Prediction of Distance for a specific MPE Limit

Equation from page 18 of OET Bulletin 65, Edition 97-01

$S=\frac{P G}{4 \pi R^{2}}$

$R=\sqrt{\frac{P G}{4 \pi S}}$
S = power density
$P=$ power input to the antenna
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$\mathrm{R}=$ distance to the centre of radiation of the antenna
Source Based "Time Averaged Power with duty cycle correction" ${ }^{1}$
Max Antenna gain
Prediction Freq
MPE limit for uncontrolled exposure at prediction frequency

10.77	dBm	11.94
1	dBi	1.26
2.480	GHz	$2.480 \mathrm{E}+09$
1	$\mathrm{~mW} / \mathrm{cm}^{2}$	0.4217

Permitted distance at MPE limit ($\mathbf{1} \mathbf{m W} / \mathrm{cm} 2$) in $\mathbf{c m}$
1.09*

Application is for a mobile device manufacturer is recommending 20 cm min distance.

[^0]
[^0]: ${ }^{1}$ Based upon 10% Source Based "Time Averaged Power with duty cycle correction (see Support letter and Test report)

