertainty

Measurement uncertainty						
Test case Uncertainty						
Occupied bandwidth	± used RBW					
Field strength of the fundamental	± 3 dB					
Field strength of the harmonics and spurious	± 3 dB					
Receiver spurious emissions and cabinet radiations	± 3 dB					
Conducted limits	± 2.6 dB					

© CTC advanced GmbH Page 12 of 25

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210 Issue 8	See table!	2018-04-20	-/-
	RSS Gen Issue 4			

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 4 (6.6)	Occupied bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.209	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS Gen Issue 4 (6.13)	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.109	Receiver spurious emissions and cabinet radiations	Nominal	Nominal	\boxtimes				-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal			\boxtimes		Battery powered only!

Note: NA = Not applicable; NP = Not performed; C = Compliant; NC = Not compliant

© CTC advanced GmbH Page 13 of 25

10 Additional comments

Reference documents: none

Manufacturer declaration:

The provided test sample for radiated measurements had a transmitter duty cycle of 50% for each of the tests, this is also the normal use duty cycle.

Special test descriptions:

We perform the radiated pre-scans in different spherical positions and consolidate the results in one result plot. The test procedure includes scans in the theta axes every 120° and in phi axes @ 0° and 90° for both polarizations vertical & horizontal or magnetic emissions.

Configuration descriptions: None

© CTC advanced GmbH Page 14 of 25

11 Measurement results

11.1 Occupied bandwidth

Measurement:

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

Measurement parameters				
Detector:	Peak			
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Analyser function:	99 % power function			
Used test setup:	See sub clause 7.3 – A			
Measurement uncertainty:	See sub clause 8			

Limit:

IC
for RSP-100 test report coversheet only

Result:

99% emission bandwidth
362 kHz

© CTC advanced GmbH Page 15 of 25

Plot:

Plot 1: 99 % emission bandwidth

Date: 28.NOV.2017 09:06:10

© CTC advanced GmbH Page 16 of 25

11.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameters				
Detector:	Quasi peak			
Resolution bandwidth:	9 kHz			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Used test setup	See sub clause 7.2 – A			
Measurement uncertainty:	See sub clause 8			

Limit:

FCC & IC						
Frequency	Field strength	Measurement distance				
(MHz)	(dBµV/m)	(m)				
1.705 – 10.0	23.5	30				

Recalculation:

According to ANSI C63.10						
Frequency	Formula	Correction value				
3.84 MHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{\textit{measure}}}{d_{\textit{measure}}}\right) - 20 \log \left(\frac{d_{\textit{limit}}}{d_{\textit{mearfield}}}\right)$ is the calculation of field strength at the limit distance, expressed in dBµV/m is the measured field strength, expressed in dBµV/m is the M -strength is the M -strength is the M -strength is the M -strength is the distance of the measurement point from EUT dlimit is the reference limit distance	-51.4 (1m to 30m)				

Result:

Field strength of the fundamental						
Frequency	10.6 MHz					
Distance	@ 1 m					
Measured / calculated value (peak measurement)	51.2 dBμV/m	-0.2 dBμV/m				
Measured / calculated value (QP measurement)	49.6 dBµV/m	-1.8 dBµV/m				

© CTC advanced GmbH Page 17 of 25

11.3 Field strength of the harmonics and spurious

Measurement:

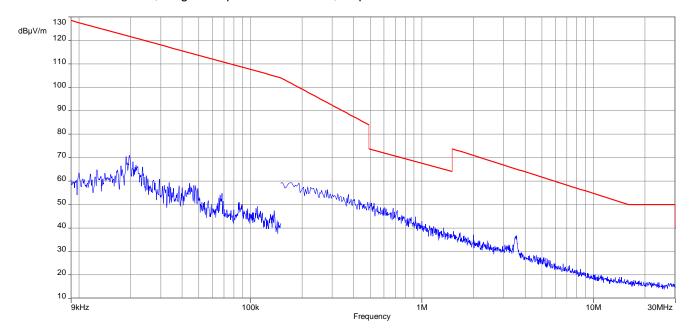
The maximum detected field strength for the harmonics and spurious.

Measurement parameters				
Detector:	Quasi peak / average or			
Detector.	peak (worst case – pre-scan)			
	F < 150 kHz: 200 Hz			
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz			
	30 MHz < F < 1 GHz: 120 kHz			
	F < 150 kHz: 1 kHz			
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz			
	30 MHz < F < 1 GHz: 300 kHz			
Trace mode:	Max hold			
Lload toot cotup:	9 kHz to 30 MHz: see sub clause 7.2 – A			
Used test setup:	30 MHz to 1 GHz: see sub clause 7.1 – A			
Measurement uncertainty:	See sub clause 8			

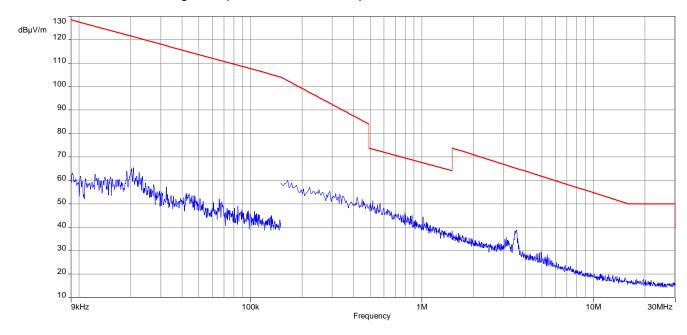
Limit:

FCC & IC						
Frequency	Field strength	Measurement distance				
(MHz)	(dBµV/m)	(m)				
0.009 - 0.490	2400/F(kHz)	300				
0.490 - 1.705	24000/F(kHz)	30				
1.705 – 30	30 (29.5 dBμV/m)	30				
30 – 88	100 (40 dBμV/m)	3				
88 – 216	150 (43.5 dBµV/m)	3				
216 – 960	200 (46 dBμV/m)	3				

Result:

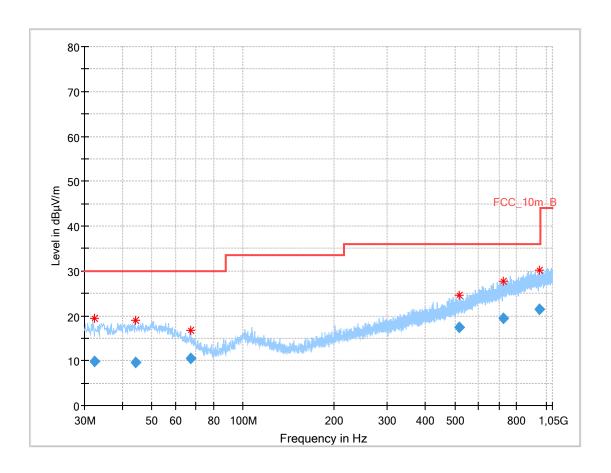

Detected emissions							
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value				
All detected pea	All detected peak emissions below 30 MHz are more than 20 dB below the average limit.						
For emissions above 30 MHz, please look at the table below the 1 GHz plot.							

© CTC advanced GmbH Page 18 of 25



Plots:

Plot 1: 9 kHz - 30 MHz, magnetic spurious emissions, loop antenna in front


Plot 2: 9 kHz - 30 MHz, magnetic spurious emissions, loop antenna 90°

© CTC advanced GmbH Page 19 of 25

Plot 3: 30 MHz – 1 GHz, vertical and horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.254	9.81	30.0	20.19	1000	120	170.0	V	94.0	12.2
44.084	9.68	30.0	20.32	1000	120	105.0	Н	-9.0	13.6
67.027	10.48	30.0	19.52	1000	120	101.0	Н	0.0	10.3
515.447	17.37	36.0	18.63	1000	120	170.0	Н	343.0	18.9
724.453	19.44	36.0	16.56	1000	120	170.0	Н	14.0	22.1
951.431	21.43	36.0	14.57	1000	120	101.0	V	230.0	24.4

© CTC advanced GmbH Page 20 of 25

11.4 Receiver spurious emissions and cabinet radiations

Measurement:

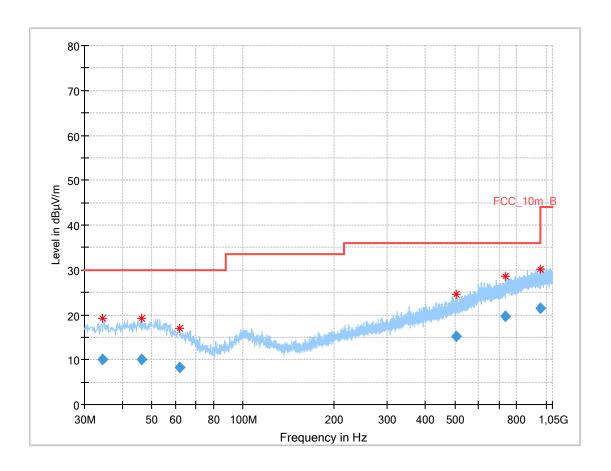
The maximum detected field strength for the spurious.

Measurement parameters			
Detector:	Quasi peak / average or		
	peak (worst case – pre-scan)		
Resolution bandwidth:	30 MHz < F < 1 GHz: 120 kHz		
Video bandwidth:	30 MHz < F < 1 GHz: 300 kHz		
Trace mode:	Max hold		
Used test setup	30 MHz to 1 GHz: see sub clause 7.1 - A		
Measurement uncertainty:	See sub clause 8		

Limit:

FCC & IC				
Frequency	Field strength	Measurement distance		
(MHz)	(dBµV/m)	(m)		
30 – 88	100 (40 dBμV/m)	3		
88 – 216	150 (43.5 dBµV/m)	3		
216 – 960	200 (46 dBμV/m)	3		

Result:


Detected emissions					
Frequency (MHz)	Detector	Resolution bandwidth (kHz)	Detected value		
Please look at the table below the 1 GHz plot.					

© CTC advanced GmbH Page 21 of 25

Plots:

Plot 1: 30 MHz – 1 GHz, vertical and horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.353	10.16	30.0	19.84	1000	120	101.0	V	125.0	12.6
46.303	10.09	30.0	19.91	1000	120	170.0	Н	336.0	13.7
61.643	8.34	30.0	21.66	1000	120	170.0	V	272.0	11.5
505.981	15.17	36.0	20.83	1000	120	170.0	Н	322.0	18.8
734.494	19.64	36.0	16.36	1000	120	101.0	Н	287.0	22.4
956.215	21.51	36.0	14.49	1000	120	170.0	Н	217.0	24.4

© CTC advanced GmbH Page 22 of 25

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 23 of 25

Annex A Glossary

EUT	Equipment under test			
DUT	Device under test			
UUT				
GUE	GNSS User Equipment			
ETSI	European Telecommunications Standards Institute			
EN	European Standard			
FCC	Federal Communications Commission			
FCC ID	Company Identifier at FCC			
IC	Industry Canada			
PMN	Product marketing name			
HMN	Host marketing name			
HVIN	Hardware version identification number			
FVIN	Firmware version identification number			
EMC	Electromagnetic Compatibility			
HW	Hardware			
SW	Software			
Inv. No.	Inventory number			
S/N or SN	Serial number			
С	Compliant			
NC	Not compliant			
NA	Not applicable			
NP	Not performed			
PP	Positive peak			
QP	Quasi peak			
AVG	Average			
ОС	Operating channel			
OCW	Operating channel bandwidth			
OBW	Occupied bandwidth			
ООВ	Out of band			
DFS	Dynamic frequency selection			
CAC	Channel availability check			
OP	Occupancy period			
NOP	Non occupancy period			
DC	Duty cycle			
PER	Packet error rate			
CW	Clean wave			
MC	Modulated carrier			
WLAN	Wireless local area network			
RLAN	Radio local area network			
DSSS	Dynamic sequence spread spectrum			
OFDM	Orthogonal frequency division multiplexing			
FHSS	Frequency hopping spread spectrum			
GNSS	Global Navigation Satellite System			
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz			

© CTC advanced GmbH Page 24 of 25

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2018-04-19
А	Battery information and IC information corrected	2018-04-20

Annex C Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Brainschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38136 Braunschweig
following fields:	
Telecommunication	
	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAKAS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKAS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number O-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 appears.	The accreditation was granted pursuant to the Act on the Accreditation Body (AMStelleG) of 31. July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.218 of 9 July 2008, p. 30). OAKS: Is a signatory to the Multilateral agreements for Mutual Recognision of the European cro-operation for Accreditation (EA), international Accreditation forum (IAF) and international Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.
Registration number of the certificate: D-PL-12076-01-03	The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.lac.org IAF: www.lat.nu
Frankfurt, 02.06.2017 Diofyle, (11% Taus Before Healt of Division)	
See notice annihold	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf

© CTC advanced GmbH Page 25 of 25