

Report No.: FR980514A

FCC RADIO TEST REPORT

FCC ID : TYM-J100

Equipment : Wireless Module

Brand Name : AVAYA Model Name : J100

Marketing Name : J100 Wireless Module

Applicant : AVAYA

250 Sidney Street, Belleville, Ontario, K8P

3Z3, Canada

Manufacturer : Wistron Corporation

21th Fl., 88, Sec.1, Hsin Tai Wu Rd., Hsichih,

Taipei Hsien 221, Taiwan, R.O.C.

Standard : FCC Part 15 Subpart C §15.247

The product was received on Aug. 05, 2019 and testing was started from Sep. 16, 2019 and completed on Sep. 26, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Reviewed by: Louis Wu

Lunis Win

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

Report Template No.: BU5-FR15CBT Version 2.4

Report Version : 01

Table of Contents

Report No.: FR980514A

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	5
2	Test	Configuration of Equipment Under Test	6
	2.1	Carrier Frequency Channel	6
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	
3	Test	Result	.10
	3.1	Number of Channel Measurement	.10
	3.2	Hopping Channel Separation Measurement	.12
	3.3	Dwell Time Measurement	.18
	3.4	20dB and 99% Bandwidth Measurement	.20
	3.5	Output Power Measurement	.30
	3.6	Conducted Band Edges Measurement	.31
	3.7	Conducted Spurious Emission Measurement	.38
	3.8	Radiated Band Edges and Spurious Emission Measurement	.48
	3.9	AC Conducted Emission Measurement	.52
	3.10	Antenna Requirements	.54
4	List o	of Measuring Equipment	.55
5	Unce	rtainty of Evaluation	.56
App	endix	A. Conducted Test Results	
App	endix	B. AC Conducted Emission Test Result	
App	endix	c C. Radiated Spurious Emission	
App	endix	D. Radiated Spurious Emission Plots	
App	endix	E. Duty Cycle Plots	
App	endix	F. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

History of this test report

Report No.: FR980514A

Report No.	Version	Description	Issued Date
FR980514A	01	Initial issue of report	Nov. 08, 2019

TEL: 886-3-327-3456 Page Number : 3 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

Summary of Test Result

Report No.: FR980514A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth Reportir		-
3.5	15.247(b)(1)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	3.8 15.247(d) Radiated Band Edges and Radiated Spurious Emission		Pass	Under limit 8.08 dB at 135.730 MHz
3.9	15.207	AC Conducted Emission	Pass	Under limit 12.13 dB at 0.850 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement Pass		-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Vivian Hsu

TEL: 886-3-327-3456 Page Number : 4 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac and Wi-Fi 5GHz 802.11a/n/ac

Product Specification subjective to this standard				
Antenna Type	WLAN: Chip Antenna			
Antenna Type	Bluetooth: Chip Antenna			

Report No.: FR980514A

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
	No.52, Huaya 1st Rd., Guishan Dist.,			
Test Site Location	Taoyuan City, Taiwan (R.O.C.)			
Test Site Location	TEL: +886-3-327-3456			
	FAX: +886-3-328-4978			
Test Site No.	Sporton S	ite No.		
rest site No.	TH05-HY	CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory				
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855				
Test Site No.	Sporton Site No. 03CH13-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- + ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

TEL: 886-3-327-3456 Page Number : 5 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : Issued Date :

: 6 of 56 : Nov. 08, 2019

Report No.: FR980514A

Report Version : 01

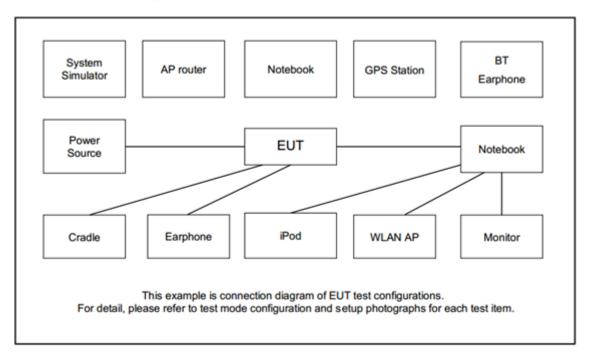
2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. The worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

Report No.: FR980514A

b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	,	Summary table of Test Cases	S		
	Data Rate / Modulation				
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	PR 2Mbps Bluetooth EDR 3Mbps		
	GFSK	π/4-DQPSK	8-DPSK		
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz		
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz		
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz		
	Bluetooth EDR 3Mbps 8-DPSK				
	В	sidetooth EDR 3Mbps 8-DPS	^		
Radiated	Е В	Mode 1: CH00_2402 MHz	N		
Radiated Test Cases	В	•	<u> </u>		
		Mode 1: CH00_2402 MHz			
		Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz	N		
Test Cases	Mode 1:WLAN (2.4GHz) To	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz			

Remark:

- For radiated test cases, the worst mode data rate 3Mbps was reported only since the highest RF
 output power in the preliminary tests. The conducted spurious emissions and conducted band edge
 measurement for other data rates were not worse than 3Mbps, and no other significantly
 frequencies found in conducted spurious emission.
- 2. The worst case of conducted emission is mode 2; only the test data of it was reported.

TEL: 886-3-327-3456 Page Number : 7 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

2.3 Connection Diagram of Test System

Report No.: FR980514A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	Phihong	PSAC12R-050	N/A	N/A	N/A
2.	Main board	DELL	N/A	N/A	N/A	N/A
3.	Notebook	DELL	II atitude E3340	FCC DoC/ Contains FCC ID: PD97260NGU	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Notebook	DELL	Latitude E5480	FCC DoC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m

TEL: 886-3-327-3456 Page Number : 8 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

2.5 EUT Operation Test Setup

The RF test items, utility "cmd" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

Report No.: FR980514A

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 Page Number : 9 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

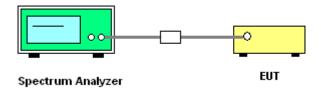
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Report No.: FR980514A

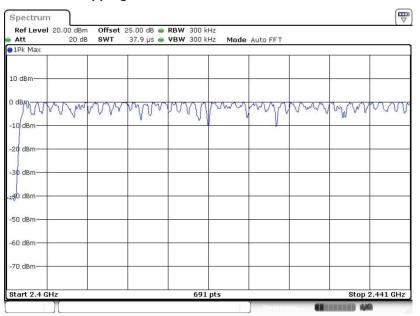

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedure

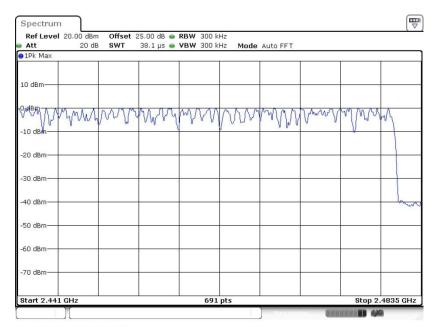
- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



TEL: 886-3-327-3456 Page Number : 10 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.1.5 Test Result of Number of Hopping Frequency


Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

Report No.: FR980514A

Date: 25.SEP.2019 20:17:36

Date: 25.SEP.2019 20:17:48

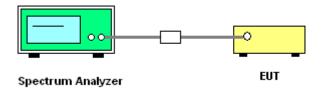
TEL: 886-3-327-3456 Page Number : 11 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR980514A

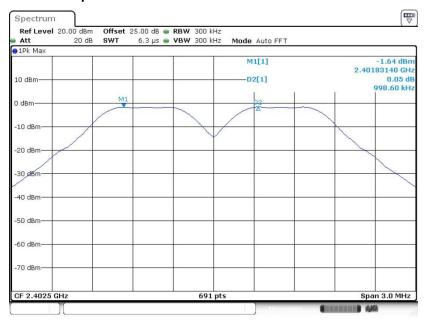

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

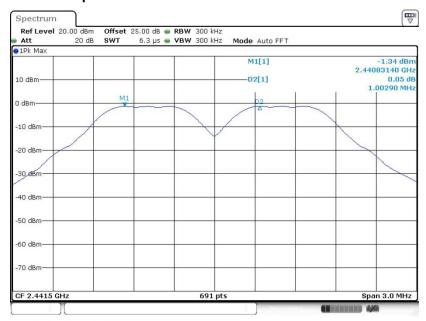
3.2.4 Test Setup


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

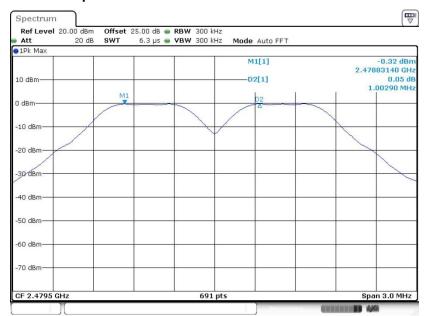
TEL: 886-3-327-3456 Page Number : 12 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

<1Mbps>


Channel Separation Plot on Channel 00 - 01

Report No.: FR980514A

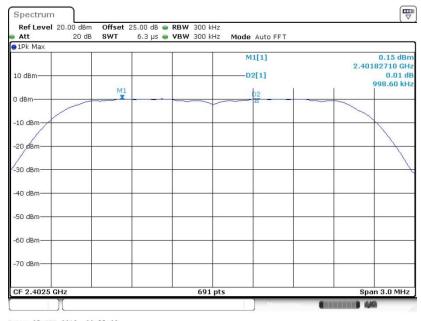
Date: 25.SEP.2019 20:31:39


Channel Separation Plot on Channel 39 - 40

Date: 25.SEP.2019 20:37:56

TEL: 886-3-327-3456 Page Number : 13 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

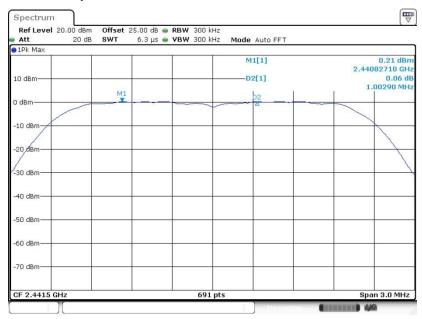
Channel Separation Plot on Channel 77 - 78



Report No.: FR980514A

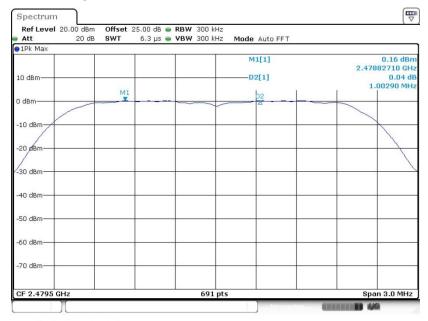
Date: 25.SEP.2019 20:43:09

<2Mbps>


Channel Separation Plot on Channel 00 - 01

Date: 25.SEP.2019 20:55:09

TEL: 886-3-327-3456 Page Number : 14 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


Channel Separation Plot on Channel 39 - 40

Report No.: FR980514A

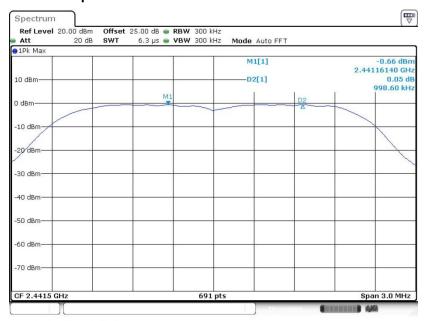
Date: 25.SEP.2019 21:03:02

Channel Separation Plot on Channel 77 - 78

Date: 25.SEP.2019 21:13:48

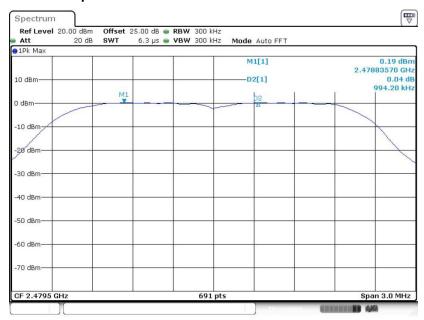
TEL: 886-3-327-3456 Page Number : 15 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

<3Mbps>


Channel Separation Plot on Channel 00 - 01

Report No.: FR980514A

Date: 25.SEP.2019 21:20:53


Channel Separation Plot on Channel 39 - 40

Date: 25.SEP.2019 21:28:07

TEL: 886-3-327-3456 Page Number : 16 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

Channel Separation Plot on Channel 77 - 78

Report No.: FR980514A

Date: 25.SEP.2019 21:34:14

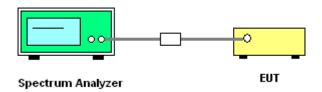
TEL: 886-3-327-3456 Page Number : 17 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: FR980514A

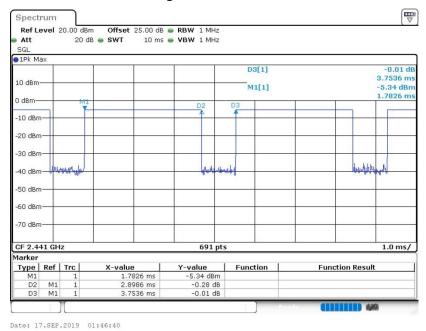

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup


3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 18 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

Package Transfer Time Plot

Report No.: FR980514A

Remark:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- **2.** In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 886-3-327-3456 Page Number : 19 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

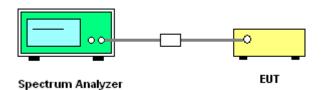
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.


3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR980514A

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 - Trace = \max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 20 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

<1Mbps>

20 dB Bandwidth Plot on Channel 00

Report No.: FR980514A

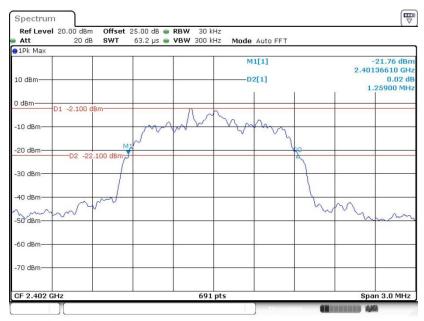
Date: 25.SEP.2019 20:26:24

20 dB Bandwidth Plot on Channel 39

Date: 25.SEP.2019 21:05:21

TEL: 886-3-327-3456 Page Number : 21 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

20 dB Bandwidth Plot on Channel 78



Report No.: FR980514A

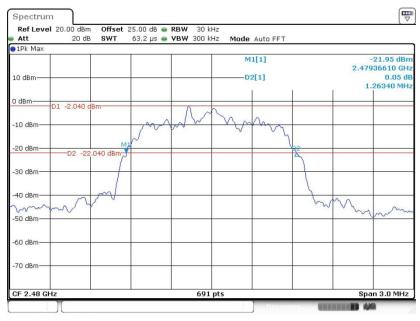
Date: 25.SEP.2019 20:39:42

<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 25.SEP.2019 20:51:52

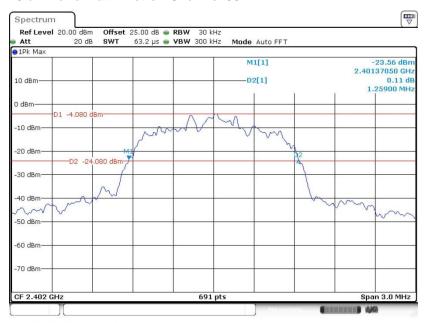
TEL: 886-3-327-3456 Page Number : 22 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


20 dB Bandwidth Plot on Channel 39

Report No.: FR980514A

Date: 25.SEP.2019 20:58:43

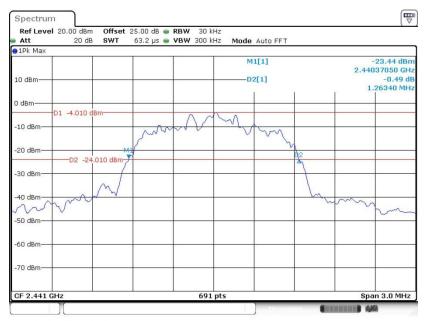
20 dB Bandwidth Plot on Channel 78



Date: 25.SEP.2019 21:09:40

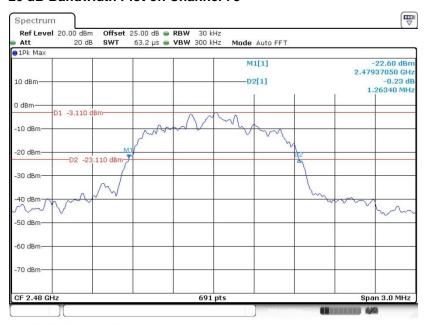
TEL: 886-3-327-3456 Page Number : 23 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

<3Mbps>


20 dB Bandwidth Plot on Channel 00

Report No.: FR980514A

Date: 25.SEP.2019 21:16:24


20 dB Bandwidth Plot on Channel 39

Date: 25.SEP.2019 21:23:18

TEL: 886-3-327-3456 Page Number : 24 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

20 dB Bandwidth Plot on Channel 78

Report No.: FR980514A


Date: 25.SEP.2019 21:29:57

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

TEL: 886-3-327-3456 Page Number : 25 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

99% Occupied Bandwidth Plot on Channel 39

Report No.: FR980514A

Date: 25.SEP.2019 20:34:12

99% Occupied Bandwidth Plot on Channel 78

Date: 25.SEP.2019 20:40:54

TEL: 886-3-327-3456 Page Number : 26 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

Report No.: FR980514A

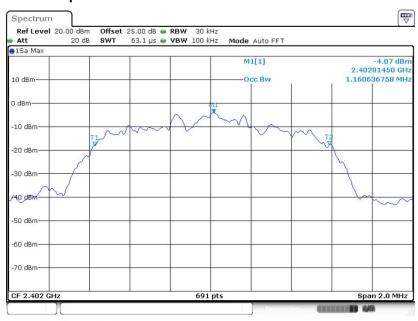
Date: 25.SEP.2019 20:52:49


99% Occupied Bandwidth Plot on Channel 39

Date: 25.SEP.2019 20:59:19

TEL: 886-3-327-3456 Page Number : 27 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

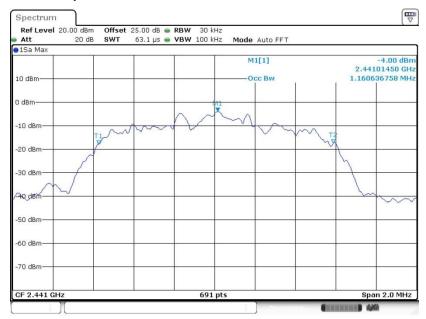
99% Occupied Bandwidth Plot on Channel 78



Report No.: FR980514A

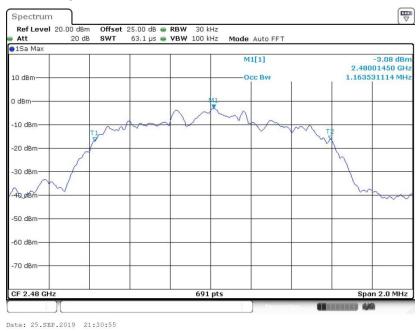
Date: 25.SEP.2019 21:10:38

<3Mbps>


99% Occupied Bandwidth Plot on Channel 00

Date: 25.SEP.2019 21:17:23

TEL: 886-3-327-3456 Page Number : 28 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


99% Occupied Bandwidth Plot on Channel 39

Report No.: FR980514A

Date: 25.SEP.2019 21:23:55

99% Occupied Bandwidth Plot on Channel 78

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

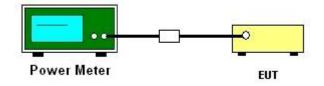
TEL: 886-3-327-3456 Page Number : 29 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

Report No.: FR980514A


3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

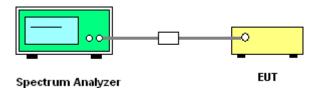
TEL: 886-3-327-3456 Page Number : 30 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR980514A

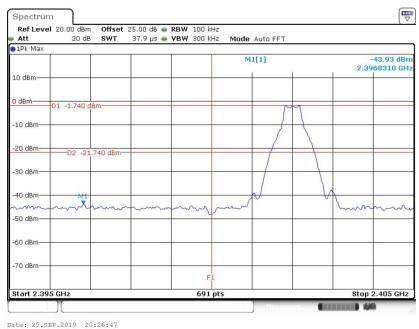

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

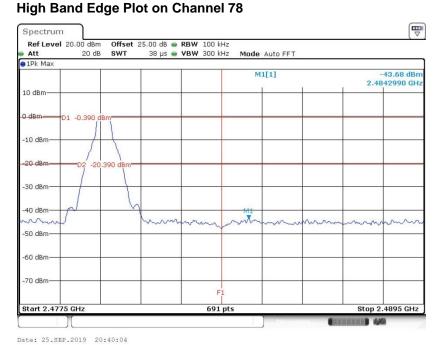
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

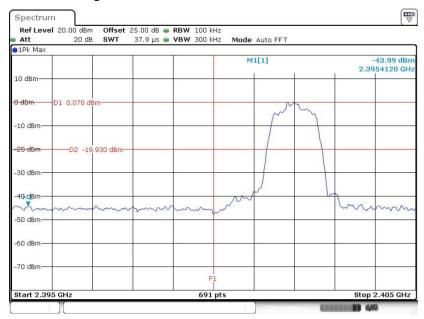


TEL: 886-3-327-3456 Page Number : 31 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


3.6.5 Test Result of Conducted Band Edges

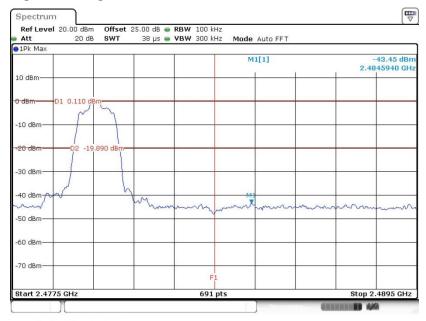
<1Mbps>

Low Band Edge Plot on Channel 00


Report No.: FR980514A

TEL: 886-3-327-3456 Page Number : 32 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

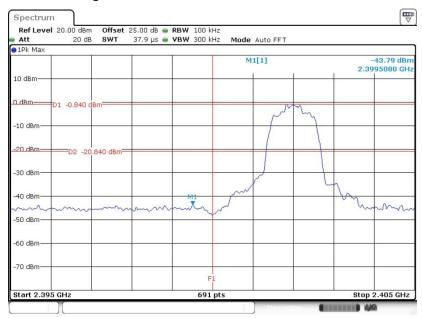
<2Mbps>


Low Band Edge Plot on Channel 00

Report No.: FR980514A

Date: 25.SEP.2019 20:52:14

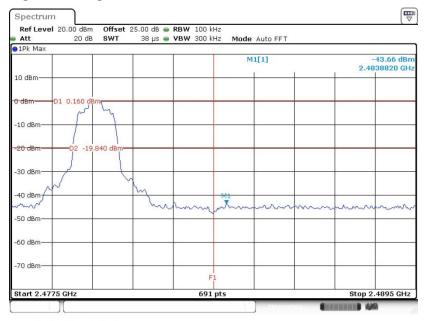
High Band Edge Plot on Channel 78



Date: 25.SEP.2019 21:10:03

TEL: 886-3-327-3456 Page Number : 33 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

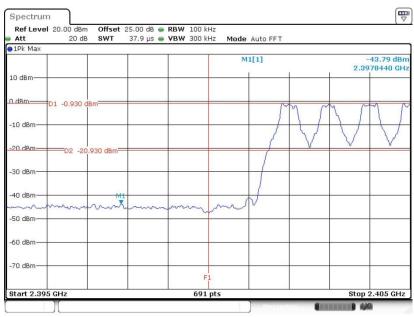
<3Mbps>


Low Band Edge Plot on Channel 00

Report No.: FR980514A

Date: 25.SEP.2019 21:16:48

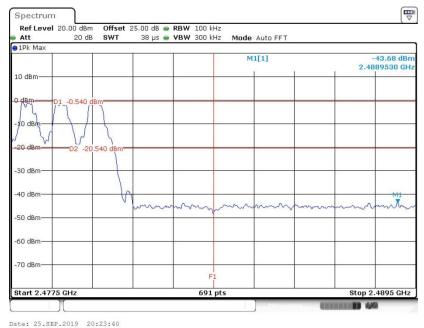
High Band Edge Plot on Channel 78


Date: 25.SEP.2019 21:30:20

TEL: 886-3-327-3456 Page Number : 34 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

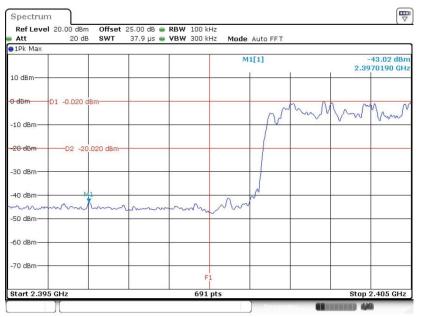
3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>


Hopping Mode Low Band Edge Plot

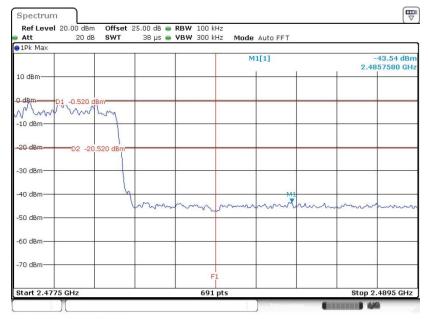
Report No.: FR980514A

Date: 25.SEP.2019 20:23:16


Hopping Mode High Band Edge Plot

TEL: 886-3-327-3456 Page Number : 35 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

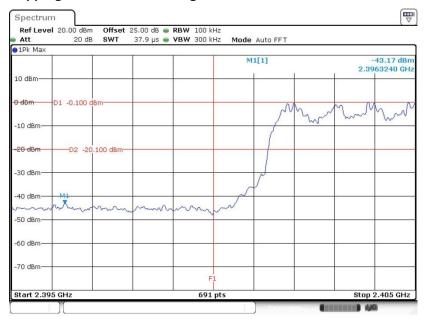
<2Mbps>


Hopping Mode Low Band Edge Plot

Report No.: FR980514A

Date: 25.SEP.2019 20:20:57

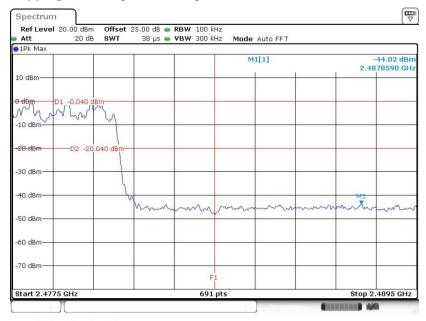
Hopping Mode High Band Edge Plot



Date: 25.SEP.2019 20:21:23

TEL: 886-3-327-3456 Page Number : 36 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

<3Mbps>


Hopping Mode Low Band Edge Plot

Report No.: FR980514A

Date: 25.SEP.2019 20:18:12

Hopping Mode High Band Edge Plot

Date: 25.SEP.2019 20:18:32

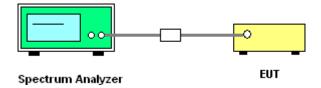
TEL: 886-3-327-3456 Page Number : 37 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR980514A

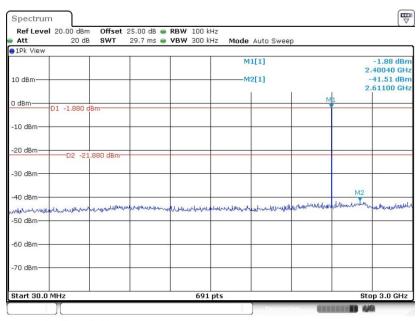

3.7.2 Measuring Instruments

See list of measuring equipment of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

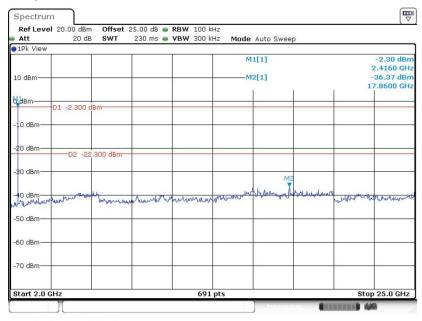
3.7.4 Test Setup



TEL: 886-3-327-3456 Page Number : 38 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

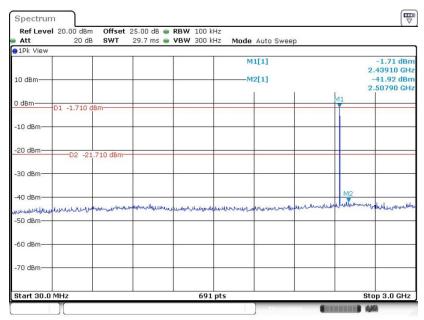
3.7.5 Test Result of Conducted Spurious Emission

<1Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

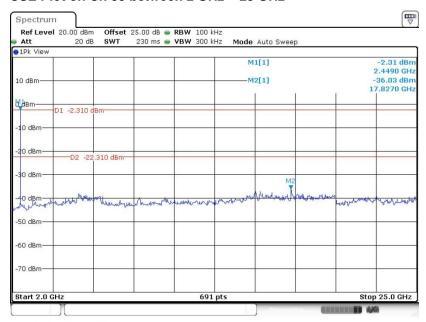
Report No.: FR980514A

Date: 25.SEP.2019 20:27:58


1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

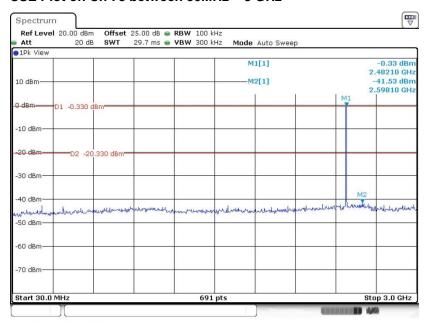
Date: 25.SEP.2019 20:28:26

TEL: 886-3-327-3456 Page Number : 39 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


CSE Plot on Ch 39 between 30MHz ~ 3 GHz

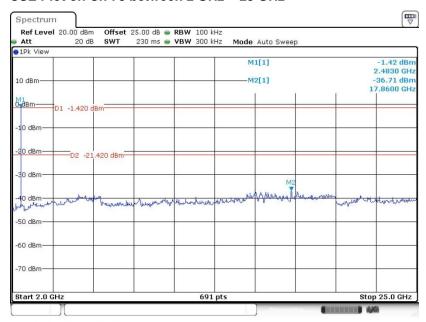
Report No.: FR980514A

Date: 25.SEP.2019 20:35:02


CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 25.SEP.2019 20:35:30

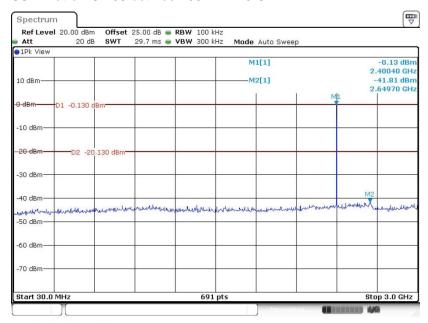
TEL: 886-3-327-3456 Page Number : 40 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR980514A

Date: 25.SEP.2019 20:41:27

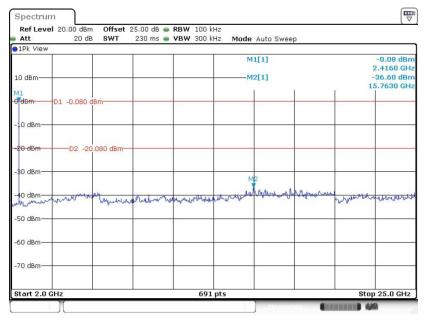
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz



Date: 25.SEP.2019 20:41:56

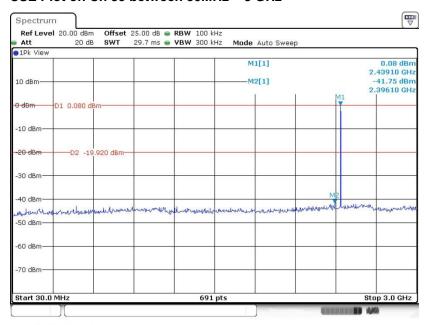
TEL: 886-3-327-3456 Page Number : 41 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

<2Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

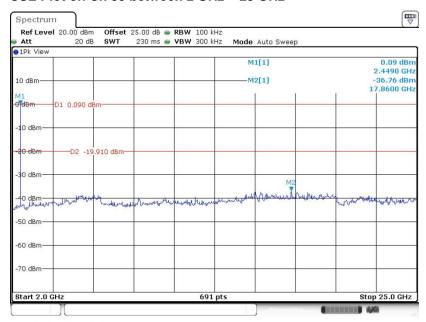
Report No.: FR980514A

Date: 25.SEP.2019 20:53:26


CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

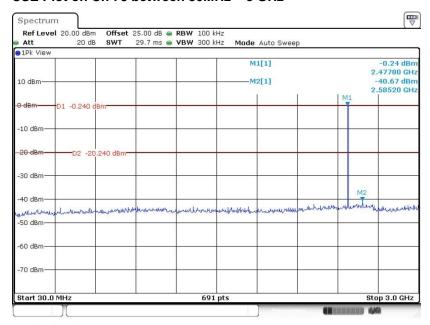
Date: 25.SEP.2019 20:53:55

TEL: 886-3-327-3456 Page Number : 42 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


CSE Plot on Ch 39 between 30MHz ~ 3 GHz

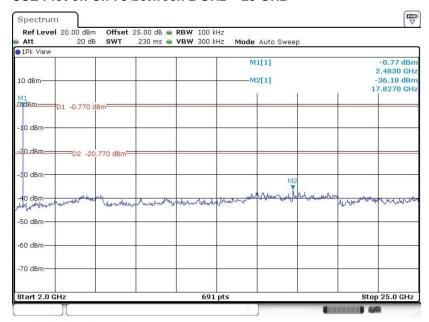
Report No.: FR980514A

Date: 25.SEP.2019 21:01:00


CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 25.SEP.2019 21:01:27

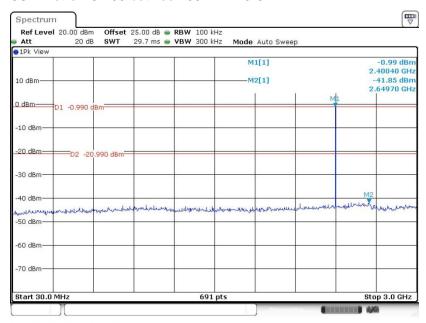
TEL: 886-3-327-3456 Page Number : 43 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR980514A

Date: 25.SEP.2019 21:11:15

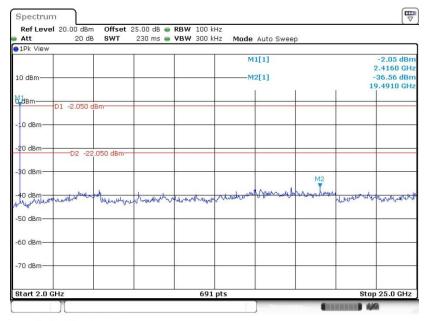
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz



Date: 25.SEP.2019 21:12:29

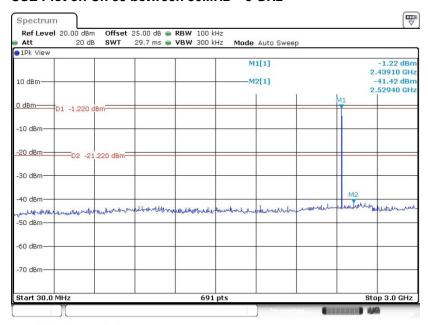
TEL: 886-3-327-3456 Page Number : 44 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

<3Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

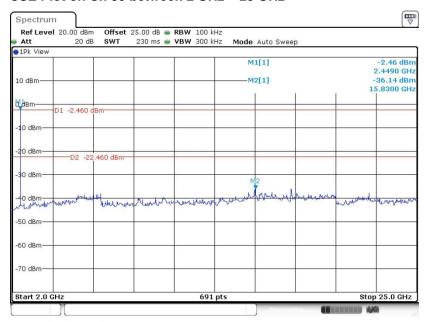
Report No.: FR980514A

Date: 25.SEP.2019 21:19:02


CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

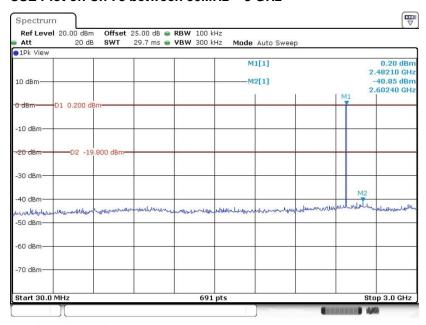
Date: 25.SEP.2019 21:19:30

TEL: 886-3-327-3456 Page Number : 45 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


CSE Plot on Ch 39 between 30MHz ~ 3 GHz

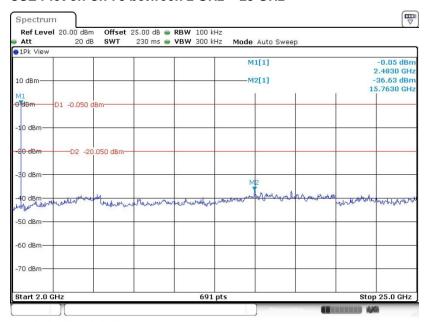
Report No.: FR980514A

Date: 25.SEP.2019 21:26:28


CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 25.SEP.2019 21:26:57

TEL: 886-3-327-3456 Page Number : 46 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR980514A

Date: 25.SEP.2019 21:32:18

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 25.SEP.2019 21:32:47

TEL: 886-3-327-3456 Page Number : 47 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR980514A

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 48 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.8.3 Test Procedures

 The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR980514A

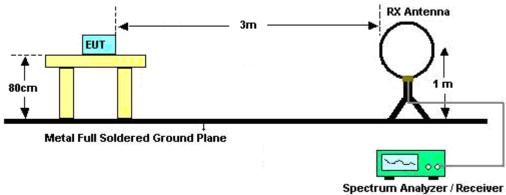
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

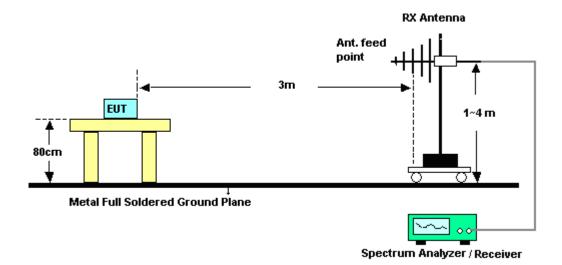
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

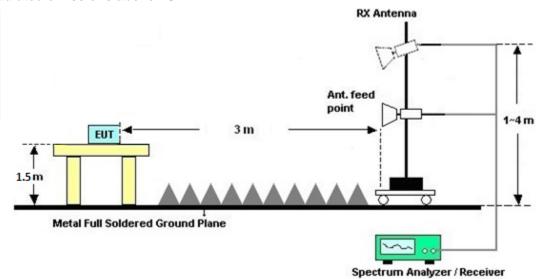

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-3456 Page Number : 49 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019


3.8.4 Test Setup

For radiated emissions below 30MHz


Report No.: FR980514A

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 50 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

For radiated emissions above 1GHz

Report No.: FR980514A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 51 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

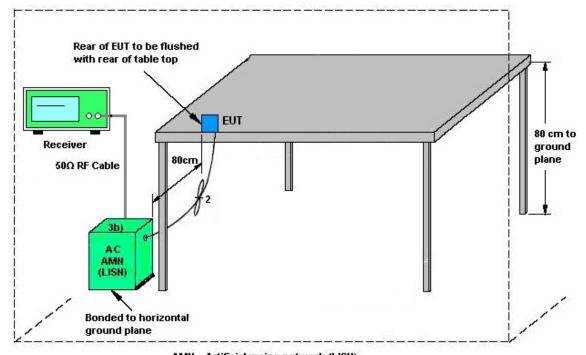
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR980514A

Eroquency of emission (MUz)	Conducted	limit (dΒμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number : 52 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.9.4 Test Setup

Report No.: FR980514A

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 53 of 56
FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR980514A

3.10.2 Antenna Anti-Replacement Construction

Non-standard antenna connector is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 54 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	Sep. 16, 2019~ Sep. 25, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 27, 2018	Sep. 16, 2019~ Sep. 25, 2019	Dec. 26, 2019	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 27, 2018	Sep. 16,2019~ Sep. 25, 2019	Dec. 26, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	Sep. 16, 2019~ Sep. 25, 2019	Mar. 26, 2020	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Sep. 26, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 12, 2018	Sep. 26, 2019	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Sep. 26, 2019	Nov. 13, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 26, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	Sep. 26, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	Sep. 26, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Jan. 06, 2020	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL6111D& 00800N1D01 N-06	40103 & 07	30MHz~1GHz	Apr. 30, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Apr. 29, 2020	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D -1241	1GHz~18GHz	Jul. 02, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Jul. 01, 2020	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 20, 2019	Sep. 18, 2019 ~Sep. 21, 2019	May 19, 2020	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY532701 47	1GHz~26.5GHz	Mar. 15, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Mar. 14, 2020	Radiation (03CH13-HY)
Amplifier	SONOMA	310N	187282	9kHz~1GHz	Dec. 18, 2018	Sep. 18, 2019 ~Sep. 21, 2019	Dec. 17, 2019	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 06, 2018	Sep. 18, 2019 ~Sep. 21, 2019	Dec. 05, 2019	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY553705 26	10Hz~44GHz	Mar. 19, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Mar. 18, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M-18G	Feb. 13, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30M-18G	Feb. 13, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961 /4	30M-18G	Feb. 13, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY553705 26	10Hz~44GHz	Mar. 19, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Mar. 18, 2020	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Sep. 18, 2019 ~Sep. 21, 2019	N/A	Radiation (03CH13-HY)
Software	AUDIX	E3 6.2009-8-24c	RK-001124	N/A	N/A	Sep. 18, 2019 ~Sep. 21, 2019	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Sep. 18, 2019 ~Sep. 21, 2019	N/A	Radiation (03CH13-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY541300 85	20Hz ~ 8.4GHz	Nov. 01, 2018	Sep. 18, 2019 ~Sep. 21, 2019	Oct. 31, 2019	Radiation (03CH13-HY)
Filter	Wainwright	WLKS1200 -12SS	SN2	1.2GHz Low Pass Filter	Mar. 22, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Mar. 21, 2020	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60SS	SN2	3GHz High Pass Filter	Jul. 14, 2019	Sep. 18, 2019 ~Sep. 21, 2019	Jul. 13, 2020	Radiation (03CH13-HY)

Report No.: FR980514A

TEL: 886-3-327-3456 Page Number : 55 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.2

Report No.: FR980514A

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

-		
	Measuring Uncertainty for a Level of Confidence	40
	of 95% (U = 2Uc(y))	4.9

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	EA
of 95% (U = 2Uc(y))	5.4

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Management Importaints for a Loyal of Confidence	
Measuring Uncertainty for a Level of Confidence	/ 3
of 95% (U = 2Uc(y))	7.3

TEL: 886-3-327-3456 Page Number : 56 of 56 FAX: 886-3-328-4978 Issued Date : Nov. 08, 2019

Report Number : FR980514A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Derek Hsu	Temperature:	21~25	°C
Test Date:	2019/9/16~2019/09/25	Relative Humidity:	51~54	%

			20dB	and 99	% Оссир		SULTS DATA Ith and Hopping	ı Channel Separ	ation
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.909	0.848	0.999	0.6059	Pass
DH	1Mbps	1	39	2441	0.915	0.851	1.003	0.6097	Pass
DH	1Mbps	1	78	2480	0.915	0.851	1.003	0.6097	Pass
2DH	2Mbps	1	0	2402	1.259	1.161	0.999	0.8393	Pass
2DH	2Mbps	1	39	2441	1.259	1.161	1.003	0.8393	Pass
2DH	2Mbps	1	78	2480	1.263	1.161	1.003	0.8423	Pass
3DH	3Mbps	1	0	2402	1.259	1.161	0.964	0.8393	Pass
3DH	3Mbps	1	39	2441	1.263	1.161	0.999	0.8423	Pass
3DH	3Mbps	1	78	2480	1.263	1.164	0.994	0.8423	Pass

			<u>TES</u>	T RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

					T RESUL eak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	-1.28	20.97	Pass
DH1	39	1	-1.18	20.97	Pass
	78	1	-0.20	20.97	Pass
	0	1	2.53	20.97	Pass
2DH1	39	1	2.59	20.97	Pass
	78	1	2.71	20.97	Pass
	0	1	2.10	20.97	Pass
3DH1	39	1	2.20	20.97	Pass
<u> </u>	78	1	2.94	20.97	Pass

				<u>TES</u> <u>Ave</u> (
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	-1.37	5.15
DH1	39	1	-1.32	5.15
	78	1	-0.30	5.15
	0	1	-0.03	5.12
2DH1	39	1	0.11	5.12
	78	1	0.12	5.12
	0	1	-0.93	5.12
3DH1	39	1	-0.83	5.12
	78	1	0.16	5.12

		TEST RE Number of H	SULTS DA oppina Fre	
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail	
79	20	> 15	Pass	

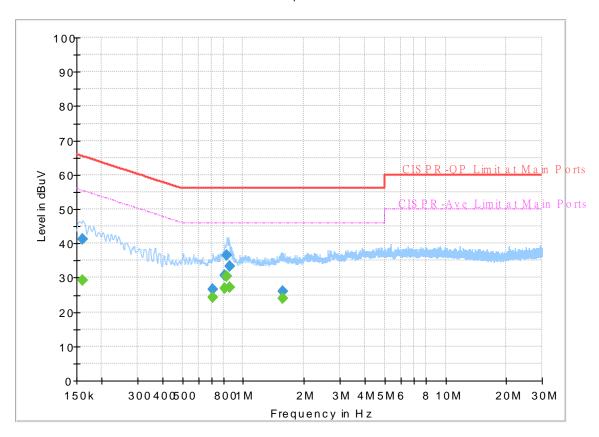
Appendix B. AC Conducted Emission Test Results

Took Engineer		Temperature :	25.9~26.4℃
Test Engineer :	noward Lin	Relative Humidity :	52.8~53.2%

Report No.: FR980514A

TEL: 886-3-327-3456 Page Number : B1 of B1

EUT Information

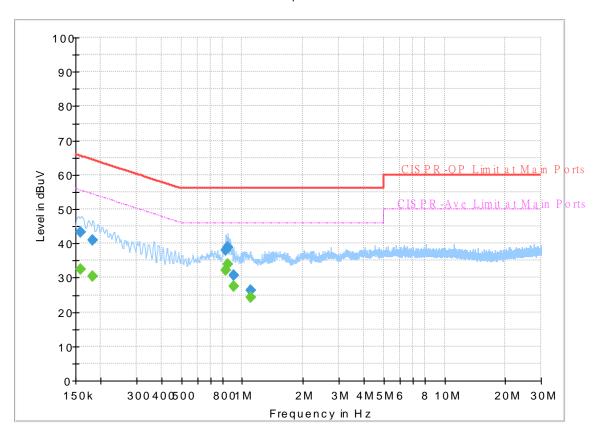

 Report NO :
 980514

 Test Mode :
 Mode 2

 Test Voltage :
 120Vac/60Hz

Phase: Line

FullSpectrum


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.161250		29.37	55.40	26.03	L1	OFF	19.4
0.161250	41.15		65.40	24.25	L1	OFF	19.4
0.710250		24.14	46.00	21.86	L1	OFF	19.4
0.710250	26.49		56.00	29.51	L1	OFF	19.4
0.807000		26.84	46.00	19.16	L1	OFF	19.4
0.807000	30.77		56.00	25.23	L1	OFF	19.4
0.831750		30.29	46.00	15.71	L1	OFF	19.5
0.831750	36.52		56.00	19.48	L1	OFF	19.5
0.854250	I	27.08	46.00	18.92	L1	OFF	19.5
0.854250	33.29		56.00	22.71	L1	OFF	19.5
1.560750	-	24.06	46.00	21.94	L1	OFF	19.5
1.560750	26.16		56.00	29.84	L1	OFF	19.5

EUT Information

Report NO: 980514
Test Mode: Mode 2
Test Voltage: 120Vac/60Hz
Phase: Neutral

FullSpectrum

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.159000		32.37	55.52	23.15	N	OFF	19.5
0.159000	43.14		65.52	22.38	N	OFF	19.5
0.181500		30.40	54.42	24.02	N	OFF	19.5
0.181500	40.86		64.42	23.56	N	OFF	19.5
0.829500		32.08	46.00	13.92	N	OFF	19.5
0.829500	38.01		56.00	17.99	N	OFF	19.5
0.849750		33.87	46.00	12.13	N	OFF	19.5
0.849750	38.97		56.00	17.03	N	OFF	19.5
0.910500		27.55	46.00	18.45	N	OFF	19.5
0.910500	30.84		56.00	25.16	N	OFF	19.5
1.097250		24.26	46.00	21.74	N	OFF	19.5
1.097250	26.44		56.00	29.56	N	OFF	19.5

Appendix C. Radiated Spurious Emission

Test Engineer :	Ryan Lin, J.C. Liang and Wilson Wu	Temperature :	21.5~23.5°C
rest Engineer.		Relative Humidity :	46.5~49.5%

Report No.: FR980514A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
-	-	-	-	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
-	-	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	-	2354.625	42.83	-31.17	74	40.68	27.78	3.96	29.59	100	239	Р	Н
	-	2354.625	18.04	-35.96	54	-	-	-	-	-	-	Α	Н
	*	2402	94.61	-	-	92.59	27.6	4	29.58	100	239	Р	Н
	*	2402	69.82	-	-	-	-	-	-	-	-	Α	Н
DT	-	-	-			-	-	-	-	-	-	-	Н
BT CH00	-	-	-	-	-	-	-	-	-	-	-	-	Н
2402MHz	-	2388.015	43.35	-30.65	74	41.29	27.65	3.99	29.58	294	202	Р	V
2402111112	-	2388.015	18.56	-35.44	54	-	-	-	-	-	-	Α	V
	*	2402	96.52	-	-	94.5	27.6	4	29.58	294	202	Р	V
	-	-	-	-	-	-	-	-	-	-	-	Α	V
	-	-	-	-	-	-	-	-	-	-	-		V
	-	-	-	-	-	-	-	-	-	-	-		V
	-	2378.46	43.11	-30.89	74	41.02	27.69	3.98	29.58	123	241	Р	Н
	-	2378.46	18.32	-35.68	54	-	-	-	-	-	-	Α	Н
	*	2441	95	-	-	93.03	27.52	4.03	29.58	123	241	Р	Н
	*	2441	70.21	-	-	-	-	-	-	-	-	Α	Н
DT	-	2489.15	43.1	-30.9	74	41.09	27.5	4.08	29.57	123	241	Р	Н
BT CH 39	-	2489.15	18.31	-35.69	54	-	-	-	-	-	-	Α	Н
2441MHz	-	2364.88	42.68	-31.32	74	40.56	27.74	3.97	29.59	285	200	Р	V
244111112	-	2364.88	17.89	-36.11	54	-	-	-	-	-	-	Α	V
	*	2441	97.06	-	-	95.09	27.52	4.03	29.58	285	200	Р	V
	*	2441	72.27	-	-	-	-	-	-	-	-	Α	V
	-	2488.94	42.8	-31.2	74	40.79	27.5	4.08	29.57	285	200	Р	٧
	-	2488.94	18.01	-35.99	54	-	-	-	-	-	-	Α	V

TEL: 886-3-327-3456 Page Number: C1 of C6

	*	2480	95.01	-	-	93.01	27.5	4.07	29.57	100	230	Р	Н
	*	2480	70.22	-	-	-	-	-	-	-	-	Α	Н
	-	2483.52	46.83	-27.17	74	44.83	27.5	4.07	29.57	100	230	Р	Н
	-	2483.52	22.04	-31.96	54	-	-	-	-	-	-	Α	Н
	-	-	-	-	-	-	-	-	-	-	-	-	Н
BT	-	-	-	-	-	-	-	-	-	-	-	-	Н
CH 78 2480MHz	*	2480	96.6	-	-	94.6	27.5	4.07	29.57	247	248	Р	7
2400WIT12	*	2480	71.81	-	-	-	-	-	-	-	-	Α	/
	-	2483.84	47.68	-26.32	74	-	•	•	-	-	-	Р	٧
	-	2483.84	22.89	-31.11	54	-	-	-	-	-	-	Α	V
	-	-	-	-	-	-	-	-	-	-	-	-	٧
	-	-	-	-	-	-	-	-	-	-	-	-	V
Remark		o other spurious		Dook and	Avoraga lin	nit lina							
	2. AI	l results are PA	SS against	reak and	Average III	nit iine.							

TEL: 886-3-327-3456 Page Number : C2 of C6

2.4GHz 2400~2483.5MHz

Report No. : FR980514A

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
-	-	-	-	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
-	-	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	-	4804	39.05	-34.95	74	59.15	31.11	6.38	57.59	100	0	Р	Н
	-	4804	14.26	-39.74	54	-	-	-	-	-	-	Α	Н
	-	-	-	-	-	-	-	-	-	-	-		Н
BT	-	-	-	-	-	-	-	-	-	-	-		Н
CH 00 2402MHz	-	4804	39.42	-34.58	74	59.52	31.11	6.38	57.59	100	0	Р	V
24UZIVI 17Z	-	4804	14.63	-39.37	54	-	-	-	-	-	-	Α	V
	-	-	-	-	-	-	-	-	-	-	-	-	V
	-	-	-	-	-	-	-	-	-	-	-	-	V
	-	4882	38.1	-35.9	74	57.74	31.2	6.6	57.44	100	0	Р	Н
	-	4882	13.31	-40.69	54	-	-	-	-	-	-	Α	Н
	-	7323	43.15	-30.85	74	55.46	36.75	8.23	57.29	100	0	Р	Н
BT	-	7323	18.36	-35.64	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz	-	4882	37.85	-36.15	74	57.49	31.2	6.6	57.44	100	0	Р	V
244 HVII112	-	4882	13.06	-40.94	54	-	-	-	-	-	-	Α	V
	-	7323	42.83	-31.17	74	55.14	36.75	8.23	57.29	100	0	Р	V
	-	7323	18.04	-35.96	54	-	-	-	-	-	-	Α	V
	-	4960	38.36	-35.64	74	57.46	31.36	6.82	57.28	100	0	Р	Н
	-	4960	13.57	-40.43	54	-	-	-	-	-	-	Α	Н
5.	-	7440	43.18	-30.82	74	55.73	36.68	8.2	57.43	100	0	Р	Н
BT CH 78	-	7440	18.39	-35.61	54	-	ı	-	-	-	-	Α	Н
2480MHz	-	4960	37.78	-36.22	74	56.88	31.36	6.82	57.28	100	0	Р	V
2400W112	-	4960	12.99	-41.01	54	-	•	-	-	-	-	Α	V
	-	7440	42.59	-31.41	74	55.14	36.68	8.2	57.43	100	0	Р	V
	_	7440	17.8	-36.2	54	-	-	-	-	-	-	Α	V

TEL: 886-3-327-3456 Page Number : C3 of C6

Emission below 1GHz

Report No.: FR980514A

2.4GHz BT (LF)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
-	-	-	-	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
-	-	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	-	135.73	35.42	-8.08	43.5	49.36	17.23	1.01	32.18	100	0	Р	Н
	-	165.8	33.7	-9.8	43.5	49.14	15.62	1.1	32.16	-	-	Р	Н
	-	237.58	28.76	-17.24	46	42.93	16.66	1.31	32.14	-	-	Р	Н
	-	549.92	29.91	-16.09	46	35.12	24.99	2	32.2	-	-	Р	Н
	-	600.36	30.02	-15.98	46	34.93	25.21	2.12	32.24	-	-	Р	Н
	-	952.47	33.95	-12.05	46	31.7	30.55	2.66	30.96	-	-	Р	Н
	-	-	-	-	-	1	-	1	-	-	-	-	Н
	-	-	-	-	-	•	-	1	-	-	-	-	Н
	-	-	-	-	-	•	-	1	-	-	-	-	Н
	-	-	-	-	-	•	-	1	-	-	-	-	Н
0.4011	-	-	-	-	-	•	-	1	-	-	-	-	Н
2.4GHz BT	-	-	-	-	-	•	-	1	-	-	-	-	Н
LF	-	42.61	30.15	-9.85	40	43.89	18.03	0.52	32.29	100	0	Р	V
Li	-	134.76	31.66	-11.84	43.5	45.55	17.3	1	32.19	-	-	Р	V
	-	299.66	28.74	-17.26	46	40.54	18.89	1.46	32.15	-	-	Р	V
	-	600.36	30.84	-15.16	46	35.75	25.21	2.12	32.24	-	-	Р	V
	-	851.59	31.75	-14.25	46	31.97	28.8	2.62	31.64	-	-	Р	V
	-	952.47	33.56	-12.44	46	31.31	30.55	2.66	30.96	-	-	Р	V
	-	ı	-	-	-	1	-	1	-	-	-	-	V
	-	-	-	-	-	•	-	1	-	-	-	-	V
	-	-	-	-	-	•	-	1	-	-	-	-	V
	-	-	-	-	-	•	-	1	-	-	-	-	V
	-	-	-	-	-	-	-	-	-	-	-	-	V
	_	_	_	-	-	-	-	-	-	-	-	-	V

TEL: 886-3-327-3456 Page Number : C4 of C6

Note symbol

Report No.: FR980514A

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C5 of C6

A calculation example for radiated spurious emission is shown as below:

Report No.: FR980514A

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
-	-	-	-	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	-
-	-	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ	_	2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz	-	2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level($dB\mu V/m$)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

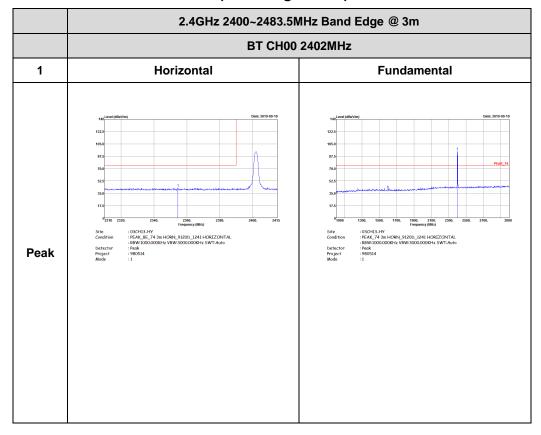
TEL: 886-3-327-3456 Page Number : C6 of C6

Appendix D. Radiated Spurious Emission Plots

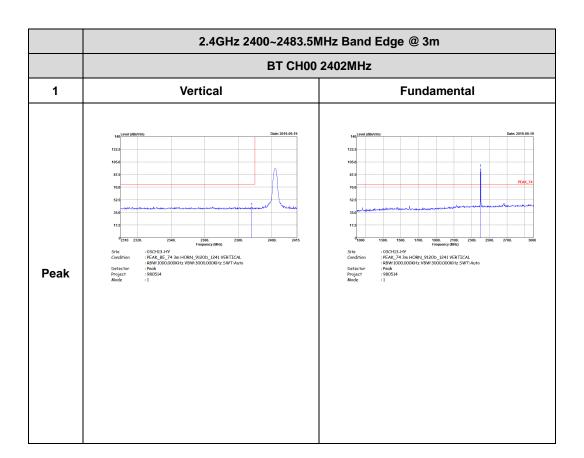
Test Engineer :	Ryan Lin, J.C. Liang and Wilson Wu	Temperature :	21.5~23.5°C
rest Engineer:		Relative Humidity :	46.5~49.5%

Report No.: FR980514A

Note symbol

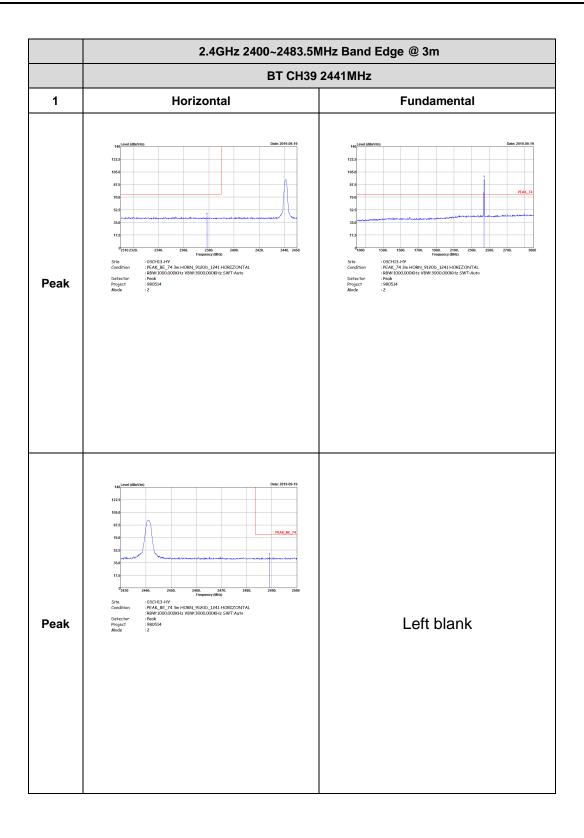

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number : D1 of D1

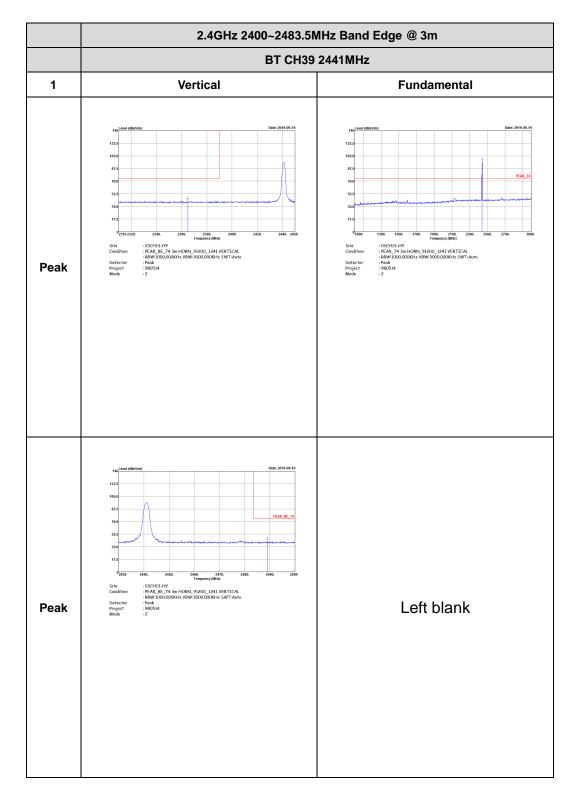

2.4GHz 2400~2483.5MHz

Report No.: FR980514A

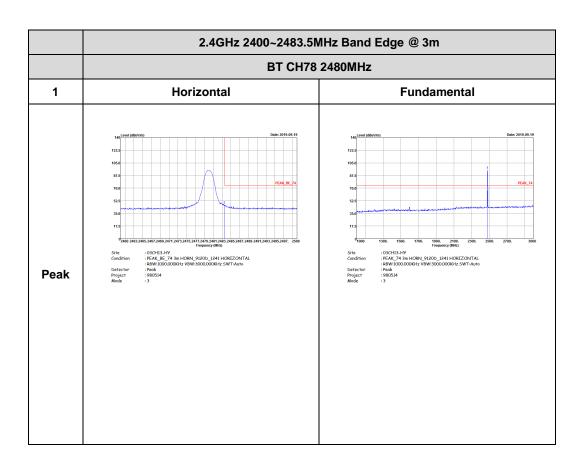
BT (Band Edge @ 3m)

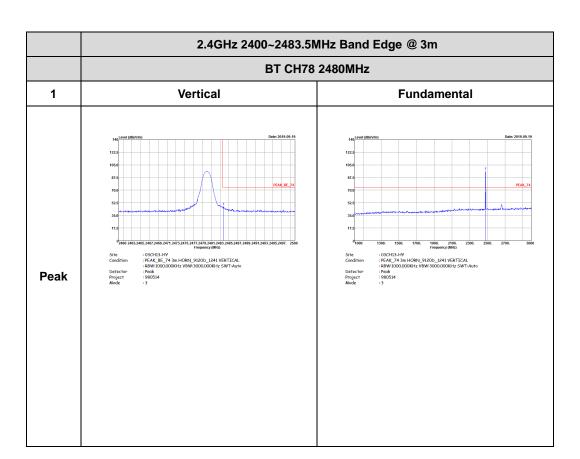


TEL: 886-3-327-3456 Page Number : D2 of D11



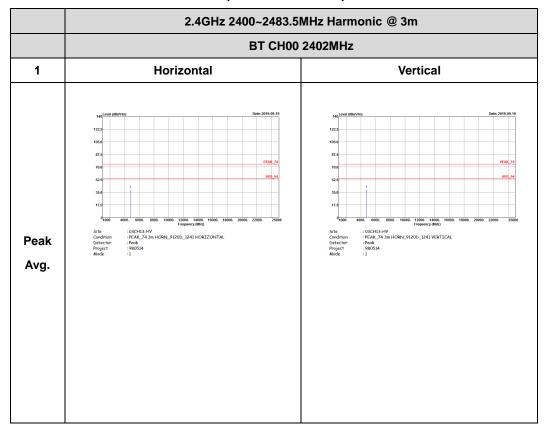
TEL: 886-3-327-3456 Page Number: D3 of D11



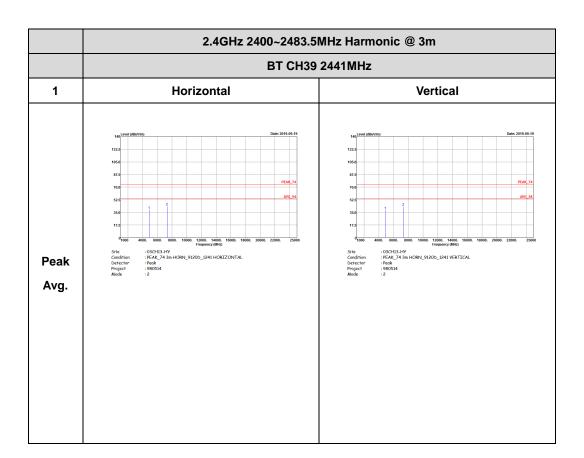

: D4 of D11 TEL: 886-3-327-3456 Page Number

: D5 of D11 TEL: 886-3-327-3456 Page Number

TEL: 886-3-327-3456 Page Number : D6 of D11



TEL: 886-3-327-3456 Page Number : D7 of D11


2.4GHz 2400~2483.5MHz

Report No.: FR980514A

BT (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number : D8 of D11

TEL: 886-3-327-3456 Page Number : D9 of D11

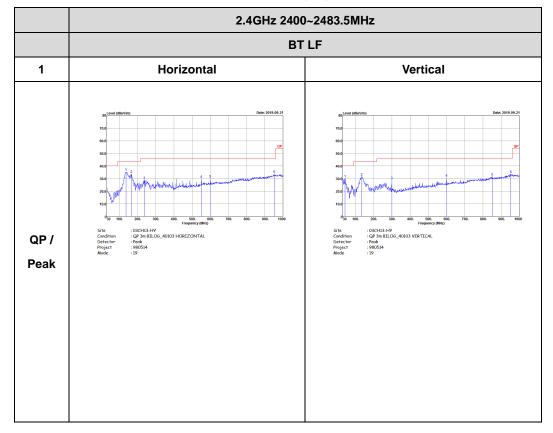
Peak

Peak

Avg.

Avg.

###

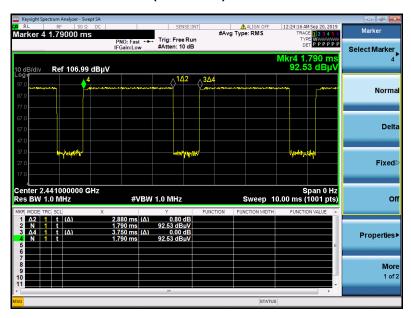

Report No.: FR980514A

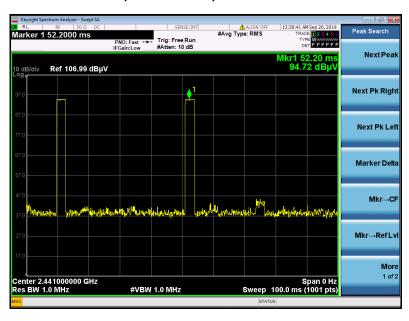
TEL: 886-3-327-3456 Page Number : D10 of D11

Emission below 1GHz

Report No.: FR980514A

2.4GHz BT (LF)


TEL: 886-3-327-3456 Page Number : D11 of D11


Appendix E. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 39

Report No.: FR980514A

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. **3DH5** has the highest duty cycle worst case and is reported.

TEL: 886-3-327-3456 Page Number : E1 ofE2

FCC RADIO TEST REPORT

Duty Cycle Correction Factor Consideration for AFH mode:

Report No.: FR980514A

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.76 \text{ ms/}100\text{ms}) = -24.79 \text{ dB}$

TEL: 886-3-327-3456 Page Number : E2 ofE2