TEST REPORT

of

FCC Part 15 Subpart C AND CANADA RSS-247

 \boxtimes New Application; \square Class I PC; \square Class II PC

Product :	J129 IP Deskphone	
Brand:	Avaya	
Model:	J129	
Model Difference:	N/A	
FCC ID:	TYM-J129	
IC:	3794C-J129	
FCC Rule Part:	§15.247, Cat: DTS	
IC Rule Part:	RSS-247 issue 1: 2015	
	RSS-Gen issue 4: 2014	
Applicant:	AVAYA	
Address:	250 Sidney Street, Belleville, Ontario k8P 3Z3, Canada	

Test Performed by: International Standards Laboratory <Lung-Tan LAB>

*Site Registration No. BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3;

*Address: No. 120, Lane 180, Hsin Ho Rd. Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: **ISL-16LR194FC** Issue Date : **2016/09/13**

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

VERIFICATION OF COMPLIANCE

Applicant:	AVAYA
Product Description:	J129 IP Deskphone
Brand Name:	Avaya
Model No.:	J129
Model Difference:	N/A
FCC ID:	TYM-J129
IC:	3794C-J129
Date of test:	2016/07/22 ~ 2016/09/12
Date of EUT Received:	2016/07/22

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	DinoChen	Date:	2016/09/13
Prepared By:	Dion Chang / Engineer	Date:	2016/09/13
	Eva Kao / Technical Supervisor		
Approved By:	Timent In	Date:	2016/09/13
	Vincent Su / Technical Manager		

Version

Version No.	Date	Description
00	2016/09/13	Initial creation of document

Table of Contents

1	GEN	ERAL INFORMATION	6
	1.1	Related Submittal(s) / Grant (s)	9
	1.2	Test Methodology	9
	1.3	Test Facility	9
	1.4	Special Accessories	9
	1.5	Equipment Modifications	9
2	SYS	TEM TEST CONFIGURATION	10
	2.1	EUT Configuration	10
	2.2	EUT Exercise	10
	2.3	Test Procedure	10
	2.4	Configuration of Tested System	11
3	SUM	IMARY OF TEST RESULTS	12
4	DES	CRIPTION OF TEST MODES	12
5	CON	IDUCTED EMISSION TEST	13
J	51	Standard Applicable:	13
	5.1	Measurement Equipment Used	13
	5.3	EUT Setup:	13
	5.4	Measurement Procedure:	14
	5.5	Measurement Result:	14
6	PEA	K OUTPUT POWER MEASUREMENT	17
v	6.1	Standard Applicable:	17
	6.2	Measurement Equipment Used:	18
	6.3	Test Set-up:	18
	6.4	Measurement Procedure:	18
	6.5	Measurement Result:	19
7	6dB	Bandwidth & 99% Bandwidth	20
	7.1	Standard Applicable:	20
	7.2	Measurement Equipment Used:	20
	7.3	Test Set-up:	20
	7.4	Measurement Procedure:	20
	7.5	Measurement Result:	21
8	100K	KHz BANDWIDTH OF BAND EDGES MEASUREMENT	28
	8.1	Standard Applicable:	28
	8.2	Measurement Equipment Used:	29
	8.3	Test SET-UP:	30
	8.4	Measurement Procedure:	31
	8.5	Field Strength Calculation:	31
	8.6	Measurement Result:	31
9	SPU	RIOUS RADIATED EMISSION TEST	34
	9.1	Standard Applicable	34
	9.2	Measurement Equipment Used:	34
	9.3	Test SET-UP:	34
	9.4	Measurement Procedure:	35
	9.5	Field Strength Calculation	35
	9.6	Measurement Result:	35

10	Peak	Power Spectral Density	
	10.1	Standard Applicable:	42
	10.2	Measurement Equipment Used:	42
	10.3	Test Set-up:	
	10.4	Measurement Procedure:	
	10.5	Measurement Result:	43
11	ANTI	ENNA REQUIREMENT	
	11.1	Standard Applicable:	50
	11.2	Antenna Connected Construction:	50
AP	PEND	IX 1 PHOTOGRAPHS OF SET UP	51
AP	PEND	IX 2 PHOTOGRAPHS OF EUT	

1 GENERAL INFORMATION

General:

Product Name:	J129 IP Deskphone
Brand Name:	Avaya
Model Name:	J129
Model Difference:	N/A
Operation Environment	Indoor used
ТРС	No
DFS	No
Power Supply:	48Vdc from POE adapter

IC RSS-Gen:

Product SW version	FW_S_J129_R2_0_0_0b248
Product HW version	14124-1
Radio SW version	FW_S_J129_R2_0_0_0b248
Radio HW version	15329-1A

	FCC	IC
	2.4G : b mode : low(17) mid(17) high(16) g mode : low(13) mid(13) high(13) n20 mode : low(13) mid(13) high(12) n40 mode : low(13) mid(13) high(12)	2.4G : b mode : low(17) mid(17) high(16) g mode : low(13) mid(13) high(13) n20 mode : low(13) mid(13) high(12) n40 mode : low(13) mid(13) high(12)
RF power setting in TEST SoftWare	5G : B1 a mode : low(17) mid(17) high(17) n20 mode : low(13) mid(13) high(13) n40 mode : low(13) high(13) ac mode : CH 42 5210MHz(12)	5G : B1 a mode : low(14) mid(14) high(14) n20 mode : low(11) mid(11) high(11) n40 mode : low(11) high(11) ac mode : CH 42 5210MHz(11)
	B4 a mode : low(17) mid(17) high(17) n20 mode : low(13) mid(13) high(13) n40 mode : low(13) high(13) ac mode : CH 155 5775MHz(12)	B4 a mode : low(17) mid(17) high(17) n20 mode : low(13) mid(13) high(13) n40 mode : low(13) high(13) ac mode : CH 155 5775MHz(12)

Power Tolerance: +/- 1 dB

Measured Power Level for FCC

WLAN	Ŀ	1TX/	1RX
	••	1 1 2 1/	11/17

Wi-Fi	Frequency Range (MHz)	Channels	Peak / Average Rated Power	Modulation Technology
802.11b	2412 – 2462(DTS)	11	19.74dBm (PK)	DSSS
802.11g	2412 - 2462(DTS)	11	22.26dBm (PK)	
802.11n	HT20 2412 – 2462(DTS)	11	22.17dBm (PK)	
(2.4G)	HT40 2422 – 2452(DTS)	7	22.17dBm (PK)	
002.11	5180 - 5240(NII)	4	17.45dBm (AV)	
802.11a	5745 – 5825(NII)	5	13.51dBm (AV)	
802.11n(5G)	HT20, 5180 – 5240(NII)	4	16.79dBm (AV)	OFDM
	HT20, 5745 – 5825(NII)	5	12.38dBm (AV)	
	HT40, 5190 – 5230(NII)	2	15.33dBm (AV)	
	HT40, 5755 – 5815(NII)	2	13.85dBm (AV)	
000 11	HT80, 5210(NII)	1	20.14dBm (AV)	
802.11ac	HT80, 5775(NII)	1	19.87dBm (AV)	
		CCK, DQPS	K, DBPSK for DSSS	5
Modulation type		256QAM.64QAM. 16QAM, QPSK, BPSK for		
		OFDM		
		Fixed Chip Antenna		
Antenna Designation		WiFi 2.4G Antenna : 2.1 dBi		
		WiFi 5G Antenna : 2.4 dBi		

The EUT is compliance with IEEE 802.11 a/b/g/n/ac Standard.

Measured Power Level for IC

WLAN:	1TX/1RX
	1173/1137

Wi-Fi	Frequency Range (MHz)	Channels	Peak / Average Rated Power	Modulation Technology	
802.11b	2412 - 2462(DTS)	11	19.74dBm (PK)	DSSS	
802.11g	2412 - 2462(DTS)	11	22.26dBm (PK)		
802.11n	HT20 2412 – 2462(DTS)	11	22.17dBm (PK)		
(2.4G)	HT40 2422 – 2452(DTS)	7	22.17dBm (PK)		
002.11	5180 – 5240(NII)	4	16.95dBm EIRP (AV)		
802.11a	5745 – 5825(NII)	5	13.51dBm (AV)		
	HT20, 5180 – 5240(NII)	4	17.17dBm EIRP (AV)	OFDM	
	HT20, 5745 – 5825(NII)	5	12.38dBm (AV)		
802.11n(5G)	HT40, 5190 – 5230(NII)	2	16.27dBm EIRP (AV)		
	HT40, 5755 – 5815(NII)	2	13.85dBm (AV)		
000 11	HT80, 5210(NII)	1	22.54dBm EIRP (AV)		
802.11ac	HT80, 5775(NII)	1	19.87dBm (AV)		
		CCK, DQPSK, DBPSK for DSSS			
Modulation type		256QAM.64QAM. 16QAM, QPSK, BPSK for			
J.		OFDM			
		Fixed Chip Antenna			
Antenna Design	ation	WiFi 2.4G Antenna : 2.1 dBi			
		WiFi 5G Antenna : 2.4 dBi			

The EUT is compliance with IEEE 802.11 a/b/g/n/ac Standard.

This report applies for Wifi frequency band 2400MHz- 2483.5MHz

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.1 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: <u>TYM-J129</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules and IC: <u>3794C-J129</u> filing to comply with Industry Canada RSS-247 issue 1: 2015.

1.2 Test Methodology

Both conducted and radiated testing were performed according to the procedures in, ANSI C63.10: 2013 and RSS-Gen issue 4: 2014. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 558074 D01 DTS Meas Guidance v03r05

1.3 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of **International Standards Laboratory** <Lung-Tan LAB> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.10: 2013. FCC Registration Number is: 872200; Designation Number is: TW1036, Canada Registration Number: 4067B-3.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

2 SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6 of ANSI C63.10: 2013 and RSS-Gen issue 4: 2014. Con-ducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m/1.5m(Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maxi-mum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 6 and 11 of ANSI C63.10: 2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration

 Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	NB	Dell	LATITUDE 3340	481.06F01.0003	NA	Non-shielded
2	IP Phone	AVAYA	J129	16WZ2620003T	Non-shielded	Non-shielded
	DOWN-					
3	LOAD	AVAYA	FWADPT1A-003	09WZ30551803	Non-shielded	Non-shielded
	ADAPTER					
4	POE Adaptor	AVAYA	POE	C153166400000 00210	Non-shielded	Non-shielded

-12 of 50-

3 SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.207(a) RSS-Gen §8.8	AC Power Line Conducted Emission	Compliant
\$15.247(b) (3),(4) RSS-247 issue 1,\$5.4(4)	Peak Output Power/ EIRP	Compliant
\$15.247(a)(2) RSS-247 issue 1, \$5.2(1) RSS-Gen \$6.6	6dB & 99% Power Bandwidth	Compliant
§15.247(d) RSS-247 issue 1, §5.5	100 KHz Bandwidth Of Frequency Band Edges	Compliant
§15.247(d) RSS-247 issue 1, §5.5	Spurious Emission	Compliant
\$15.247(e) RSS-247 issue 1, \$5.2(2)	Peak Power Density	Compliant
§15.203 RSS-GEN 8.3	Antenna Requirement	Compliant

4 DESCRIPTION OF TEST MODES

The EUT has been tested under engineering operating condition. Test program used to control the EUT for staying in continuous transmitting mode is programmed.

2.4GHz:

802.11 b mode: Channel low (2412MHz) \cdot mid (2437MHz) \cdot high (2462MHz) with 1Mbps lowest data rate are chosen for peak output power, band edge, radiated spurious emission testing.

802.11 g mode: Channel low (2412MHz) \circ mid (2437MHz) \circ high (2462MHz) with 6Mbps lowest data rate are chosen for peak output power, band edge, radiated spurious emission testing.

802.11 n _20MHz: Channel low (2412MHz) \circ mid (2437MHz) \circ high (2462MHz) with 6.5Mbps lowest data rate are chosen for peak output power, band edge, radiated spurious emission testing.

802.11 n _40MHz: Channel low (2422MHz) \circ mid (2437MHz) \circ high (2452MHz) with 13.5Mbps lowest data rate are chosen for peak output power, band edge, radiated spurious emission testing.

The worst case 802.11g mode was reported for Radiated Emission.

5 CONDUCTED EMISSION TEST

5.1 Standard Applicable:

According to \$15.207 and RSS-Gen \$7.2.4, frequency range within 150KHz to 30MHz shall not exceed the Limit table as below.

Frequency range	Limits dB(uV)				
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			
Note					

1. The lower limit shall apply at the transition frequencies

2.The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2 Measurement Equipment Used:

AC Power Line Test Site						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
ТҮРЕ		NUMBER	NUMBER	CAL.		
Conduction 04-3 Cable	WOKEN	CFD 300-NL	Conduction 04 -3	07/27/2016	07/26/2017	
EMI Receiver 17	Rohde & Schwarz	ESCI 7	100887	09/08/2015	09/07/2016	
LISN 18	ROHDE & SCHWARZ	ENV216	101424	02/11/2016	02/10/2017	
LISN 19	ROHDE & SCHWARZ	ENV216	101425	03/12/2016	03/11/2017	
Test Software	Farad	EZEMC Ver:ISL-03A2	N/A	N/A	N/A	

5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.10: 2013.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

5.4 Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

5.5 Measurement Result:

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.

AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Operation Mode	Test Date:	2016/08/15
Test By:	Lake		

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.158	34.34	18.14	9.69	44.03	65.57	-21.54	27.83	55.57	-27.74
2	0.302	39.62	37.84	9.69	49.31	60.19	-10.88	47.53	50.19	-2.66
3	0.518	28.37	22.50	9.70	38.07	56.00	-17.93	32.20	46.00	-13.80
4	0.714	25.97	21.53	9.71	35.68	56.00	-20.32	31.24	46.00	-14.76
5	0.766	22.05	6.75	9.72	31.77	56.00	-24.23	16.47	46.00	-29.53
6	0.902	24.24	17.49	9.72	33.96	56.00	-22.04	27.21	46.00	-18.79
7	1.122	26.83	24.50	9.72	36.55	56.00	-19.45	34.22	46.00	-11.78
8	3.254	28.97	23.56	9.79	38.76	56.00	-17.24	33.35	46.00	-12.65
9	4.690	28.20	24.48	9.83	38.03	56.00	-17.97	34.31	46.00	-11.69
10	21.990	29.54	25.47	10.08	39.62	60.00	-20.38	35.55	50.00	-14.45

Frequency QP_R AVG_R Correct Factor QP Emission QP Limit QP Margin AVG Emission AVG Limit AVG Margin No. (MHz) (dBuV) (dBuV) (dB) (dBuV) (dBuV) (dB) (dBuV) (dBuV) (dB) 1 0.154 3<u>4.35</u> 25.57 65.78 35.25 55.78 -20.53 9.68 44.03 21.75 2 0.302 10.91 47.86 5<u>0.19</u> 39.60 38.18 9.68 49.28 60.19 -2.33 3 0.518 -12.27 28.60 24.04 38.29 33.73 9.69 56.00 17.71 46.00 4 0.706 24.85 18.79 9.69 34.54 56.00 -21.46 28.48 46.00 -17.52 5 0.970 27.08 24.45 9.70 36.78 56.00 -19.22 34.15 46.00 -11.85 6 1.122 26.44 24.18 9.70 36.14 56.00 -19.86 33.88 46.00 -12.12 7 2.542 -19.17 46.00 27.07 19.07 9.76 36.83 56.00 28.83 -17.17 8 22.80 -17.69 46.00 -13.44 2.650 28.55 9.76 38.31 56.00 32.56 9 46.00 -14.69 3.102 28.48 21.54 9.77 38.25 56.00 -17.75 31.31 10 4.606 28.48 -17.70 46.00 -11.46 24.72 9.82 38.30 56.00 34.54 11 21.934 29.98 25.85 10.20 40.18 60.00 -19.82 36.05 50.00 -13.95 -17 of 50-

6 PEAK OUTPUT POWER/ERIP MEASUREMENT

6.1 Standard Applicable:

According to §15.247(b)(3),(4)(b)

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

According to RSS-247 issue 1,§5.4

(4) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

International Standards Laboratory

Conducted Emission Test Site						
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
ТҮРЕ		NUMBER	NUMBER	CAL.		
Power Meter 05	Anritsu	ML2495A	1116010	07/28/2016	07/27/2017	
Power Sensor 05	Anritsu	MA2411B	34NKF50	07/28/2016	07/27/2017	
Power Sensor 06	DARE	RPR3006W	13I00030SNO3 3	11/03/2015	11/02/2016	
Power Sensor 07	DARE	RPR3006W	13I00030SNO3 4	11/03/2015	11/02/2016	
Temperature Chamber	KSON	THS-B4H100	2287	06/28/2016	06/27/2017	
DC Power supply	ABM	8185D	N/A	09/05/2015	09/04/2016	
AC Power supply	EXTECH	CFC105W	NA	12/26/2015	12/25/2016	
Attenuator	Woken	Watt-65m3502	11051601	NA	NA	
Splitter	MCLI	PS4-199	12465	12/26/2015	12/25/2017	
Spectrum analyzer	Agilent	N9030A	MY51360021	10/02/2015	10/01/2016	
Test Sofware	DARE	Radimation Ver:2013.1.23	NA	NA	NA	

6.2 Measurement Equipment Used:

6.3 Test Set-up:

6.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

6.5 Measurement Result:

802.11b			
Cable loss $= 0$	Output	Power	Limit
СН	Dete	(dBm)	
	РК	AV	
	(dBm)	(dBm)	
Low		13.51	
Mid	19.42	13.36	30.00
High	18.88	13.14	

802.11g

Cable loss = 0	Output	Limit	
СН	Dete	(dBm)	
	РК	AV	
	(dBm)	(dBm)	
Low	22.26	10.25	
Mid	22.24	10.19	30.00
High	22.17	10.14	

802.11N HT20

Cable loss = 0	Output	Limit	
СН	Dete	(dBm)	
	РК	AV	
	(dBm)	(dBm)	
Low	22.14	10.11	
Mid	22.17	10.08	30.00
High	22.08	10.02	

802.11N HT40

Cable loss = 0	Output	Limit	
СН	Dete	(dBm)	
	РК	AV	
	(dBm)	(dBm)	
Low	22.03	7.21	
Mid	22.17	7.18	30.00
High	22.13	7.07	

7 6dB Bandwidth & 99% Bandwidth

7.1 Standard Applicable:

According to §15.247(a)(2), Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

According to RSS-247 issue 1, §5.2

(1) The minimum 6 dB bandwidth shall be 500 kHz.

7.2 Measurement Equipment Used:

Refer to section 6.2 for details.

7.3 Test Set-up:

Refer to section 6.3 for details.

7.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100KHz, VBW = 3*RBW, Span= cover the complete power envelope of the signal of the UUT Sweep=auto
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

7.5 Measurement Result:

802.11b

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Bandwidth (KHz)	Result
Low	10.21	13.433	> 500	PASS
Mid	10.21	13.634	> 500	PASS
High	10.21	14.160	> 500	PASS

802.11g

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Bandwidth (KHz)	Result
Low	16.45	16.748	> 500	PASS
Mid	16.45	16.762	> 500	PASS
High	16.44	16.811	> 500	PASS

802.11n_20M

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Bandwidth (KHz)	Result
Low	17.63	17.699	> 500	PASS
Mid	17.62	17.720	> 500	PASS
High	17.58	17.691	> 500	PASS

802.11n_40M

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Bandwidth (KHz)	Result
Low	35.95	36.191	> 500	PASS
Mid	36.25	36.205	> 500	PASS
High	35.98	36.189	> 500	PASS

802.11b

6dB & 99% Band Width Test Data CH-Mid

Keysight Spectrum Analyzer - Occupied BV	V				
LXI RE 50Ω AC	Center	SENSE:INT A	ALIGN AUTO 09:37:45	AM Sep 21, 2016	Frequency
	Trig: F	ree Run Avg Hold:>	>10/10		
	#IFGain:Low #Atten	: 30 dB	Radio De	vice: BTS	
Ref Offset 1 dB 10 dB/div Ref 21.00 dBr	n				
Log					
11.0	- and more	$\sim \sim $			Center Freq
1.00			4		2.437000000 GHz
-9.00			M .		
-19.0			- when we		
-29.0					
-39.0					
-49.0					
-59.0					
-69.0					
Center 2.437 GHz	225		Sp	an 30 MHz	CF Step
#Res BW 300 KHZ	#'		50	eep 1 ms	3.000000 MHz
Occupied Bandwidt	h	Total Power	20.5 dBm		<u>Auto</u> Man
a de la contraction de la cont					
	0.004 IVITIZ				Freq Offset
Transmit Freq Error	-246.77 kHz	% of OBW Powe	r 99.00 %		0 Hz
x dB Bandwidth	10.21 MHz	x dB	-6.00 dB		
MSG			STATUS		

6dB & 99% Band Width Test Data CH-High

802.11g

6dB & 99% Band Width Test Data CH-Low

Keysight Spectrum Analyzer - Occupie	ed BW				
LX/ RL RF 50Ω A	AC .	SENSE:INT	ALIGN AUTO 09:41:5	5 AM Sep 21, 2016	Frequency
	C	enter Freq: 2.412000000 GH	z Radio S	td: None	ricqueriey
	#IEGain:Low #	Atten: 30 dB	Radio D	evice: BTS	
	Wir Guinicow				
Ref Offset 1 d	IB				
10 dB/div Ref 21.00 d	IBm				
					Center Freq
1.00		the second secon			2.412000000 GHz
-9.00					
-19.0			M		
20.0 mm			and the second sec	Munuhalana	
-29.0					
-39.0					
-49.0					
-59 0					
-69.0					
Center 2 412 CHz			Sr	an 30 MHz	
#Pes BM 300 kHz		#VRM 1 MHz		veen 1 me	CF Step
WRes BW 300 RHz		##B\$\$ \$ 12	3.	veep mis	3.000000 MHz
Occupied Bandwi	idth	Total Power	20.2 dBm		<u>Auto</u> Man
Occupied Bandw			20.2 (15)		
	16.748 <u>MHz</u>				Freq Offset
Transmit Freq Error	11.284 kHz	2 % of OBW Po	wer 99.00 %		0 H2
v dB Bandwidth	16 /5 MHz	v dB	-6 00 dB		
	10.45 1012		-0.00 ub		
MSG			STATUS		
			014100		

6dB & 99% Band Width Test Data CH-Mid

6dB & 99% Band Width Test Data CH-High

802.11n_20M 6dB & 99% Band Width Test Data CH-Low

6dB & 99% Band Width Test Data CH-Mid

🛄 Keysight Spectrum .	Analyzer - Occu	upied BW									x
LXI RL RF	= 50 Ω	AC		SE Contor E	NSE:INT	0000 GH7	ALIGN AUTO	09:43:56 A	M Sep 21, 2016	Frequency	
			<u> </u>	Trig: Fre	e Run	Avg Hold	:>10/10	Radio Stu	. None		
		#IF	Gain:Low	#Atten: 3	30 dB			Radio Dev	vice: BTS		
	Pof Offect (
10 dB/div	Ref 21.00	dBm									
Log											
11.0										Center Fre	p
1.00		and the second s	have the set of the se			and the second	Caronal Contraction	N.		2.437000000 GH	Ηz
-9.00	/							h.			
-19.0								N _u ,			
-29.0 -29.0	www.ww							Why and	Առուրան		
-39 በ											
-49.0											
-40.0											
-59.0											
-69.0											
Center 2437	GH7					1		Sna	n 30 MHz		
#Res BW 300) kHz			#VE	SW 1MH	z		Swi	eep 1 ms	CF Ste	р
										Auto Ma	12 an
Occupied	d Band	width			Total P	ower	20.4	4 dBm			
		17 7	20 MI	17							
				12						FreqOffse	et
Transmit F	Freq Erro	or	24.953	(Hz	% of O	3W Pow	er 99	9.00 %		ОН	łz
v dB Band	width		17 62 M	147	v dB		-6	00 dB			
	width		17.02 1	11 12	A UD		-0,	.00 ub			
MSG							STATU	IS			

6dB & 99% Band Width Test Data CH-High

802.11n_40M 6dB & 99% Band Width Test Data CH-Low

Keysight Spectrum Analyzer -	Occupied BW							
LXI RL RF 5	0Ω AC	Cen	SENSE:INT	0000 GHz	ALIGN AUTO	09:46:43 / Radio Sto	AM Sep 21, 2016	Frequency
		Trig	: Free Run	Avg Hold:	>10/10			
	#IFC	Gain:Low #Att	en: 30 dB			Radio De	vice: BTS	
Ref Offs	set 1 dB							
10 dB/div Ref 21	1.00 dBm							
11.0								Center Freq
1.00	-marth-at-an-	the party of the second	- manna	muna	man parameter and	the state of the s		2 422000000 GHz
-9.00						<u> </u>		
-19.0						· ·	n	
-29 0 4 - 44							" wordshipter	
20.0 // IN-D								
-39.0								
-45.0								
-59.0								
-69.0								
Center 2.422 GHz						Spa	an 50 MHz	CE Sten
#Res BW 510 kHz			#VBW 1.5 M	Hz		Sw	eep 1ms	5.000000 MHz
			Total P	owor	20.2	dBm		<u>Auto</u> Man
Occupied Bar	nawiath		TOLAT	ower	20.5	иыш		
	36.1	91 MH <u>z</u>						Freq Offset
Transmit Freg	Error	47.309 kHz	% of OE	3W Powe	r 99	.00 %		0 Hz
x dB Bondwidth		25 05 MU-	x dD		6 (
		55.95 MHZ	X UB		-0.0			
MSG					STATUS			

6dB & 99% Band Width Test Data CH-Mid

6dB & 99% Band Width Test Data CH-High

8 100KHz BANDWIDTH OF BAND EDGES MEASUREMENT

8.1 Standard Applicable:

According to §15.247(c), in any 100 KHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

According to RSS-247 issue 1, §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digi-tally modulated device is operating, the RF power that is produced shall be at least 20 dB be-low that in the 100 kHz bandwidth within the band that contains the highest level of the de-sired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

8.2 Measurement Equipment Used:

8.2.1 Conducted Emission at antenna port:

Refer to section 6.2 for details.

8.2.2 Radiated emission:

Chamber 14(966)								
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.			
ТҮРЕ		NUMBER	NUMBER	CAL.				
Spectrum Analyzer 21(26.5GHz)	Agilent	N9010A	MY49060537	07/29/2016	07/28/2017			
Spectrum Analyzer 20(6.5GHz)	Agilent	E4443A	MY48250315	05/20/2016	05/19/2017			
Spectrum Analyzer 22(43GHz)	R&S	FSU43	100143	05/22/2016	05/21/2017			
Loop Antenna9K-30M	A.H.SYSTEM	SAS-564	294	06/17/2015	06/16/2017			
Bilog Antenna30-1G	SCHWARZBECK	VULB9168	644	03/02/2016	03/01/2017			
Horn antenna1-18G	ETS	3117	00066665	11/30/2015	11/29/2016			
Horn antenna26-40G(05)	Com-power	AH-640	100A	01/21/2015	01/20/2017			
Horn antenna18-26G(04)	Com-power	AH-826	081001	07/24/2015	07/23/2017			
Preamplifier9-1000M	HP	8447D	NA	03/09/2016	03/08/2017			
Preamplifier1-18G MITEQ		AFS44-001018 00-25-10P-44	1329256	07/27/2016	07/26/2017			
Preamplifier1-26G	EM	EM01M26G	NA	03/10/2016	03/09/2017			
Preamplifier26-40G	MITEQ	JS-26004000-2 7-5A	818471	07/23/2015	07/22/2017			
Cable1-18G	HUBER SUHNER	Sucoflex 106	NA	11/25/2015	11/24/2016			
Cable UP to 1G	HUBER SUHNER	RG 214/U	NA	10/02/2015	10/01/2016			
SUCOFLEX 1GHz~40GHz cable	SUCOFLEX 1GHz~40GHz cable HUBER SUHNER		27963/2&3742 1/2	11/03/2015	11/02/2017			
2.4G Filter	Micro-Tronics	Brm50702	76	12/26/2015	12/25/2016			
5G Filter	Micro-Tronics	Brm50716	005	12/26/2015	12/25/2016			
Test Software Audix		E3 Ver:6.12023	N/A	N/A	N/A			
Test Software	Farad	EZEMC Ver:ISL-03A2	N/A	N/A	N/A			

8.3 Test SET-UP:

8.3.1 Conducted Emission at antenna port:

Refer to section 6.3 for details.

8.3.2 Radiated emission:

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

8.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100KHz, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.

8.5 Field Strength Calculation:

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$\mathbf{FS} = \mathbf{RA} + \mathbf{AF} + \mathbf{CL} - \mathbf{AG}$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

8.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

Opera	tion Mode	TZ	K CH Low	7		Tes	st Date 2	2016/08/10		
Chanı	nel Number	24	12 MHz			Test By Lake				
Temp	erature	25	°C			Hu	midity (50 %		
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H		
1	2390.00	19.87	31.71	51.58	54.00	-2.42	Average	VERTICAL		
2	2390.00	34.07	31.71	65.78	74.00	-8.22	Peak	VERTICAL		
3	2400.00	37.21	31.74	68.95	81.44	-12.49	Peak	VERTICAL		
4	2408.34	69.68	31.76	101.44	F		Peak	VERTICAL		
1	2390.00	21.63	31.71	53.34	54.00	-0.66	Average	HORIZONTAL		
2	2390.00	35.38	31.71	67.09	74.00	-6.91	Peak	HORIZONTAL		
3	2400.00	40.45	31.74	72.19	85.47	-13.28	Peak	HORIZONTAL		
4	2409.23	73.71	31.76	105.47	F		Peak	HORIZONTAL		

Radiated Emission: 802.11 g mode (worst case)

Remark:

- Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequen-1 cy
- Field strength limits for frequency above 1000MHz are based on average limits. However, 2 Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the 3 reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- ⁴ Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency

Operation Mode	TX CH High	Test Date	2016/08/10
Channel Number	2462 MHz	Test By	Lake
Temperature	25 °C	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	2483.50	16.34	31.98	48.32	54.00	-5.68	Average	VERTICAL
2	2483.50	34.23	31.98	66.21	74.00	-7.79	Peak	VERTICAL
1	2483.50	20.50	31.98	52.48	54.00	-1.52	Average	HORIZONTAL
2	2483.50	38.21	31.98	70.19	74.00	-3.81	Peak	HORIZONTAL

Remark:

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Note: "F" denotes fundamental frequency

9 SPURIOUS RADIATED EMISSION TEST

9.1 Standard Applicable

According to \$15.247(c), all other emissions outside these bands shall not exceed the general radiated emission limits specified in \$15.209(a). And according to \$15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

According to RSS-247 issue 1, §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digi-tally modulated device is operating, the RF power that is produced shall be at least 20 dB be-low that in the 100 kHz bandwidth within the band that contains the highest level of the de-sired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

9.2 Measurement Equipment Used:

9.2.1 Conducted Emission at antenna port:

Refer to section 6.2 for details.

9.2.2 Radiated emission:

Refer to section 7.2 for details.

9.3 Test SET-UP:

9.3.1 Conducted Emission at antenna port: Refer to section 6.3 for details.

9.3.2 Radiated emission:

Refer to section 7.3 for details.

9.4 Measurement Procedure:

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. Repeat above procedures until all frequency measured were complete.

9.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

9.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

Radiated Spurious Emission Measurement Result (below 1GHz) (worst case: 802.11g mode)

Operation Mode	TX CH Low	Test Date	2016/08/10
Channel Number	2412MHz	Test By	Lake
Temperature	25 ℃	Humidity	60 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	199.75	53.20	-14.80	38.40	43.50	-5.10	Peak	VERTICAL
2	250.19	52.26	-12.84	39.42	46.00	-6.58	Peak	VERTICAL
3	399.57	44.09	-9.03	35.06	46.00	-10.94	Peak	VERTICAL
4	450.01	44.55	-7.91	36.64	46.00	-9.36	Peak	VERTICAL
5	749.74	43.45	-2.83	40.62	46.00	-5.38	Peak	VERTICAL
6	849.65	38.28	-1.35	36.93	46.00	-9.07	Peak	VERTICAL
1	199.75	49.35	-14.80	34.55	43.50	-8.95	Peak	HORIZONTAL
2	250.19	51.17	-12.84	38.33	46.00	-7.67	Peak	HORIZONTAL
3	350.10	48.08	-10.06	38.02	46.00	-7.98	Peak	HORIZONTAL
4	450.01	44.70	-7.91	36.79	46.00	-9.21	Peak	HORIZONTAL
5	518.88	42.32	-7.07	35.25	46.00	-10.75	Peak	HORIZONTAL
6	549.92	44.22	-6.53	37.69	46.00	-8.31	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Opera Chanı Temp	ntion Mode nel Number perature	n ModeTX CH MidTest Date2Number $2437MHz$ Test ByIture $25 \degree$ Humidity6		2016/08/10 Lake 60 %				
No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	199.75	53.32	-14.80	38.52	43.50	-4.98	Peak	VERTICAL
2	250.19	52.95	-12.84	40.11	46.00	-5.89	Peak	VERTICAL
3	450.01	44.67	-7.91	36.76	46.00	-9.24	Peak	VERTICAL
4	518.88	43.34	-7.07	36.27	46.00	-9.73	Peak	VERTICAL
5	749.74	44.54	-2.83	41.71	46.00	-4.29	Peak	VERTICAL
6	849.65	38.58	-1.35	37.23	46.00	-8.77	Peak	VERTICAL
1	199.75	49.25	-14.80	34.45	43.50	-9.05	Peak	HORIZONTAL
2	250.19	51.73	-12.84	38.89	46.00	-7.11	Peak	HORIZONTAL
3	350.10	48.49	-10.06	38.43	46.00	-7.57	Peak	HORIZONTAL
4	450.01	44.67	-7.91	36.76	46.00	-9.24	Peak	HORIZONTAL
5	549.92	44.24	-6.53	37.71	46.00	-8.29	Peak	HORIZONTAL
6	700.27	37.96	-4.03	33.93	46.00	-12.07	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (below 1GHz)

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Kaulateu Spullous	(autated Spurious Emission Weasurement Result (below 19112)								
Operation Mode	TX CH High			r	Fest Date	2016/08/10			
Channel Number	2462MHz			r	Гest By	Lake			
Temperature	25 °C]	Humidity	60 %			

Radiated Spurious Emission Measurement Result (below 1GHz)

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	199.75	52.98	-14.80	38.18	43.50	-5.32	Peak	VERTICAL
2	250.19	52.63	-12.84	39.79	46.00	-6.21	Peak	VERTICAL
3	450.01	44.31	-7.91	36.40	46.00	-9.60	Peak	VERTICAL
4	557.68	43.25	-6.36	36.89	46.00	-9.11	Peak	VERTICAL
5	749.74	43.27	-2.83	40.44	46.00	-5.56	Peak	VERTICAL
6	849.65	38.13	-1.35	36.78	46.00	-9.22	Peak	VERTICAL
1	199.75	49.35	-14.80	34.55	43.50	-8.95	Peak	HORIZONTAL
2	250.19	51.67	-12.84	38.83	46.00	-7.17	Peak	HORIZONTAL
3	350.10	48.16	-10.06	38.10	46.00	-7.90	Peak	HORIZONTAL
4	450.01	44.57	-7.91	36.66	46.00	-9.34	Peak	HORIZONTAL
5	549.92	44.04	-6.53	37.51	46.00	-8.49	Peak	HORIZONTAL
6	700.27	38.25	-4.03	34.22	46.00	-11.78	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Radiated Spurious Emission Measurement Result (above 1GHz) (worst case: 802.11g mode)

Operation Mode	TX CH Low	Test Date	2016/08/10
Channel Number	2412MHz	Test By	Lake
Temperature	25 °C	Pol	Ver.
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4824.00	42.66	-3.24	39.42	74.00	-34.58	Peak	VERTICAL
2	7236.00	46.44	4.06	50.50	74.00	-23.50	Peak	VERTICAL
1	4824.00	44.19	-3.24	40.95	74.00	-33.05	Peak	HORIZONTAL
2	7236.00	43.78	4.06	47.84	74.00	-26.16	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

······································		/	
Operation Mode	TX CH Mid	Test Date	2016/08/10
Channel Number	2437MHz	Test By	Lake
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

Radiated Spurious Emission Measurement Result (above 1GHz)

Over No Reading Factor Level Limit Remark Pol Freq Limit MHz dBuV dB dB V/H dBuV/m dBuV/m -35.86 4874.00 38.14 1 41.27 -3.13 74.00 Peak VERTICAL 2 7311.00 37.55 4.20 41.75 54.00 -12.25 Average VERTICAL 7311.00 49.69 4.20 53.89 74.00 -20.11 3 Peak VERTICAL 4874.00 43.76 -3.13 40.63 74.00 -33.37 Peak HORIZONTAL 1 2 43.83 74.00 7311.00 4.20 48.03 -25.97 Peak HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

I I I I I I I I I I I I I I I I I I I			
Operation Mode	TX CH High	Test Date	2016/08/10
Channel Number	2462MHz	Test By	Lake
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

Radiated Spurious Emission Measurement Result (above 1GHz)

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4924.00	43.41	-3.02	40.39	74.00	-33.61	Peak	VERTICAL
2	7386.00	39.43	4.32	43.75	54.00	-10.25	Average	VERTICAL
3	7386.00	50.64	4.32	54.96	74.00	-19.04	Peak	VERTICAL
1	4924.00	42.26	-3.02	39.24	74.00	-34.76	Peak	HORIZONTAL
2	7386.00	48.46	4.32	52.78	74.00	-21.22	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

10 Peak Power Spectral Density

10.1 Standard Applicable:

According to §15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-247 issue 1, §5.2

(2)The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of Section 5.4(4), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

10.2 Measurement Equipment Used:

Refer to section 6.2 for details.

10.3 Test Set-up:

Refer to section 6.3 for details.

10.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW =100KHz, VBW = 300KHz, Span =5 to 30% greater than emission BW, Sweep=Auto
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.

10.5 Measurement Result:

802.11b Mode

	Power Density Maximum Limit		
СН	Level dBm/3KHz	(dBm)	
Low	-6.783	8	
Mid	-5.84	8	
High	-6.971	8	

802.11g Mode

	Power Density	Maximum Limit	
СН	Level dBm/3KHz	(dBm)	
Low	-11.874	8	
Mid	-12.146	8	
High	-12.176	8	

802.11n HT20

	Power Density	Maximum Limit	
СН	Level dBm/3KHz	(dBm)	
Low	-11.161	8	
Mid	-11.35	8	
High	-11.931	8	

802.11n HT40

	Power Density Maximum Limit		
СН	Level dBm/3KHz	(dBm)	
Low	-14.209	8	
Mid	-15.189	8	
High	-14.562	8	

802.11b

Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

802.11g

Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

802.11n_20M

Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

802.11n_40M Power Spectral Density Test Plot (CH-Low)

Power Spectral Density Test Plot (CH-Mid)

Power Spectral Density Test Plot (CH-High)

11 ANTENNA REQUIREMENT

11.1 Standard Applicable:

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

According to RSS-GEN 7.1.2, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns. Testing shall be performed using the highest-gain antenna of each combination of transmitter and antenna type for which certification is being sought, with the transmitter output power set at the maximum level. Any antenna of the same type and having equal or lesser gain as an antenna that had been successfully tested for certification with the transmitter, will also be considered certified with the transmitter, and may be used and marketed with the transmitter. The manufacturer shall include with the application for certification a list of acceptable antenna types to be used with the transmitter.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. Any antenna gain in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power before using the power limits specified in RSS-210 or RSS-310 for devices of RF output powers of 10 milliwatts or less. For devices of output powers greater than 10 milliwatts, except devices subject to RSS-210 Annex 8 (Frequency Hopping and Digital Modulation Systems Operating in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz Bands) or RSS-210 Annex 9 (Local Area Network Devices), the total antenna gain shall be ad

ded to the measured RF output power before using the specified power limits. For devices subject to RSS-210 Annex 8 or Annex 9, the antenna gain shall not be added.

11.2 Antenna Connected Construction:

The directional gins of antenna used for transmitting is below table, and the antenna connector is designed with fixed type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

	P/N	Туре	Gain (2.4GHz)	Gain (5GHz)
Ant	AH 104N2450D1	Fixed Chip Antenna	2.1dBi	2.4dBi