

Test report

KTL EMC Test Report : 6H9455GUS2

Applicant: Flextronics (Sweden)

Apparatus: Bluetooth Adapter Model SBTA920A

Authorised by

: K J Anderson, Principal EMC and Radio Group Engineer

Issue Date : 13th April 2007

Authorised Copy Number : PDF

Contents

Section 1:	Introduction 1.1 General	3 3 4
	1.2 Tests Requested By	
	1.3 Manufacturer	4
	1.4 Apparatus Assessed 1.5 Test Result Summary	4
	1.6 Notes Relating To The Assessment	5 6
	1.7 Deviations from Test Standards	6
Section 2:	Measurement Uncertainty	7
	2.1 Introduction	7
	2.2 Application of Measurement Uncertainty	7
	2.3 Measurement Uncertainty Values	7
Section 3:	Modifications	8
	3.1 Modifications Performed During Assessment	8
Appendix A:	Formal Test Results	9
	A1 Radiated Electric Field Spurious Emissions (Restricted Bands)	10
	A2 Conducted Spurious Emissions (Non Restricted Bands)	13
	A3 AC Power Conducted Emissions	14
	A4 20 dB Bandwidth and Channel Spacing	16
	A5 Conducted carrier power	17
	A6 Hopping frequencies	18
	A7 Channel Occupancy	19
Appendix B:	Supporting Graphical Data	20
Appendix C:	Additional Test and Sample Details	31
Appendix D:	Additional Information	37
Appendix E:	Photographs and Figures	38
Appendix F:	MPE Calculation	45

Section 1: Introduction

1.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed by: KTL

Saxon Way Priory Park West Hull HU13 9PB United Kingdom

Telephone: +44 (0) 1482 801801 Fax: +44 (0) 1482 801806

Email: ktl@ktl.com Web site: www.ktl.com

Tests performed by:

K J Anderson, Principal EMC and Radio Group Engineer

Report author:.

A M Leach, EMC and Radio Group Manager

M./la/

This report must not be reproduced except in full without prior written permission from KTL.

1.2 Tests Requested By

This testing in this report was requested by:

Flextronics (Sweden) Rombvagen 4 Verko S-37123 Karlskrona Sweden

1.3 Manufacturer

As above

1.4 Apparatus Assessed

The following apparatus was assessed between: 19/02/07 and 11/04/07

Bluetooth Module Model SBTA920A

The above equipment was a Bluetooth radio module for fitting into a telephone handset

1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

Test Type	Regulation	Measurement standard	Result
Radiated spurious emissions (Restricted bands)	Title 47 of the CFR: 2004, Part 15 Subpart (c) 15.247	ANSI C63.4: 2003	Pass
Conducted spurious emissions (Non-restricted bands)	Title 47 of the CFR: 2004, Part 15 Subpart (c) 15.247	Public Notice DA 00-705 March 30, 2000	Pass
AC Power conducted emissions	Title 47 of the CFR: 2004, Part 15 Subpart (c) 15.207	ANSI C63.4: 2003	Pass
20dB Bandwidth and Channel Spacing	Title 47 of the CFR :2004, Part 15 Subpart (c) 15.247(a)(1)(i)	Public Notice DA 00-705 March 30, 2000	Pass
Conducted Carrier Power	Title 47 of the CFR :2004, Part 15 Subpart (c) 15.247(b)(2)	Public Notice DA 00-705 March 30, 2000	Pass
Hopping Frequencies	Title 47 of the CFR :2004, Part 15 Subpart (c) 15.247(a)(1)	Public Notice DA 00-705 March 30, 2000	Pass
Channel Occupancy	Title 47 of the CFR :2004, Part 15 Subpart (c) 15.247(a)(1)(i)	Public Notice DA 00-705 March 30, 2000	Pass

Abbreviations used in the above table:

Mod : Modification ANSI : American National Standards Institution

CFR : Code of Federal Regulations

1.6 Notes Relating To The Assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature : 17 to 23 °C Humidity : 45 to 75 % Barometric Pressure : 86 to 106 kPa

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

KTL Hull is a listed electromagnetic compatibility Conformance Assessment Body (CAB) for EC access to the US market. (Decision No 3/2000 of the Joint Committee established under the Agreement on Mutual Recognition between the European Community and the United States of America. This decision was effective from 16th January 2001).

FCC Facility Registration number (3m semi anechoic chamber): 90743

1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

Section 2:

Measurement Uncertainty

2.1 Introduction

The standard ISO/IEC 17025 used for laboratory accreditation requires laboratories to estimate measurement uncertainty using accepted methods of analysis.

Where required, the reported expanded uncertainty is based on a standard uncertainty providing a confidence level of approximately 95%.

Measurement uncertainty is calculated using the methods defined in the UKAS document LAB34 Edition 1 August 2002.

KTL measurement uncertainty is recorded in the KTL document UNC/RFG/001 Issue 16.

2.2 Application of Measurement Uncertainty

The following procedure is used when determining the result of a measurement :

- (i) If specification limits are not exceeded by the measured result, extended by the positive component of the expanded uncertainty interval at a confidence level of 95%, then a pass result is recorded.
- (ii) Where a specification limit is exceeded by the result even when the result is decreased by the negative component of the expanded uncertainty interval, a fail result is recorded.
- (iii) Where measured result is below a limit, but by a margin less than the positive measurement uncertainty component, it is not possible to record a pass based on a 95% confidence level. However, the result indicates that a pass result is more probable than a fail result.
- (iv) Where a measured result is above a limit, but by a margin less than the negative measurement uncertainty component, it is not possible to record a fail based on a 95% confidence level. However the result indicates that a fail is more probable than a pass.

2.3 Measurement Uncertainty Values

All results were recorded in accordance with Section 2.2(i).

Section 3: Modifications

3.1 Modifications Performed During Assessment

No modifications were performed during the assessment.

Formal Test Results

Abbreviations used in the tables in this appendix:

Spec: SpecificationALSR: Absorber Lined Screened RoomMod: ModificationOATS: Open Area Test Site

ATS : Alternative Test Site

EUT : Equipment Under Test SE : Support Equipment

Appendix A:

Ref : Reference

Freq : Frequency

MD : Measurement Distance

: Live Power Line SD : Spec Distance

N : Neutral Power Line
E : Earth Power Line Pol : Polarisation

H : Horizontal Polarisation

Pk : Peak Detector V : Vertical Polarisation QP : Quasi-Peak Detector

Av : Average Detector CDN : Coupling & decoupling network

A1 Radiated Electric Field Spurious Emissions (Restricted Bands)

Preliminary radiated electric field emissions testing was performed using a peak detector in an absorber lined screened room.

The following test site was used for final	l me	easurements as specified by the stand	dard	tested to:
10m open area test site:		3m alternative test site :	√	

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details					
Regulation	Title 47 of the CFR :2002, Part 15 Subpart (c) Clause 15.247				
Measurement standard	ANSI C63.4:2003				
Frequency range	10MHz to 25GHz				
EUT sample number	S105				
Modification state	0				
SE in test environment	None				
SE isolated from EUT	6H9447S01, 6H9447S02 and 6H9447S04				
EUT set up	Refer to Appendix C				
Photographs (Appendix E)	Photograph 1				

The worst case radiated emission measurements are listed below:

Ref No.	Freq (MHz)	Det	Angle. Deg.	Height (cm)	Pol.	MD (m)	Result at MD (dBμV/m)	SD (m)	Result at SD (dBμV/m)	Spec. Limit (dBμV/m)	Margin (dB)	Summary
1	1650	Pk	135	100	V	3	51.0	3	51.0	74	-23.0	Pass
2	1650	Av	135	100	V	3	47.4	3	47.4	54	-6.6	Marginal
3	2400	Pk	10	100	V	3	52.3	3	52.3	74	-21.7	Pass
4	2400	Av	10	100	V	3	47.1	3	47.1	54	-6.9	Pass
5	2483.5	Pk	10	100	V	3	53.5	3	53.5	74	-20.5	Pass
6	2483.5	Av	10	100	V	3	47.3	3	47.3	54	-6.7	Pass

Notes:

- 1. Radiated spurious emissions testing was limited to frequencies identified during the conducted spurious emissions test that were found to lie within the restricted bands defined in 47CFR15.205(a).
- 2. Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.4: 2003 section 8.2.1.
- 3. All other emissions in the restricted bands defined in 47CFR15.205(a) were greater than 20 dB below the 47CFR15.209 limit.
- 4. In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- 5. The measurements at 2400 MHz and 2483.5 MHz were made to ensure band edge compliance.
- 6. Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded.
- 7. For Frequencies Below 1 GHz, RBW= 100 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:

Peak RBW=VBW= 1MHz

Average RBW= 1 MHz, VBW = 10 Hz

These settings as per ANSI C63.4 and DA 00-705.

The upper frequency of the measurement range was decided according to 47 CFR 15:1999 Clause 15.33.

Radiated emission limits (47 CFR 15:1999 Clause 15.209) for emissions falling within the restricted bands defined in 15.205(a):

Frequency of emission (MHz)	Field strength μV/m	Measurement Distance m	Field strength dBμV/m
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	210	3	46.4
Above 960	500	3	54.0

Notes:

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) =
$$20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$$

The results displayed take into account applicable antenna factors and cable losses.

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

See (i)	See (ii)	See (iii)	See (iv)
	√		
	✓		
✓			
	See (i)	See (i) See (ii)	See (i) See (ii) See (iii)

- (i) Parameter defined by standard and / or single possible, refer to Appendix D
- (ii) Parameter defined by client and / or single possible, refer to Appendix D
- (iii) Parameter had a negligible effect on emission levels, refer to Appendix D
- (iv) Worst case determined by initial measurement, refer to Appendix D

A2 Conducted Spurious Emissions (Non Restricted Bands)

Test Details					
Regulation	Title 47 of the CFR :2002, Part 15 Subpart (c) Clause 15.247				
Measurement standard	ANSI C63.4:2003				
Frequency range	10MHz to 25GHz				
EUT sample number	S74				
Modification state	0				
SE in test environment	6H9447S01, 6H9447S02 and 6H9447S03				
SE isolated from EUT	None				
EUT set up	Refer to Appendix C				

The worst case conducted emission measurements are listed below:

Ref No.	Freq (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)	Summary
1	7206.5	-51.2	-15.0	-36.2	Pass

Note:

The limits for emissions outside the restricted bands defined in 47CFR15.205(a) are required to be 20 dB below the level of the emissions in the operating band, which was measured as 5.0 dBm. The carrier level was measured whilst varying the supply voltage between 85% and 105% of the nominal supply voltage as required by 15.31(e). No variation in carrier level was observed. All other emissions were at least 40dB below the test limit

A3 AC Power Conducted Emissions

Preview power line conducted emission measurements were performed with a peak detector in a screened room.

The effect of the EUT set-up on the measurements is summarised in note (b) below.

Where applicable formal measurements of the emissions were performed with a peak, average and/or quasi peak detector. The formal measurements are detailed below:

	Test Details					
Regulation	Title 47 of the CFR Part 15(c) Section 15.207					
Measurement standard	ANSI C63.4:2003					
Frequency range	0.15 to 30MHz					
EUT sample number	S102					
Modification state	0					
SE in test environment	S04, S112, 6H9447S01, 6H9447S02 and 6H9447S03					
SE isolated from EUT	None					
EUT set up	Refer to Appendix C					
Photographs (Appendix E)	Photograph 2					

The worst case power line conducted emission measurements are listed below:

Ref No.	Freq (MHz)	Conductor	Detector Used	Result (dBuV)	Av Spec Limit (dBuV)	Result Summary
1	0.457	Live	Av	32.8	46.7	Pass
2	1.894	Live	Av	30.6	46	Pass
3	15.617	Live	Av	30.6	50	Pass
4	15.923	Live	Av	27.4	50	Pass
5	16.091	Live	Av	27.5	50	Pass
6	18.121	Live	Av	24.2	50	Pass
7	0.457	Neutral	Av	31.3	46.7	Pass
8	1.894	Neutral	Av	28.4	46	Pass
9	15.617	Neutral	Av	29.9	50	Pass
10	15.923	Neutral	Av	26.9	50	Pass
11	16.091	Neutral	Av	26	50	Pass
12	18.121	Neutral	Av	23.7	50	Pass

Ref No.	Freq (MHz)	Conductor	Detector Used	Result	QP Spec Limit	Result Summary
				(dBuV)	(dBuV)	
1	0.457	Live	QP	35.1	56.7	Pass
2	1.894	Live	QP	32.3	56	Pass
3	15.617	Live	QP	36.3	60	Pass
4	15.923	Live	QP	33.9	60	Pass
5	16.091	Live	QP	37.1	60	Pass
6	18.121	Live	QP	32.6	60	Pass
7	0.457	Neutral	QP	33.8	56.7	Pass
8	1.894	Neutral	QP	30.2	56	Pass
9	15.617	Neutral	QP	36.2	60	Pass
10	15.923	Neutral	QP	33.9	60	Pass
11	16.091	Neutral	QP	35	60	Pass
12	18.121	Neutral	QP	32.5	60	Pass

Conducted emission limits (47 CFR 15:1999 Clause 15.207):

Frequency range MHz	Limits dBμV	
1 requeries range with	Quasi-peak	Average
0.15 to 0.5	66 to 56	56 to 46
0.5 to 5	56	46
5 to 30	60	50

Notes:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

Notes:

- (a) The levels may have been rounded for display purposes.
- (b) The following table summarises the effect of the EUT operating mode and internal configuration on the measured emission levels:

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels		✓		
Effect of EUT internal configuration on emission levels		✓		
(i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D (iv) Worst case determined by initial measurement, refer to Appendix D				

- (c) Conducted emissions testing was performed using a Rohde and Schwarz ESH3-Z5 50ohm/50uH LISN .
- (d) Testing was performed with the EUT installed into a typical host telephone, which was in turn powered by means of a dedicated ac power adapter.

A4 20 dB Bandwidth and Channel Spacing

Title 47 of the CFR: 2002, Part 15 Subpart (c) 15.247(a)(1)(i) requires the measurement of the bandwidth of the transmission between the -20 dB points on the transmitted spectrum. The results of this test determine the limits for channel spacing. The channel spacing shall be a minimum of 25 kHz or the 20 dB bandwidth, whichever is the greater. The formal measurements are detailed below:

Test Details: Conference Phone		
Regulation	Title 47 of the CFR: 2002, Part 15 Subpart (c) 15.247(a)(1)(i)	
EUT sample number	S74	
Modification state	0	
SE in test environment	6H9447S01, 6H9447S02 and 6H9447S03	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

Measured 20 dB Bandwidth	Limit	Result
772.5 kHz	N/A	N/A

Measured Channel Spacing	Limit	Result
997.5 kHz	≥ 772.5 kHz	Pass

Plots of the 20 dB bandwidth and channel spacing are contained in Appendix B of this test report.

A5 Conducted carrier power

Conducted carrier power was verified using a spectrum analyser with the EUT transmitting on its lowest, centre and highest carrier frequency in turn.

Test Details: Conference Phone		
Regulation	Title 47 of the CFR2002, Part15 Subpart (c) 15.247(b)(2)	
EUT sample number	S74	
Modification state	0	
SE in test environment	6H9447S01, 6H9447S02 and 6H9447S03	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

Frequency (MHz)	Measured Conducted Carrier Power (W)	Limit (W)	Result
2402.000	0.0032	1	Pass
2437.125	0.0028	1	Pass
2480.000	0.0029	1	Pass

Note

The carrier power was measured whilst varying the supply voltage between 85% and 105% of the nominal supply voltage as required by 15.31(e). No variation in carrier power was observed.

A6 Hopping frequencies

Hopping frequencies were verified using a spectrum analyser set to 20 MHz spans, displaying sub sets of the hopping channels in turn, while the EUT was operating in its normal frequency hopping mode.

Test Details:		
Regulation	Title 47 of the CFR :2002, Part 15 Subpart (c) 15.247(a)(1)(i)	
EUT sample number	S74	
Modification state	0	
SE in test environment	6H9447S01, 6H9447S02 and 6H9447S03	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

No. of Hopping Channels	Requirement	Result
79	For 1W conducted carrier power Limit, greater than 75	Pass

Plots showing the hopping channels are contained in Appendix B

A7 Channel Occupancy

Channel occupancy time was verified using a spectrum analyser in zero span mode, centred on the middle hopping channel frequency (2441 MHz), while the EUT was operating in its normal frequency hopping mode. The other channels were then verified to ensure that the channel occupancy was identical for all channels.

Test Details: Conference Phone		
Regulation	Title 47 of the CFR2002, Part15 Subpart (c) 15.247(a)(1)	
EUT sample number	S74	
Modification state	0	
SE in test environment	6H9447S01, 6H9447S02 and 6H9447S03	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

Measured Channel Occupancy Time	Limit	Result
0.530 ms	400 ms	Pass

Plots showing the channel occupancy time and time between successive transmissions are contained in Appendix B of this test report.

Average Occupancy

For a frequency hopping system utilising 79 channels (N), with a channel occupancy time (t_{occ}) of 0.530 ms and a repetition time (t_{rep}) of 99 ms

No of transmission cycles in specified averaging period (400 x N)/ t_{rep} (ms)

 $= (0.4 \times N)/t_{rep}$

 $= (0.4 \times 79)/0.099$

= 319 cycles

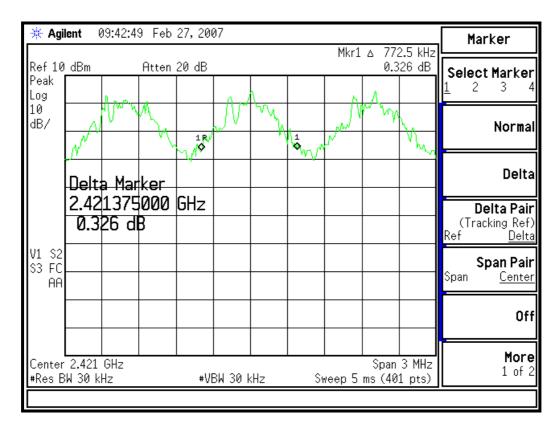
total activation time = t_{occ} (ms) x 319

= 0.530ms x 319

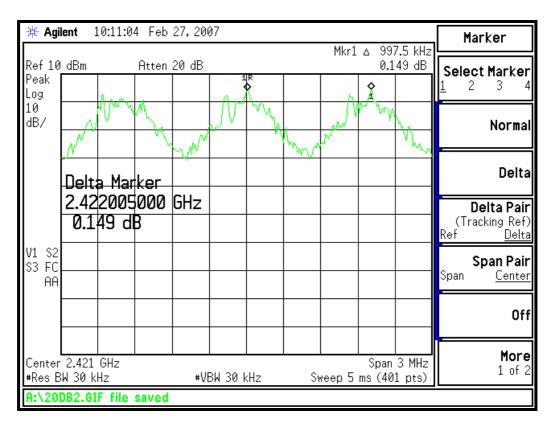
= 169.1 ms

Limit = 400 ms

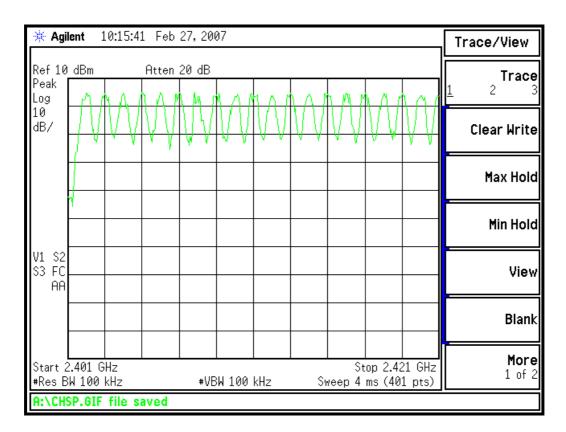
Result: Pass

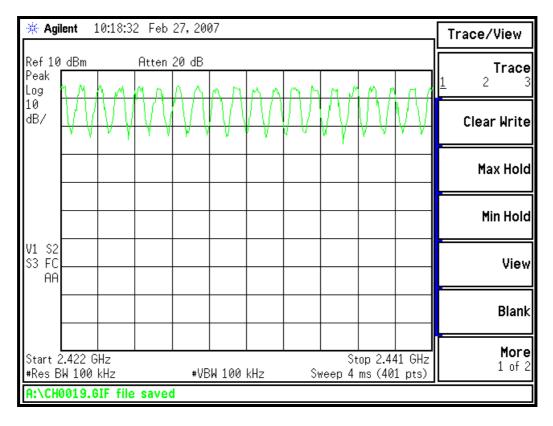

Appendix B:

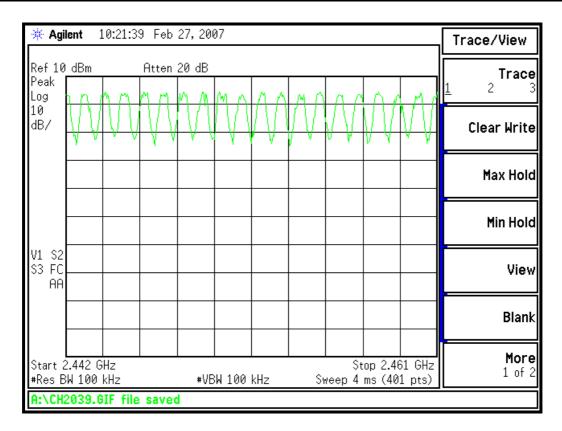
Supporting Graphical Data

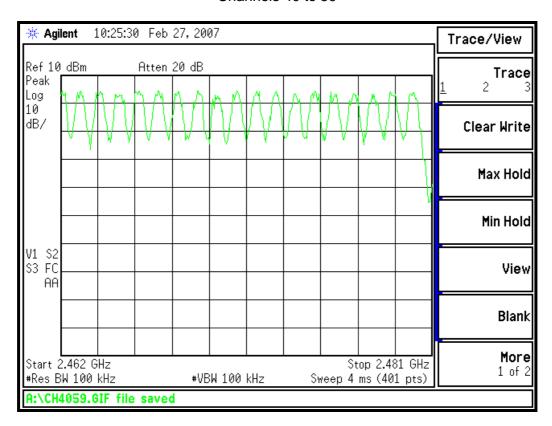

This appendix contains graphical data obtained during testing.

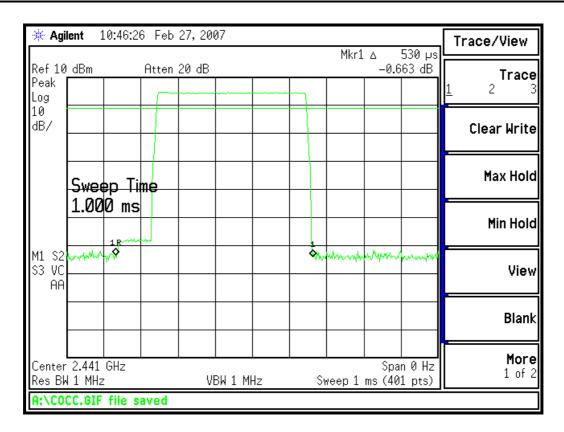
Notes:

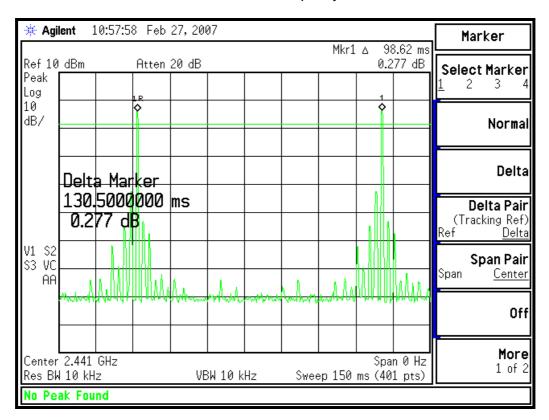

- (a) The radiated electric field emissions and conducted emissions graphical data in this appendix is preview data. For details of formal results, refer to Appendix A and Appendix B.
- (b) The time and date on the plots do not necessarily equate to the time of the test.
- (c) Where relevant, on power line conducted emission plots, the limit displayed is the average limit, which is stricter than the quasi peak limit.
- (d) Appendix C details the numbering system used to identify the sample and its modification state.
- (e) The plots presented in this appendix may not be a complete record of the measurements performed, but are a representative sample, relative to the final assessment.
- (f) The limit line on the conducted emissions plots is the EN55022:1998 class B limit. This is identical to the 47 CFR Part 15(c) 15.207 limit.
- (g) The limit line on the radiated emissions is the limit for emissions outside the restricted bands. Any emissions detected within the restricted band were formally assessed against the limits in 15.209.

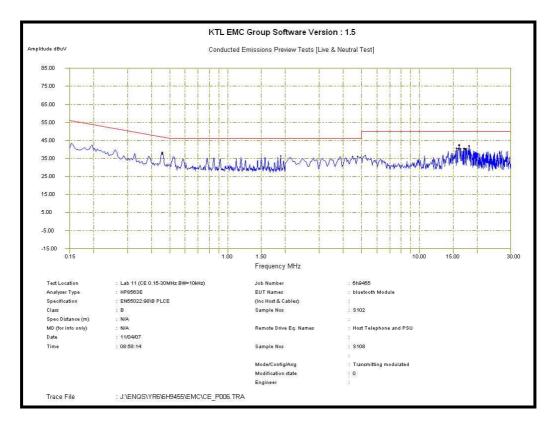

20 dB Bandwidth

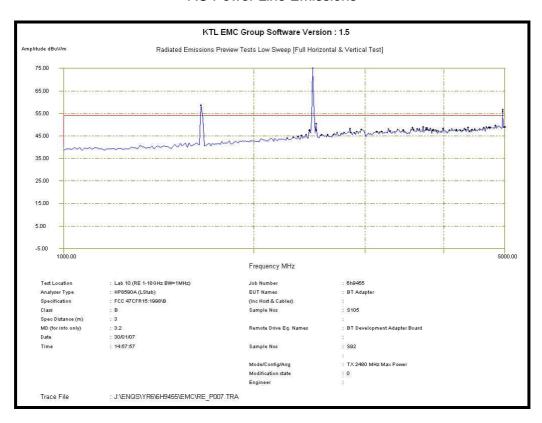

Channel Spacing

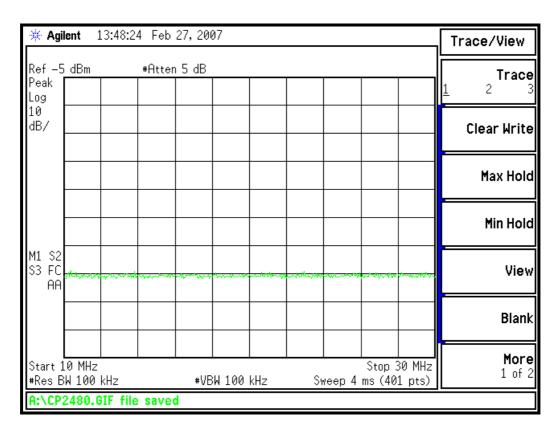

Channels 0 to 19

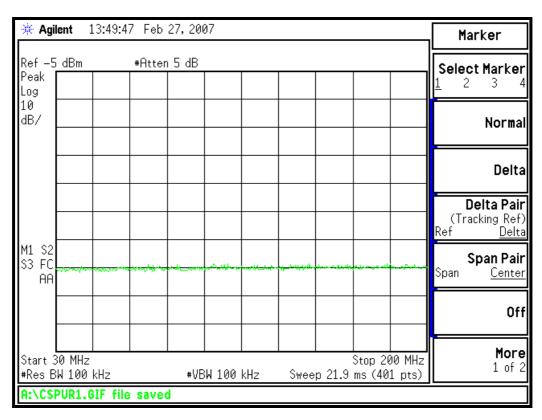

Channels 20 to 39

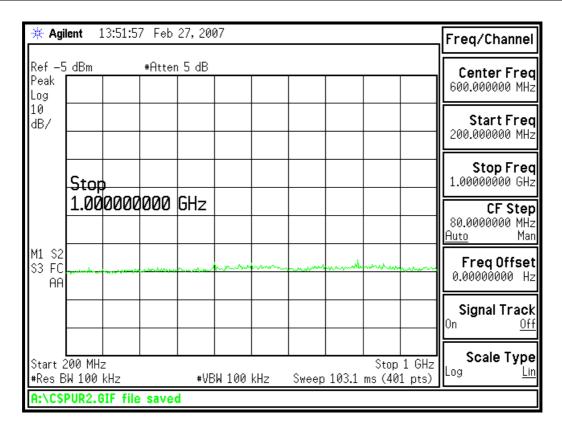

Channels 40 to 59

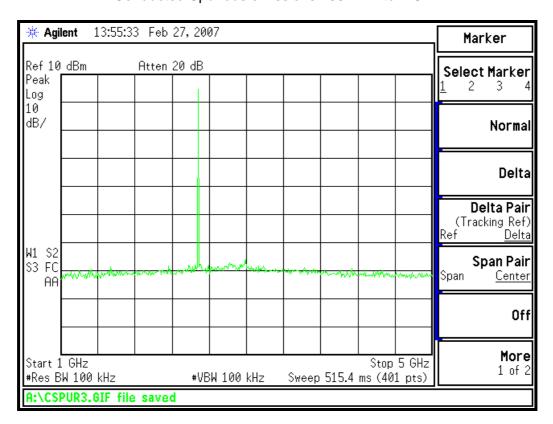

Channels 60 to 78

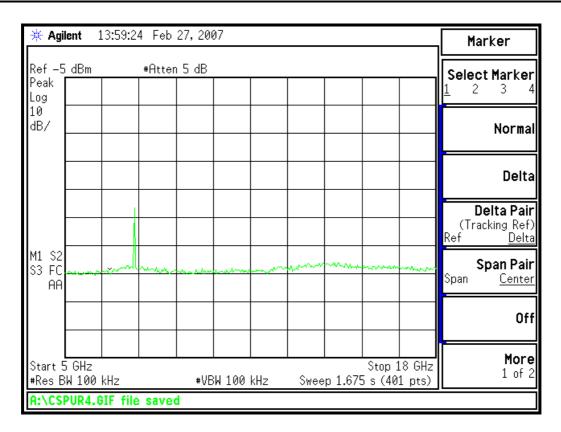

Channel occupancy

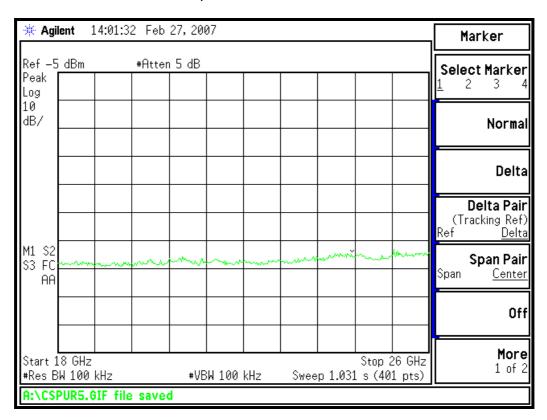

Channel repetition time

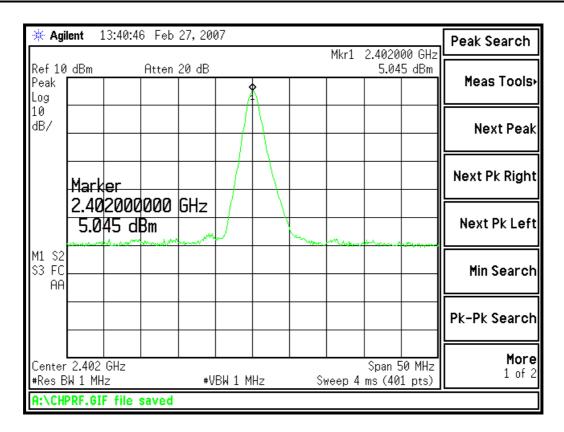

AC Power Line Emissions

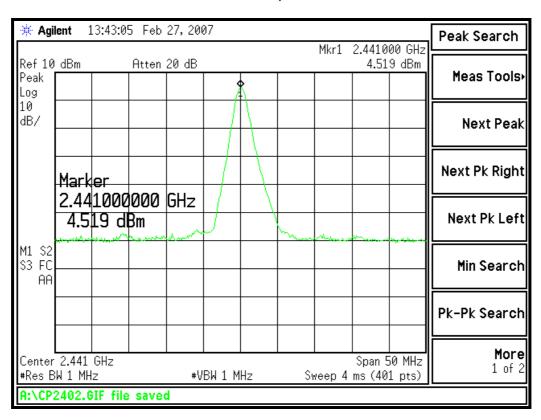

Radiated Spurious Emissions 1 GHz to 5 GHz

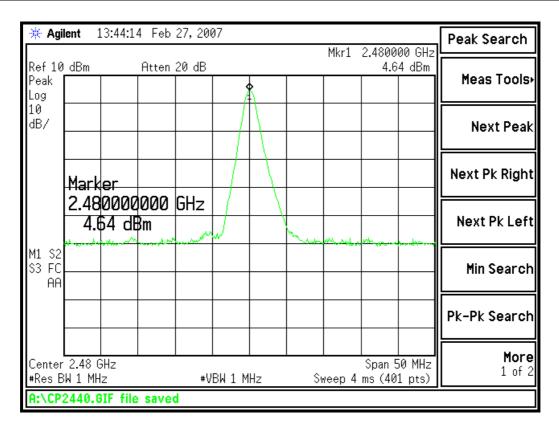

Conducted Spurious emissions 10 MHz to 30 MHz


Conducted Spurious emissions 30 MHz to 200 MHz


Conducted Spurious emissions 200 MHz to 1 GHz


Conducted Spurious emissions 1 GHz to 5 GHz


Conducted Spurious emissions 5 GHz to 18 GHz


Conducted Spurious emissions 18 GHz to 26 GHz

Conducted carrier power 2402MHz

Conducted carrier power 2441 MHz

Conducted carrier power 2480 MHz

Appendix C:

Additional Test and Sample Details

This appendix contains details of:

- 1. The Samples submitted for testing.
- 2. Details of EUT operating mode(s)
- 3. Details of EUT configuration(s) (see below).
- 4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and it's modification state:

Sample No: Sxx Mod w

where:

= sample number eg. S01 XX = modification number eg. Mod 2 W

The following terminology is used throughout the test report:

Support Equipment (SE) is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

EUT configuration refers to the internal set-up of the EUT. It may include for example:

Positioning of cards in a chassis. Setting of any internal switches. Circuit board jumper settings. Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as "single possible configuration".

EUT arrangement refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by KTL upon request.

C1) Test samples

The following samples of the apparatus were submitted for testing:

Sample No.	Description	Identification
S105	Bluetooth Adapter Model SBTA920A	Serial No. 06N550975005
S74	Bluetooth Adapter Model SBTA920A (conducted sample)	Serial No. 06N550975038

The following samples of apparatus were submitted (or supplied by KTL) as host, support or drive equipment (auxiliary equipment):

Sample No.	Description	Identification
S04	Avaya Model 1151B1 Power over Ethernet adapter	Serial No. 04R11000034
S112	Model 9640 Telephone	Serial No. 07N506885477
6H9447S01	Dell Laptop	0U7670
6H9447S02	Dell PSU for 6H9447S01	M/N: LA65N50-00
6H9447S04	Dell USB Mouse	D/PN: 0W7751

C2) EUT Operating Mode During Testing.

During testing, the EUT was exercised as described in the following tables :

Test	Description of Operating Mode
All tests detailed in this report	EUT transmitting on maximum power using FHSS over 79 channels with 1 MHz channel spacing using FSK Modulation

C3) EUT Configuration Information.

The EUT was submitted for testing in one single possible configuration.

C4) List of EUT Ports

The EUT was an internal RF Module with no external ports and is powered from a host phone. For the purposes of testing, a sample the EUT was fitted with cable connections to enable it to be connected directly to the measurement instruments used.

C5) Details of test equipment used

For Radiated Electric Field Emissions 30MHz to 1GHz:

RFG No	Type	Description	Manufacturer	Date Calibrated.
274	ATS	Ferrite Lined Chamber	KTL	10/05/06
231	CBL6111	Blue Bilog Antenna (0.03 - 1GHz)	Chase	31/08/05
214	ESAI	Spec Analyser/Test Rxer (LF/HF)	R&S	21/11/06
249	N-type	RF coaxial cable (Lab 10)	KTL	25/08/06
255	N-type	RF coaxial cable (Lab 10)	KTL	25/08/06
270	N-type	RF coaxial cable (Lab 10)	KTL	25/08/06

For Radiated Electric Field Emissions 1GHz to 25GHz

RFG No	Type	Description	Manufacturer	Date Calibrated
274	ATS	Ferrite Lined Chamber	KTL	10/05/06
129	3115	Horn Antennas	EMCO	29/07/98
307	HP8449B	Microwave Pre-Amp (1-26.5GHz)	HP	25/01/06
312	-	Sucoflex uW Adapter Cable 1m	Suhner	30/01/06
313	-	Sucoflex uW Adapter Cable 1m	Suhner	30/01/06
137	N-104	Sucoflex uW Cable 2m	Suhner	30/01/06
138	N-104	Sucoflex uW Cable 2m	Suhner	30/01/06
158	N-106	Sucoflex uW Cable 6m	Suhner	30/01/06
404	E4407B	Spectrum Analyser	Agilent	25/01/06

For conducted RF power

RFG No	Type	Description	Manufacturer	Date Calibrated
404	E4407B	Spectrum Analyser	Agilent	25/01/06

For power line conducted emissions

RFG No	Type	Description	Manufacturer	Date Calibrated
n/a	Lab 14	Small Screened Chamber	KTL	-
030	ESH3-Z5	Single-phase LISN	R&S	08/02/06
190	ESH3-Z2	Pulse Limiter	R&S	19/04/06
125	ESHS 10	Test Receiver (LF)	R&S	06/11/06
404	E4407B	Spectrum Analyser	Agilent	25/01/06
092	BNC	RF coaxial cable (Lab 14)	KTL	12/08/05
295	BNC	RF coaxial cable (Lab 14)	KTL	12/08/05

Appendix D:

Additional Information

The following information is an email detailing the frequencies used within the EUT. The lowest declared frequency is 11.050 MHz; the highest generated frequency is 2483 MHz (highest channel of transmitter). In addition is a declaration of the maximum and minimum allowed supply voltage for the device

Lowest (Renesas) 11.050 MHz

Highest (BT-crystal) 26.0 MHz (start), Channel 78: 2483MHz, Channel 0: 2402MHz

/David

From: Ken Anderson [mailto:kanderson@ktl.com]

Sent: den 5 mars 2007 11:04 To: David Bäckström, A

Subject: RE: Info about Bluetooth Adapter

Hi David,

thanks for the info, just one more question, for the FCC testing can you please confirm the lowest frequency used or generated within the equipment assessed. For the CSR chipset you have used this is normally a 16 MHz clock. Also plese confirm that the highest generated frequency is 2480 MHz (Channel 78 transmit frequency).

Regards

Ken

From: Paul Olsson

Sent: den 5 mars 2007 10:50 To: David Bäckström, A

Subject: RE: Info about Bluetooth Adapter

Min 3,15 Volt

Nominal 3,3 Volt

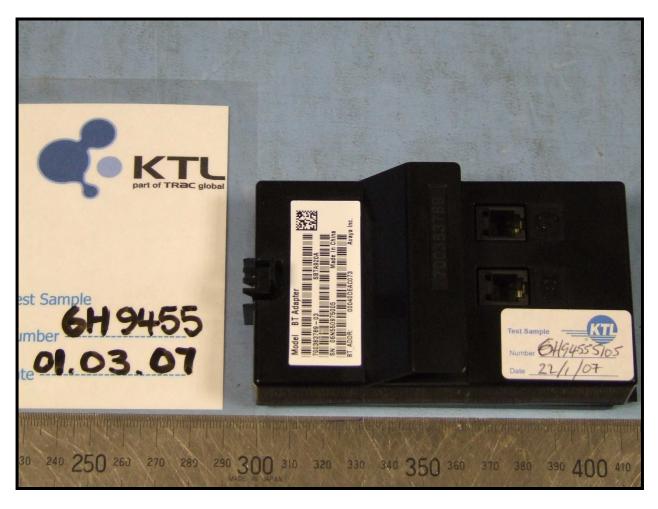
Max 3,47 Volt

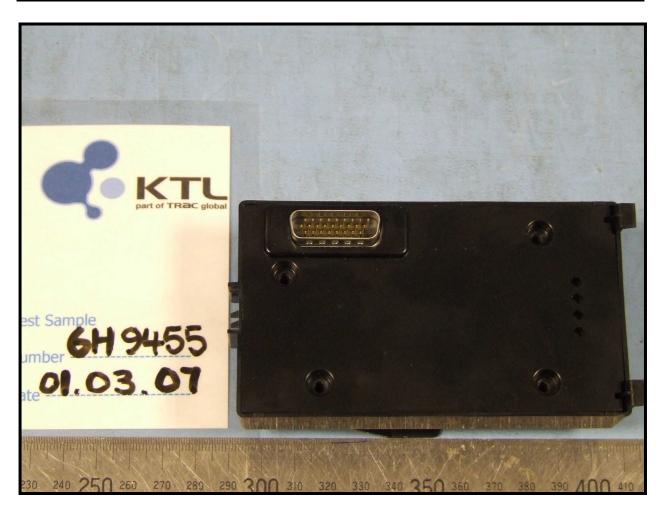
Paul

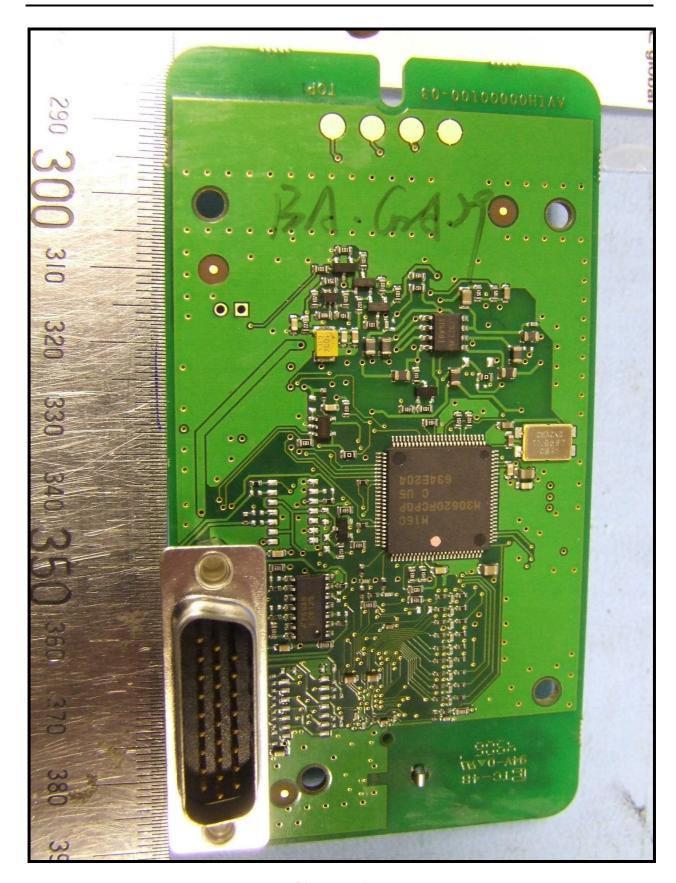
Appendix E:

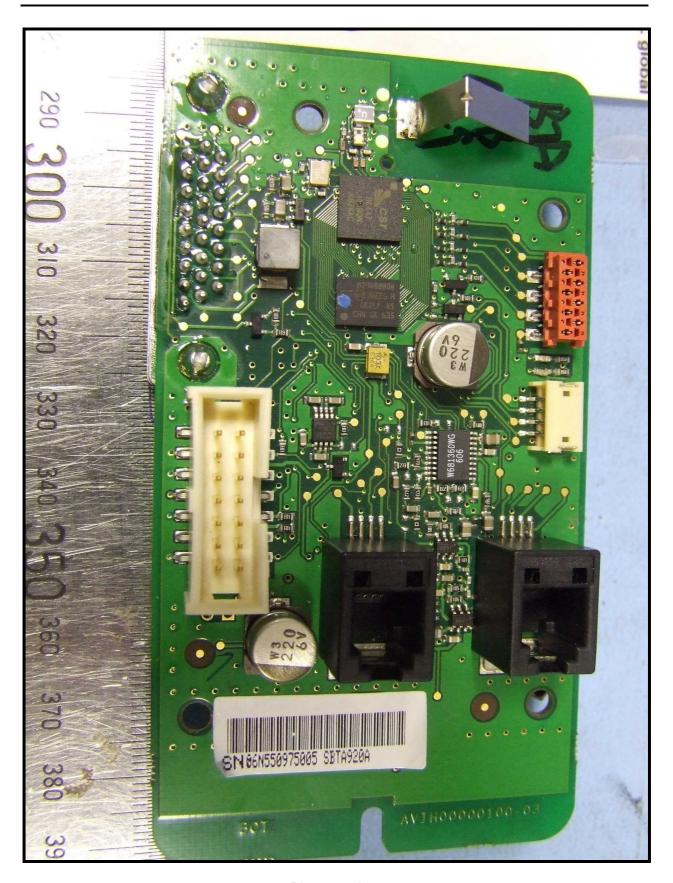
Photographs and Figures

The following photographs were taken of the test samples:


- 1. Radiated electric field emissions arrangement.
- 2. AC power conducted emissions arrangement.
- 3.
- External view Top Side External view Bottom Side 4.
- Internal View Bottom Side 5.
- Internal View Top Side 6.


Photograph 1


Photograph 2


Photograph 3

Photograph 4

Photograph 5

Photograph 6

Appendix F: MPE Calculation

As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than 1mW/cm² power density limit, as required under FCC rules.

```
RF Exposure (S) = EIRP/4\pi R^2 mW/cm<sup>2</sup>

\therefore R<sup>2</sup> = EIRP/4\pi S

\therefore R = \sqrt{(EIRP/4\pi S)}

For S = 1 mW/cm<sup>2</sup>

and EIRP = 4.8 mW maximum (6.8 dBm)

R = 0.6 cm
```

Note:

The EIRP measurement was performed using a signal substitution method.

- Saxon House, Saxon Way, Priory Park West, Hull, HU13 9PB, UK.
- **T** +44 (0)1482 801801
 - **F** +44 (0)1482 801806
 - E info@ktl.com

