
Data Sheet: JN5148-001-Myy JenNet, ZigBee PRO and IEEE802.15.4 Module

Overview

The JN5148-001-Myy family is a range of ultra low power, high performance surface mount modules targeted at JenNet and ZigBee PRO networking applications, enabling users to realise products with minimum time to market and at the lowest cost. They remove the need for expensive and lengthy development of custom RF board designs and test suites. The modules use NXP's JN5148 wireless microcontroller to provide a comprehensive solution with large memory, high CPU and radio performance and all RF components included. All that is required to develop and manufacture wireless control or sensing products is to connect a power supply and peripherals such as switches, actuators and sensors, considerably simplifying product development.

Three module variants are available: JN5148-001-M00 with an integrated antenna, JN5148-001-M03 with an antenna connector and the JN5148-001-M06 with an antenna connector, power amplifier and LNA for extended range. The modules can implement networking stacks such as JenNet and ZigBee PRO, as well as customer applications

Module Block Diagram

Benefits

- Microminiature module solutions
- Ready to use in products
- Minimises product development time
- No RF test required for systems
- Compliant with FCC part 15 rules, IC Canada RSS 210e, ETSI EN 300-328

Applications

- Robust and secure low power wireless applications
- ZigBee PRO and JenNet networks
- Home and commercial building automation
- Utilities metering (e.g. AMR)
- Location Aware services (e.g. Asset Tracking)
- Toys and gaming peripherals
- Industrial systems
- Telemetry
- Remote Control

Features: Module

 2.4GHz IEEE802.15.4, JenNet and ZigBee PRO compatible

• JN5148-001-M00/03

up to 1km range (Ext antenna) M00: integral antenna 18x32mm M03: uFl connector 18x30mm

- TX power +2.5dBm
- Receiver sensitivity –95dBm
- o TX current 15mA
- RX current 17.5mA
- o 2.3-3.6V operation

• JN5148-001-M06

up to 4km range (Ext Antenna)

- o 22dBm TX Power
- 18dBm TX power (M04 compatible)
- o Receiver sensitivity -100dBm
- o uFI connector
- TX current 84mA
- RX current 23mA
- o 18x41mm

2.3-3.6V operation

Features: Microcontroller

- 32-bit RISC CPU, up to 32MIPs with low power
- 128kB ROM stores system code
- 128kB RAM stores system data and bootloaded program code
- 4Mbit serial flash for program code and data
- On chip OTP efuse
- JTAG debug interface
- 4-input 12-bit ADC, 2 12-bit DACs, 2 comparators
- 3 application timer/counters,
- 2 UARTs
- SPI port with 5 selects
- 2-wire serial interface
- 4-wire digital audio interface
- Watchdog timer
- Up to 21 DIO

Industrial temp (-40°C to +85°C)

Lead-free and RoHS compliant

Contents

1. Introduction	3
1.1. Variants	3
1.2. Regulatory Approvals	3
2. Specifications	4
3. Product Development	6
3.1. JN5148 Single Chip Wireless Microcontroller	6
4. Pin Configurations	7
4.1. Pin Assignment	8
4.2. Pin Descriptions	9
4.2.1 Power Supplies	9
4.2.2 SPI Memory Connections	9
5. Electrical Characteristics	10
5.1. Maximum Ratings	10
5.2. Operating Conditions	10
Appendix A Additional Information	11
A.1 Outline Drawing	11
A.2 Module PCB Footprint	14
A.3 Manufacturing	15
A.3.1 Reflow Profile	15
A.3.2 Soldering Paste and Cleaning	15
A.4 Ordering Information	16
A.5 Tape and Reel Information:	17
A.5.1 Tape Orientation and dimensions	17
A.5.2 Cover tape details A.5.3 Leader and Trailer	17 18
A.5.4 Reel Dimensions:	18
A.6 Related Documents	18
A.7 Federal Communication Commission Interference Statement	19
A.7.1 Antennas approved by FCC for use with JN5148 modules	20
A.7.2 High Power Module usage limitation	20
A.7.3 FCC End Product Labelling	20
A.8 Industry Canada Statement	21
A.8.1 Industry Canada End Product Labelling	21
A.9 European R & TTE Directive 1999/5/EC Statement	21
A.10 RoHS Compliance	22
A.11 Status Information	22
A.12 Disclaimers	22
Version Control	23

1. Introduction

The JN5148-001-Myy module family provides designers with a ready made component that provides a fully integrated solution for applications, using the IEEE802.15.4 standard in the 2.4-2.5GHz ISM frequency band [1], including JenNet and ZigBee PRO, and can be quickly and easily included in product designs. The modules integrate all of the RF components required, removing the need to perform expensive RF design and test. Products can be designed by simply connecting sensors and switches to the module IO pins. The modules use NXP's single chip IEEE802.15.4 Wireless Microcontroller, allowing designers to make use of the extensive chip development support material. Hence, this range of modules allows designers to bring wireless applications to market in the minimum time with significantly reduced development effort and cost.

Three variants are available: JN5148-001-M00 (standard module with integral antenna), JN5148-001-M03 (standard module with uFl connector for use with external antennae) and JN5148-001-M06 (high RF power with uFL connector, improved sensitivity module for evaluation of extended range applications). All modules have FCC modular approvals, CE approval and are compliant with EU regulations. The variants available are described below.

1.1. Variants

Variant	Description	FCCID	Industry Canada ID
JN5148-001-M00	Standard Power, integrated antenna	TYOJN5148M0	IC: 7438A-CYO5148M0
JN5148-001-M03	Standard Power, uFI connector	TYOJN5148M3	IC: 7438A-CYO5148M3
JN5148-001-M06	High Power, uFI connector	TYOJN5148M6	IC: 7438A-CYO5148M6

1.2. Regulatory Approvals

All module types have been tested against the requirements of the following European standards. For the Radio, EN 300 328 v1.7.1. EMC, EN 301 489-17 v2.1.1 and the Basic Safety Assessment (BSA) EN 60950-1:2006, a Notified Body statement of opinion for this standard is available on request. The High Power module with M06 suffix is approved for use in Europe with reduced output power: +10dBm EIRP is the maximum permitted in Europe.

Additionally, all module types have received FCC "Modular Approvals", in compliance with CFR 47 FCC part 15 regulations and in accordance to FCC Public notice DA00-1407, appendix A.7 contains details on the conditions applying to this modular approval. The modules are approved for use with a range of different antennas; further details of which can be found in section Appendix A.6.1. The modular approvals notice and test reports are available on request.

The high power module variant is classified as 'mobile' device pursuant with FCC § 2.1091 and must not be used at a distance of less than 20 cm (8") from any person.

In addition, all modules have Industry Canada modular approval and RSS210e Issue 7 (June 2007) certification.

2. Specifications

Most specification parameters for the modules are specified in the chip datasheet - JN-DS-JN5148 Wireless Microcontroller Datasheet, [2]. Where there are differences, the parameters are defined here.

VDD=3.0V @ +25°C

Typical DC Character	Notes		
	JN5148-001- M00/03	JN5148-001- M06	
Deep sleep current	1.3uA	120nA	
Sleep current	2.6uA	1.25uA	With active sleep timer
Radio transmit current (M04 Compatibility Mode)	15mA	84mA	CPU in doze, radio transmitting
Radio transmit current	-	178mA	CPU in doze, radio transmitting
Radio transmit current (ETSI Mode)	-	48mA	CPU in doze, radio transmitting
Radio receive current	17.5mA	23mA	CPU in doze, radio receiving
Centre frequency accuracy	+/-25ppm	+/-25ppm	Additional +/-15ppm allowance for temperature and ageing
Typical RF Character	istics		Notes
Receive sensitivity	-95dBm	-100dBm	Nominal for 1% PER, as per 802.15.4 section 6.5.3.3 (Note 1)
Transmit power (M04 Compatibility Mode)	+2.5dBm	+18dBm	Nominal (Note 2)
Transmit power	-	+22dBm	Nominal
Transmit power (ETSI Mode)	-	+8dBm/MHz	Nominal (Note 3)
Maximum input signal	+5dBm	-5dBm	For 1% PER, measured as sensitivity
RSSI range	-95 to -10 dBm	-105 to -20 dBm	
RF Port impedance – uFI connector	50 ohm	50 ohm	2.4 - 2.5GHz
Rx Spurious Emissions	-61dBm	-69dBm	Measured conducted into 50ohms
Tx Spurious Emissions	-40dBm	-49dBm	Measured conducted into 50ohms
VSWR (max)	2:1	2:1	2.4 - 2.5GHz
Peripherals			Notes
Master SPI port	5 selects	3 selects	250kHz - 16MHz
Slave SPI port	~	✓	250kHz - 8MHz
Two UARTs	✓	✓	16550 compatible
Two-wire serial I/F (compatible with SMbus & I^2C)	✓	✓	Up to 400kHz
Three programmable Timer/Counters with capture/compare facility, Tick timer	✓	~	16MHz clock
Two programmable Sleep Timers	~	✓	32kHz clock
Digital IO lines (multiplexed with UARTs, timers and SPI selects)	21	19	
Four channel Analogue-to-Digital converter	\checkmark	✓	12-bit, up to 100ks/s
Two channel Digital-to-Analogue converter	√	✓	12-bit, up to 100ks/s

Two programmable analogue comparators	~	\checkmark	Ultra low power mode for sleep
Internal temperature sensor and battery monitor	\checkmark	\checkmark	

The performance of all peripherals is defined in the JN-DS-JN5148 Wireless Microcontroller Datasheet [2]

Note 1: Sensitivity is defined for conducted measurements on connectorised modules. Modules with an integrated antenna have approximately 4 dB less e.i.r.p and reciprocal receive sensitivity.

Note 2: It is possible to operate the M06 module with similar output power to the JN5148-001-M04 modules by implementing a small change in the software as provided in the latest SDK.

Note 3: ETSI mode is achieved through a software setting as provided in the latest SDK. Note that this is different to the equivalent setting for the JN5148-001-M04.

3. Product Development

NXP supplies all the development tools and networking stacks needed to enable end-product development to occur quickly and efficiently. These are all freely available from www.nxp.com/jennic. A range of evaluation/developer kits is also available, allowing products to be quickly bread boarded. Efficient development of software applications is enabled by the provision of a complete, unlimited, software developer kit. Together with the available libraries for the IEEE802.15.4 MAC and the JenNet and ZigBee PRO network stacks, this package provides everything required to develop application code and to trial it with hardware representative of the final module.

The modules can be user programmed both in development and in production using software supplied by NXP. Access to the on-chip peripherals, MAC and network stack software is provided through specific APIs. This information is available on the NXP support website, together with many example applications, user guides, reference manuals and application notes.

3.1. JN5148 Single Chip Wireless Microcontroller

The JN5148-001-Myy series is constructed around the JN5148-001 single chip wireless microcontroller, which includes the radio system, a 32-bit RISC CPU, ROM and RAM memory and a range of analogue and digital peripherals.

The chip is described fully in JN-DS-JN5148 Wireless Microcontroller Datasheet [2].

The module also includes a 4Mbit serial flash memory, which holds the application code that is loaded into the JN5148 during the boot sequence and provides static data storage, required by the application.

4. Pin Configurations

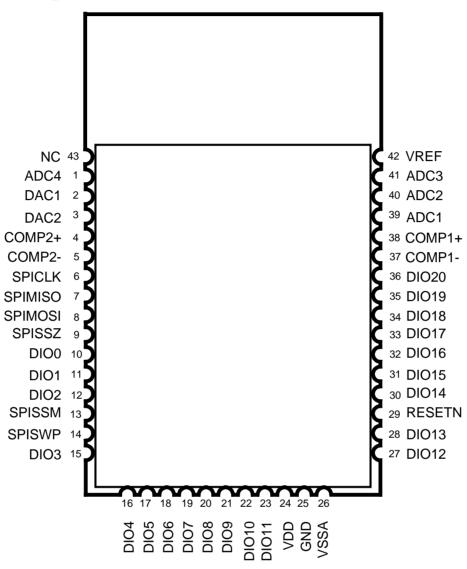


Figure 1: Pin Configuration (top view)

Note that the same basic pin configuration applies for all module designs. However, DIO3 (pin 15) and DIO2 (pin 12) are not available on the high power modules (M06) and, the pins NC (pin 42) and VREF (pin 43) are not available on the standard modules (M00 and M03).

4.1. Pin Assignment

Pin		Pin Functions					Description
No	Primary	imary Alternate Functions		Туре			
1	ADC4					3.3V	Analogue to Digital Input
2	DAC1					3.3V	DAC Output
3	DAC2					3.3V	DAC Output
4	COMP2+					3.3V	Comparator 2 Input +ve
5	COMP2-					3.3V	Comparator 2 Input -ve
6	SPICLK					CMOS	SPI Clock Output
7	SPIMISO					CMOS	SPI Master In Slave Out Input
8	SPIMOSI					CMOS	SPI Master Out Slave In Output
9	SPISSZ					CMSO	SPI Select From Module – SS0 Output
10	DIO0	SPISEL1				CMOS	DIO0 or SPI Slave Select Output 1
11	DIO1	SPISEL2	PC0			CMOS	DIO1, SPI Slave Select Output 2 or Pulse Counter0 Input
12	DIO2*	SPISEL3	RFRX			CMOS	DIO2, SPI Slave Select Output 3 or Radio Receive Control Output
13	SPISSM					CMOS	SPI Select to FLASH (Input)
14	SPISWP					CMOS	FLASH Write Protect (Input)
15	DIO3*	SPISEL4	RFTX			CMOS	DIO3, SPI Slave Select Output 4 or Radio Transmit Control Output
16	DIO4	CTS0	JTAG_TCK			CMOS	DIO4, UART 0 Clear To Send Input or JTAG CLK
17	DIO5	RTS0	JTAG_TMS			CMOS	DIO5, UART 0 Request To Send Output or JTAG Mode Select
18	DIO6	TXD0	JTAG_TDO			CMOS	DIO6, UART 0 Transmit Data Output or JTAG Data Output
19	DIO7	RXD0	JTAG_TDI			CMOS	DIO7, UART 0 Receive Data Input or JTAG Data Input
20	DIO8	TIM0CK_GT	PC1			CMOS	DIO8, Timer0 Clock/Gate Input or Pulse Counter1 Input
21	DIO9	TIM0CAP	32KXTALIN	32KIN		CMOS	DIO9, Timer0 Capture Input, 32K External Crystal Input or 32K Clock Input
22	DIO10	TIM0OUT	32KXTALOUT			CMOS	DIO10, Timer0 PWM Output or 32K External Crystal Output
23	DIO11	TIM1CK_GT	TIM2OUT			CMOS	DIO11, Timer1 Clock/Gate Input or Timer2 PWM Output
24	VDD					3.3V	Supply Voltage
25	GND					0V	Digital Ground
26	VSSA					0V	Analogue Ground
27	DIO12	TIM1CAP	ADO	DAI_WS		CMOS	DIO12, Timer1 Capture Input, Antenna Diversity or Digital Audio Word Select
28	DIO13	TIM1OUT	ADE	DAI_SDIN		CMOS	DIO13, Timer1 PWM Output, Antenna Diversity or Digital Audio Data Input
29	RESETN					CMOS	Reset input
30	DIO14	SIF_CLK	IP_CLK			CMOS	DIO14, Serial Interface Clock or Intelligent Peripheral Clock Input
31	DIO15	SIF_D	IP_DO			CMOS	DIO15, Serial Interface Data or Intelligent Peripheral Data Out
32	DIO16	IP_DI				CMOS	DIO16, Intelligent Peripheral Data In

33	DIO17	CTS1	IP_SEL	DAI_SCK	JTAG_TCK	CMOS	DIO17, UART 1 Clear To Send Input, Intelligent Peripheral Device Select Input or Digital Audio Clock or JTAG CLK
34	DIO18	RTS1	IP_INT	DAI_SDOUT	JTAG_TMS	CMOS	DIO18, UART 1 Request To Send Output, Intelligent Peripheral Interrupt Output or Digital Audio Data Output or JTAG Mode Select
35	DIO19	TXD1			JTAG_TDO	CMOS	DIO19 or UART 1 Transmit Data Output or JTAG Data Out
36	DIO 20	RXD1			JTAG_TDI	CMOS	DIO 20, UART 1 Receive Data Input or JTAG data In
37	COMP1-					3.3V	Comparator 1 Input -ve
38	COMP1+					3.3V	Comparator 1 Input +ve
39	ADC1					3.3V	Analogue to Digital Input
40	ADC2					3.3V	Analogue to Digital Input
41	ADC3					3.3V	Analogue to Digital Input
42	VREF*					3.3V	Analogue Peripheral Reference Voltage
43	NC ⁺						Do Not Connect

*: These two pins are not connected for High power modules

*: These two pins are only used on the High power modules

4.2. Pin Descriptions

All pins behave as described in the JN-DS-JN5148 Wireless Microcontroller Datasheet [2], with the exception of the following:

4.2.1 Power Supplies

A single power supply pin, VDD is provided. Separate analogue (VSSA) and digital (GND) grounds are provided. These should be connected together at the module pins.

4.2.2 SPI Memory Connections

SPISWP is a write protect pin for the serial flash memory. This should be held low to inhibit writes to the flash device.

SPISSZ is connected to SPI Slave Select 0 on the JN5148.

SPISSM is connected to the Slave Select pin on the memory.

This configuration allows the flash memory device to be programmed using an external SPI programmer if required. For programming in this mode, the JN5148 should be held in reset by taking RESETN low. Two potential flash 4Mbit memory devices may be used in the module, the Micron M25P40 and the Winbond W25X40BLSN.

The memory can also be programmed over the UART by using the flash programmer software provided by NXP. This is available as part of the Software Developer kit and libraries available from www.nxp.com/jennic. To enter this programming mode, SPIMISO (pin 7) should be held low whilst the chip is reset. Once programming has finished, the chip should be reset, when it will execute the new code downloaded.

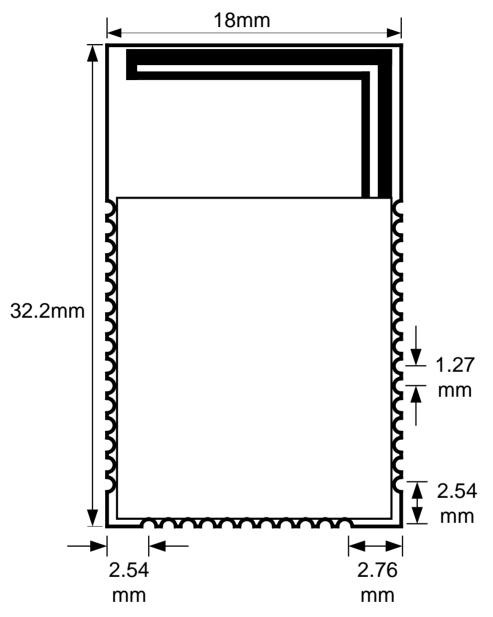
For normal operation of the module and programming over the UART, SPISSZ should be connected to SPISSM.

5. Electrical Characteristics

In most cases, the Electrical Characteristics are the same for both module and chip. They are described in detail in the chip datasheet. Where there are differences, they are detailed below.

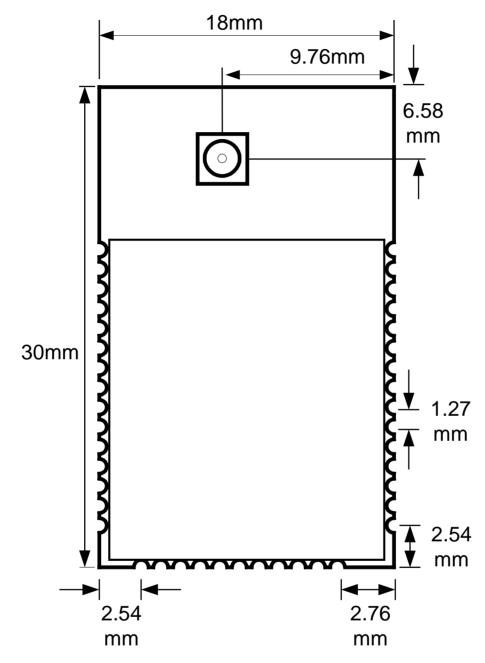
5.1. Maximum Ratings

Exceeding these conditions will result in damage to the device.


Parameter	Min	Мах
Device supply voltage VDD	-0.3V	3.6V
Voltage on analogue pins VREF, ADC1-4, DAC1-2, COMP1M, COMP1P, COMP2M, COMP2P, IBIAS	-0.3V	VDD + 0.3V
Voltage on 5v tolerant digital pins DIO0-DIO8 & DIO11-20, RESETN	-0.3V	Lower of (VDD + 2V) and 5.5V
Voltage on 3v tolerant digital pins DIO9, DIO10, SPISSM, SPISWP, SPICLK, SPIMOSI, SPIMISO, SPISSZ	-0.3V	VDD + 0.3V
Storage temperature	-40°C	150ºC

5.2. Operating Conditions

Supply	Min	Мах
VDD	2.3V	3.6V
Ambient temperature range	-40°C	85°C


Appendix A Additional Information

A.1 Outline Drawing

Thickness: 3.5mm

Figure 2 JN5148-001-M00 Outline Drawing

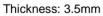
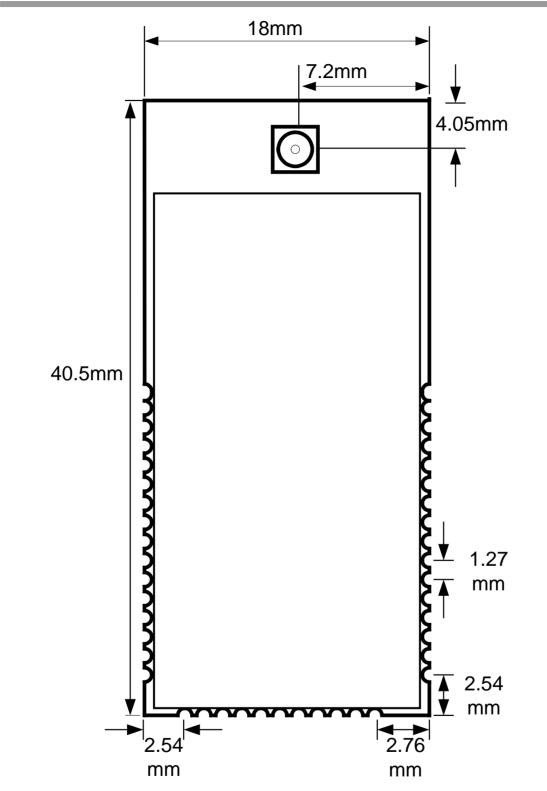
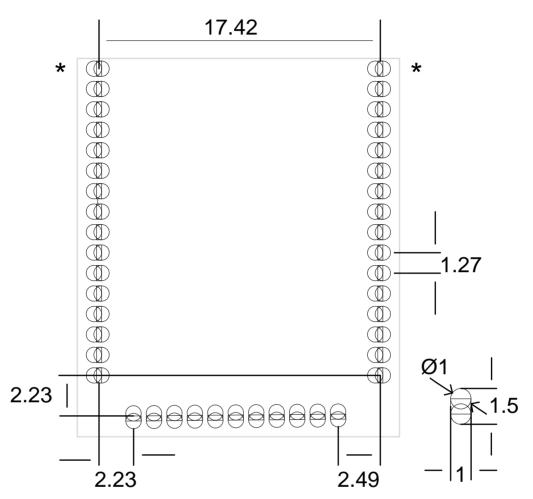



Figure 3 JN5148-001-M03 Outline Drawing



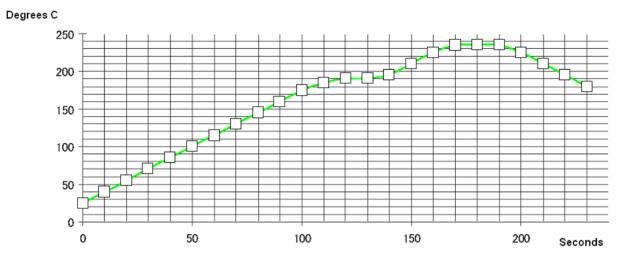
Thickness: 3.5mm

Figure 4 JN5148-001-M06 Outline Drawing

A.2 Module PCB Footprint

All dimensions are in mm.

Note: All modules have the same footprint except for the M06 which has 2 additional pins marked with a *


Figure 5 Module PCB footprint

RF note for –M00 modules with integral antenna: No components, ground plane or tracks on any layer of the mother board should be placed within 20mm of the 3 free sides of the antenna. Tracks etc may be placed adjacent to the can, but should not extend past the can towards the antenna end of the module for 20mm from the antenna.

A.3 Manufacturing

A.3.1 Reflow Profile

For reflow soldering, it is recommended to follow the reflow profile in figure 6 as a guide, as well as the paste manufacturers guidelines on peak flow temperature, soak times, time above liquidus and ramp rates.

Temperature	25~160 ⁰C	160~190 ⁰C	> 220º C	230~Pk.	Pk. Temp (235ºC)
Target Time (s)	90~130	30~60	20~50	10~15	150~270

A.3.2 Soldering Paste and Cleaning

NXP does not recommend use of a solder paste that requires the module and pcb assembly to be cleaned (rinsed in water) for the following reasons:

Solder flux residues and water can be trapped by the pcb, can or components and result in short circuits.

The module label could be damaged or removed.

NXP recommends use of a 'no clean' solder paste for all its module products.

A.4 Ordering Information

Ordering Code Format: JN5148 - 001 – M / Y1Y2 Y3

Shipping

T Tape Mounted 500-piece reel

Module Type

- 00 Standard Power, Integral antenna
- 03 Standard Power, uFI connector
- 06 High power, uFl connector

Where this Data Sheet is denoted as "Advanced" or "Preliminary", devices will be either Engineering Samples or Prototypes. Devices of this status have an Rx suffix after the module type to identify qualification status during these product phases - for example, JN5148-001-M00**R1**T.

Part Number	Ordering Code	Description
JN5148-001-M00T	JN5148-001-M/00T	JN5148 module, variant as detailed above
JN5148-001-M03T	JN5148-001-M/03T	
JN5148-001-M06T	JN5148-001-M/06T	

Label line 1: IC ID Number Label line 2: FCC ID Number Label line 3: Part Number Label line 4: Barcode Label Label line 5: YYWWTNNNN (see below)

Identifier	Description	Format
YY	Year	06 (example)
WW	Week	45 (example)
Т	Module type	
NNNNN	Serial Number	

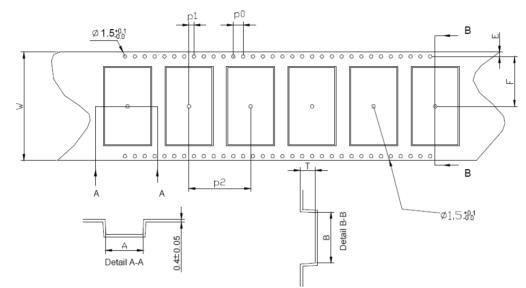
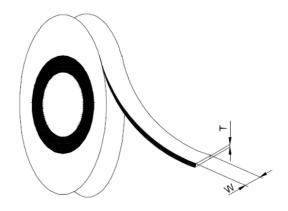
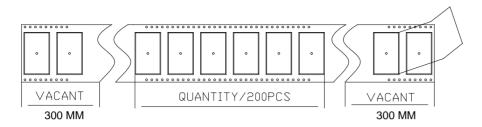


Figure 8: Example module labelling for FCC approved modules

A.5 Tape and Reel Information:

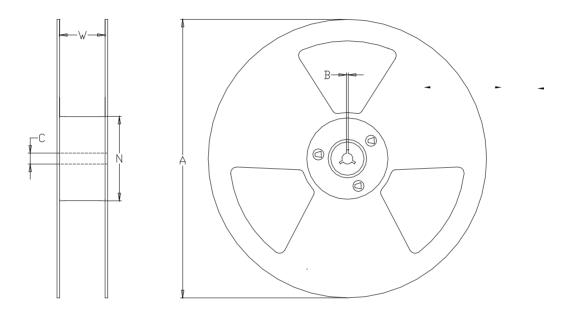
A.5.1 Tape Orientation and dimensions


All dimensions are in mm


Module type:	Α	В	W	F	E	P0	P1	P2	т	Cover Tape width (W)
JN5148-001-M00	18.4	32.6	44	20.2	1.75	4.0	2.0	24.0	3.4	37.5
JN5148-001-M03	18.4	30.4	44	20.2	1.75	4.0	2.0	24.0	3.4	37.5
JN5148-001-M06	18.5	40.9	56	26.2	1.75	4.0	2.0	24.0	3.4	49.5
Tolerance	±0.1	±0.1	±0.3	±0.1	+0.1	±0.1	±0.1	±0.1	±0.1	±0.1

A.5.2 Cover tape details

Thickness (T)	0.061mm		
Surface resistivity (component side)	10 ⁴ to 10 ⁷ Ohms/sq		
Surface resistivity (component side)	Non-conductive		
Backing type:	Polyester		
Adhesive type:	PSA		
Sealing:	Room ambient		



A.5.3 Leader and Trailer

A.5.4 Reel Dimensions:

All dimensions are in mm.

Module type:	Α	В	C	Ν	W (min)
JN5148-xxx-M00/03	330 ±1.0	2.2±0.5	13 ±0.2	100 +0.1	44.5 ±0.3
JN5148-xxx-M06	330 ±1.0	2.2±0.5	13 ±0.2	100 +0.1	56.5 ±0.3

A.6 Related Documents

- [1] IEEE Std 802.15.4-2003 IEEE Standard for Information Technology Part 15.4 Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)
- [2] JN-DS-JN5148 Wireless Microcontroller Datasheet

A.7 Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

WARNING! FCC Radiation Exposure Statement:

This portable equipment with its antenna complies with FCC's RF radiation exposure limits set forth for an uncontrolled environment. To maintain compliance follow the instructions below;

- 1. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2. Avoid direct contact to the antenna, or keep it to a minimum while using this equipment.

This transmitter module is authorized to be used in other devices only by OEM integrators under the following condition:

The transmitter module must not be co-located with any other antenna or transmitter.

As long as the above condition is met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

	Brand	Model Number	Description	Gain (dBi)	Connector type
1	Antenna Factor	ANT-2.4-CW-RCT-RP	CW-RCT-RP Vertical - knuckle antenna		RP-SMA
2	Antennova	2010B6090-01	Vertical - knuckle antenna	2.2	RP-SMA
3	Hyperlink Technology	HG2402RD-RSF	Vertical - knuckle antenna	2.2	RP-SMA
4	Aveslink Technology, Inc	E-0005-AC	Vertical- flying lead	2	RP-SMA
5	Aveslink Technology, Inc	E-2411-GC	Vertical - swivel	2	RP-SMA
6	Aveslink Technology, Inc	E-2410-CA	Vertical - bulkhead- flying lead	2	uFL
7	Aveslink Technology, Inc	E-2410-GC	Vertical - swivel	2	RP-SMA
8	Aveslink Technology, Inc	E-2820-CA	Vertical - bulkhead- flying lead	2	uFL
9	Aveslink Technology, Inc	E-2820-GC	Vertical - swivel	2	RP-SMA
10	Aveslink Technology, Inc	E-0903-AX	Embedded - nickel silver strip	2	None
11	Aveslink Technology, Inc	E-0904-AX	Embedded - nickel silver strip	2	None
12	Embedded Antenna Design	FBKR35068-RS-KR	Vertical - knuckle antenna	2	RP-SMA
13	Nearson	S131CL-L-PX-2450S	Vertical - knuckle-flying lead	2	uFL
14	Laird Technologies	WRR2400-IP04	Vertical - knuckle-flying lead	1.5	uFL
15	Laird Technologies	WRR2400-RPSMA	Vertical - knuckle-flying lead	1.3	RP-SMA
16	Aveslink Technology, Inc	E-6170-DA	Vertical - right angle	1	uFL
17	Laird Technologies	WCR2400-SMRP	Vertical - knuckle antenna	1	RP-SMA

A.7.1 Antennas approved by FCC for use with JN5148 modules

These antennae or versions with alternative connectors may be used to meet European regulations.

This device has been designed to operate with the antennas listed above, and having a maximum gain of 2.2 dBi. Antennas not included in this list or having a gain greater than 2.2 dBi are strictly prohibited for use with this device. The required antenna impedance is 50 ohms.

A.7.2 High Power Module usage limitation

The high power module variants are classified as 'mobile' device pursuant with FCC § 2.1091 and <u>must not</u> be used at a distance of < 20 cm (8") from any people.

IMPORTANT NOTE: In the event that these conditions can not be met (for certain configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user manual of the end product.

The user manual for the end product must include the following information in a prominent location;

"To comply with FCC's RF radiation exposure requirements, the antenna(s) used for this transmitter must not be colocated or operating in conjunction with any other antenna or transmitter."

A.7.3 FCC End Product Labelling

The final 'end product' should be labelled in a visible area with the following:

"Contains TX FCC ID: TYOJN5148M0, TYOJN5148M3 or TYOJN5148M6" to reflect the version of the module being used inside the product.

A.8 Industry Canada Statement

To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that permitted for successful communication.

These modules have been designed to operate with antennas having a maximum gain of 2.2 dBi. Antennas having a gain greater than 2.2 dBi are strictly prohibited for use with this device. The required antenna impedance is 50 ohms.

As long as the above condition is met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc).

A.8.1 Industry Canada End Product Labelling

For Industry Canada purposes the following should be used.

"Contains Industry Canada ID IC: 7438A-CYO5148M0, IC: 7438A-CYO5148M3 or IC: 7438A-CYO5148M4" to reflect the version of the module being used inside the product.

A.9 European R & TTE Directive 1999/5/EC Statement

All modules listed in this datasheet are compliant with ETSI EN 300 328 V1.7.1 (2006-10), EMC, EN 301 489-17 v2.1.1 (2009-02) and the Basic Safety Assessment (BSA) EN 60950-1:2006 (2006-06) and are subject to a Notified Body Opinion.

The modules are approved for use with the antennas listed in the following table. The high power module M06 is limited to an antenna with a gain of 2.2 dBi or less and is approved for use with a reduced output power: +10dBm EIRP is the maximum permitted.

	Brand	Model Number	Description	Gain (dBi)	Connector type
1	Antenna Factor	ANT-2.4-CW-RCT-RP	T-2.4-CW-RCT-RP Vertical - knuckle antenna		RP-SMA
2	Antennova	2010B6090-01	Vertical - knuckle antenna	2.2	RP-SMA
3	Hyperlink Technology	HG2402RD-RSF	Vertical - knuckle antenna	2.2	RP-SMA
4	Aveslink Technology, Inc	E-0005-AC	Vertical- flying lead	2	RP-SMA
5	Aveslink Technology, Inc	E-2411-GC	Vertical - swivel	2	RP-SMA
6	Aveslink Technology, Inc	E-2410-CA	Vertical - bulkhead- flying lead	2	uFL
7	Aveslink Technology, Inc	E-2410-GC	Vertical - swivel	2	RP-SMA
8	Aveslink Technology, Inc	E-2820-CA	Vertical - bulkhead- flying lead	2	uFL
9	Aveslink Technology, Inc	E-2820-GC	Vertical - swivel	2	RP-SMA
10	Aveslink Technology, Inc	E-0903-AX	Embedded - nickel silver strip	2	None
11	Aveslink Technology, Inc	E-0904-AX	Embedded - nickel silver strip	2	None
12	Embedded Antenna Design	FBKR35068-RS-KR	Vertical - knuckle antenna	2	RP-SMA
13	Nearson	S131CL-L-PX-2450S	Vertical - knuckle-flying lead	2	uFL
14	Laird Technologies	WRR2400-IP04	Vertical - knuckle-flying lead	1.5	uFL
15	Laird Technologies	WRR2400-RPSMA	Vertical - knuckle-flying lead	1.3	RP-SMA
16	Aveslink Technology, Inc	E-6170-DA	Vertical - right angle	1	uFL
17	Laird Technologies	WCR2400-SMRP	Vertical - knuckle antenna	1	RP-SMA

A.10 RoHS Compliance

JN5148-001-Myy devices meet the requirements of Directive 2002/95/EC of the European Parliament and of the Council on the Restriction of Hazardous Substance (RoHS).

The JN5148-001-M00, M03 and M06 modules meet the requirements of Chinese RoHS requirements SJ/T11363-2006.

Full data can be found at www.nxp.com/jennic.

A.11 Status Information

The status of this Data Sheet is **Production**. NXP products progress according to the following format:

Advanced

The Data Sheet shows the specification of a product in planning or in development.

The functionality and electrical performance specifications are target values and may be used as a guide to the final specification.

NXP reserves the right to make changes to the product specification at anytime without notice.

Preliminary

The Data Sheet shows the specification of a product that is commercially available, but is not yet fully qualified. The functionality of the product is final. The electrical performance specifications are target values and may be used as a guide to the final specification. Modules are identified with an Rx suffix, for example JN5148-001-M00R2. NXP reserves the right to make changes to the product specification at anytime without notice.

Production

This is the production Data Sheet for the product.

All functional and electrical performance specifications, where included, including min and max values are derived from detailed product characterization.

This Data Sheet supersedes all previous document versions.

NXP reserves the right to make changes to the product specification at anytime.

A.12 Disclaimers

The contents of this document are subject to change without notice. NXP reserves the right to make changes, without notice, in the products, including circuits and/or software, described or contained therein. Information contained in this document regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

NXP warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with NXP's standard warranty. Testing and other quality control techniques are used to the extent NXP deems necessary to support this warranty. Except where mandatory by government requirements, testing of all parameters of each product is not necessarily performed.

NXP assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work infringement, unless otherwise specified.

NXP products are not intended for use in life support systems, appliances or systems where malfunction of these products can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify NXP for any damages resulting from such use.

All products are sold subject to NXP's terms and conditions of sale supplied at the time of order acknowledgment.

All trademarks are the property of their respective owners.

Version Control

Version	Notes
1.0	1st Issue of Advanced Datasheet
1.1	1st Issue of Preliminary Datasheet, minor parametric changes and addition of Appendix A6.3
1.2	1st Issue of Production Datasheet, addition of PCB cleaning information in Appendix A3
1.3	Logo updated and support of JenNet added
1.4	Ordering information changed
1.5	Withdrawn the M04 High Power Module and added the new High Power Module (M06)

NXP Laboratories UK Ltd Furnival Street Sheffield S1 4QT United Kingdom

Tel: +44 (0)114 281 2655 Fax: +44 (0) 114 281 2951

For the contact details of your local NXP office or distributor, refer to the NXP web site:

www.nxp.com/jennic

© NXP Laboratories UK 2012