Celltech Testing and Engineering Services Lat	Date(s) of Evaluation Aug. 16-18, Sept. 25, 2006	Test Report Serial No. 081406TZ5-T766-S24SG	Report Revision No. Revision 1.0	
	<u>Report Issue Date</u> October 03, 2006	Description of Test(s) RF Exposure - SAR	RF Exposure Category General Population	Certificate No. 2470.01

APPENDIX F - PROBE CALIBRATION

Company:	Asia Pacific Satellite Industries Co., Ltd. FCC ID:			TZ5SG-2520	Model:	SG-2520	AP SI
DUT Type:	Thuraya SAT/GSM Dual Mode Hand Held Terminal			Tx: 1626-1660 MHz / 1850.2-1909.8 MHz			Asia Pacific Satellite Industries Co., Ltd.
2006 Celltech La	abs Inc.	os Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				. Page 73 of 74	

WIS.

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

С Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

Client Celitech Labs		Certificate	No: ET3-1387_Mar06
CALIBRATION (CERTIFICAT	E	
Dbject	ET3DV6 - SN:1	387	
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field prob)es 🕬
Calibration date:	March 16, 2006		
Condition of the calibrated item	In Tolerance		
The measurements and the unce	ertainties with confidence cted in the closed laborat	ntional standards, which realize the physical probability are given on the following pages ory facility: environment temperature (22 ± 3	and are part of the certificate.
Primary Standards	D#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
ower meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
ower sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
ower sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
eference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06
eference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
eference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)	Aug-06
eference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013 Jan0	0
AE4	SN: 654	2-Feb-06 (SPEAG, No. DAE4-654_Feb0	06) Feb-07
econdary Standards	ID #	Check Date (in house)	Scheduled Check
F generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-	-05) In house check: Nov-07
etwork Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov	v-05) In house check: Nov 06
	Name	Function	Signature
alibrated by:	Katja Pokovic	Technical Manager	How let
pproved by:	Niels Kuster	Quality Manager	NISO
his calibration certificate shell a	ot he reproduced event	n full without written approval of the laborate	Issued: March 16, 2006

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:TSLtissue simulating liquidNORMx,y,zsensitivity in free spaceConFsensitivity in TSL / NORMx,y,zDCPdiode compression pointPolarization φ φ rotation around probe axisPolarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * *ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1387

Manufactured: Last calibrated: Recalibrated: September 21, 1999 March 18, 2005 March 16, 2006

1

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Fre	e Space ^A		Diode C	ompression ^B
NormX	1.62 ± 10.1%	μV/(V/m) ²	DCP X	92 mV
NormY	1.72 ± 10.1%	μV/(V/m) ²	DCP Y	92 mV
NormZ	1.72 ± 10.1%	μV/(V/m) ²	DCP Z	92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

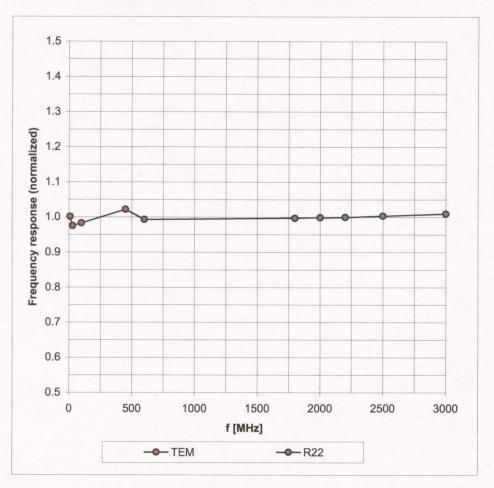
Boundary Effect

TSL 9	00 MHz	Typical SAR gradient: 5 % per mm
-------	--------	----------------------------------

Sensor Center t	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	9.3	5.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

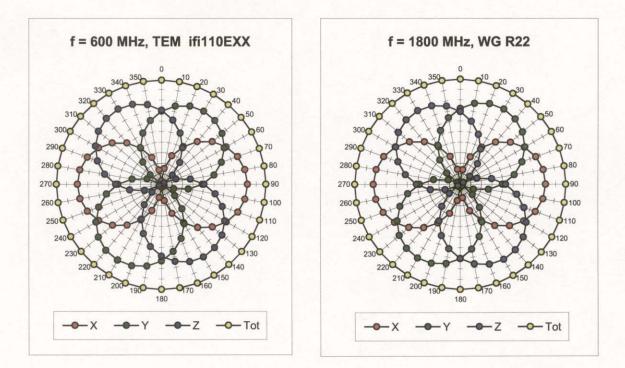
Sensor Offset

Probe Tip to Sensor Center

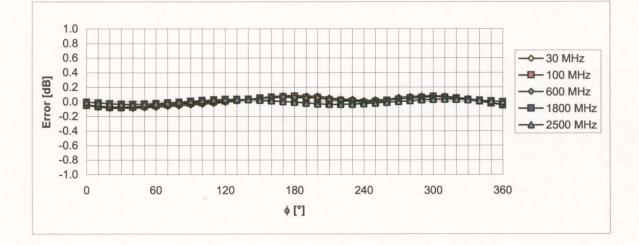

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

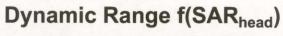
^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

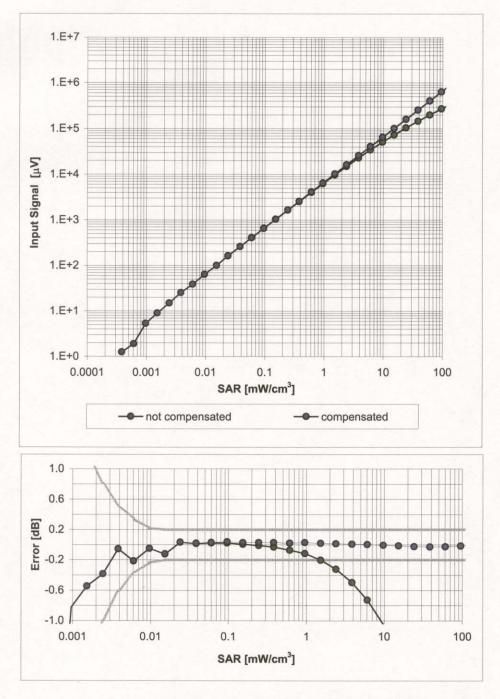

^B Numerical linearization parameter: uncertainty not required.

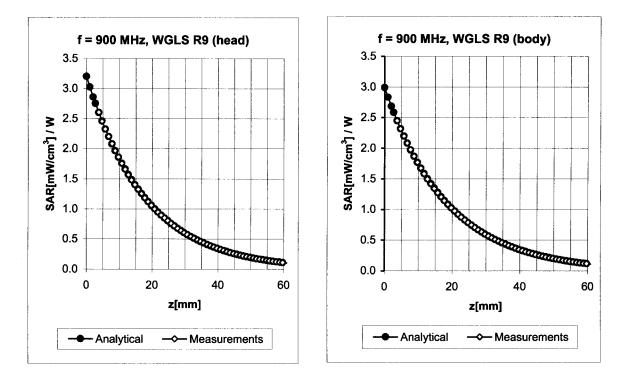
Frequency Response of E-Field



(TEM-Cell:ifi110 EXX, Waveguide: R22)

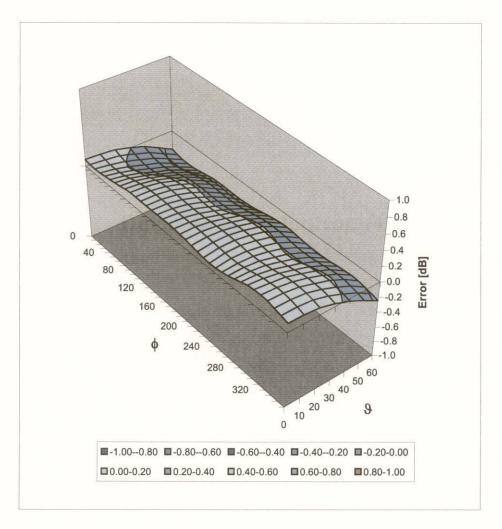

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ **),** ϑ = 0°


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.62	1.86	6.35 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.59	1.97	6.04 ± 11.0% (k=2)

^c The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (\, \, \), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	March 18, 2006
Probe Calibration Date:	March 16, 2006

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

The Kay

ET3DV6-SN:1387

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

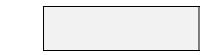
Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

150 ± 50 MHz	ConvF	8.6 ± 10%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\%$ mho/m (head tissue)
150 ± 50 MHz	ConvF	8.2 ± 10%	$\varepsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
300 ± 50 MHz	ConvF	7.8 ± 9%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 ± 50 MHz	ConvF	7.4±8%	$\varepsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\% \text{ mho/m}$ (head tissue)
450 ± 50 MHz	ConvF	7.3 ± 8%	$\varepsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)
750 ± 50 MHz	ConvF	6.6±7%	$\varepsilon_r = 41.8 \pm 5\%$ $\sigma = 0.89 \pm 5\% \text{ mho/m}$ (head tissue)
750 ± 50 MHz	ConvF	6.4 ± 7%	$\epsilon_r = 55.4 \pm 5\%$ $\sigma = 0.96 \pm 5\% \text{ mho/m}$ (body tissue)
1925 ± 50 MHz	ConvF	5.0 ± 7%	$\varepsilon_r = 39.8 \pm 5\%$ $\sigma = 1.48 \pm 5\%$ mho/m (head tissue)
1925 ± 50 MHz	ConvF	4.7 ± 7%	$\epsilon_r = 53.2 \pm 5\%$ $\sigma = 1.60 \pm 5\%$ mho/m (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1. Please see also Section 4.7 of the DASY4 Manual. Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com


Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	August 14, 2006
Probe Calibration Date:	March 16, 2006

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

1640 ± 50 MHz ConvF

nvF **5.40 ± 7**%

 $\sigma_r = 40.3 \pm 5\%$ $\sigma = 1.29 \pm 5\%$ mho/m (head tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1. Please see also Section 4.7 of the DASY4 Manual.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

С

Client Celltech Labs		Certificat	e No: EX3-3547_Feb06
GALE BERANDAL	eernecan	Ξ	
Object	EX3DV4 - SN:3	547	
Calibration procedure(s)		ind QA CAL-14.v3 edure for dosimetric E-field pro	Des
Calibration date:	February 14, 20	06	
Condition of the calibrated item	In Tolerance		
	-	tional standards, which realize the physic probability are given on the following page	· · ·
All calibrations have been condu	ucted in the closed laborat	ory facility: environment temperature (22 ±	: 3)°C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.	b.) Scheduled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
Reference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)	Aug-06
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jar	106) Jan-07
DAE4	SN: 654	2-Feb-06 (SPEAG, No. DAE4-654_Fe	b06) Feb-07
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check No	ov-05) In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check N	•
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Rev: Kafe
Approved by:	Niels Kuster	Quality Manager	NISO
This calibration certificate shall r	not be reproduced except	n full without written approval of the labora	Issued: February 14, 2006

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z:* DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z* * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

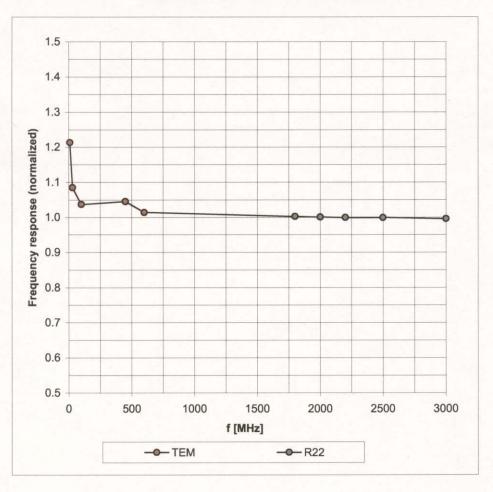
Probe EX3DV4

SN:3547

Manufactured: Last calibrated: Recalibrated: July 5, 2004 January 21, 2005 February 14, 2006

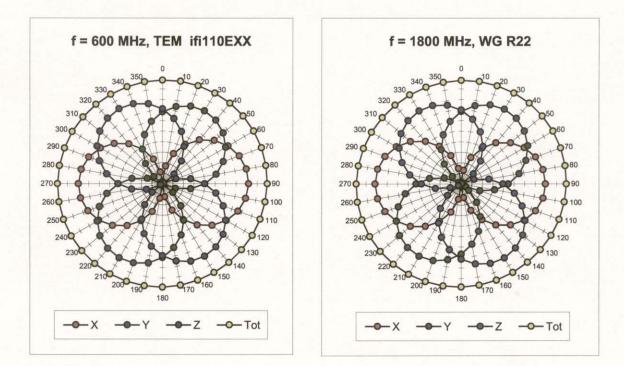
Calibrated for DASY Systems

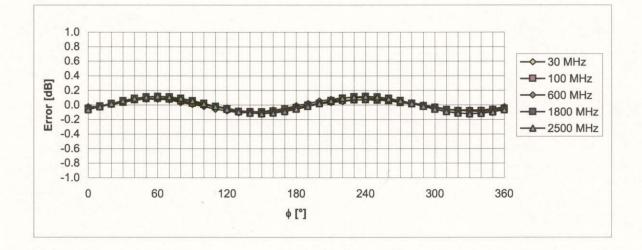
(Note: non-compatible with DASY2 system!)


DASY - Parameters of Probe: EX3DV4 SN:3547

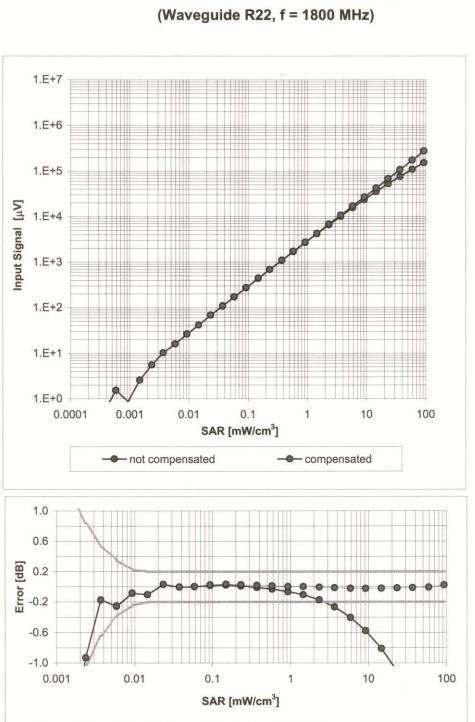
Sensitivity in Free Space ^A Diode Compress											
No	ormX	0.399 ± 10.1%	μV/(V/m) ²	DCP X	92 mV						
No	rmY	0.423 ± 10.1%	μV/(V/m) ²	DCP Y	92 mV						
No	ormZ	0.475 ± 10.1%	μV/(V/m) ²	DCP Z	92 mV						
			F()								
Sensitivity in Tissue Simulating Liquid (Conversion Factors)											
Please see	Page 8.										
Boundary Effect											
TSL	900 N	AHz Typical SAF	R gradient: 5 % per r	nm							
			-								
Ser	Sensor Center to Phantom Surface Distance				3.0 mm						
SA	R _{be} [%] V	Vithout Correction Alg	gorithm	3.5	1.1						
SA	R _{be} [%] V	Vith Correction Algori	thm	0.1	0.4						
TSL 1810 MHz Typical SAR gradient: 10 % per mm											
Sensor Center to Phantom Surface Distance 2.0 mm 3.0 mm											
	Sensor Center to Phantom Surface Distance SAR _{be} [%] Without Correction Algorithm				3.0 mm 1.1						
		Without Correction Algorithm With Correction Algorithm			0.4						
0,1	CDE [/ J 4	With Concellen Algen		0.2	0.4						
Sensor Offset											
Pro	be Tip to Sense	1.	. 0 mm								
<u> </u>											
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution											
corresponds to a coverage probability of approximately 95%.											

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

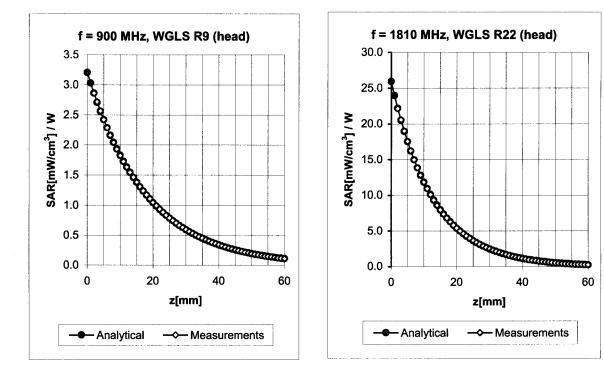

^B Numerical linearization parameter: uncertainty not required.



(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

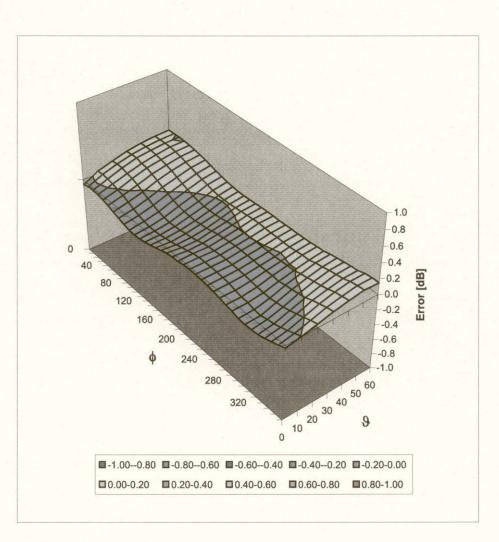
Receiving Pattern (ϕ **),** ϑ = 0°



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.71	0.66	9.20 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.42	0.73	8.20 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.55	0.56	7.41 ± 11.8% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.58	0.93	4.79 ± 13.1% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.79	0.65	9.09 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.10	4.00	7.84 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.58	0.54	7.53 ± 11.8% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.54	1.09	4.87 ± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.57	0.96	4.57 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.79	0.70	4.69 ± 13.1% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

February 14, 2006

EX3DV4 SN:3547

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)