	Date(s) of Evaluation Aug. 16-18, Sept. 25, 2006	Test Report Serial No. 081406TZ5-T766-S24SG	Report Revision No. Revision 1.0	
Testing and Engineering Services Lat	Report Issue Date October 03, 2006	Description of Test(s) RF Exposure - SAR	RF Exposure Category General Population	Certificate No. 2470.01

APPENDIX E - SYSTEM VALIDATION

Company:	Asia P	acific Satellite Industries Co., Ltd.	FCC ID:	TZ5SG-2520	Model:	SG-2520	
DUT Type:	Thura	ya SAT/GSM Dual Mode Hand Held 1	Terminal	Tx: 1626-1660 M	Hz / 1850.2-	1909.8 MHz	Asia Pacific Satellite Industries Co., Ltd.
2006 Celltech La	abs Inc.	This document is not to be reproduced in whether the second secon	hole or in part	without the prior written	permission of (Celltech Labs Inc	. Page 72 of 74

Celltech	Date of Evaluation:		August 14, 2006		Document Issue No.:		SV1640B-081406-R1.0	
	Evaluation Type:	Sys	stem Validation	Validati	ion Dipole:	1640 MHz	Fluid Type:	Brain

1640 MHz SYSTEM VALIDATION

Туре:	1640 MHz Validation Dipole
Asset Number:	00212
Serial Number:	0175
Place of Validation:	Celltech Labs Inc.
Date of Validation:	August 14, 2006

Celltech Labs Inc. hereby certifies that the 1640 MHz System Validation was performed on the date indicated above.

Performed by:

Sean Johnston

Approved by:

Spencer Watson

Celltech Labs Inc. 1955 Moss Court, Kelowna, B.C. Canada V1Y 9L3 Tel. 250-448-7047 • Fax. 250-448-7046 • e-mail: info@celltechlabs.com www.celltechlabs.com

Callbada	Date of Evaluation:		August 14, 2006		Document Issue No.:		SV1640B-081406-R1.0	
Testing and Engineering Services Lab	Evaluation Type:	System	Validation	Validati	ion Dipole:	1640 MHz	Fluid Type:	Brain

1. Dipole Construction & Electrical Characteristics

The validation dipole was manufactured by Indexsar and constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1640MHz	Re{Z} = 46.838 Ω
	lm{Z} = 4.3496 Ω

Return Loss at 1640MHz

-24.906 dB

	Date of Evaluatio	on: August 14, 2		2006	Document Issue No.:		SV1640B-081406-R1.0	
Celifech Testing and Engineering Services Lat	Evaluation Type:	Syst	tem Validation	Validati	ion Dipole:	1640 MHz	Fluid Type:	Brain

2. Validation Dipole VSWR Data

Date of Evaluation:	August 14, 2	2006	Documen	t Issue No.:	SV1640B-081406-R1.0			
BIITECN sting and Engineering Services Lat	Evaluation Type:	Sys	tem Validation	Validati	ion Dipole:	1640 MHz	Fluid Type:	Brain

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1640	81.0	50.0	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 25 liters
Dimensions:	50 cm (W) x 100 cm (L)

Callbada	Date of Evaluation:		August 14, 2006		Document Issue No.:		SV1640B-081406-R1.0	
Celifech Testing and Engineering Services Lat:	Evaluation Type:	Sys	tem Validation	Validati	ion Dipole:	1640 MHz	Fluid Type:	Brain

5. 1640 MHz System Validation Dipole Setup

	Date of Evaluation:		August 14, 2006		Document	t Issue No.:	SV1640B-081406-R1.0	
Celifech Testing and Engineering Services Lat	Evaluation Type:	Syst	tem Validation	Validati	ion Dipole:	1640 MHz	Fluid Type:	Brain

6. Measurement Conditions

The phantom was filled with 1640 MHz Brain tissue simulant.

Relative Permittivity:	40.9 (+1.5% deviation from target)
Conductivity:	1.34 mho/m (+2.3% deviation from target)
Fluid Temperature:	23.5 °C
Fluid Depth:	≥ 15.0 cm
Environmental Condition	ns:
Ambient Temperature:	24.6 °C
Barometric Pressure:	101.2 kPa
Humidity:	35 %

The 1640 MHz Brain tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	55.5%
Glycol	44.0%
Salt	0.5%
Target Dielectric Parameters at 25 °C	ε _r = 40.3 (+/-5%) σ = 1.31 S/m (+/-5%)

	Date of Evaluation	n: Au	ugust 14, 2	2006	Documen	t Issue No.:	SV1640B-0814	406-R1.0
Testing and Engineering Services Lab	Evaluation Type:	System Va	alidation	Validati	ion Dipole:	1640 MHz	Fluid Type:	Brain

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

	Date of Evaluation	n:	August 14, 2	2006	Documen	t Issue No.:	SV1640B-0814	406-R1.0
Testing and Engineering Services Lat:	Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	1640 MHz	Fluid Type:	Brain

8. 1640 MHz Interpolated SAR Target

IEEE Target (1g) 1450 MHz = 29.0 W/Kg 1800 MHz = 28.1 W/kg

9. 1640 MHz Validation Dipole SAR Test Results

SAF	R @ 0.25W lr	nput averaged	over 1g	SAR @ 1W Input averaged over 1g					
Interpola	ted Target	Measured	Deviation	tion Interpolated Ta		Measured	Deviation		
8.60	+/- 10%	8.61	+0.1%	34.4	+/- 10%	34.44	+0.1%		
SAR	@ 0.25W In	put averaged	over 10g	SAR @ 1W Input averaged over 10g					
Interpola	ted Target	Measured	Deviation	Interpolat	ted Target	Measured	Deviation		
4.60	+/- 10%	4.48	-2.6%	18.4	+/- 10%	17.92	-2.6%		
The result	The results have been normalized to 1W (forward power) into the dipole.								

	Date of Evaluatio	n:	August 14, 2	2006	Documen	t Issue No.:	SV1640B-081	406-R1.0
Celifect	Evaluation Type:	Sys	tem Validation	Validat	ion Dipole:	1640 MHz	Fluid Type:	Brain

System Validation (Brain) - 1640 MHz Dipole - August 14, 2006

DUT: Dipole 1640 MHz; Model: IXD-164; Serial: 0175; Asset: 00212; Manufacturer: Indexsar

Ambient Temp: 24.6 °C; Fluid Temp: 23.5 °C; Barometric Pressure: 101.2 kPa; Humidity: 35%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 1640 MHz; Duty Cycle: 1:1 Medium: HSL1640 Medium parameters used: f = 1640 MHz; σ = 1.34 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³

- Probe: ET3DV6 - SN1387; ConvF(5.4, 5.4, 5.4); Calibrated: 16/03/2006

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1640 MHz Dipole - System Validation/Area Scan (5x8x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 7.92 mW/g

1640 MHz Dipole - System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 78.5 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 8.61 mW/g; SAR(10 g) = 4.48 mW/g Maximum value of SAR (measured) = 9.41 mW/g

	Date of Evaluation	n:	August 14, 2	2006	Documen	t Issue No.:	SV1640B-0814	406-R1.0
Testing and Engineering Services Lat:	Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	1640 MHz	Fluid Type:	Brain

10. Measured Fluid Dielectric Parameters

1640 MHz System Validation (Brain)

Celltech Labs Test Result for Mon 14/Aug/20 Freq Frequ FCC_eHFCC FCC_sHFCC Test_e Epsilo Test_s Sigma	Inc. [•] UIM Dieled 006 uency(GHz) OET 65 Su OET 65 Su on of UIM a of UIM	ctric Para pplemen pplemen	ameter It C (June It C (June	2001) Limits for Head Epsilon 2001) Limits for Head Sigma
Freq	ECC al		HTasta	Test s
1 5000	40.44	1 23	41.85	1 24
1,5100	40.42	1.20	41.66	1 25
1.5200	40.41	1.24	41.63	1.26
1.5300	40.40	1.25	41.58	1.27
1.5400	40.39	1.25	41.48	1.27
1.5500	40.38	1.26	41.46	1.27
1.5600	40.36	1.26	41.44	1.29
1.5700	40.35	1.27	41.30	1.29
1.5800	40.34	1.27	41.18	1.30
1.5900	40.33	1.28	41.20	1.31
1.6000	40.31	1.28	41.03	1.31
1.6100	40.30	1.29	41.05	1.32
1.6200	40.28	1.30	40.93	1.33
1.6300	40.27	1.30	40.84	1.34
<mark>1.6400</mark>	40.25	1.31	40.90	<mark>1.34</mark>
1.6500	40.24	1.31	40.76	1.36
1.6600	40.22	1.32	40.76	1.35
1.6700	40.21	1.32	40.78	1.36
1.6800	40.19	1.33	40.82	1.37
1.6900	40.17	1.34	40.72	1.38
1.7000	40.16	1.34	40.75	1.39

	Date of Evaluation	n:	June 09, 20	006	Documen	t Issue No.:	SV1900B-060)906-R1.0
Testing and Engineering Services Lat:	Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	1900 MHz	Fluid Type:	Brain

1900 MHz SYSTEM VALIDATION

Туре:	1900 MHz Validation Dipole
Asset Number:	00032
Serial Number:	151
Place of Validation:	Celltech Labs Inc.
Date of Validation:	June 09, 2006

Celltech Labs Inc. hereby certifies that the 1900 MHz System Validation was performed on the date indicated above.

Performed by:

Sean Johnston

Approved by:

Spencer Watson

Celltech Labs Inc. 1955 Moss Court, Kelowna, B.C. Canada V1Y 9L3 Tel. 250-448-7047 • Fax. 250-448-7046 • e-mail: info@celltechlabs.com www.celltechlabs.com

	Date of Evaluatio	n:	June 09, 20	006	Documen	t Issue No.:	SV1900B-060	0906-R1.0
Celifech Testing and Engineering Services Lat	Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	1900 MHz	Fluid Type:	Brain

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900MHz	Re{Z} = 46.576Ω
	lm{Z} = 6.8906Ω

Return Loss at 1900MHz

-21.945 dB

2. Validation Dipole VSWR Data

	Date of Evaluatio	n: June 09	2006	Documen	t Issue No.:	SV1900B-060906-R1.0	
	Evaluation Type:	System Validatio	n Validat	tion Dipole:	1900 MHz	Fluid Type:	Brain

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 25 liters
Dimensions:	50 cm (W) x 100 cm (L)

Date of Evaluation: June 09, 20		006	Documen	t Issue No.:	SV1900B-060906-R1.0		
Evaluation Type:	Sys	tem Validation	tem Validation Validatio		1900 MHz	Fluid Type:	Brain

5. 1900 MHz System Validation Setup

6. 1900 MHz System Validation Dipole

7. Measurement Conditions

The phantom was filled with 1900 MHz Brain tissue simulant.

Relative Permittivity:	39.7 (-0.7% deviation from target)
Conductivity:	1.42 mho/m (+1.5% deviation from target)
Fluid Temperature:	23.5 °C
Fluid Depth:	≥ 15.0 cm
Environmental Condition	ns:
Ambient Temperature:	24.6 °C
Barometric Pressure:	101.2 kPa
Humidity:	35 %

The 1900 MHz Brain tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	55.85%
Glycol	44.00%
Salt	0.15%
Target Dielectric Parameters at 25 °C	ε _r = 40.0 (+/- 5%) σ = 1.40 S/m (+/- 5%)

Celltech	Date of Evaluation:		June 09, 2006		Document Issue No.:		SV1900B-060906-R1.0	
	Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	1900 MHz	Fluid Type:	Brain

8. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

Date of Evaluation: June 09, 2006		006	Document Issue No.:		SV1900B-060906-R1.0		
Evaluation Type:	Sys	tem Validation	tem Validation Validation		1900 MHz	Fluid Type:	Brain

9. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	10.70	42.80	5.51	22.04	12.10
Test 2	10.40	41.60	5.37	21.48	11.80
Test 3	10.30	41.20	5.33	21.32	11.60
Test 4	10.30	41.20	5.31	21.24	11.60
Test 5	10.40	41.60	5.39	21.56	11.80
Test 6	10.60	42.40	5.40	21.60	11.80
Test 7	10.60	42.40	5.40	21.60	11.80
Test 8	10.40	41.60	5.32	21.28	11.60
Test 9	10.40	41.60	5.32	21.28	11.60
Test 10	10.40	41.60	5.31	21.24	11.60
Average	10.45	41.80	5.37	21.46	11.73

The results have been normalized to 1W (forward power) into the dipole.

Targo @ 1 W averaç 1 gran	et SAR att Input ged over n (W/kg)	Measured SAR @ 1 Watt Input averaged over 1 gram		Deviation from Target	Target SAR @ 1 Watt Input averaged over 10 grams (W/kg)		Measured SAR @ 1 Watt Input averaged over 10 grams		Deviation from Target
39.7	+/- 10%	41.8	W/kg	+5.3%	20.5	+/- 10%	21.46	W/kg	+4.7%

Celltech	Date of Evaluation:		June 09, 2006		Document Issue No.:		SV1900B-060906-R1.0	
	Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	1900 MHz	Fluid Type:	Brain

System Validation (Brain) - 1900 MHz Dipole - June 9, 2006

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 151; Asset: 00032 Ambient Temp: 24.6 °C; Fluid Temp: 23.5 °C; Barometric Pressure: 101.2 kPa; Humidity: 35% Communication System: CW Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 (σ = 1.42 mho/m; ϵ_r = 39.7; ρ = 1000 kg/m³)

- Probe: EX3DV4 - SN3547; ConvF(8.2, 8.2, 8.2); Calibrated: 14/02/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 08/02/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

1900 MHz System Validation/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.7 V/m; Power Drift = 0.037 dB **SAR(1 g) = 10.7 mW/g; SAR(10 g) = 5.51 mW/g** Maximum value of SAR (measured) = 12.1 mW/g

1900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.8 V/m; Power Drift = 0.003 dB **SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.37 mW/g** Maximum value of SAR (measured) = 11.8 mW/g

1900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.7 V/m; Power Drift = 0.020 dB SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.33 mW/g Maximum value of SAR (measured) = 11.6 mW/g

1900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.2 V/m; Power Drift = 0.041 dB SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.31 mW/g Maximum value of SAR (measured) = 11.6 mW/g

1900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.1 V/m; Power Drift = 0.036 dB SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g Maximum value of SAR (measured) = 11.8 mW/g

1900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.2 V/m; Power Drift = 0.009 dB SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.4 mW/g Maximum value of SAR (measured) = 11.8 mW/g

1900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.4 V/m; Power Drift = -0.015 dB SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.4 mW/g Maximum value of SAR (measured) = 11.8 mW/g

1900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.6 V/m; Power Drift = -0.009 dB SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.32 mW/g Maximum value of SAR (measured) = 11.6 mW/g

1900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.5 V/m; Power Drift = 0.002 dB **SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.32 mW/g** Maximum value of SAR (measured) = 11.6 mW/g

1900 MHz System Validation/Zoom Scan 11 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.4 V/m; Power Drift = 0.005 dB **SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.31 mW/g** Maximum value of SAR (measured) = 11.6 mW/g

Celltech	Date of Evaluation:		June 09, 2006		Document Issue No.:		SV1900B-060906-R1.0	
	Evaluation Type:	Sys	stem Validation	Validat	ion Dipole:	1900 MHz	Fluid Type:	Brain

10. Measured Fluid Dielectric Parameters

1900 MHz System Validation (Brain)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Fri 09/Jun/2006 Frequency (GHz) FCC_eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq FCC_eH FCC_sH Test_e Test_s 1.8000 40.00 1.40 40.27 1.31 1.8100 40.00 1.40 40.15 1.32

1.0000	10.00	1.10	10.21	1.01
1.8100	40.00	1.40	40.15	1.32
1.8200	40.00	1.40	40.10	1.33
1.8300	40.00	1.40	40.01	1.33
1.8400	40.00	1.40	39.93	1.35
1.8500	40.00	1.40	39.90	1.36
1.8600	40.00	1.40	39.84	1.37
1.8700	40.00	1.40	39.77	1.39
1.8800	40.00	1.40	39.81	1.39
1.8900	40.00	1.40	39.73	1.41
1.9000	40.00	1.40	39.65	1.42
1.9100	40.00	1.40	39.71	1.42
1.9200	40.00	1.40	39.61	1.43
1.9300	40.00	1.40	39.67	1.43
1.9400	40.00	1.40	39.52	1.44
1.9500	40.00	1.40	39.61	1.45
1.9600	40.00	1.40	39.44	1.46
1.9700	40.00	1.40	39.46	1.46
1.9800	40.00	1.40	39.41	1.48
1.9900	40.00	1.40	39.32	1.50
2.0000	40.00	1.40	39.31	1.51

	Date of Evaluation:	June 12, 2006	Document Issue No.:	Je No.: SV1900B-0612	
Celifech Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

1900 MHz SYSTEM VALIDATION

Туре:	1900 MHz Validation Dipole
Asset Number:	00032
Serial Number:	151
Place of Validation:	Celltech Labs Inc.
Date of Validation:	June 12, 2006

Celltech Labs Inc. certifies that the 1900 MHz System Validation (Body) was performed on the date indicated above.

Performed by:

Sean Johnston

Approved by:

Spencer Watson

Celltech Labs Inc. 1955 Moss Court, Kelowna, B.C. Canada V1Y 9L3 Tel. 250-448-7047 • Fax. 250-448-7046 • e-mail: info@celltechlabs.com www.celltechlabs.com

Celltech	Date of Evaluation:	n: June 12, 2006 Document Issu		SV1900B-061206-R1	
	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900MHz	Re{Z} = 48.535Ω
	$lm{7} = 9.38480$

Return Loss at 1900MHz

-20.358dB

Celltech	Date of Evaluation:	June 12, 2006	Document Issue No.:	SV1900B-067	1206-R1.0
	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

2. Validation Dipole VSWR Data

	Date of Evaluation:	June 12, 2006	Document Issue No.:	: SV1900B-061206-I	
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 25 liters
Dimensions:	50 cm (W) x 100 cm (L)

	Date of Evaluation:	June 12, 2006	Document Issue No.:	nent Issue No.: SV1900B-067	
Celifech Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

5. 1900 MHz System Validation Setup

Celltech	Date of Evaluation:	Date of Evaluation: June 12, 2006 Dor		SV1900B-061206-R1.0	
	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

6. 1900 MHz Dipole Setup

	Date of Evaluation:	June 12, 2006	Document Issue No.:	SV1900B-067	1206-R1.0
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

7. Measurement Conditions

The phantom was filled with 1900 MHz Body tissue simulant.

Relative Permittivity:	51.4 (-3.5% deviation from target)
Conductivity:	1.51 mho/m (-0.5% deviation from target)
Fluid Temperature:	23.5 °C
Fluid Depth:	≥ 15.0 cm
Environmental Condition	ns:
Ambient Temperature:	23.2 °C
Barometric Pressure:	101.2 kPa
Humidity:	44%

The 1900 MHz Body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	69.85%
Glycol	29.89%
Salt	0.26%
Target Dielectric Parameters at 25 °C	ε _r = 53.3 (+/-5%) σ = 1.52 S/m (+/-5%)

Celltech	Date of Evaluation:	June 12, 2006	Document Issue No.:	SV1900B-061206-R1.0	
	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

8. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

	Date of Evaluation:	June 12, 2006	Document Issue No.:	SV1900B-061206-R1.0	
Celifech Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

9. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	10.50	42.00	5.40	21.60	11.90
Test 2	10.40	41.60	5.37	21.48	11.80
Test 3	10.40	41.60	5.37	21.48	11.80
Test 4	10.60	42.40	5.47	21.88	12.00
Test 5	10.30	41.20	5.30	21.20	11.60
Test 6	10.20	40.80	5.28	21.12	11.60
Test 7	10.20	40.80	5.27	21.08	11.60
Test 8	10.30	41.20	5.34	21.36	11.70
Test 9	10.30	41.20	5.31	21.24	11.60
Test 10	10.30	41.20	5.32	21.28	11.70
Average	10.35	41.40	5.34	21.37	11.73

The results have been normalized to 1W (forward power) into the dipole.

Targo	et SAR	Measured SAR	Deviation	Target SAR		Measured SAR	Deviation
@ 1 W	att Input	@ 1 Watt Input	from	@ 1 Watt Input		@ 1 Watt Input	from
averag	jed over	averaged over	Target	averaged over		averaged over	Target
1 gran	n (W/kg)	1 gram (W/kg)	(%)	10 grams (W/kg)		10 grams (W/kg)	(%)
39.8	+/- 10%	41.40	+4.02	20.8	+/- 10%	21.37	+2.74

Dipole	Distance	Frequency	SAR (1g)	SAR $(10g)$	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Celltech	Date of Evaluation:	June 12, 2006	June 12, 2006 Document Issue No.:		SV1900B-061206-R1.0	
	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body	

System Validation (Body) - 1900 MHz Dipole - June 12, 2006

Dipole: 1900 MHz; Serial: 151 Ambient Temp: 23.2 °C; Fluid Temp: 23.5 °C; Barometric Pressure: 101.2 kPa; Humidity: 44% Communication System: CW Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: M1900 (σ = 1.51 mho/m; ϵ_r = 51.4; ρ = 1000 kg/m³) - Probe: EX3DV4 - SN3547; ConvF(7.84, 7.84, 7.84); Calibrated: 14/02/2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 08/02/2006
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

1900 MHz System Validation/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.7 V/m; Power Drift = -0.024 dB SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.4 mW/g Maximum value of SAR (measured) = 11.9 mW/g

1900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.7 V/m; Power Drift = -0.033 dB SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.37 mW/g Maximum value of SAR (measured) = 11.8 mW/g

1900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.5 V/m; Power Drift = -0.011 dB SAR(1 q) = 10.4 mW/q; SAR(10 q) = 5.37 mW/qMaximum value of SAR (measured) = 11.8 mW/g

1900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.3 V/m; Power Drift = 0.003 dB SAR(1 q) = 10.6 mW/q; SAR(10 q) = 5.47 mW/qMaximum value of SAR (measured) = 12.0 mW/g

1900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.9 V/m; Power Drift = -0.004 dB SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.3 mW/g Maximum value of SAR (measured) = 11.6 mW/g

1900 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.9 V/m; Power Drift = -0.007 dB SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.28 mW/g Maximum value of SAR (measured) = 11.6 mW/g

1900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.6 V/m; Power Drift = -0.008 dB SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.27 mW/gMaximum value of SAR (measured) = 11.6 mW/g

1900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.3 V/m; Power Drift = -0.006 dB SAR(1 q) = 10.3 mW/q; SAR(10 q) = 5.34 mW/qMaximum value of SAR (measured) = 11.7 mW/g

1900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.9 V/m; Power Drift = -0.019 dB SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.31 mW/g Maximum value of SAR (measured) = 11.6 mW/g

1900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.2 V/m; Power Drift = -0.013 dB SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.32 mW/g Maximum value of SAR (measured) = 11.7 mW/g

Celltech Tean and Engineering Services Lat	Date of Evaluation:	June 12, 2006	Document Issue No.:	sue No.: SV1900B-061206-R1.0	
	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

¹ g average of 10 measurements: 10.35 mW/g 10 g average of 10 measurements: 5.34 mW/g

	Date of Evaluation:	June 12, 2006	Document Issue No.:	SV1900B-061206-R1.0	
Celifech Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Body

10. Measured Fluid Dielectric Parameters

1900 MHz Dipole System Validation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Mon 12/Jun/2006 Frequency(GHz) FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Test_s Sigma of UIM Freq FCC_eB FCC_sB Test_e Test_s 1.8000 53.30 1.52 51.68 1.43 1.8100 53.30 1.52 51.72 1.44

1.8100	53.30	1.52	51.72	1.44
1.8200	53.30	1.52	51.59	1.44
1.8300	53.30	1.52	51.60	1.45
1.8400	53.30	1.52	51.57	1.46
1.8500	53.30	1.52	51.47	1.46
1.8600	53.30	1.52	51.50	1.48
1.8700	53.30	1.52	51.46	1.49
1.8800	53.30	1.52	51.51	1.49
1.8900	53.30	1.52	51.37	1.52
1.9000	53.30	1.52	51.36	1.51
1.9100	53.30	1.52	51.28	1.54
1.9200	53.30	1.52	51.23	1.54
1.9300	53.30	1.52	51.23	1.55
1.9400	53.30	1.52	51.25	1.56
1.9500	53.30	1.52	51.31	1.57
1.9600	53.30	1.52	51.16	1.59
1.9700	53.30	1.52	51.21	1.59
1.9800	53.30	1.52	51.19	1.61
1.9900	53.30	1.52	51.12	1.62
2.0000	53.30	1.52	51.13	1.63