	VERTIAS
	FCC Test Report
Report No.:	RF171201C07-2
FCC ID:	TYM-J179
Test Model:	J179
Received Date:	Dec. 01, 2017
Test Date:	Dec. 14 ~ Dec. 27, 2017
Issued Date:	Jan. 04, 2018
Applicant:	AVAYA
Address:	250 Sidney Street, Belleville, Ontario, K8P 3Z3, Canada
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.
Test Location:	No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan, R.O.C.
FCC Registration:	788550
Designation Number:	TW0003
	Taff Tage Taff Tage Taff Testing Laboratory 2021

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease	Control Record	4
1	C	ertificate of Conformity	5
2	S	ummary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	Ģ	eneral Information	7
	3.1	General Description of EUT	7
	3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	
	3.3.1	Configuration of System under Test	
	3.4	General Description of Applied Standards	12
4	Т	est Types and Results	
	4.1	Radiated Emission and Bandedge Measurement	13
		Limits of Radiated Emission and Bandedge Measurement	13
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Set Up	
		EUT Operating Conditions.	
	4.1.7	Test Results Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	20 25
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
	4.2.7	Test Results	
	4.3	Number of Hopping Frequency Used	
	4.3.1	Limits of Hopping Frequency Used Measurement	
		Test Setup	
		Test Instruments	
		Test Procedure Deviation from Test Standard	
		Test Results	
	4.3.0	Dwell Time on Each Channel	
		Limits of Dwell Time on Each Channel Measurement	
		Test Setup.	
		Test Instruments	
	4.4.4	Test Procedures	31
		Deviation from Test Standard	
		Test Results	
	4.5	Channel Bandwidth	
		Limits of Channel Bandwidth Measurement.	
		Test Setup	
		Test Instruments Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	4.6	Hopping Channel Separation	
	4.6.1	Limits of Hopping Channel Separation Measurement	

4.6.2 Test Setup	26
4.6.3 Test Instruments	20
4.6.4 Test Procedure	
4.6.5 Deviation from Test Standard	
4.6.6 Test Results	
4.7 Maximum Output Power	38
4.7.1 Limits of Maximum Output Power Measurement	38
4.7.2 Test Setup	
4.7.3 Test Instruments	
4.7.4 Test Procedure	
4.7.5 Deviation fromTest Standard	
4.7.6 EUT Operating Condition	
4.7.7 Test Results	
4.8 Conducted Out of Band Emission Measurement 4	10
4.8.1 Limits Of Conducted Out Of Band Emission Measurement	10
4.8.2 Test Instruments 4	10
4.8.3 Test Procedure	10
4.8.4 Deviation from Test Standard 4	10
4.8.5 EUT Operating Condition 4	10
4.8.6 Test Results 4	10
5 Pictures of Test Arrangements	13
Appendix – Information on the Testing Laboratories4	14

Certificate of ConformityProduct:IP PhoneBrand:AVAYATest Model:J179Sample Status:Production UnitApplicant:AVAYATest Date:Dec. 14 ~ Dec. 27, 2017Standards:47 CFR FCC Part 15, Subpart C (Section 15.247)
ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by : _	Pettie Chen / Senior Specialist	, Date:	Jan. 04, 2018
Approved by :	Bruce Chen	_, Date:	Jan. 04, 2018

Bruce Chen / Project Engineer

1

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)						
FCC Clause	Test Item		Remarks			
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -5.69dB at 0.82969MHz.			
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.			
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.			
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.			
15.247(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.			
15.205 / 15.209 / 15.247(d)	15.209 / Radiated Emissions and Band Edge Measurement		Meet the requirement of limit. Minimum passing margin is -4.1dB at 249.60MHz.			
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.			
15.203	Antenna Requirement	Pass	No antenna connector is used.			

Note: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.94 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.86 dB
	200MHz ~1000MHz	3.87 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	IP Phone
Brand	AVAYA
Test Model	J179
Status of EUT	Production Unit
Power Supply Rating	5Vdc (adapter)
Modulation Type	GFSK, π /4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1/2/3Mbps
Operating Frequency	2402 ~ 2480MHz
Number of Channel	79
Output Power	1.972mW
Antenna Type	PCB antenna with 2.1dBi gain
Antenna Connector	NA
Accessory Device	Adapter
Data Cable Supplied	NA

Note:

1. The EUT consumes power from the following adapter.

Adapter				
Brand	CISCO			
Model	PSAC12R-050			
Input Power	100-240Vac~0.5A, 50-60Hz, 26-36VA			
Output Power	5.0Vdc / 2.4A, 12W max.			
Power Line	1.5m non-shielded cable with one core			

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3. The operation of the EUT:

- a. When power on, the EUT will scan the whole frequency until a Connection command from the other BT device.
- b. When receiving the signal from the other BT devices, The EUT transmit are sponse signal.
- c. The other devices receive the response signal and recognize it, then send a connection command to establish the connection.
- d. After the connection establish successfully, the data transmission is beginning. At the same time, the both devices will shift frequencies in synchronization per a same pseudo randomly ordered list of hopping frequencies, the hopping rate is 1600 times per second. This device conforms to the criteria in FCC 15.247(a)(1).
- e. The bandwidth of receiver, which is set to fixed width by the software.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

CONFIGURE MODE - Where RE≥1G									
- Where RE≥1G	RE≥1G	RE<1G	PLC	APCM	DESCRIPT	ION			
Where RE≥1G	\checkmark	\checkmark	\checkmark	√ -					
Bandedge Measurement PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement									
Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane.									
Radiated Emis	sion Test (A	Above 1G	Hz):						
_					a da f ue da alla a calleta a c	and the state of a			
					ode from all possible co (if EUT with antenna div				
architectur		dulations,				rensity			
		was (were) selected for the	e final test as	listed below.				
EUT CONFIGURE	AVAILA	BLE	ESTED CHANNEL	MODULATIC	ON MODULATION TYPE	PACKET TYPE			
MODE	CHANN	IEL		TECHNOLO	GY				
-	0 to 7	-	0, 39, 78	FHSS	GFSK	DH5			
-	0 to 7	8	0, 39, 78	FHSS	8DPSK	DH5			
Pre-Scan I between a	has been co vailable mo	onducted to	o determine the		ode from all possible co (if EUT with antenna div				
Pre-Scan I between a architectur	has been co vailable moo re).	onducted to dulations,	o determine the	antenna ports	(if EUT with antenna div				
between a architectur Following EUT CONFIGURE	has been co vailable mo re). channel(s) v AVAILA	onducted to dulations, was (were BLE	o determine the data rates and a	antenna ports e final test as MODULATIC	(if EUT with antenna div listed below.				
 Pre-Scan I between a architectur Following 	has been co vailable mo re). channel(s) v	onducted to dulations, was (were BLE IEL	o determine the data rates and a) selected for the	antenna ports e final test as	(if EUT with antenna div listed below.	versity			
 Pre-Scan I between a architectur Following Following Following EUT CONFIGURE MODE - Power Line Co Pre-Scan I between a architectur	has been co vailable more). channel(s) v AVAILAI CHANN 0 to 7 mducted Er has been co vailable more re).	nducted to dulations, was (were BLE T IEL T 8 nission To onducted to dulations,	o determine the data rates and a) selected for the ESTED CHANNEL 78 est: o determine the data rates and a	antenna ports e final test as MODULATIO TECHNOLO FHSS worst-case m antenna ports	(if EUT with antenna div listed below. DN MODULATION TYPE 8DPSK ode from all possible co (if EUT with antenna div	PACKET TYPE DH5 mbinations			
 Pre-Scan I between a architectur Following Following Following EUT CONFIGURE MODE - Power Line Co Pre-Scan I between a architectur	has been co vailable more). channel(s) v AVAILAI CHANN 0 to 7 nducted Er has been co vailable more). channel(s) v	onducted to dulations, was (were BLE T IEL T a a mission To onducted to dulations, was (were BLE T	o determine the data rates and a) selected for the ESTED CHANNEL 78 est: o determine the	antenna ports e final test as MODULATIO TECHNOLO FHSS worst-case m antenna ports	(if EUT with antenna div listed below. DN GY MODULATION TYPE 8DPSK ode from all possible co (if EUT with antenna div listed below.	PACKET TYPE DH5 mbinations			

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	DH5

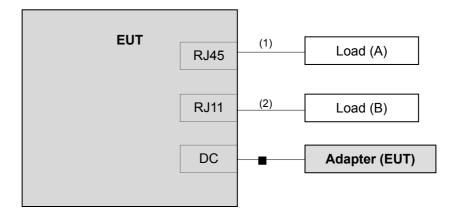
Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
RE≥1G	22deg. C, 65%RH	120Vac, 60Hz	Adair Peng
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Willy Cheng
PLC	24deg. C, 61%RH	120Vac, 60Hz	Willy Cheng
APCM	25deg. C, 60%RH	120Vac, 60Hz	Chris Lin

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Load	NA	NA	NA	NA	-
В.	Load	NA	NA	NA	NA	-


Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ45 cable	2	1.5	Ν	0	-
2.	RJ11 cable	1	1.5	Ν	0	-

Note: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) FCC Public Notice DA 00-705

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESIB7	100187	May 02, 2017	May 01, 2018
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100041	Dec. 12, 2017	Dec. 11, 2018
BILOG Antenna SCHWARZBECK	VULB9168	9168-171	Dec. 11, 2017	Dec. 10, 2018
HORN Antenna SCHWARZBECK	9120D	209	Dec. 13, 2017	Dec. 12, 2018
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Dec. 01, 2017	Nov. 30, 2018
Loop Antenna EMCI	EM-6879	269	Aug. 11, 2017	Aug. 10, 2018
Preamplifier Agilent (Below 1GHz)	8447D	2944A10738	Aug. 21, 2017	Aug. 20, 2018
Preamplifier Agilent (Above 1GHz)	8449B	3008A02465	Apr. 05, 2017	Apr. 04, 2018
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH3-03 (223653/4)	Aug. 21, 2017	Aug. 20, 2018
RF signal cable HUBER+SUHNER& EMCI	SUCOFLEX 104&EMC104-SM- SM-8000	Cable-CH3-03 (309224+170907)	Sep.11, 2017	Sep. 10, 2018
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
Turn Table Controller BV ADT	SC100	SC93021702	NA	NA
Turn Table BV ADT	TT100	TT93021705	NA	NA
Turn Table Controller BV ADT	SC100	SC93021705	NA	NA
High Speed Peak Power Meter	ML2495A	0824012	Aug. 18, 2017	Aug. 17, 2018
Power Sensor	MA2411B	0738171	Aug. 18, 2017	Aug. 17, 2018

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

3. The horn antenna and preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

4. The FCC Designation Number is TW0003. The number will be varied with the Lab location and scope as attached.

5. The IC Site Registration No. is IC 7450F-3.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

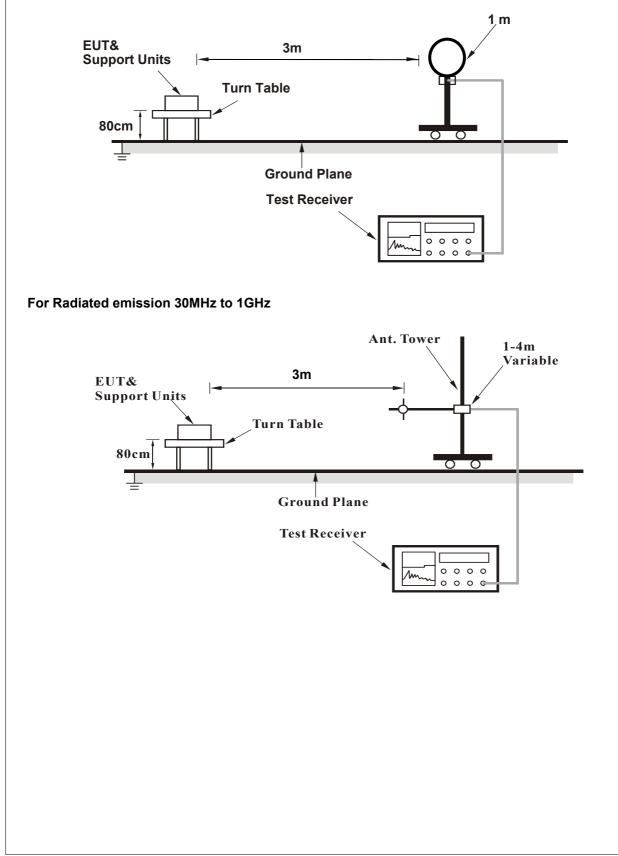
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

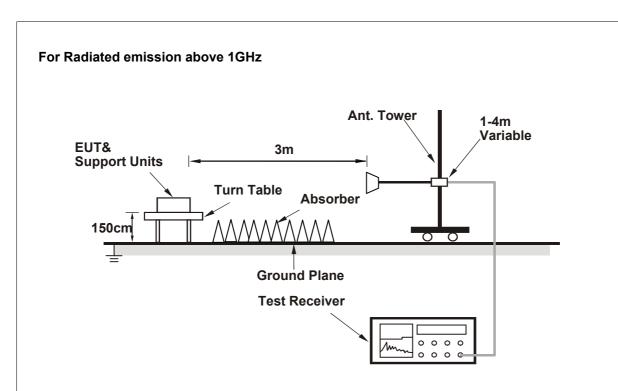
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Set Up

For Radiated emission below 30MHz

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the system in full functions.

4.1.7 Test Results

Above 1GHz Data:

GFSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	57.3 PK	74.0	-16.7	1.66 H	191	23.8	33.5		
2	2390.00	45.6 AV	54.0	-8.4	1.66 H	191	12.1	33.5		
3	*2402.00	96.6 PK			1.60 H	184	63.2	33.4		
4	*2402.00	66.5 AV			1.60 H	184	33.1	33.4		
5	4804.00	44.7 PK	74.0	-29.3	1.87 H	203	41.1	3.6		
6	4804.00	14.6 AV	54.0	-39.4	1.87 H	203	11.0	3.6		
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	57.6 PK	74.0	-16.4	2.19 V	263	24.1	33.5		
2	2390.00	45.4 AV	54.0	-8.6	2.19 V	263	11.9	33.5		
3	*2402.00	94.7 PK			2.25 V	255	61.3	33.4		
4	*2402.00	64.6 AV			2.25 V	255	31.2	33.4		
5	4804.00	44.7 PK	74.0	-29.3	1.99 V	187	41.1	3.6		
6	4804.00	14.6 AV	54.0	-39.4	1.99 V	187	11.0	3.6		

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle).

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2441.00	97.1 PK			1.66 H	174	63.7	33.4		
2	*2441.00	67.0 AV			1.66 H	174	33.6	33.4		
3	4882.00	44.8 PK	74.0	-29.2	1.87 H	222	41.4	3.4		
4	4882.00	14.7 AV	54.0	-39.3	1.87 H	222	11.3	3.4		
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2441.00	94.8 PK			2.17 V	238	61.4	33.4		
2	*2441.00	64.7 AV			2.17 V	238	31.3	33.4		
3	4882.00	44.6 PK	74.0	-29.4	1.87 V	229	41.2	3.4		
4	4882.00	14.5 AV	54.0	-39.5	1.87 V	229	11.1	3.4		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle).

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	97.3 PK			1.52 H	171	64.1	33.2		
2	*2480.00	67.2 AV			1.52 H	171	34.0	33.2		
3	2483.50	57.4 PK	74.0	-16.6	1.71 H	182	60.7	-3.3		
4	2483.50	27.3 AV	54.0	-26.7	1.71 H	182	30.6	-3.3		
5	4960.00	45.6 PK	74.0	-28.4	1.99 H	229	42.1	3.5		
6	4960.00	15.5 AV	54.0	-38.5	1.99 H	229	12.0	3.5		
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	95.3 PK			1.03 V	199	62.1	33.2		
2	*2480.00	65.2 AV			1.03 V	199	32.0	33.2		
3	2483.50	57.0 PK	74.0	-17.0	1.29 V	210	60.3	-3.3		
4	2483.50	26.9 AV	54.0	-27.1	1.29 V	210	30.2	-3.3		
5	4960.00	44.9 PK	74.0	-29.1	1.55 V	191	41.4	3.5		
6	4960.00	14.8 AV	54.0	-39.2	1.55 V	191	11.3	3.5		

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle).

8DPSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	57.1 PK	74.0	-16.9	2.10 H	183	23.6	33.5			
2	2390.00	45.6 AV	54.0	-8.4	2.10 H	183	12.1	33.5			
3	*2402.00	99.2 PK			1.92 H	169	65.8	33.4			
4	*2402.00	69.1 AV			1.92 H	169	35.7	33.4			
5	4804.00	44.9 PK	74.0	-29.1	1.83 H	228	41.3	3.6			
6	4804.00	14.8 AV	54.0	-39.2	1.83 H	228	11.2	3.6			
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	57.3 PK	74.0	-16.7	1.23 V	210	23.8	33.5			
2	2390.00	45.5 AV	54.0	-8.5	1.23 V	210	12.0	33.5			
3	*2402.00	97.3 PK			1.06 V	195	63.9	33.4			
4	*2402.00	67.2 AV			1.06 V	195	33.8	33.4			
5	4804.00	45.5 PK	74.0	-28.5	1.78 V	183	41.9	3.6			
6	4804.00	15.4 AV	54.0	-38.6	1.78 V	183	11.8	3.6			

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle).

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2441.00	99.1 PK			1.95 H	168	65.7	33.4			
2	*2441.00	69.0 AV			1.95 H	168	35.6	33.4			
3	4882.00	45.9 PK	74.0	-28.1	2.13 H	196	42.5	3.4			
4	4882.00	15.8 AV	54.0	-38.2	2.13 H	196	12.4	3.4			
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2441.00	96.7 PK			1.05 V	195	63.3	33.4			
2	*2441.00	66.6 AV			1.05 V	195	33.2	33.4			
3	4882.00	45.2 PK	74.0	-28.8	1.79 V	193	41.8	3.4			
4	4882.00	15.1 AV	54.0	-38.9	1.79 V	193	11.7	3.4			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle).

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	99.1 PK			1.52 H	179	65.9	33.2			
2	*2480.00	69.0 AV			1.52 H	179	35.8	33.2			
3	2483.50	57.3 PK	74.0	-16.7	1.71 H	193	60.6	-3.3			
4	2483.50	27.2 AV	54.0	-26.8	1.71 H	193	30.5	-3.3			
5	4960.00	45.1 PK	74.0	-28.9	1.81 H	213	41.6	3.5			
6	4960.00	15.0 AV	54.0	-39.0	1.81 H	213	11.5	3.5			
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	97.4 PK			1.03 V	198	64.2	33.2			
2	*2480.00	67.3 AV			1.03 V	198	34.1	33.2			
3	2483.50	57.4 PK	74.0	-16.6	1.19 V	200	60.7	-3.3			
4	2483.50	27.3 AV	54.0	-26.7	1.19 V	200	30.6	-3.3			
5	4960.00	45.1 PK	74.0	-28.9	1.84 V	187	41.6	3.5			
6	4960.00	15.0 AV	54.0	-39.0	1.84 V	187	11.5	3.5			

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. Average value = peak reading + 20log(duty cycle).

Below 1GHz worst-case data:

8DPSK

CHANNEL	TX Channel 78	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	FREQUENCY RANGE 9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	249.60	39.1 QP	46.0	-6.9	2.00 H	229	53.7	-14.6		
2	300.16	36.3 QP	46.0	-9.7	1.00 H	227	49.0	-12.7		
3	348.76	30.8 QP	46.0	-15.2	1.50 H	78	42.9	-12.1		
4	550.97	37.4 QP	46.0	-8.6	1.50 H	181	46.0	-8.6		
5	650.13	40.2 QP	46.0	-5.8	1.00 H	33	46.8	-6.6		
6	850.39	41.2 QP	46.0	-4.8	1.50 H	5	44.8	-3.6		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	49.34	32.8 QP	40.0	-7.2	1.00 V	329	46.9	-14.1		
2	183.50	32.4 QP	43.5	-11.1	1.50 V	14	48.0	-15.6		
3	249.60	41.9 QP	46.0	-4.1	1.50 V	133	56.5	-14.6		
4	348.76	41.6 QP	46.0	-4.4	1.50 V	101	53.7	-12.1		
5	459.59	36.9 QP	46.0	-9.1	2.00 V	129	46.9	-10.0		
6	650.13	40.7 QP	46.0	-5.3	1.50 V	297	47.3	-6.6		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

- Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.

- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Frequency (Miriz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

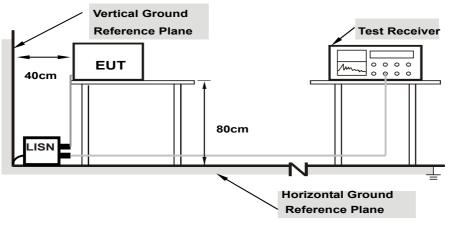
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCS 30	100288	Aug. 17, 2017	Aug. 16, 2018
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Sep. 08, 2017	Sep. 07, 2018
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Jan. 17, 2017	Jan. 16, 2018
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Aug. 02, 2017	Aug. 01, 2018
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-2047.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

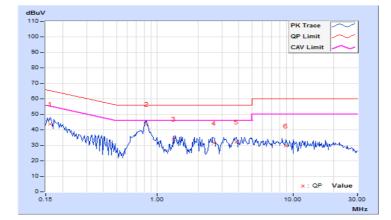
Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

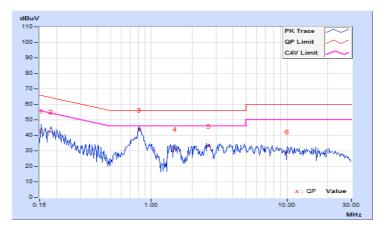

8DPSK

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Channel	Channel 78		

	Frog	Corr.	Readin	g Value	Emissio	n Level	Lir	nit	Ma	rgin
No	Freq.	Factor	[dB ((uV)]	[dB ([uV)]	[dB ((uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	10.40	33.47	22.89	43.87	33.29	65.38	55.38	-21.51	-22.09
2	0.82969	10.46	33.21	29.85	43.67	40.31	56.00	46.00	-12.33	-5.69
3	1.31641	10.50	23.53	20.72	34.03	31.22	56.00	46.00	-21.97	-14.78
4	2.60938	10.56	20.94	15.17	31.50	25.73	56.00	46.00	-24.50	-20.27
5	3.80859	10.60	21.77	15.65	32.37	26.25	56.00	46.00	-23.63	-19.75
6	8.85547	10.69	19.10	12.31	29.79	23.00	60.00	50.00	-30.21	-27.00

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Channel	Channel 78		

	Freq.	Corr. Factor	Reading Value		Emission Level		Limit		Margin	
No			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	10.43	32.24	19.26	42.67	29.69	65.79	55.79	-23.12	-26.10
2	0.18125	10.38	31.82	21.69	42.20	32.07	64.43	54.43	-22.23	-22.36
3	0.81016	10.46	32.74	29.12	43.20	39.58	56.00	46.00	-12.80	-6.42
4	1.49609	10.49	20.60	16.52	31.09	27.01	56.00	46.00	-24.91	-18.99
5	2.63281	10.52	22.50	18.87	33.02	29.39	56.00	46.00	-22.98	-16.61
6	10.10547	10.66	18.61	12.63	29.27	23.29	60.00	50.00	-30.73	-26.71

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

GFSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) * 6.32 = 316.00 times	0.49	154.84	400
DH3	26 (times / 5 sec) * 6.32 = 164.32 times	1.71	280.99	400
DH5	16 (times / 5 sec) * 6.32 = 101.12 times	2.95	298.30	400

Note: Test plots of the transmitting time slot are shown as below.

8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) * 6.32 = 316.00 times	0.48	151.68	400
DH3	26 (times / 5 sec) * 6.32 = 164.32 times	1.69	277.70	400
DH5	18 (times / 5 sec) * 6.32 = 113.76 times	2.99	340.14	400

Note: Test plots of the transmitting time slot are shown as below.

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

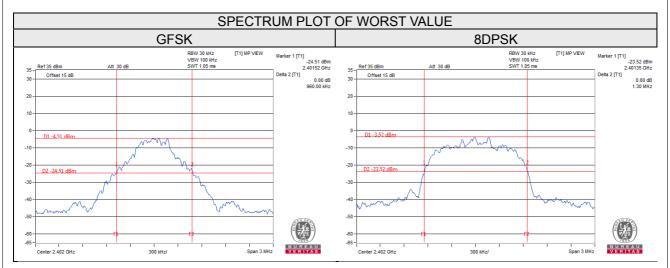
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)				
Channel		GFSK	8DPSK			
0	2402	0.96	1.30			
39	2441	0.96	1.30			
78	2480	0.96	1.30			

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

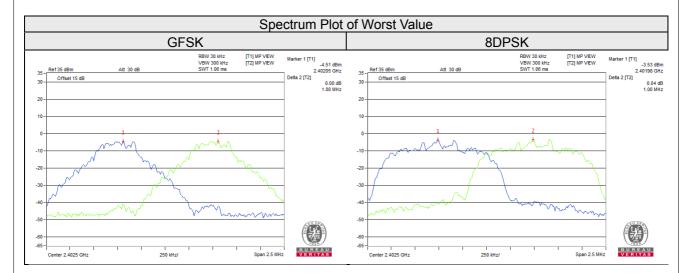
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)		20dB Bandwidth (MHz)		Minimum Limit (MHz)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.96	1.30	0.64	0.87	Pass
39	2441	1.00	1.00	0.96	1.30	0.64	0.87	Pass
78	2480	1.00	1.00	0.96	1.30	0.64	0.87	Pass

Note: The minimum limit is two-third 20dB bandwidth.

4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

EUT	Spectrum Analyzer
	/ maryzer

4.7.3 Test Instruments

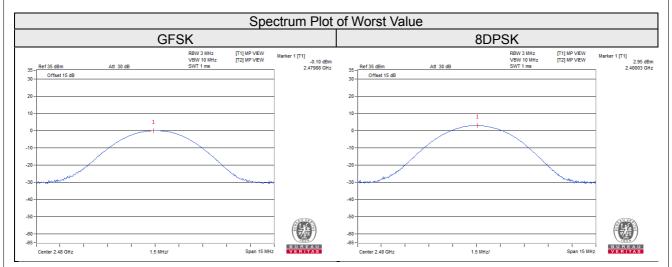
Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.5 Deviation fromTest Standard

No deviation.


4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

Channel	Frequency (MHz)	Output Power (mW)		Output Power (dBm)		Power	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	Limit (mW)	
0	2402	0.750	1.795	-1.25	2.54	125	Pass
39	2441	0.838	1.824	-0.77	2.61	125	Pass
78	2480	0.977	1.972	-0.10	2.95	125	Pass

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits Of Conducted Out Of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.

4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---