

KTL EMC Test Report : 5G9013GUS3

Applicant : Jennic Ltd

Apparatus: 1023 V3.0 Zigbee Module

Authorised by

: K J Anderson, Principal EMC and Radio Group Engineer

K9 anderson

Issue Date : 19th October 2006

Authorised Copy Number : PDF

Contents

Section 1:	Introduction 1.1 General 1.2 Tests Requested By 1.3 Manufacturer 4 Apparatus Assessed 1.5 Test Result Summary 1.6 Notes Relating To The Assessment 1.7 Deviations from Test Standards	3 3 4 4 4 5 6
Section 2:	Measurement Uncertainty 2.1 Introduction 2.2 Application of Measurement Uncertainty 2.3 Measurement Uncertainty Values	7 7 7 7
Section 3:	Modifications 3.1 Modifications Performed During Assessment	8
Appendix A:	Formal Emission Test Results A1 Radiated Electric Field Emissions A3 6 dB Bandwidth A3 Conducted carrier power A4 Antenna Gain A5 Power Spectral density	9 10 17 18 19 20
Appendix B:	Supporting Graphical Data	21
Appendix C:	Additional Test and Sample Details	32
Appendix D:	Additional Information	38
Appendix E:	Photographs and Figures	41
Appendix F:	MPE Calculation	44

Section 1: Introduction

1.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed by: KTL

Saxon Way Priory Park West Hull HU13 9PB United Kingdom

Telephone: +44 (0) 1482 801801 Fax: +44 (0) 1482 801806

K 9 anderson

M. E head

Email: ktl@ktl.com Web site: www.ktl.com

Tests performed by:

,K J Anderson, Principal EMC and Radio Group Engineer

Report author:.

M E Leach, Senior EMC and Radio Group Engineer

This report must not be reproduced except in full without prior written permission from KTL.

1.2 Tests Requested By

This testing in this report was requested by:

Jennic Ltd Furnival Street, Sheffield, S1 4QT United Kingdom

1.3 Manufacturer

As above.

4 Apparatus Assessed

The following apparatus was assessed between 18/8/06 and 23/8/06:

Jennic 1023 V3.0 Zigbee Module

The above equipment was a wireless sensor module operating in the 2.4GHz band. The EUT was battery operated and tested as 'portable equipment'. See manufactures declaration in Appendix E.

1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

Test Type	Regulation	Measurement standard	Result
REFE	Title 47 of the CFR: 2004, Part 15 Subpart (c) 15.247(d)	ANSI C63.4: 2003	Pass
REFE	Title 47 of the CFR: 2004, Part 15 Subpart (c) 15.207	ANSI C63.4: 2003	Pass
6dB Bandwidth	Title 47 of the CFR :2004, Part 15 Subpart (c) 15.247(a)(2)	ANSI C63.4: 2003	Pass
Conducted Carrier Power	Title 47 of the CFR :2004, Part 15 Subpart (c) 15.247(b)(3)	ANSI C63.4: 2003	Pass
Antenna Gain	Title 47 of the CFR :2004, Part 15 Subpart (c) 15.247(b)(4)	ANSI C63.4: 2003	Pass
Power Spectral Density	Title 47 of the CFR :2004, Part 15 Subpart (c) 15.247(e)	ANSI C63.4: 2003	Pass

Abbreviations used in the above table:

Mod : Modification

CFR : Code of Federal Regulations ANSI : American National Standards Institution

REFE : Radiated Electric Field Emissions

1.6 Notes Relating To The Assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature : 17 to 23 °C Humidity : 45 to 75 % Barometric Pressure : 86 to 106 kPa

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

KTL Hull is a listed electromagnetic compatibility Conformance Assessment Body (CAB) for EC access to the US market. (Decision No 3/2000 of the Joint Committee established under the Agreement on Mutual Recognition between the European Community and the United States of America. This decision was effective from 16th January 2001).

FCC Facility Registration number (3m semi anechoic chamber): 90743

1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

Section 2:

Measurement Uncertainty

2.1 Introduction

The standard ISO/IEC 17025 used for laboratory accreditation requires laboratories to estimate measurement uncertainty using accepted methods of analysis.

Where required, the reported expanded uncertainty is based on a standard uncertainty providing a confidence level of approximately 95%.

Measurement uncertainty is calculated using the methods defined in the UKAS document LAB34 Edition 1 August 2002.

KTL measurement uncertainty is recorded in the KTL document UNC/RFG/001 Issue 16.

2.2 Application of Measurement Uncertainty

The following procedure is used when determining the result of a measurement :

- (i) If specification limits are not exceeded by the measured result, extended by the positive component of the expanded uncertainty interval at a confidence level of 95%, then a pass result is recorded.
- (ii) Where a specification limit is exceeded by the result even when the result is decreased by the negative component of the expanded uncertainty interval, a fail result is recorded.
- (iii) Where measured result is below a limit, but by a margin less than the positive measurement uncertainty component, it is not possible to record a pass based on a 95% confidence level. However, the result indicates that a pass result is more probable than a fail result.
- (iv) Where a measured result is above a limit, but by a margin less than the negative measurement uncertainty component, it is not possible to record a fail based on a 95% confidence level. However the result indicates that a fail is more probable than a pass.

2.3 Measurement Uncertainty Values

All results were recorded in accordance with Section 2.2(i).

Section 3: Modifications

3.1 Modifications Performed During Assessment

Modification 1 (Date: 18/08/06)

A non-compliance was observed during testing to the following requirements:

Test Type : Radiated Spurious emissions

Specification: EN300328 V1.6.6 Sample modified: S04 and S05

The samples were modified (from the originally submitted state) as follows to correct this non-compliance:

PCB Modifications.

Changed from V2.1 to V3.0. These changes are:

- 1) Swap to single ground plane
- 2) Modification to some component locations
- 3) Additional decoupling components
- 4) Redesigned can with additional connection points. PCB modified to suit

Software Revisions.

Version 0001 0B21 of the MAC s/w changed to version 0001 0C21.

• The effect of the modifications on results already obtained was assessed, and complete re-testing was performed.

Appendix A:

Formal Emission Test Results

Abbreviations used in the tables in this appendix:

: Specification ALSR : Absorber Lined Screened Room Spec

: Modification Mod OATS : Open Area Test Site : Alternative Test Site

ATS

EUT : Equipment Under Test : Support Equipment SE

> Ref : Reference Freq : Frequency

MD : Measurement Distance

: Live Power Line SD : Spec Distance : Neutral Power Line

Ν : Earth Power Line Pol : Polarisation

: Horizontal Polarisation H V : Vertical Polarisation Pk : Peak Detector

QΡ : Quasi-Peak Detector

Αv : Average Detector CDN : Coupling & decoupling network

A1 Radiated Electric Field Emissions

Preliminary radiated electric field emissions testing was performed using a peak detector in an absorber lined screened room.

The following test site was used for final measurements as specified by the standard tested to :

10m open area test site :	3m alternative test site :	✓
---------------------------	----------------------------	----------

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details				
Regulation Title 47 of the CFR :2002, Part 15 Subpart (c) Clause 15.247(d)				
Measurement standard	ANSI C63.4:2003			
Frequency range	100 kHz to 25 GHz			
EUT sample number	S04			
Modification state	1			
SE in test environment	None			
SE isolated from EUT	EMC Laptop			
EUT set up	Refer to Appendix C			
Photographs (Appendix E)	Photograph 1 and 2			

The worst case radiated emission measurements are listed below:

Ref No.	Freq (MHz)	Det	Angle. Deg.	Height (cm)	Pol.	MD (m)	Result at MD (dBμV/m)	SD (m)	Result at SD (dBμV/m)	Spec. Limit (dBµV/m)	Margin (dB)	Summary
1	1653.6	Pk	343	100	V	3	51.1	3	51.1	89.2	-38.1	Pass
2	1653.6	Av	343	100	V	3	43.0	3	43.0	69.2	-26.2	Pass
3	2480	Pk	12	105	V	3	89.2	3	89.2	N/A	N/A	Pass
4	2480	Av	12	105	V	3	88.4	3	88.4	N/A	N/A	Pass
5	4960	Pk	0	100	V	3	57.9	3	57.9	74.0	-16.1	Pass
6	4960	Av	0	100	V	3	47.4	3	47.4	54.0	-6.6	Pass
8	2400	Pk	25	100	V	3	60.2	3	60.2	89.2	-29.0	Pass
9	2400	Av	25	100	V	3	51.9	3	51.9	69.2	-17.3	Pass
10	2483.5	Pk	25	100	V	3	58.3	3	58.3	74.0	-15.7	Pass
11	2483.5	Av	25	100	V	3	47.2	3	47.2	54.0	-6.8	Pass

Notes:

- 1. Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.4: 2003 section 8.2.1.
- 2. All other emissions in the restricted bands defined in 47CFR15.205(a) were greater than 10 dB below the 47CFR15.209 limit.
- 3. The emissions limits for emissions outside the restricted bands defined in 47CFR15.205(a) are based on a transmitted carrier level of 89.2 dB μ V/m at 3m. Emissions from the EUT are required to be 20 dB below the level of the emissions in the operating band. The carrier level was measured whilst varying the supply voltage between 85% and 105% of the nominal supply voltage as required by 15.31(e). No variation in carrier level was observed.
- 4. In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- 5. The measurements at 2400 MHz and 2483.5 MHz were made to ensure band edge compliance.
- 6. Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded.
- 7. For Frequencies Below 1 GHz, RBW= 100 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak RBW=VBW= 1MHz

Average RBW= 1 MHz, VBW = 10 Hz

These settings are as per ANSI C63.4.

The upper frequency of the measurement range was decided according to 47 CFR 15:1999 Clause 15.33.

Radiated emission limits (47 CFR 15:1999 Clause 15.209) for emissions falling within the restricted bands defined in 15.205(a):

Frequency of emission (MHz)	Field strength μV/m	Measurement Distance m	Field strength dBμV/m
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	210	3	46.4
Above 960	500	3	54.0

Notes:

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) =
$$20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$$

The results displayed take into account applicable antenna factors and cable losses.

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels		✓		
Effect of EUT internal configuration on emission levels		✓		
Effect of Position of EUT cables & samples on emission levels	✓			

- (i) Parameter defined by standard and / or single possible, refer to Appendix D
- (ii) Parameter defined by client and / or single possible, refer to Appendix D
- (iii) Parameter had a negligible effect on emission levels, refer to Appendix D
- (iv) Worst case determined by initial measurement, refer to Appendix D

A2 Power Line Conducted Emissions

Preview power line conducted emission measurements were performed with a peak detector in a screened room.

The effect of the EUT set-up on the measurements is summarised in note (b) below.

Where applicable formal measurements of the emissions were performed with a peak, average and/or quasi peak detector. The formal measurements are detailed below:

Test Details: Channel 11			
Regulation	Title 47 of the CFR :2002, Part 15 Subpart (c) Clause 15.207		
Measurement standard	ANSI C63.4:2003		
Class	B – refer to specification limit table below.		
Frequency range	150kHz to 30MHz		
EUT sample number	S04		
Modification state	1		
SE in test environment	None		
SE isolated from EUT	EMC Laptop		
EUT set up	Refer to Appendix C		
Photographs	Photograph 3		

The worst case power line conducted emission measurements are listed below:

Results measured using the peak detector compared to the average limit

Ref No.	Freq (MHz)	Conductor	Result (dBuV)	Spec Limit (dBuV)	Margin (dB)	Result Summary
1	0.15	Live	26.0	56	-30.0	Pass
2	0.5	Live	23.2	46	-22.8	Pass
3	1	Live	14.5	46	-31.5	Pass
4	2	Live	15.6	46	-30.4	Pass
5	5	Live	17.0	46	-29.0	Pass
6	10	Live	14.5	50	-35.5	Pass
7	0.15	Neutral	27.2	56	-28.8	Pass
8	0.5	Neutral	22.3	46	-23.7	Pass
9	1	Neutral	16.4	46	-29.6	Pass
10	2	Neutral	15.9	46	-30.1	Pass
11	5	Neutral	16.9	46	-29.1	Pass
12	10	Neutral	15.1	50	-34.9	Pass

Preview power line conducted emission measurements were performed with a peak detector in a screened room.

The effect of the EUT set-up on the measurements is summarised in note (b) below.

Where applicable formal measurements of the emissions were performed with a peak, average and/or quasi peak detector. The formal measurements are detailed below:

Test Details: Channel 18				
Regulation	Title 47 of the CFR :2002, Part 15 Subpart (c) Clause 15.207			
Measurement standard	ANSI C63.4:2003			
Class	B – refer to specification limit table below.			
Frequency range	150kHz to 30MHz			
EUT sample number	S04			
Modification state	1			
SE in test environment	None			
SE isolated from EUT	EMC Laptop			
EUT set up	Refer to Appendix C			
Photographs	Photograph 3			

The worst case power line conducted emission measurements are listed below:

Results measured using the peak detector compared to the average limit

Ref No.	Freq (MHz)	Conductor	Result (dBuV)	Spec Limit (dBuV)	Margin (dB)	Result Summary
1	0.15	Live	26.2	56	-29.8	Pass
2	0.5	Live	23.1	46	-22.9	Pass
3	1	Live	22.0	46	-24.0	Pass
4	2	Live	15.1	46	-30.9	Pass
5	5	Live	17.5	46	-28.5	Pass
6	10	Live	16.0	50	-34.0	Pass
7	0.15	Neutral	26.6	56	-29.4	Pass
8	0.5	Neutral	23.1	46	-22.9	Pass
9	1	Neutral	18.8	46	-27.2	Pass
10	2	Neutral	17.3	46	-28.7	Pass
11	5	Neutral	16.8	46	-29.2	Pass
12	10	Neutral	14.5	50	-35.5	Pass

Preview power line conducted emission measurements were performed with a peak detector in a screened room.

The effect of the EUT set-up on the measurements is summarised in note (b) below.

Where applicable formal measurements of the emissions were performed with a peak, average and/or quasi peak detector. The formal measurements are detailed below:

Test Details: Channel 26				
Regulation	Title 47 of the CFR :2002, Part 15 Subpart (c) Clause 15.207			
Measurement standard	ANSI C63.4:2003			
Class	B – refer to specification limit table below.			
Frequency range	150kHz to 30MHz			
EUT sample number	S04			
Modification state	1			
SE in test environment	None			
SE isolated from EUT	EMC Laptop			
EUT set up	Refer to Appendix C			
Photographs	Photograph 3			

The worst case power line conducted emission measurements are listed below:

Results measured using the peak detector compared to the average limit

Ref No.	Freq (MHz)	Conductor	Result (dBuV)	Spec Limit (dBuV)	Margin (dB)	Result Summary
1	0.15	Live	27.5	56	-28.5	Pass
2	0.5	Live	28.0	46	-18.0	Pass
3	1	Live	22.9	46	-23.1	Pass
4	2	Live	23.6	46	-22.4	Pass
5	5	Live	20.0	46	-26.0	Pass
6	10	Live	15.0	50	-35.0	Pass
7	0.15	Neutral	27.8	56	-28.2	Pass
8	0.5	Neutral	25.5	46	-20.5	Pass
9	1	Neutral	22.5	46	-23.5	Pass
10	2	Neutral	19.6	46	-26.4	Pass
11	5	Neutral	16.9	46	-29.1	Pass
12	10	Neutral	15.4	50	-34.6	Pass

Specification limits:

Conducted emission limits (47 CFR 15:2004 Clause 15.107):

Conducted disturbance at the mains ports of Class B information technology equipment.

Frequency range MHz	Limits dBμV		
1 requeries range with	Quasi-peak	Average	
0.15 to 0.5	66 to 56	56 to 46	
0.5 to 5	56	46	
5 to 30	60	50	

Notes

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

When the average limit was met using the peak detector, the EUT was deemed to meet both the average detector and quasi-peak detector limits and measurement with the average detector and quasi-peak detector was not required.

Notes:

- (a) The levels may have been rounded for display purposes.
- (b) The following table summarises the effect of the EUT operating mode and internal configuration on the measured emission levels :

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels		✓		
Effect of EUT internal configuration on emission levels		✓		
(i) Parameter defined by standard and / or single possible, refer to Appendix C (ii) Parameter defined by client and / or single possible, refer to Appendix C (iii) Parameter had a negligible effect on emission levels, refer to Appendix C (iv) Worst case determined by initial measurement, refer to Appendix C				

A3 6 dB Bandwidth

Measurement of the bandwidth of the transmission between the -6 dB points on the transmitted spectrum was verified using a spectrum analyser with the EUT transmitting on its lowest, centre and highest carrier frequency in turn. The formal measurements are detailed below:

Test Details:		
Regulation	Title 47 of the CFR: 2002, Part 15 Subpart (c) 15.247(a)(2)	
EUT sample number	S05	
Modification state	1	
SE in test environment	EMC Laptop	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

Measured 6 dB Bandwidth	Limit	Result
2494 kHz	>500 KHz	Pass

A plot of the 6 dB bandwidth is contained in Appendix B of this test report.

A3 Conducted carrier power

Conducted carrier power was verified using a spectrum analyser with the EUT transmitting on its lowest, centre and highest carrier frequency in turn.

Test Details: Conference Phone			
Regulation	Title 47 of the CFR2002, Part15 Subpart (c) 15.247(b)(3)		
EUT sample number	S05		
Modification state	1		
SE in test environment	EMC Laptop		
SE isolated from EUT	None		
EUT set up	Refer to Appendix C		

Frequency (MHz)	Measured Conducted Carrier Power (W)	Limit (W)	Result
2405	0.0005	1	Pass
2440	0.0006	1	Pass
2480	0.0007	1	Pass

Note

The carrier power was measured whilst varying the supply voltage between 85% and 105% of the nominal supply voltage as required by 15.31(e). No variation in carrier power was observed.

A4 Antenna Gain

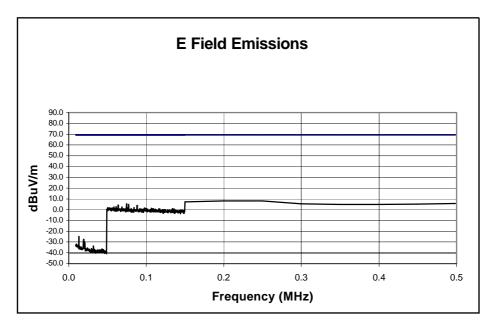
The maximum antenna gain for the antenna types to be used with the EUT, as declared by the client, is 0 dB.

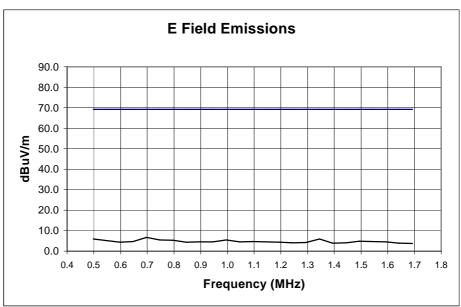
A5 Power Spectral density

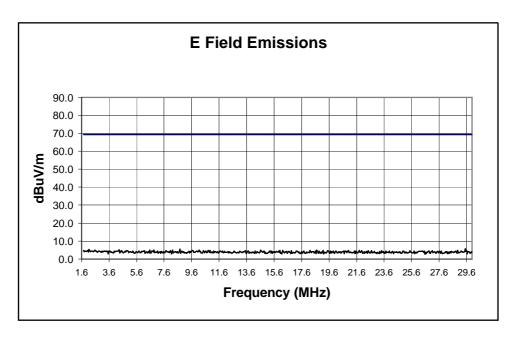
Conducted carrier power was verified using a spectrum analyser in conjunction with a wideband RF power meter. Testing was performed with the EUT transmitting on its lowest, centre and highest carrier frequency in turn.

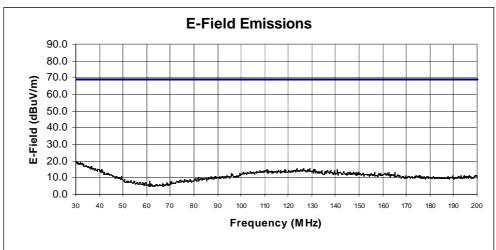
Test Details:		
Regulation	Title 47 of the CFR :2002, Part 15 Subpart (c) 15.247(e)	
EUT sample number	S05	
Modification state	1	
SE in test environment	EMC Laptop	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

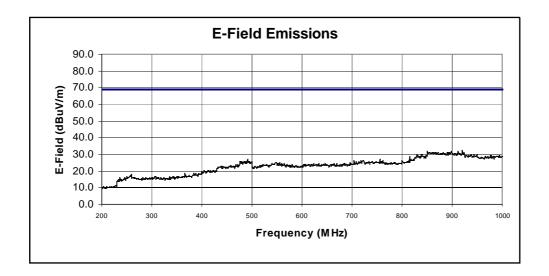
Frequency (MHz)	Measured power Spectral density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2405	-16.1	8	Pass
2440	-15.2	8	Pass
2480	-15.1	8	Pass

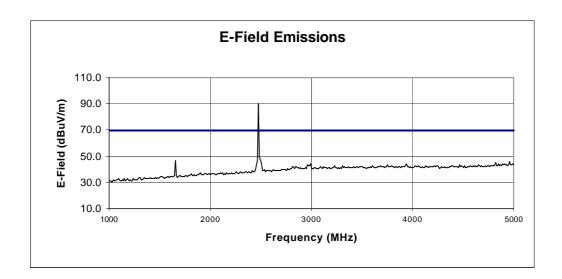

Appendix B:

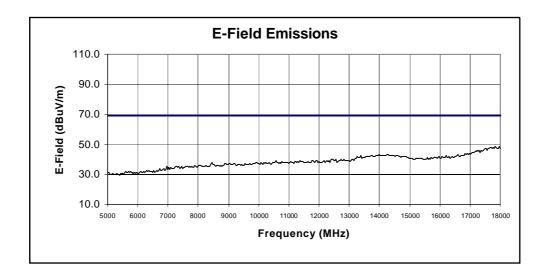

Supporting Graphical Data

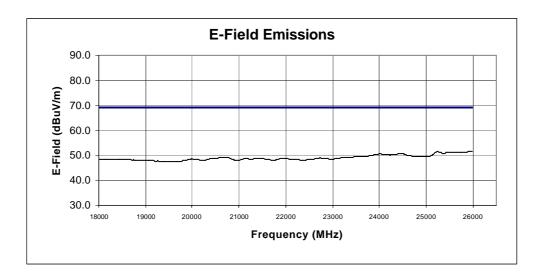

This appendix contains graphical data obtained during testing.


Notes:

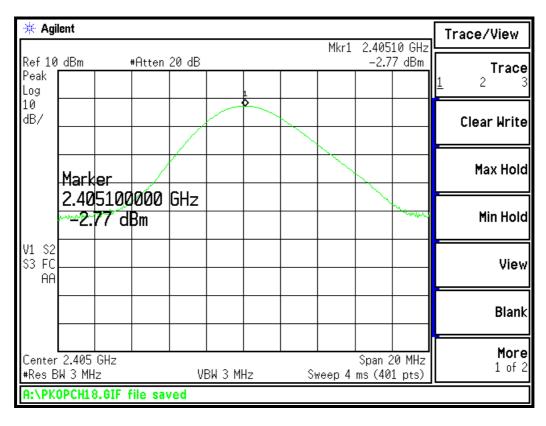

- (a) The radiated electric field emissions and conducted emissions graphical data in this appendix is preview data. For details of formal results, refer to Appendix A and Appendix B.
- (b) The time and date on the plots do not necessarily equate to the time of the test.
- (c) Where relevant, on power line conducted emission plots, the limit displayed is the average limit, which is stricter than the quasi peak limit.
- (d) Appendix C details the numbering system used to identify the sample and its modification state.
- (e) The plots presented in this appendix may not be a complete record of the measurements performed, but are a representative sample, relative to the final assessment.
- (f) The limit line on the radiated emissions is the limit for emissions outside the restricted bands. Any emissions detected within the restricted band were formally assessed against the limits in 15.209.

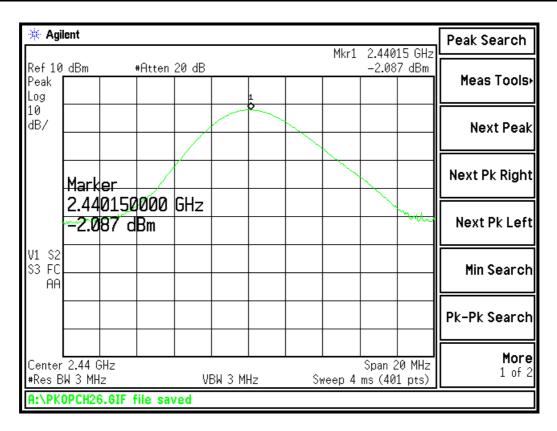


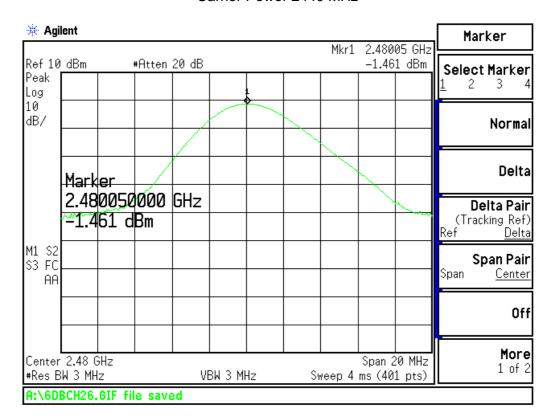


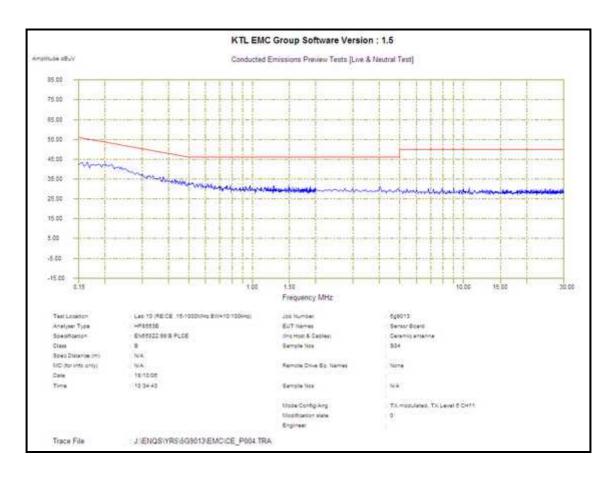


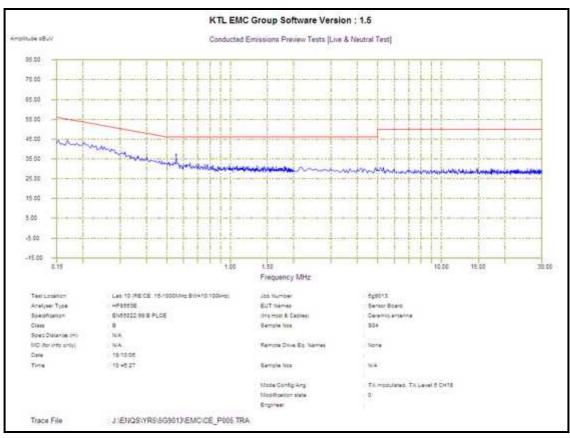


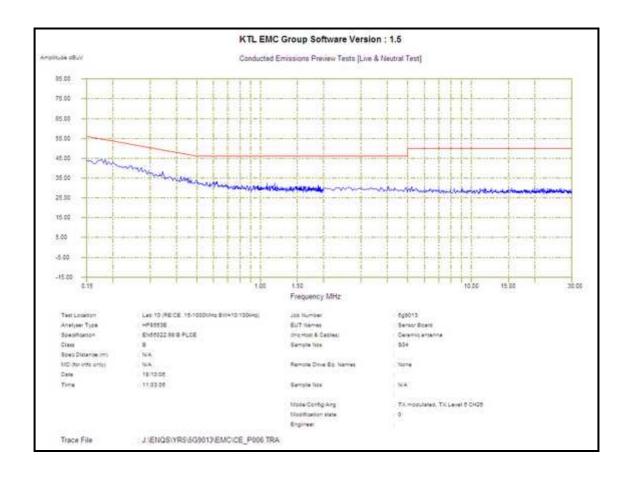


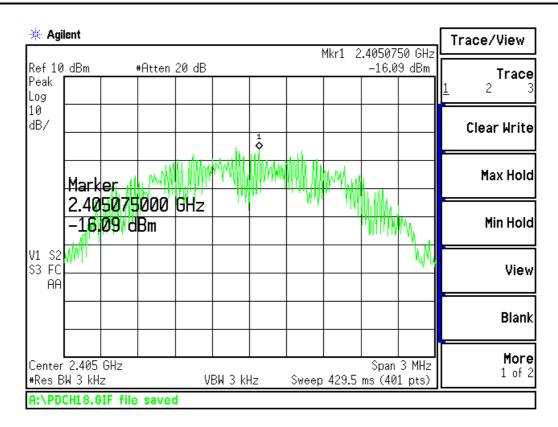



6 dB Bandwidth

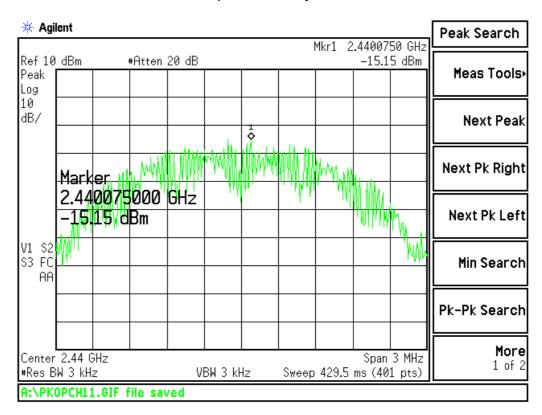

Carrier Power 2405 MHz

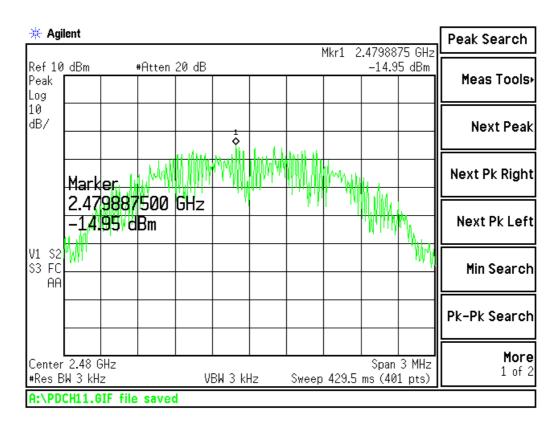



Carrier Power 2440 MHz



Carrier Power 2480 MHz





Power Spectral density 2405 MHz

Power Spectral Density 2440 MHz

Power spectral density 2480 MHz

Appendix C:

Additional Test and Sample Details

This appendix contains details of:

- 1. The Samples submitted for testing.
- 2. Details of EUT operating mode(s)
- 3. Details of EUT configuration(s) (see below).
- 4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and it's modification state:

Sample No: Sxx Mod w

where:

xx = sample number eg. S01 w = modification number eg. Mod 2

The following terminology is used throughout the test report:

Support Equipment (SE) is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

EUT configuration refers to the internal set-up of the EUT. It may include for example:

Positioning of cards in a chassis. Setting of any internal switches. Circuit board jumper settings. Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as "single possible configuration".

EUT arrangement refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by KTL upon request.

C1) Test samples

The following samples of the apparatus were submitted for testing:

Sample No.	Description	Identification
S04	Model 1023 V3.0 Zigbee Module Ceramic Antenna	Serial No 3
S05	Model 1029 V3.0 Zigbee Module SMA Antenna Connector	Serial No 3

The following samples of apparatus were submitted (or supplied by KTL) as host, support or drive equipment (auxiliary equipment):

Sample No.	Description	Identification
N/A	EMC Laptop	RFG 456

C2) EUT Operating Mode During Testing.

During testing, the EUT was exercised as described in the following tables :

<u> </u>	<u> </u>
Test	Description of Operating Mode
All tests detailed in this report	EUT transmitting on maximum power using FSK Modulation

C3) EUT Configuration Information.

The EUT was submitted for testing in one single possible configuration.

C4) List of EUT Ports

The table below describes the termination of EUT ports:

Sample : S04 Tests : All

Port	Description of Cable Attached	Cable length	Equipment Connected
dc Power	2 core Unscreened	1m	Batteries/PSU
Serial	Multicore Unscreened	2m	EMC Laptop*

C5) Details of test equipment used

For Radiated Electric Field Emissions 30MHz to 1GHz:

RFG No	Type	Description	Manufacturer	Date Calibrated.
274	ATS	Ferrite Lined Chamber	KTL	24/05/05
231	CBL6111	Blue Bilog Antenna (0.03 - 1GHz)	Chase	31/08/05
214	ESAI	Spec Analyser/Test Rxer (LF/HF)	R&S	27/09/05
249	N-type	RF coaxial cable (Lab 10)	KTL	12/08/05
255	N-type	RF coaxial cable (Lab 10)	KTL	12/08/05
270	N-type	RF coaxial cable (Lab 10)	KTL	12/08/05

For Radiated Electric Field Emissions 1GHz to 25GHz

RFG No	Type	Description	Manufacturer	Date Calibrated
274	ATS	Ferrite Lined Chamber	KTL	10/05/06
129	3115	Horn Antennas	EMCO	29/07/98
307	HP8449B	Microwave Pre-Amp (1-26.5GHz)	HP	25/01/06
312	-	Sucoflex uW Adapter Cable 1m	Suhner	30/01/06
313	-	Sucoflex uW Adapter Cable 1m	Suhner	30/01/06
137	N-104	Sucoflex uW Cable 2m	Suhner	30/01/06
138	N-104	Sucoflex uW Cable 2m	Suhner	30/01/06
158	N-106	Sucoflex uW Cable 6m	Suhner	30/01/06
404	E4407B	Spectrum Analyser	Agilent	25/01/06

For power line conducted emissions

RFG No	Type	Description	Manufacturer	Date Calibrated
n/a	Lab 11	Small Screened Chamber	KTL	-
189	ESH3-Z5	Single-phase LISN	R&S	04/04/05
232	ESH3-Z2	Pulse Limiter	R&S	16/12/05
125	ESHS 10	Test Receiver (LF)	R&S	19/07/05
127	HP8563E	Spectrum Analyser	HP	15/09/05
297	BNC	RF coaxial cable (Lab 11)	KTL	12/08/05
298	BNC	RF coaxial cable (Lab 11)	KTL	12/08/05
464	6220B	110Vac operating DC power supply	HP	N/A

For conducted RF power

RFG No	Type	Description	Manufacturer	Date Calibrated
404	E4407B	Spectrum Analyser	Agilent	25/01/06

For power spectral density

RFG No	Type	Description	Manufacturer	Date Calibrated
404	E4407B	Spectrum Analyser	Agilent	25/01/06
	436A	Power Meter	HP	

Appendix D:

Additional Information

The following information is a copy of email correspondence from the client, detailing the frequencies used within the EUT. The lowest declared frequency is 100 kHz; the highest generated frequency is 2480 MHz (highest channel of transmitter). In addition are details of the antenna that will be used with the module.

Hi Ken,

in response to questions from Martin:

The highest frequency on the controller board in the 4MHz interface to the LCD - driven from the module.

The highest frequency on the Sensor board is a 1MHz interface to the sensors - driven from the module.

Also, I can confirm that the maximum centre frequency for the module is $2.48 \, \mathrm{GHz}$.

For the immunity tests, I suggest we use 50% PER as the criterion for success.

best regards,

Colin

Colin Faulkner

Business Development Manager - ZigBee

Hi Martin,

I've checked, and one of the sensor clocks can go as slow as 100kHz - this will be the lowest operating frequency on both sensor and controller boards.

regards,

Colin

Colin Faulkner

Business Development Manager - ZigBee

Hi Martin,

this is the list of antennas we plan to use - will need to refer to these in the FCC submission.

The GigaAnt Titanis that you already have has the highest gain of all the antennas that we might use. The Ceramic antenna mounted on the other module has the lowest gain.

Embedded Antenna Design: FBKR35068-SM-KR Peak Gain 2dBi
Antenna Factor: ANT-2.4-CW-RCT-SS Peak Gain 2.2dBi

Centurion: WCR2400 Peak Gain 2dBi

Centurion: WCR2400-SMRP Peak Gain 1.3dBi GigAnt: Titanis Peak Gain 4.4dBi

Ceramic Antenna on module

Yageo: Phycomp 52047, Peak Gain OdBi

Other things you wanted information on:

The Evaluation kits are purely battery powered, so should be tested as portable equipment.

In case this is of use to you, the RS232 cable supplied is less than 3m long - no power supply cable is included.

best regards,

Colin

Colin Faulkner

Business Development Manager - ZigBee

Appendix E:

Photographs and Figures

The following photographs were taken of the test samples:

- 1.
- Radiated electric field emissions arrangement Power line conducted emissions arrangement 2.

Photograph 1

Photograph 2

Appendix F: MPE Calculation

As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than 1mW/cm² power density limit, as required under FCC rules.

```
RF Exposure (S) = EIRP/4\pi R^2 mW/cm<sup>2</sup>

\therefore R<sup>2</sup> = EIRP/4\pi S

\therefore R = \sqrt{(EIRP/4\pi S)}

For S = 1 mW/cm<sup>2</sup>

and EIRP = 0.9 mW maximum (-0.5 dBm)

R = 0.3 cm
```

Note:

The EIRP measurement was performed using the signal substitution method with a substitution antenna, and were not calculated from field strength using the friis transmission formula.