

# **TEST REPORT**



Test report no.: 1-4511/17-01-05\_A

**Testing laboratory** 

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the

The accreditation is valid for the scope of testing

procedures as stated in the accreditation certificate with

**CTC advanced GmbH** 

Phone:

e-mail:

Fax:

Untertuerkheimer Strasse 6 - 10

66117 Saarbruecken / Germany

**Accredited Testing Laboratory:** 

+ 49 681 5 98 - 0

Internet: http://www.ctcadvanced.com

+ 49 681 5 98 - 9075

mail@ctcadvanced.com

Deutsche Akkreditierungsstelle GmbH (DAkkS)

the registration number: D-PL-12076-01-01



# Deutsche Akkreditierungsstelle D-PL-12076-01-01

# Applicant

Oticon A/S Kongebakken 9 2765 Smørum / DENMARK Phone: +45 39 17 71 00 -/-Fax: Contact: Per Klaus Nielsen e-mail: pkni@oticon.com Phone: -/-

# Manufacturer

Oticon A/S Kongebakken 9 2765 Smørum / DENMARK

# Test standard/s

| 47 CFR Part 15                                                                    | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices                                                                    |  |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RSS - 247 Issue 2                                                                 | Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices                               |  |  |  |  |
| RSS - Gen Issue 4                                                                 | Spectrum Management and Telecommunications Radio Standards Specifications -<br>General Requirements and Information for the Certification of Radio Apparatus |  |  |  |  |
| For further applied test standards please refer to section 3 of this test report. |                                                                                                                                                              |  |  |  |  |

|                    | Test Item                                             |  |
|--------------------|-------------------------------------------------------|--|
| Kind of test item: | Hearing Aid, WL Hi platform                           |  |
| Model name:        | Aurora BTE power module                               |  |
| FCC ID:            | U28AUBTEP                                             |  |
| IC:                | 1350B-AUBTEP                                          |  |
| Frequency:         | DTS band 2400 MHz to 2483.5 MHz                       |  |
| Technology tested: | Bluetooth <sup>®</sup> LE + proprietary RX mode 4Mbps |  |
| Antenna:           | Internal PCB antenna                                  |  |
| Power supply:      | 1.45 V DC by Zinc-Air-battery type p13                |  |
| Temperature range: | 0°C to +40°C                                          |  |

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

# Test report authorized:

Mihail Dorongovskij Lab Manager Radio Communications & EMC

# **Test performed:**

p.o.

Andreas Luckenbill Lab Manager Radio Communications & EMC



# 1 Table of contents

| 1  | Table of contents                                                                                                           |                                                                                                                                                                      |          |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
| 2  | Gener                                                                                                                       | al information                                                                                                                                                       | 3        |  |  |  |  |
|    | <ul> <li>2.1 Notes and disclaimer</li> <li>2.2 Application details</li> <li>2.3 Test laboratories sub-contracted</li> </ul> |                                                                                                                                                                      |          |  |  |  |  |
| 3  | Test s                                                                                                                      | tandard/s and references                                                                                                                                             | 4        |  |  |  |  |
| 4  | Test e                                                                                                                      | environment                                                                                                                                                          | 5        |  |  |  |  |
| 5  | Test i                                                                                                                      | tem                                                                                                                                                                  | 5        |  |  |  |  |
|    | 5.1                                                                                                                         | General description                                                                                                                                                  | 5        |  |  |  |  |
| 6  | Descr                                                                                                                       | iption of the test setup                                                                                                                                             | 6        |  |  |  |  |
|    | 6.1<br>6.2<br>6.3                                                                                                           | Shielded semi anechoic chamber<br>Shielded fully anechoic chamber<br>Radiated measurements > 18 GHz                                                                  | 8        |  |  |  |  |
| 7  | Seque                                                                                                                       | ence of testing                                                                                                                                                      | 10       |  |  |  |  |
|    | 7.1<br>7.2<br>7.3                                                                                                           | Sequence of testing radiated spurious 30 MHz to 1 GHz<br>Sequence of testing radiated spurious 1 GHz to 18 GHz<br>Sequence of testing radiated spurious above 18 GHz | 11       |  |  |  |  |
| 8  | Meas                                                                                                                        | urement uncertainty                                                                                                                                                  | 13       |  |  |  |  |
| 9  | Sumn                                                                                                                        | nary of measurement results                                                                                                                                          | 14       |  |  |  |  |
| 10 | Α                                                                                                                           | dditional comments                                                                                                                                                   | 15       |  |  |  |  |
| 11 | Μ                                                                                                                           | easurement results                                                                                                                                                   | 16       |  |  |  |  |
|    | 11.1<br>11.2                                                                                                                | Spurious emissions radiated 30 MHz to 1 GHz<br>Spurious emissions radiated above 1 GHz                                                                               | 16<br>19 |  |  |  |  |
| An | nex A                                                                                                                       | Glossary                                                                                                                                                             | 22       |  |  |  |  |
| An | nex B                                                                                                                       | Document history                                                                                                                                                     | 23       |  |  |  |  |
| An | nex C                                                                                                                       | Accreditation Certificate                                                                                                                                            | 23       |  |  |  |  |



# 2 General information

# 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

### This test report replaces the test report with the number 1-4511/17-01-05 and dated 2017-09-25.

### 2.2 Application details

| Date of receipt of order:          | 2017-08-09 |
|------------------------------------|------------|
| Date of receipt of test item:      | 2017-08-31 |
| Start of test:                     | 2017-09-05 |
| End of test:                       | 2017-09-11 |
| Person(s) present during the test: | -/-        |

## 2.3 Test laboratories sub-contracted

None

# 3 Test standard/s and references

| Test standard     | Date             | Description                                                                                                                                                     |
|-------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Part 15    | -/-              | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices                                                                       |
| RSS - 247 Issue 2 | February<br>2017 | Digital Transmission Systems (DTSs), Frequency Hopping<br>Systems (FHSs) and Licence - Exempt Local Area Network (LE-<br>LAN) Devices                           |
| RSS - Gen Issue 4 | November<br>2014 | Spectrum Management and Telecommunications Radio Standards<br>Specifications - General Requirements and Information for the<br>Certification of Radio Apparatus |

| Guidance            | Version | Description                                                                                                                                                                |
|---------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DTS: KDB 558074 D01 | V04     | Guidance for Performing Compliance Measurements on Digital<br>Transmission Systems (DTS) Operating Under §15.247                                                           |
| ANSI C63.4-2014     | -/-     | American national standard for methods of measurement of radio-<br>noise emissions from low-voltage electrical and electronic<br>equipment in the range of 9 kHz to 40 GHz |
| ANSI C63.10-2013    | -/-     | American national standard of procedures for compliance testing<br>of unlicensed wireless devices                                                                          |





#### 4 **Test environment**

|                           |   |                  | i i i i i i i i i i i i i i i i i i i      |
|---------------------------|---|------------------|--------------------------------------------|
|                           |   | $T_{nom}$        | +21 °C during room temperature tests       |
| Temperature               | : | T <sub>max</sub> | No tests under extreme conditions required |
|                           |   | $T_{min}$        | No tests under extreme conditions required |
| Relative humidity content | : |                  | 55 %                                       |
| Barometric pressure :     |   |                  | 1021 hpa                                   |
|                           |   | Vnom             | 1.45 V DC by Zinc-Air-battery type p13     |
| Power supply              | : | V <sub>max</sub> | No tests under extreme conditions required |
|                           |   | $V_{min}$        | No tests under extreme conditions required |

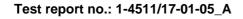
#### **Test item** 5

# 5.1 General description

| Kind of test item :                                         | Hearing Aid, WL Hi platform                                          |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| Type identification :                                       | Aurora BTE power module                                              |  |  |  |
| HMN :                                                       | -/-                                                                  |  |  |  |
| PMN :                                                       | Aurora BTE Power                                                     |  |  |  |
| HVIN :                                                      | Aurora BTE Power                                                     |  |  |  |
| FVIN :                                                      | -/-                                                                  |  |  |  |
| S/N serial number :                                         | Rad. 48970114 RX on lowest channel<br>49251284 RX on highest channel |  |  |  |
| HW status :                                                 | Rev. 6 (LAB 6)                                                       |  |  |  |
| FW status :                                                 | SIV 3.3.A / FW eSW 7.3.1                                             |  |  |  |
| Frequency band :                                            | DTS band 2400 MHz to 2483.5 MHz                                      |  |  |  |
| Type of radio transmission :<br>Use of frequency spectrum : | other digital transmission                                           |  |  |  |
| Type of modulation :                                        | RX: 4Mbps proprietary: GFSK                                          |  |  |  |
| Number of channels :                                        | 4Mbps proprietary: 40                                                |  |  |  |
| Antenna :                                                   | Internal PCB antenna                                                 |  |  |  |
| Power supply :                                              | 1.45 V DC by Zinc-Air-battery type p13                               |  |  |  |
| Temperature range :                                         | 0°C to +40°C                                                         |  |  |  |



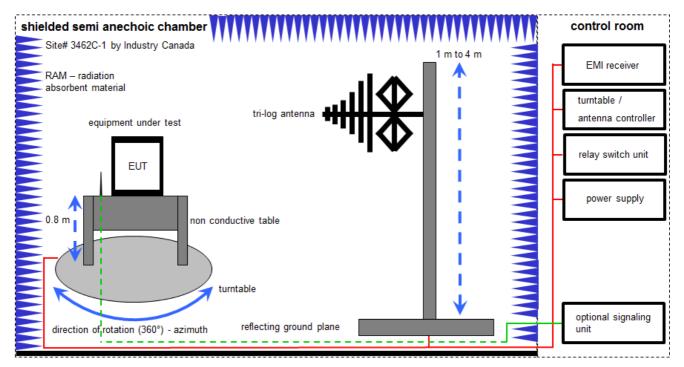
# 6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- \*) next calibration ordered / currently in progress





# 6.1 Shielded semi anechoic chamber

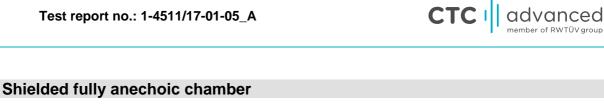
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

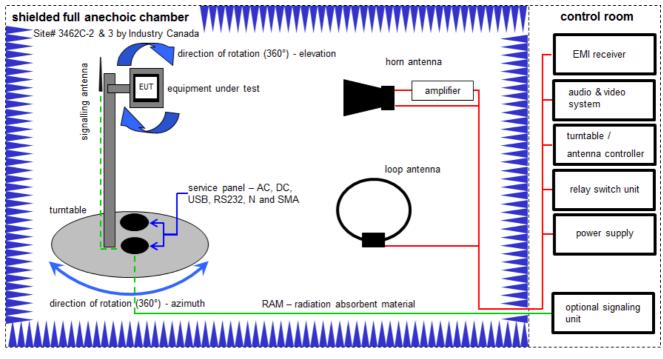


Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:


 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$ 

# Equipment table:

| No. | Lab /<br>Item | Equipment                                                | Туре             | Manufacturer  | Serial No.         | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|----------------------------------------------------------|------------------|---------------|--------------------|-----------|------------------------|---------------------|---------------------|
| 1   | Α             | Meßkabine 1                                              | HF-Absorberhalle | MWB AG 300023 |                    | 300000551 | ne                     | -/-                 | -/-                 |
| 2   | Α             | EMI Test Receiver                                        | ESCI 3           | R&S           | 100083             | 300003312 | k                      | 01.02.2017          | 31.01.2018          |
| 3   | A             | Analyzer-Reference-<br>System (Harmonics<br>and Flicker) | ARS 16/1         | SPS           | A3509 07/0<br>0205 | 300003314 | Ve                     | -/-                 | -/-                 |
| 4   | Α             | Antenna Tower                                            | Model 2175       | ETS-Lindgren  | 64762              | 300003745 | izw                    | -/-                 | -/-                 |
| 5   | А             | Positioning<br>Controller                                | Model 2090       | ETS-Lindgren  | 64672              | 300003746 | izw                    | -/-                 | -/-                 |
| 6   | А             | Turntable Interface-<br>Box                              | Model 105637     | ETS-Lindgren  | 44583              | 300003747 | izw                    | -/-                 | -/-                 |
| 7   | А             | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz       | VULB9163         | Schwarzbeck   | 295                | 300003787 | k                      | 25.04.2016          | 25.04.2018          |



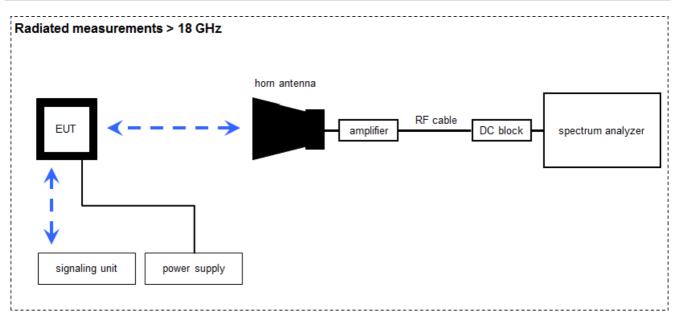




Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


6.2

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$ 

# Equipment table:

| No. | Lab /<br>Item | Equipment                                            | Туре                        | Manufacturer         | Serial No. | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|------------------------------------------------------|-----------------------------|----------------------|------------|-----------|------------------------|---------------------|---------------------|
| 1   | A             | Anechoic chamber                                     | FAC 3/5m                    | MWB / TDK            | 87400/02   | 300000996 | ev                     | -/-                 | -/-                 |
| 2   | Α             | Switch / Control Unit                                | 3488A                       | HP                   | *          | 300000199 | ne                     | -/-                 | -/-                 |
| 3   | А             | EMI Test Receiver<br>20Hz- 26,5GHz                   | ESU26                       | R&S                  | 100037     | 300003555 | k                      | 31.01.2017          | 30.01.2018          |
| 4   | А             | Broadband Amplifier<br>0.5-18 GHz                    | CBLU5184540                 | CERNEX               | 22049      | 300004481 | ev                     | -/-                 | -/-                 |
| 5   | А             | 4U RF Switch<br>Platform                             | L4491A                      | Agilent Technologies | MY50000037 | 300004509 | ne                     | -/-                 | -/-                 |
| 6   | А             | NEXIO EMV-<br>Software                               | BAT EMC<br>V3.16.0.49       | EMCO                 |            | 300004682 | ne                     | -/-                 | -/-                 |
| 7   | Α             | PC                                                   | ExOne                       | F+W                  |            | 300004703 | ne                     | -/-                 | -/-                 |
| 8   | А             | RF-Amplifier                                         | AMF-6F06001800-<br>30-10P-R | NARDA-MITEQ Inc      | 2011572    | 300005241 | ev                     | -/-                 | -/-                 |
| 9   | А             | Double-Ridged<br>Waveguide Horn<br>Antenna 1-18.0GHz | 3115                        | EMCO                 | 9107-3697  | 300001605 | vIKI!                  | 14.02.2017          | 13.02.2019          |

### 6.3 Radiated measurements > 18 GHz



Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

### Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$ 

| No. | Lab /<br>Item | Equipment                                      | Туре                  | Manufacturer   | Serial No.          | INV. No.  | Kind of<br>Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|------------------------------------------------|-----------------------|----------------|---------------------|-----------|------------------------|---------------------|---------------------|
| 1   | А             | Horn Antenna 18,0-<br>40,0 GHz                 | LHAF180               | Microw.Devel   | 39180-103-022       | 300001748 | k                      | 22.05.2015          | 22.05.2018          |
| 2   | А             | Signal Analyzer 40<br>GHz                      | FSV40                 | R&S            | 101042              | 300004517 | k                      | 27.01.2017          | 26.01.2018          |
| 3   | A             | Microwave System<br>Amplifier, 0.5-26.5<br>GHz | 83017A                | HP             | 00419               | 300002268 | ev                     | -/-                 | -/-                 |
| 4   | А             | RF-Cable                                       | ST18/SMAm/SMAm/<br>48 | Huber & Suhner | Batch no.<br>600918 | 400001182 | ev                     | -/-                 | -/-                 |
| 5   | А             | RF-Cable                                       | ST18/SMAm/SMAm/<br>48 | Huber & Suhner | Batch no.<br>127377 | 400001183 | ev                     | -/-                 | -/-                 |
| 6   | А             | DC-Blocker 0.1-40<br>GHz                       | 8141A                 | Inmet          | -/-                 | 400001185 | ev                     | -/-                 | -/-                 |

### Equipment table:



# 7 Sequence of testing

### 7.1 Sequence of testing radiated spurious 30 MHz to 1 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### **Final measurement**

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.



# 7.2 Sequence of testing radiated spurious 1 GHz to 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

#### **Final measurement**

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

# 7.3 Sequence of testing radiated spurious above 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

#### Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

#### Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

# 8 Measurement uncertainty

| Measurement uncertainty                                  |                                          |  |  |  |  |  |  |
|----------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|
| Test case                                                | Uncertainty                              |  |  |  |  |  |  |
| Antenna gain                                             | ± 3 dB                                   |  |  |  |  |  |  |
| Spectrum bandwidth                                       | ± 21.5 kHz absolute; ± 15.0 kHz relative |  |  |  |  |  |  |
| Maximum output power                                     | ± 1 dB                                   |  |  |  |  |  |  |
| Detailed conducted spurious emissions @ the band edge    | ± 1 dB                                   |  |  |  |  |  |  |
| Band edge compliance radiated                            | ± 3 dB                                   |  |  |  |  |  |  |
| Spurious emissions conducted                             | ± 3 dB                                   |  |  |  |  |  |  |
| Spurious emissions radiated below 30 MHz                 | ± 3 dB                                   |  |  |  |  |  |  |
| Spurious emissions radiated 30 MHz to 1 GHz              | ± 3 dB                                   |  |  |  |  |  |  |
| Spurious emissions radiated 1 GHz to 12.75 GHz           | ± 3.7 dB                                 |  |  |  |  |  |  |
| Spurious emissions radiated above 12.75 GHz              | ± 4.5 dB                                 |  |  |  |  |  |  |
| Spurious emissions conducted below 30 MHz (AC conducted) | ± 2.6 dB                                 |  |  |  |  |  |  |

# Test report no.: 1-4511/17-01-05\_A

# 9 Summary of measurement results

|             | No deviations from the technical specifications were ascertained                                                         |
|-------------|--------------------------------------------------------------------------------------------------------------------------|
|             | There were deviations from the technical specifications ascertained                                                      |
| $\boxtimes$ | This test report is only a partial test report.<br>The content and verdict of the performed test cases are listed below. |

CTC I advanced

| TC Identifier | Description                       | Verdict    | Date       | Remark        |
|---------------|-----------------------------------|------------|------------|---------------|
| RF-Testing    | CFR Part 15<br>RSS - 247, Issue 2 | See table! | 2017-11-29 | only RX 4Mbps |

| Test<br>specification<br>clause                          | Test case                                                        | Guideline                                     | Temperature conditions | Power<br>source<br>voltages | Mode | с | NC | NA | NP          | Remark                       |
|----------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|------------------------|-----------------------------|------|---|----|----|-------------|------------------------------|
| §15.247(b)(4)<br>RSS - 247 /<br>5.4 (4)                  | System gain                                                      | -/-                                           | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| §15.247(e)<br>RSS - 247 /<br>5.2 (b)                     | Power spectral density                                           | KDB 558074<br>DTS clause: 10.6                | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| §15.247(a)(2)<br>RSS - 247 /<br>5.2 (a)                  | DTS bandwidth –<br>6 dB bandwidth                                | KDB 558074<br>DTS clause: 8.1                 | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| RSS Gen<br>clause 4.6.1                                  | Occupied<br>bandwidth                                            | -/-                                           | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| §15.247(b)(3)<br>RSS - 247 /<br>5.4 (4)                  | Maximum output<br>power                                          | KDB 558074<br>DTS clause: 9.1.1               | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| §15.247(d)<br>RSS - 247 /<br>5.5                         | Detailed spurious<br>emissions @ the<br>band edge -<br>conducted | -/-                                           | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| §15.205<br>RSS - 247 /<br>5.5<br>RSS - Gen               | Band edge<br>compliance<br>radiated                              | KDB 558074<br>DTS clause:<br>13.3.2           | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| §15.247(d)<br>RSS - 247 /<br>5.5                         | TX spurious<br>emissions<br>conducted                            | KDB 558074<br>DTS clause: 11.1<br>& 11.2 11.3 | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| §15.209(a)<br>RSS - Gen                                  | Spurious<br>emissions radiated<br>below 30 MHz                   | -/-                                           | Nominal                | Nominal                     | GFSK |   |    |    | $\boxtimes$ | only RX                      |
| 15.247(d)<br>RSS - 247 /<br>5.5<br>§15.109<br>RSS - Gen  | Spurious<br>emissions radiated<br>30 MHz to 1 GHz                | -/-                                           | Nominal                | Nominal                     | RX   |   |    |    |             | -/-                          |
| §15.247(d)<br>RSS - 247 /<br>5.5<br>§15.109<br>RSS - Gen | Spurious<br>emissions radiated<br>above 1 GHz                    | -/-                                           | Nominal                | Nominal                     | RX   |   |    |    |             | -/-                          |
| §15.107(a)<br>§15.207                                    | Conducted<br>emissions<br>below 30 MHz<br>(AC conducted)         | -/-                                           | Nominal                | Nominal                     | RX   |   |    |    |             | battery<br>powered<br>device |

**Note:** C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed



# 10 Additional comments

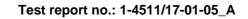
The Bluetooth<sup>®</sup> word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license.

| Purpose of the test report:            | PC II       | PC II test report to cover additional RX mode 4 Mbit/s                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|----------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Special test descriptions:             | None        |                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Configuration descriptions:            | RX/St       | tandby tests: BT enabled, TX Idle                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Test mode:                             |             | Bluetooth LE Test mode enabled<br>(EUT is controlled over CBT)                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                        | $\boxtimes$ | Special software is used.<br>EUT is transmitting pseudo random data by itself                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Antennas and transmit operating modes: |             | <ul> <li>Operating mode 1 (single antenna)</li> <li>Equipment with 1 antenna,</li> <li>Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,</li> <li>Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)</li> </ul>   |  |  |  |  |
|                                        |             | <ul> <li>Operating mode 2 (multiple antennas, no beamforming)</li> <li>Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.</li> </ul>                                                                                                                                           |  |  |  |  |
|                                        |             | <ul> <li>Operating mode 3 (multiple antennas, with beamforming)</li> <li>Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.<br/>In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.</li> </ul> |  |  |  |  |



# 11 Measurement results

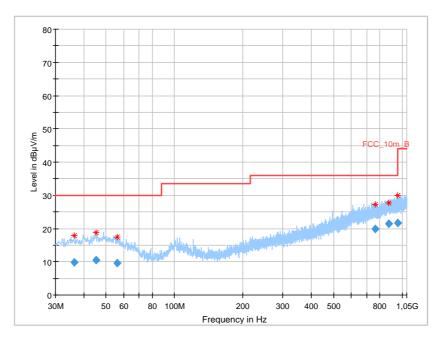
# 11.1 Spurious emissions radiated 30 MHz to 1 GHz


### **Description:**

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the RX frequencies are 2402 MHz and 2480 MHz.

| Measurement parameters     |                      |  |  |  |
|----------------------------|----------------------|--|--|--|
| Detector Peak / Quasi Peak |                      |  |  |  |
| Sweep time                 | Auto                 |  |  |  |
| Resolution bandwidth       | 120 kHz              |  |  |  |
| Video bandwidth            | 3 x RBW              |  |  |  |
| Span                       | 30 MHz to 1 GHz      |  |  |  |
| Trace mode                 | Max hold             |  |  |  |
| Measured modulation        | RX                   |  |  |  |
| Test setup                 | See sub clause 6.1 A |  |  |  |
| Measurement uncertainty    | See sub clause 8     |  |  |  |

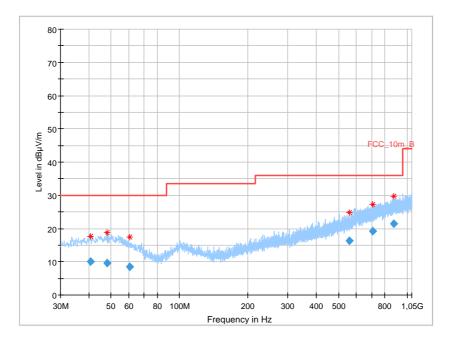
### Limits:


| FCC             |              |             | IC                   |
|-----------------|--------------|-------------|----------------------|
|                 | 209          |             |                      |
| Frequency (MHz) | Field streng | th (dBµV/m) | Measurement distance |
| 30 - 88         | 30           | 0.0         | 10                   |
| 88 – 216        | 33.5         |             | 10                   |
| 216 - 960       | 36.0         |             | 10                   |
| Above 960       | 54           | .0          | 3                    |





# Plots: RX mode


Plot 1: 30 MHz to 1 GHz, RX mode, lowest channel, vertical & horizontal polarization



## Final results:

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------|
| 36.173             | 9.82                  | 30.0              | 20.18          | 1000                  | 120                | 170.0          | V   | 10.0             | 12.8          |
| 45.285             | 10.58                 | 30.0              | 19.42          | 1000                  | 120                | 170.0          | Н   | 170.0            | 13.6          |
| 56.059             | 9.69                  | 30.0              | 20.31          | 1000                  | 120                | 101.0          | Н   | 10.0             | 12.8          |
| 765.360            | 19.99                 | 36.0              | 16.01          | 1000                  | 120                | 170.0          | V   | 10.0             | 22.7          |
| 872.546            | 21.42                 | 36.0              | 14.58          | 1000                  | 120                | 170.0          | V   | 261.0            | 23.8          |
| 957.812            | 21.64                 | 36.0              | 14.36          | 1000                  | 120                | 170.0          | V   | 280.0            | 24.4          |





# Plot 2: 30 MHz to 1 GHz, RX mode, highest channel, vertical & horizontal polarization

### Final results:

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------|
| 40.798             | 10.10                 | 30.0              | 19.90          | 1000                  | 120                | 98.0           | V   | 280.0            | 13.3          |
| 48.143             | 9.65                  | 30.0              | 20.35          | 1000                  | 120                | 101.0          | V   | 280.0            | 13.7          |
| 60.244             | 8.49                  | 30.0              | 21.51          | 1000                  | 120                | 170.0          | Н   | 190.0            | 11.8          |
| 558.972            | 16.24                 | 36.0              | 19.76          | 1000                  | 120                | 170.0          | Н   | 10.0             | 19.6          |
| 708.743            | 19.22                 | 36.0              | 16.78          | 1000                  | 120                | 98.0           | Н   | -10.0            | 21.8          |
| 876.729            | 21.49                 | 36.0              | 14.51          | 1000                  | 120                | 98.0           | Н   | 10.0             | 23.9          |



# 11.2 Spurious emissions radiated above 1 GHz

### **Description:**

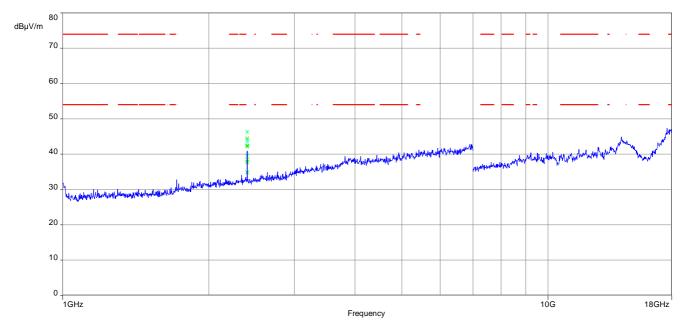
Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the RX frequencies are 2402 MHz and 2480 MHz.

| Measurement parameters  |                                                                                 |  |  |  |
|-------------------------|---------------------------------------------------------------------------------|--|--|--|
| Detector                | Peak / RMS                                                                      |  |  |  |
| Sweep time              | Auto                                                                            |  |  |  |
| Resolution bandwidth    | 1 MHz                                                                           |  |  |  |
| Video bandwidth         | 3 x RBW                                                                         |  |  |  |
| Span                    | 1 GHz to 26 GHz                                                                 |  |  |  |
| Trace mode              | Max hold                                                                        |  |  |  |
| Measured modulation     | GFSK                                                                            |  |  |  |
| Test setup              | See sub clause 6.2 A (1 GHz - 18 GHz)<br>See sub clause 6.3 A (18 GHz - 26 GHz) |  |  |  |
| Measurement uncertainty | See sub clause 8                                                                |  |  |  |

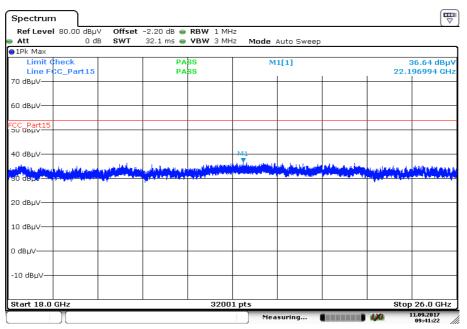
# Limits:

| FCC             |                        | IC                      |
|-----------------|------------------------|-------------------------|
|                 |                        |                         |
| Frequency (MHz) | Field strength (dBµV/n | n) Measurement distance |
| Above 960       | 54.0 (Average)         | 3                       |
| Above 960       | 74.0 (Peak)            | 3                       |

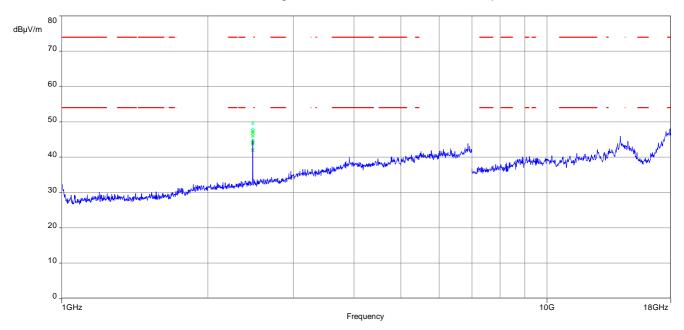
### Results: Receiver mode


| RX spurious emissions radiated [dBµV/m] |                                        |                   |  |  |  |
|-----------------------------------------|----------------------------------------|-------------------|--|--|--|
| F [MHz]                                 | Detector                               | Level<br>[dBµV/m] |  |  |  |
| All detect                              | ed emissions are more than 10 dB below | the limit.        |  |  |  |
|                                         | Peak                                   |                   |  |  |  |
|                                         | AVG                                    |                   |  |  |  |

**Note:** The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

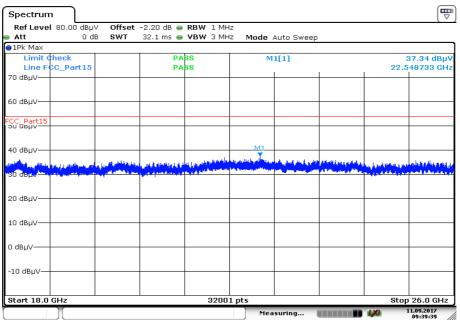

### Test report no.: 1-4511/17-01-05\_A

### Plots: Receiver mode






Plot 2: 18 GHz to 26 GHz, RX / idle - mode, lowest channel, vertical & horizontal polarization




Date: 11.SEP.2017 09:41:22



Plot 3: 1 GHz to 18 GHz, RX / idle - mode, highest channel, vertical & horizontal polarization

Plot 4: 18 GHz to 26 GHz, RX / idle - mode, highest channel, vertical & horizontal polarization



Date: 11.SEP.2017 09:39:39

CTC I advanced

# Test report no.: 1-4511/17-01-05\_A



#### Annex A Glossary

| EUT       | Equipment under test                                                   |
|-----------|------------------------------------------------------------------------|
|           | Equipment under test Device under test                                 |
| DUT       | Unit under test                                                        |
| GUE       |                                                                        |
| ETSI      | GNSS User Equipment<br>European Telecommunications Standards Institute |
|           |                                                                        |
| EN        | European Standard                                                      |
| FCC       | Federal Communications Commission                                      |
| FCC ID    | Company Identifier at FCC                                              |
|           | Industry Canada                                                        |
| PMN       | Product marketing name                                                 |
| HMN       | Host marketing name                                                    |
| HVIN      | Hardware version identification number                                 |
| FVIN      | Firmware version identification number                                 |
| EMC       | Electromagnetic Compatibility                                          |
| HW        | Hardware                                                               |
| SW        | Software                                                               |
| Inv. No.  | Inventory number                                                       |
| S/N or SN | Serial number                                                          |
| C         | Compliant                                                              |
| NC        | Not compliant                                                          |
| NA        | Not applicable                                                         |
| NP        | Not performed                                                          |
| PP        | Positive peak                                                          |
| QP        | Quasi peak                                                             |
| AVG       | Average                                                                |
| 00        | Operating channel                                                      |
| OCW       | Operating channel bandwidth                                            |
| OBW       | Occupied bandwidth                                                     |
| OOB       | Out of band                                                            |
| DFS       | Dynamic frequency selection                                            |
| CAC       | Channel availability check                                             |
| OP        | Occupancy period                                                       |
| NOP       | Non occupancy period                                                   |
| DC        | Duty cycle                                                             |
| PER       | Packet error rate                                                      |
| CW        | Clean wave                                                             |
| MC        | Modulated carrier                                                      |
| WLAN      | Wireless local area network                                            |
| RLAN      | Radio local area network                                               |
| DSSS      | Dynamic sequence spread spectrum                                       |
| OFDM      | Orthogonal frequency division multiplexing                             |
| FHSS      | Frequency hopping spread spectrum                                      |
| GNSS      | Global Navigation Satellite System                                     |
| C/N₀      | Carrier to noise-density ratio, expressed in dB-Hz                     |
|           |                                                                        |



# Annex B Document history

| Version | Applied changes   | Date of release |
|---------|-------------------|-----------------|
| -/-     | Initial release   | 2017-09-25      |
| A       | Editorial changes | 2017-11-29      |

# Annex C Accreditation Certificate

| first page                                                                                                                                                                                                                                                                                                                                | last page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DAKKS<br>Deutsche<br>Aktreditierungsstelle                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Deutsche Akkreditierungsstelle GmbH<br>Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV<br>Unterzeichnerin der Multilateralen Abkommen<br>von EA, ILAC und IAF zur gegenseitigen Anerkennung                                                                                                                      | Deutsche Akkreditierungsstelle GmbH<br>Standort Berlin Standort Frankfurt am Main Standort Braunschweig<br>Bundesaller 100<br>10127 Berlin 60327 Frankfurt am Main 338116 Franschweig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Akkreditierung                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| CTC advanced GmbH<br>Untertürkheimer Straße 6-10, 66117 Saarbrücken<br>die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| durchzuführen:<br>Funk<br>Mobilfunk (GSM / DCS) + OTA<br>Elektromagnetische Verträglichkeit (EMV)<br>Produksicherheit<br>SaA / EMF<br>Umweit<br>Smart Card Technology<br>Bluetooth*<br>Automotive<br>WiFI-Services<br>Kanadische Adorderungen<br>US-Antorderungen<br>Austrik<br>Near Field Communication (NFC.)                           | Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen<br>Zurtimmung der Deutsche Akkreditierungsstelle GmbH (DAX65). Ausgenommen davon ist die separate<br>Weitervenbreitung des Deckblattes durch die umseitig genannte Konformitätsbewertungsstelle in<br>unwerkinderter Form.<br>Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung such auf Bereiche erstreckt,<br>die über den durch die DAX65 bestättigten Akkreditierungsbereich hinausgehen.<br>Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom<br>31. Juli 2008 (BGBI, 15. Sc25) sowie der Verordnung (EG) Ar. 756/2008 des Europäischen Parlaments<br>und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marktüberwachung<br>im Zusammenhamg mit der Vermarkinutg von Produsten (Abl., 128 vom 5. Juli 2008, 3. Dol.)<br>Die DAXKS ist Unterzeichnenin der Multiateralen Abkommen zur gegenstelligen Akrekennung der<br>European co-operation für Akcreditiation (Abs. des International Accreditation (DA), 2004 der |  |
| Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der<br>Akkreditierungsnummer D-PL-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Deckblatt,<br>der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 63 Seiten.<br>Registrierungsnummer der Urkunde: D-PL-12076-01-01 | der international Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen<br>erkennen ihre Akkreditierungen gegenseitig an.<br>Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:<br>EA: www.european-accreditation.org<br>ILAC: www.laCng<br>ILAF: www.laCng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Frankfurt, 25.11.2016 im Adding Opting. (Prif Ralf Egner<br>Beter Munite al der Edninge                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf