

Test report no. : 220131-4

Item tested : SC14SPNODE / SC14CVMDECT

www.nemko.com

Type of equipment : UPCS Module

FCC ID : Y82-SC14S

Client : Dialog Semiconductor B.V.

FCC Part 15, subpart D

Isochronous UPCS Device 1920 - 1930 MHz

Industry Canada RSS-213, Issue 2

2 GHz Licence-exempt Personal Communications Service Devices (LE-PCS)

21 August 2013

hanthakimr. Authorized by : . G. Suhanthakumar Technical Verificator

CONTENTS

1	GENERAL INFORMATION	3
1.1	Testhouse Info	
1.2	Client Information	
1.3	Manufacturer (if other than client)	3
•		
2	TEST INFORMATION	
2.1	Tested Item	
2.2	Description of Tested Device	
2.3	Exposure Evaluation	
2.4	Test Environment	
2.5	Test Period	
2.6	Test Engineer(s)	
2.7	Test Equipment	
2.8	Other Comments	
3	TEST REPORT SUMMARY	6
3.1	General	6
3.2	Test Summary	
	•	
4	TEST RESULTS	
4.1	Power Line Conducted Emissions	
4.2	Coordination with fixed microwave	
4.3	Digital Modulation Techniques	
4.4	Labeling Requirements	
4.5	Antenna Requirement	
4.6	Channel Frequencies	11
4.7	Automatic Discontinuation of Transmission	12
4.8	Peak Power Output	13
4.9	Emission Bandwidth B	18
4.10	Power Spectral Density	
4.11	In-Band Unwanted Emissions, Conducted	24
4.12	Out-of-band Emissions, Conducted	
4.13	Carrier Frequency Stability	
4.14 4.15	Frame Repetition Stability Frame Period and Jitter	
4.15	Monitoring Threshold, Least Interfered Channel	
4.10	Threshold Monitoring Bandwidth	
4.17	Reaction Time and Monitoring Interval	
4.18	Time and Spectrum Window Access Procedure	
4.19	Acknowledgements and Transmission Duration	/11
4.20	Dual Access Criteria Check	/12
4.21	Alternative Monitoring Interval	43
4.22		
5	TEST SETUPS	
5.1	Frequency Measurements	
5.2	Timing Measurements	48
5.3	Conducted Emission Test	48
5.4	Monitoring Tests	49
5.5	Radiated Emissions Test, Fully Anechoic Chamber	50
6	TEST EQUIPMENT USED	E1
o	IESI EQUIFMENI USED	51

1 GENERAL INFORMATION

1.1 Testhouse Info

Name :	Nemko AS
Address :	Nemko Kjeller Instituttveien 6 N-2007 Kjeller, NORWAY
Telephone :	+47 64 84 57 00
Fax :	+47 64 84 57 05
E-mail:	comlab@nemko.com
FCC test firm registration # :	994405
IC OATS registration # :	2040D-1
Total Number of Pages:	51

1.2 Client Information

Name :	Dialog Semiconductor B.V.
Address :	Het Zuiderkruis 53, 5215MV, 's-Hertogenbosch, The Netherlands
Contact:	

Name :Frank van den DungenTelephone :+31 73 64 08 249E-mail :frank.van.den.dungen@diasemi.com

1.3 Manufacturer (if other than client)

Same as client.

2 Test Information

2.1 Tested Item

Name :	Dialog Semiconductor
Model name :	SC14SPNODE / SC14CVMDECT
FCC ID :	Y82-SC14S
Industry Canada ID :	9576A-SC14S
Serial number :	/
Hardware identity and/or version:	SF01
Software identity and/or version :	001
Tested to IC Radio Standard (RSS) :	RSS-213 Issue 2, RSS-GEN Issue 3
Test Site IC Reg. Number :	IC 2040D-1
Frequency Range :	1921.536 – 1928.448 MHz
Number of Channels :	5 RF Channels, 5x12 = 60 TDMA Duplex Channels
Type of Modulation :	Digital (Gaussian Frequency Shift Keying)
Conducted Output Power :	100 mW (Peak)
Antenna Connector :	None
Number of Antennas :	1 (Internal PCB Antenna)
Antenna Diversity Supported :	No

2.2 Description of Tested Device

The EUT is a DECT ULE module and will then usually operate in DECT Handset mode, and is an initiating device as described in ANSI C63.17 and is designed to operate together with a DECT fixed part (i.e. a base station), which is the responding device.

The EUT may also be operated in Fixed Part Mode, therefore tests to cover this mode were also performed.

2.3 Exposure Evaluation

The EUT is a portable device and may be held to ear or worn in a belt clip when used. A test reports with the measured SAR values for both configurations are submitted with the application.

2.4 Test Environment

Temperature:	20 – 26 °C
Relative humidity:	20 – 45 %
Normal test voltage:	3.0 V DC

All tests were performed with the EUT powered from a primary battery (1xCR2 Lithium cell). Frequency Stability with voltage variations was tested with an external regulated power supply.

Power Line Conducted Emissions were tested with an AC Adaptor.

The values are the limit registered during the test period.

2.5 Test Period

 Item received date:
 2012-10-29

 Test period :
 from 2012-11-08 to 2013-03-14 and 2013-07-22

2.6 Test Engineer(s)

Frode Sveinsen

2.7 Test Equipment

See list of test equipment in clause 6.

2.8 Other Comments

The Monitoring and Time and Spectrum Window Access tests were performed with Test Set-Up 6 (Ref. clause 5). A clock signal from the companion device was used to synchronize the Pulse Pattern Generator and the Spectrum Analyzer to the start of the DECT time window. The EUT was limited by administrative commands to operate on only two frequency carriers. For the tests where the EUT was required to operate on only one frequency carrier was blocked by applying a CW interfering signal from RF Generator 3. The Pulse Pattern Generator was used to apply time synchronized interference to time windows where this was required.

Since the EUT was programmed to operate on only two RF carriers, it was only necessary with two RF generators for the monitoring tests, however a third generator was applied for the tests that required specific time slots to be blocked.

This EUT supports Least Interfered Channel procedure (LIC), the Monitoring and Time and Spectrum Window Access tests were conducted as specified for EUTs that support LIC procedure.

All tests except Antenna Gain was performed in conducted mode with a temporary antenna connector.

Power line Conducted Emissions covers the module and the test board.

3 TEST REPORT SUMMARY

3.1 General

All measurements are traceable to national standards.

The tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC CFR47 Part 15D for Isochronous UPCS Devices and Industry Canada RSS-213 Issue 2 / RSS-GEN Issue 3.

All tests were conducted is accordance with ANSI C63.4-2009 and ANSI C63.17-2006. Antenna Gain tests were made in a 3m fully-anechoic chamber.

A description of the test facility is on file with the FCC and Industry Canada.

New Submission

Production Unit

Pre-production Unit

Class II Permissive Change

PUE Equipment Code

Family Listing

THIS TEST REPORT APPLIES ONLY TO THE ITEM(S) AND CONFIGURATIONS TESTED.

Deviations from, additions to, or exclusions from the test specifications are described in "Summary of Test Data".

TEST REPORT NO: 220131-4

TESTED BY : TVG de Svare

Frode Sveinsen, Chief Enginerer

DATE: 24 July 2013

Nemko Group authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any reproduction of parts of this report requires approval in writing from Nemko Group.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Group accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

3.2 Test Summary

Name of test	FCC CFR 47 Paragraph #	IC RSS-213 Paragraph #	Verdict	
Coordination with fixed microwave	15.307(b)	N/A	Complies	
Digital Modulation Techniques	15.319(b)	6.1	Complies	
Labeling requirements	15.19(a)(3)	3 RSS-GEN 5.2	Complies	
Antenna Requirement	15.317, 15.203	RSS-GEN 7.1.2	Complies	
Power Line Conducted Emission	15.107(a) 15.207(a)	6.3 RSS-GEN 7.2.2	Complies	
Emission Bandwidth	15.323(a)	6.4	Complies	
In-band emissions	15.323(d)	6.7.2	Complies	
Out-of-band emissions	15.323(d)	6.7.1	Complies	
Output Power and Antenna Gain	15.319(c)(e), 15.31(e)	6.5 and 4.1(e)	Complies	
Power Spectral Density	15.319(d)	4.3.2.1	Complies	
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies	
Carrier frequency stability	15.323(f)	6.2	Complies	
Frame repetition stability	15.323(e)	4.3.4(c)	Complies	
Frame period and jitter	15.323(e)	4.3.4(c)	Complies	
Monitoring threshold, Least interfered channel	15.323(c)(2);(5); (9)	4.3.4(b)	Complies	
Monitoring of intended transmit window and maximum reaction time	15.323(c)(1)	4.3.4(b)	Complies	
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4(b)	Complies	
Reaction time and monitoring interval	15.323(c)(1);(5); (7)	4.3.4(b)	Complies	
Access criteria test interval	15.323(c)(4);(6)	4.3.4(b)	Complies	
Access Criteria functional test	15.323(c)(4);(6)	4.3.4(b)	Complies	
Acknowledgements	15.323(c)(4)	4.3.4(b)	Complies	
Transmission duration	15.323(c)(3)	4.3.4(b)	Complies	
Dual access criteria	15.323(c)(10)	4.3.4(b)	Complies	
Alterative monitoring interval	15.323(c)(10);(11)	4.3.4(b)	N/A ¹	
Spurious Emissions (Radiated)	15.319(g) 15.109(a) 15.209(a)	4.3.3 RSS-GEN 7.2.3	N/A ²	

¹ The client declares that the tested equipment does not implement this provision

 $^{\rm 2}$ Not required if the Conducted Out-of-Band Emissions test is Passed

4 TEST RESULTS

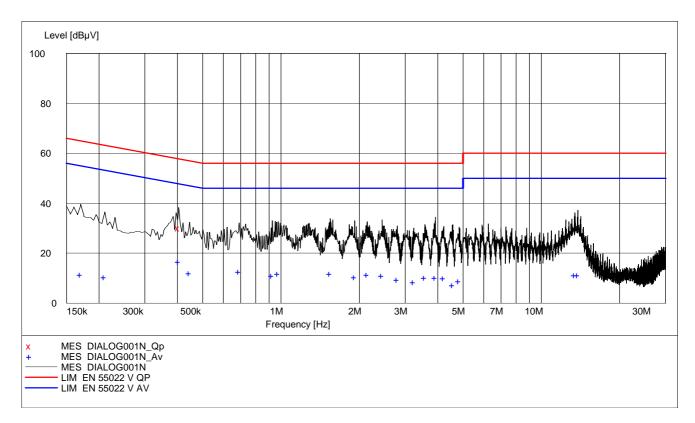
4.1 **Power Line Conducted Emissions**

Para. No.: 15.207 (a)

Test Performed By: Jan G. Eriksen

Date of Test: 23 Jul 2013

Measurement procedure:	ANSI C63.4-2009 using 50 $\mu\text{H}/\text{50}$ ohms LISN.
Test Results:	Complies
Measurement Data:	See attached graph, (Peak detector).


Highest measured value (L1 and N):

Transmitting:

Frequency	Level	Af	Limit	Margin	Det	Position	Verdict
[MHz]	[dBuV]	[dB]	[dBuV]	[dB]			[Pass/Fail]
0.405000	30.00	10.20	57.80	27.80	QP	Ν	Pass
0.170000	11.40	10.10	55.00	43.60	AV	L1	Pass
0.210000	10.60	10.10	53.20	42.60	AV	L1	Pass
0.405000	16.60	10.20	47.80	31.20	AV	Ν	Pass
0.445000	12.10	10.20	47.00	34.90	AV	Ν	Pass
0.690000	12.70	10.20	46.00	33.30	AV	Ν	Pass
0.925000	11.00	10.20	46.00	35.00	AV	Ν	Pass
0.975000	11.80	10.20	46.00	34.20	AV	Ν	Pass
1.545000	11.80	10.20	46.00	34.20	AV	Ν	Pass
1.920000	10.50	10.20	46.00	35.50	AV	Ν	Pass
2.145000	11.40	10.30	46.00	34.60	AV	Ν	Pass
2.445000	11.10	10.30	46.00	34.90	AV	Ν	Pass
2.795000	9.40	10.30	46.00	36.60	AV	Ν	Pass
3.235000	8.50	10.30	46.00	37.50	AV	Ν	Pass
3.570000	10.40	10.30	46.00	35.60	AV	Ν	Pass
3.915000	10.30	10.40	46.00	35.70	AV	Ν	Pass
4.215000	10.10	10.40	46.00	35.90	AV	Ν	Pass
4.565000	7.40	10.40	46.00	38.60	AV	Ν	Pass
4.825000	8.90	10.40	46.00	37.10	AV	Ν	Pass
13.450000	11.30	10.70	50.00	38.70	AV	Ν	Pass
13.815000	11.30	10.80	50.00	38.70	AV	Ν	Pass

Tested with AC Adaptor Model: SW4310, 120 V AC, 60 Hz.

EUT Transmitting

4.2 Coordination with fixed microwave

The affidavit from UTAM, Inc. is included in the documentation supplied by the applicant:				
⊠ Yes	□ No			

Requirement, FCC 15.307 (b):

Each application for certification of equipment operating under the provisions of this Subpart must be accompanied by an affidavit from UTAM, Inc. certifying that the applicant is a participating member of UTAM, Inc. In the event a grantee fails to fulfill the obligations attendant to participation in UTAM, Inc., the Commission may invoke administrative sanctions as necessary to preclude continued marketing and installation of devices covered by the grant of certification, including but not limited to revoking certification.

4.3 Digital Modulation Techniques

The EUT uses Multi Carrier / Time Division Multiple Access / Time Division Duplex and Digital GFSK modulation. For further details see the operational description provided by the applicant.

Requirement, FCC 15.319(b):

All transmissions must use only digital modulation techniques.

4.4 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirements FCC 15.19

The FCC Identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is too small:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

4.5 Antenna Requirement

Does the EUT have detachable antenna(s)?

🗌 Yes 🛛 🖾 No

🗌 No

Yes

If detachable, is the antenna connector(s) non-standard?

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Requirement: FCC 15.203, 15.204, 15.317.

4.6 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.303 (d), (g)

Within 1920 -1930 MHz band for isochronous devices.

4.7 Automatic Discontinuation of Transmission

Does the EUT transmit Control and	YES	NO	
TYPE OF EUT ¹ :			NDING DEVICE

¹ When in Handset mode the EUT is an Initiating Device and does NOT transmit Control and Signaling information. In Base station Mode the EUT is a Responding Device and does transmit Control and Signaling Information.

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction		Verdict
		Operatin	Operating Mode	
		Handset	Base	
1	Power removed from the EUT	С	A	Pass
2	EUT Switch Off	N/A	N/A	Pass
3	Hook-On by companion device	N/A	В	Pass
4	Hook-On by EUT	С	N/A	Pass
5	Power Removed from Companion Device	A	В	Pass
6	Companion Device Switch Off	N/A	N/A	Pass

A - Connection breakdown, Cease of all transmissions

- B Connection breakdown, EUT transmits control and signaling information
- C Connection breakdown, Companion Device transmits control and signaling information
- N/A Not Applicable (the EUT does not have an on/off switch and cannot perform Hook-On when operating in Base station Mode)

Requirements, FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

4.8 Peak Power Output

Test Method:

ANSI C63.17, clause 6.1.2.

Test Results: Complies

Measurement Data:

Maximum Conducted Output Power

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Radiated Output Power (dBm)	Maximum Antenna Gain (dBi)
4	1921.536	20.0	15.6	-4.4
2	1924.992	20.0	15.7	-4.3
0	1928.448	20.0	16.5	-3.5

Substitution:

Frequency MHz	Measured value dBm	Subst. Gen. (incl. corr.) dBm	Attenuator and Cable dB	Gain Subst. Antenna dB	Result dBm
1921.536	14.7	21.3	-14.0	8.3	15.6
1924.992	14.6	21.4	-14.0	8.3	15.7
1928.448	15.4	22.2	-14.0	8.3	16.5

Result = Subst.Gen. + Attenuator + Cable + Antenna Gain

Limit:

Conducted: 100 μ W x SQRT(*B*) where *B* is the measured Emission Bandwidth in Hz

FCC 15.319(c)(e): 20.8 dBm (120 mW)

RSS-213, Issue 2: 20.4 dBm (110 mW)

The antenna gain is below 3 dBi, no reduction in transmit power is necessary.

Requirements, FCC 15.319(c)(e), RSS-213, Issue 2

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.

The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

Conducted Peak Output Power

20 dm 1.500 µs 10 dm 1.500 µs 0 dm 1.500 µs 10 dm 1.500 µs 0 dm 1.500 µs 10 dm 1.500 µs </th <th>MultiView</th> <th>Spectrum</th> <th><u> </u></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	MultiView	Spectrum	<u> </u>							
TR0-EFP(GHz) 1 Diamon Power 1 Pic Max 11 10 dBm M1[1] 20.00 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm <th></th>										
1 Ime Domain Power ••19k Max 0 dbm M1[1] 20.00 dbm 10 dbm 0 0 0 0 -10 dbm 0 0 0 0 0 -10 dbm 0 0 0 0 0 0 -10 dbm 0 0 0 0 0 0 0 -20 dbm 0 0 0 0 0 0 0 0 -20 dbm 0 </th <th></th> <th></th> <th>000 μο 10</th> <th>1011112</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			000 μο 10	1011112						
20 dm	1 Time Domain	n Power								
20 dm							M1[1]			
10 dBm Image: standard standa		11						1	1	1.500 µs
0 dBm Image: Second	20 dBm	ſ						-		
0 dBm Image: Second										
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -4	10 dBm									
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -4										
-20 dBm	0 dBm									
-20 dBm										
-30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70	-10 dBm									
-30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70										
-40 dBm	-20 dBm									
-40 dBm										
-40 dBm	-30 dBm									
-50 dBm										
-50 dBm	-40 dBm									
-50 dBm -50 dBm Image: Constraint of the second s	alblen popul rate								Uner	ally hymr your about
-60 dBm -60 dBm Image: CF 1.921536 GHz 1001 pts 50.0 μs/ 2 Marker Table Type Ref Trc Stimulus Response Function Function Result M1 1 1.5 μs 20.00 dBm TD Pow Peak 20.00 dBm 29.11.2012										
CF 1.921536 GHz 1001 pts 50.0 µs/ 2 Marker Table Type Ref Trc Stimulus Response Function Function Result M1 1 1.5 µs 20.00 dBm TD Pow Peak 20.00 dBm 29.11.2012	-50 dBm									
CF 1.921536 GHz 1001 pts 50.0 µs/ 2 Marker Table Type Ref Trc Stimulus Response Function Function Result M1 1 1.5 µs 20.00 dBm TD Pow Peak 20.00 dBm 29.11.2012										
2 Marker Table Type Ref Trc Stimulus Response Function Function Result M1 1 1.5 μs 20.00 dBm TD Pow Peak 20.00 dBm 29.11.2012	-60 dBm									
2 Marker Table Type Ref Trc Stimulus Response Function Function Result M1 1 1.5 μs 20.00 dBm TD Pow Peak 20.00 dBm 29.11.2012										
2 Marker Table Type Ref Trc Stimulus Response Function Function Result M1 1 1.5 μs 20.00 dBm TD Pow Peak 20.00 dBm 29.11.2012	CF 1.921536 G	GHz			1001	l pts				50.0 µs/
M1 1 1.5 μs 20.00 dBm TD Pow Peak 20.00 dBm 29.11.2012										
29.11.2012					Response			F	unction Result	
29.11.2012	M1	1	1.5 µs		20.00 dBm	TD Pow F	'eak		20.00 dBm	
Measuring 16:03:34		/						Measuring		

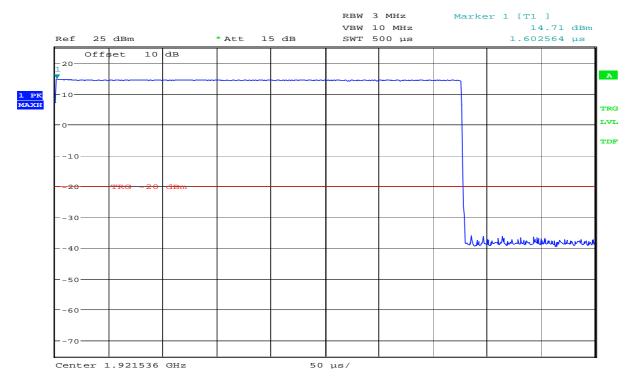
Date: 29.NOV.2012 16:03:34

Lower Channel

Time Domain Power • 1Pk Max N1 19.96 dBm 00 dBm 1.500 µs .0 dBm	MultiView	B Spectrum							
TIRE Domain Power •• 1Pk Max 10 dBm •• 10 0 dBm •• 10 10 dBm •• 10 20 dBm •• 10 50 dBm •• 10 60 dBm •• 10									
N1 M1[1] 19.96 dBm 0 dBm Image: Second	TRG:RFP(8GHz		500 µs VBW	10 14112					
10 dm 1.500 µs 10 dm 1.500 µs </td <td>1 Time Domair</td> <td>Power</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1 Time Domair	Power							
20 dBm						MILI			
10 dm Image: state s	20 dBm								
10 dm Image: state s									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 dBm								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
20 dBm Image: Sector of the sector of th	0 dBm								
20 dBm Image: Sector of the sector of th									
30 dBm 30 dBm Image: Sector of the sect	-10 dBm								
30 dBm 30 dBm Image: Sector of the sect									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-20 dBm								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
MUMINIAN Image: Solution of the	-30 dBm								
۱۳۵ ۱ ۱۳۵									
S0 dBm Image: Big in the second s	-40 dBm							hunter	limitetulitraport
60 dBm									
	-50 UBM								
	-60 dBm								
F 1.928448 GHz 1001 pts 50.0 us/	-00 0011								
F 1.928448 GHz 50.0 us/									
	CF 1.928448 C 2 Marker Tabl				1001 pts				50.0 μs/
Type Ref Trc Stimulus Response Function Function Result			Stimulus	Res	ponse	Function	F	unction Result	
M1 1 1.5 μs 19.96 dBm TD Pow Peak 19.96 dBm			1.5 µs	19.9	6 dBm TD		1	19.96 dBm	
Measuring 444 29.11.2012 16:02:59							Measuring 🕻		29.11.2012 16:02:59

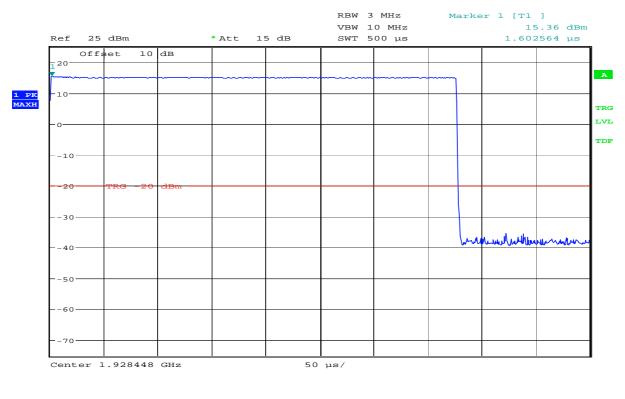
Date: 29.NOV.2012 16:02:59

Upper Channel

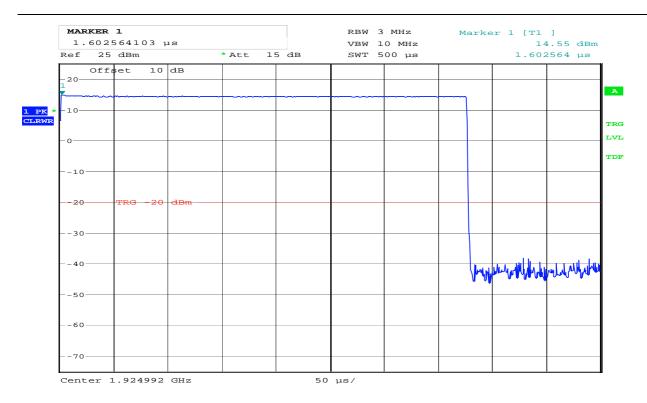

MultiView 8	Spectrum								
Ref Level 30.3 Att TRG:RFP(8GHz)	30 dB 🕳 SWT	t 0.30 dB 🖷 RBV 500 µs VBV	VI 3 MHz VI 0 MHz						
1 Time Domain	Power								●1Pk Max
N						M1[1]	1		19.96 dBm 1.500 µs
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm								Yun.	per mar hallower man
-50 dBm									
-60 dBm									
CF 1.924992 G				1001	. pts				50.0 µs/
2 Marker Table									
	Trc	Stimulus		Response 19.96 dBm		iction		Function Result	
M1	1	1.5 µs		19.96 dBm	TD Pow P	eak		19.96 dBm	
							Measuring	()	29.11.2012 16:00:12

Date: 29.NOV.2012 16:00:12

Middle Channel



Radiated Peak Output Power


Date: 30.NOV.2012 14:55:27

Lower Channel (Max: EUT H, HP)

Date: 30.NOV.2012 14:41:30 Upper Channel (Max: EUT H, HP)

Date: 30.NOV.2012 15:01:11

Middle Channel (Max: EUT H, HP)

4.9 Emission Bandwidth *B*

Test Method:

ANSI C63.17, clause 6.1.3.

Test Results: Complies

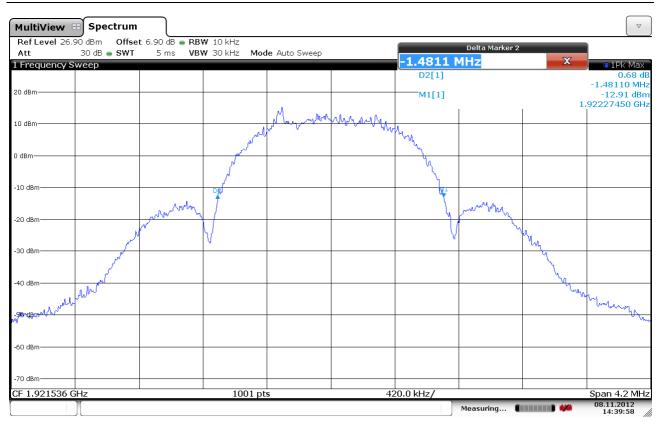
Measurement Data:

Channel No.	Frequency (MHz)	26 dB Bandwidth <i>B</i> (kHz)
4	1921.536	1481.1
0	1928.448	1460.1

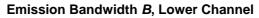
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)
2	1924.992	1216.8

Channel No.	Frequency (MHz)	6 dB Bandwidth (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency (MHz)	12 dB Bandwidth (kHz)
Channel No. 4		

Requirements, FCC 15.323(a)

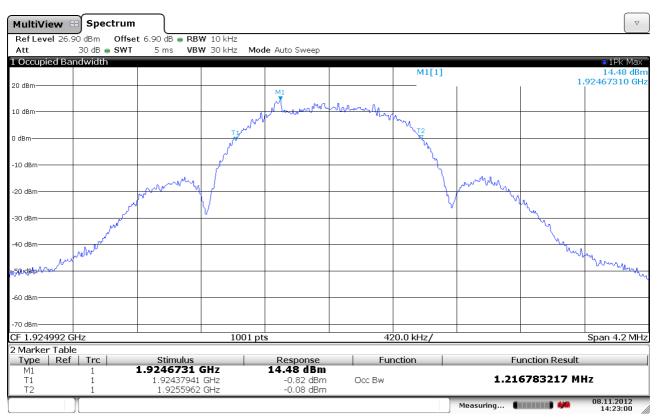

The 26 dB Bandwidth *B* shall be larger than 50 kHz and less than 2.5 MHz.

Requirements, RSS-213 Issue 2, clause 6.4


The 99% Bandwidth shall be larger than 50 kHz and less than 2.5 MHz.


No requirements for 6 and 12 dB Bandwidth, these values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).

Date: 8.NOV.2012 14:39:59



Date: 8.NOV.2012 14:37:37

Emission Bandwidth B, Upper Channel

Date: 8.NOV.2012 14:23:00

4.10 Power Spectral Density

Test Method:

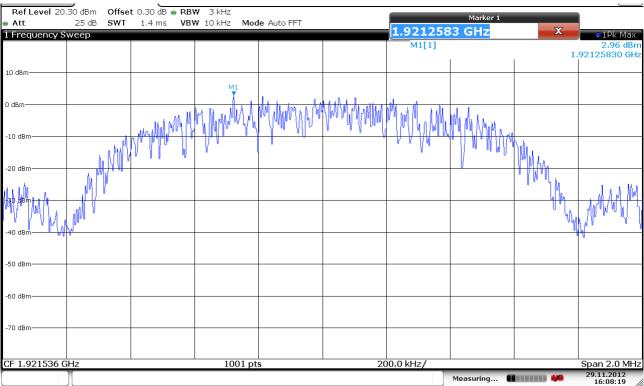
ANSI C63.17, clause 6.1.5.

Test Results: Complies

Measurement Data:

Channel No.	Frequency (MHz)	Power Spectral Density (dBm)
4	1921.536	2.8
0	1928.448	2.5

Averaged over 1000 sweeps.


Requirements, FCC 15.319(d)

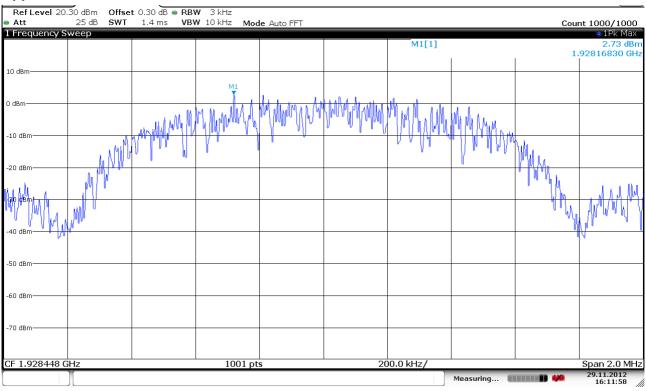
The Power Spectral Density shall be less than 3 mW (4.77 dBm) when averaged over at least 100 sweeps.

Averaged, 1000 Sweeps

Date: 29.NOV.2012 16:09:49

Overview								
Ref Level 20.30 d Att 25 TRG:VID	Bm Offset dB e SWT	0.30 dB • RB 1 ms VB					Cour	nt 1000/1000
1 Zero Span					M1[1]	1	1	●1Sa Avg 2.81 dBm 379.000 µs
10 dBm			 M1					
0 dBm			 					
-10 dBm								
	-29.700 dBm							
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
			1001					100.0
CF 1.9212583 GHz			1001	l pts		Measuring 🜗	•••	100.0 μs/ 29.11.2012 16:09:49

Date: 29.NOV.2012 16:08:19


Lower Channel:

Power Spectral Density

Marker 1

Upper Channel:

Date: 29.NOV.2012 16:11:58

Overview

Att TRG:VID	25 dB 🖷 SWT	ıms v	BW 10 kHz				Cour	nt 1000/1000
Zero Span			-					●1Sa Avg
						M1[1]		2.54 dB 387.000 µ
) dBm								
				M1				
dBm								
0 dBm								L
D dBm								
D dBm-	TRG -29.700 dBm-							
) dBm								
) dBm								
) dBm								
								\mathbf{A}
D dBm								
1.928168	3 GHz			100	1 pts			100.0 µ

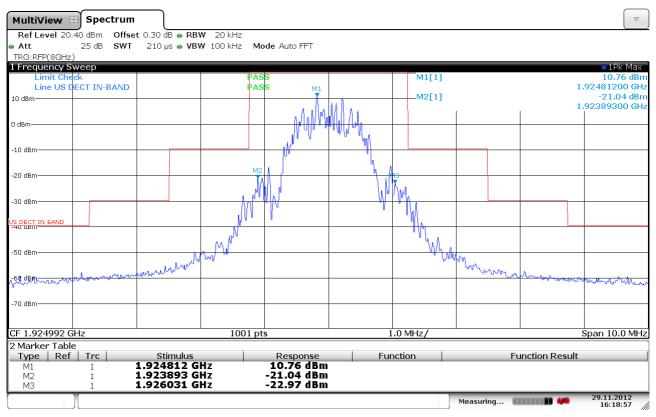
Date: 29.NOV.2012 16:13:54

Averaged, 1000 Sweeps

4.11 In-Band Unwanted Emissions, Conducted

Test Method:

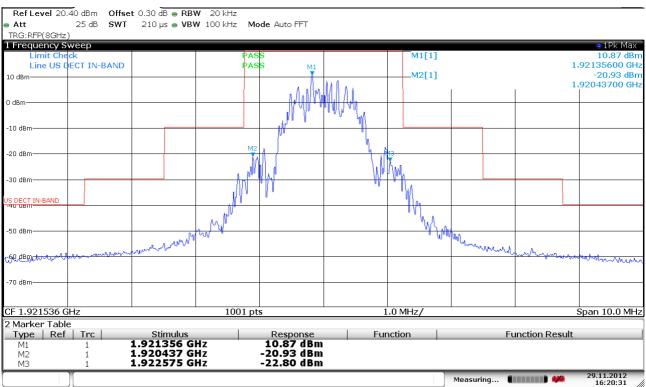
ANSI C63.17, clause 6.1.6.1.


Test Results: Complies

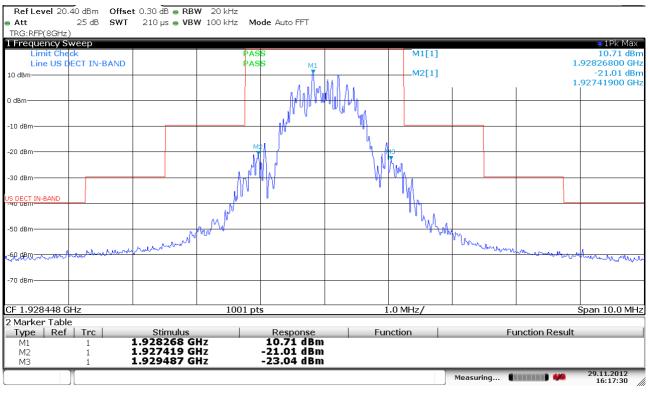
Measurement Data:

See plots.

Requirements, FCC 15.323(d):


 $B < f \le 2B$:at least 30 dB below max. permitted peak power $2B < f \le 3B$:at least 50 dB below max. permitted peak power $3B < f \le$ UPCS Band Edge : at least 60 dB below max. permitted peak power

Date: 29.NOV.2012 16:18:56


Middle Channel

In-Band Unwanted Emissions, Conducted

Date: 29.NOV.2012 16:20:31

Lower Channel

Date: 29.NOV.2012 16:17:29

Upper Channel

4.12 Out-of-band Emissions, Conducted

Test Method:

ANSI C63.17, clause 6.1.6.2.

Test Results: Complies

Measurement Data:

See plots.

Requirements, FCC 15.323(d):

$f \le 1.25$ MHz outside UPCS band :	≤ -9.5dBm
1.25 MHz $\leq f \leq 2.5$ MHz outside UPCS band :	≤ -29.5 dBm
$f \ge 2.5$ MHz outside UPCS band :	≤ -39.5 dBm

Out-of-Band Emissions, Conducted

Lower Channel:

MultiView 😁 Spectrum	L L							
Ref Level 10.30 dBm Offse Att 30 dB SWT I Frequency Sweep		₩ 20 kHz ₩ 100 kHz Mo	de Auto FFT					●1Pk Max
Limit Check Line US DECT OUT-OF-B	AND	PAS PAS			M1[1]		1	-61.14 dBm 1.500 MHz
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
US DECT OUT-OF-BAND								
-50 dBm								
1 r-60 dBm								
Web UB motor down when the west whether	and the work of the second	allimbaracharangeageageageageageageageageageageageageag	how have a second and have	ungentradiatedarya	KMM Mother manufacture at the	al free way to the second	when which have a provided in the second sec	you and when with
-80 dBm								
Start 1.0 MHz		1001 pts	5	99	9.9 MHz/			Stop 1.0 GHz
						Measuring 🔳		29.11.2012 16:28:42

Date: 29.NOV.2012 16:28:42

Out-of-Band Emissions, Conducted

Lower Channel:

		anner:								
Mul	tiView	🗄 Spectrum	ı)							
Ref	Level 10		et 0.30 dB 🖷 RE							
Att			11.8 ms 👄 VE	3W 100 kHz Mo	ode Auto FFT					
1 Fre	quency S			PAS	S		M1[1]			1Pk Max -67.94 dBm
		DECT OUT-OF-E	BAND	PAS						1.854600 GHz
0 dBm										
10 40										
-10 dB	m									
-20 dB	m									
-30 dB	m									
	T OUT-OF-BA	NID								
OS DEC	.1 001-01-04									
E0 d0	-									
-50 dB										
-60 dB	m									
										M1
-70 dB	man and the	اللايدية والمسلم	and the set of A	pundulutry	Area and AntirAction of	warding to be the down	ater my share my	Mr. Haller	Million and address of the	Hide Manuel
with with	www.any	horeadhreananan	ware allowed and all	Martin and a construction	In the second second second	1	0 (Jn (10 - 100		and the second	WW MWW
-80 dB	m									
00 40										
Start	: 1.0 GHz			1001 pt	S	9	0.0 MHz/			Stop 1.9 GHz
		Л						Measuring 🔳		29.11.2012 16:28:04
Date: 2	29.NOV.20	12 16:28:04								
Mul	tiView 🛛	Spectrum	n set 0.30 dB ● RI	3W 20 kHz						
Mul Ref • Att	tiView	Spectrum 0.30 dBm Offe 30 dB • SW	set 0.30 dB = RI	3W 20 kHz 3W 100 kHz M	ode Auto FFT					
Mul Ref • Att	tiView Level 10	Spectrum .30 dBm Offe 30 dB SW Sweep	set 0.30 dB = RI	3W 100 kHz M			M1[1]			●1Pk Max
Mul Ref • Att	tiView Level 10 quency S Limit Cho	Spectrum .30 dBm Offe 30 dB SW Sweep	set 0.30 dB ● RI T 1 ms ● VE		S		M1[1]			
Mul Ref • Att	tiView Level 10 quency S Limit Cho Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]		:	●1Pk Max -42.51 dBm
Mul Ref Att	tiView Level 10 quency S Limit Cho Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul Ref Att I Fre	tiView Level 10 Quency S Limit Che Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul Ref Att	tiView Level 10 Quency S Limit Che Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul Ref Att 1 Fre	tiView E Level 10 quency S Limit Ch Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul Ref Att I Fre	tiView E Level 10 quency S Limit Ch Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul Ref Att 1 Fre	tiView E Level 10 quency S Limit Ch Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul Ref Att 1 Fre	tiView Level 10 quency S Limit Ch Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul Ref Att 1 Fre 0 dBm -10 dB	tiView Level 10 quency S Limit Ch Line US I	Spectrum .30 dBm Offe 30 dB • SW Sweep ck	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul: Ref Att 1 Fre 0 dBm -10 dB -20 dB	tiView i Level 10 quency S Limit Che Line US I m m	Spectrun .30 dBm Offs 30 dB SW Weep eck ECT OUT-OF-E	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul: Ref Att 1 Fre 0 dBm -10 dB -20 dB	tiView Level 10 quency S Limit Ch Line US I	Spectrun .30 dBm Offs 30 dB SW Weep eck ECT OUT-OF-E	set 0.30 dB ● RI T 1 ms ● VE	3W 100 kHz M	S		M1[1]			●1Pk Max -42.51 dBm
Mul Ref Attt 1 Free -10 dBm -20 dB -30 dB	tiView 10 Level 10 quency S Limit Ch Line US I m m m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	S					• 1Pk Max -42.51 dBm 1.9199900 GHz
Mul: Ref Att 1 Fre 0 dBm -10 dB -20 dB	tiView 10 Level 10 quency S Limit Ch Line US I m m m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	S					• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref • Att 1 Fre 0 dBm -10 dB -20 dB -30 dB US DEC	tiView 10 Level 10 quency S Limit Ch Line US I m m m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	S					• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref 0 Att 1 Fre -10 dB -20 dB -30 dB US DEC -50 dB	tiView 10 Level 10 quency S Limit Ch Line US I m m m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	S	- M				• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref Att 1 Fre 0 dBm -10 dB -20 dB -30 dB -30 dB -50 dB -50 dB	tiView 10 Level 10 quency S Limit Ch Line US I m m m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	S					• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref 0 Att 1 Fre -10 dB -20 dB -30 dB US DEC -50 dB	tiView 10 Level 10 quency S Limit Ch Line US I m m m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	S					• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref Att 1 Fre 0 dBm -10 dB -20 dB -30 dB -30 dB -50 dB -50 dB	tiView 10 Level 10 quency S Limit Ch Line US I m m m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	S			yunnum		• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref Att 1 Fre 0 dBm -10 dB -20 dB -30 dB -30 dB -50 dB -50 dB	tiView Level 10 quency S Limit Ch Line US I m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M	S	erence when the				• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref - Att I Fre -10 dB -20 dB -30 dB -30 dB -50 dB -50 dB -60 dB -70 dB	tiView Level 10 quency S Limit Ch Line US I m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	S					• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref Att 1 Free 0 dBm -10 dB -20 dB -30 dB -30 dB -50 dB -50 dB -60 dB -70 dB	tiView files and the second se	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M. PAS PAS	s s www.www.www.www.www.www.www.www.www.		Muhhmmm		Murran	• 1Pk Max -42.51 dBm 1.9199900 GHz
Muli Ref Att 1 Free 0 dBm -10 dB -20 dB -30 dB -30 dB -50 dB -50 dB -60 dB -70 dB	tiView Level 10 quency S Limit Ch Line US I m m TOUT-OF-B/	Spectrum .30 dBm Offe 30 dB • SW weep ck FECT OUT-OF-E	set 0.30 dB = Rt	3W 100 kHz M PAS PAS	s s www.www.www.www.www.www.www.www.www.				Murran	• 1Pk Max -42.51 dBm 1.9199900 GHz

Date: 29.NOV.2012 16:26:52

Out-of-Band Emissions, Conducted

Upper Channel:

MultiView 🗄 Spectrum			
Ref Level 10.30 dBm Offset 0.30 dB			
● Att 30 dB SWT 419 µs ● 1 Frequency Sweep	• VBW 100 kHz Mode Auto FFT		• 1Pk Max
Limit Check	PASS	M1[1]	-42.41 dBm
Line US DECT OUT-OF-BAND	PASS		1.9300100 GHz
0 dBm			
US DECT OUT-OF-BAND			
-20 dBm			
-30 dBm			
140 dBm			
U Xh. Jo			
-50,µBm			
ha a			
-60 dBm			
an mounduly	Monardy we may all Monard	and the state by burney drive to one on a	الم الملحد المتحدين من م الم الم الم
-60 dBm	and a contraction of the second of the secon	all and a surger and a surger of a surger	www.mumler.m. www.mumler.m.
-80 dBm			
Start 1.93 GHz	1001 pts	2.0 MHz/	Stop 1.95 GHz
		Measu	ring 111.2012 16:29:32
D-t-: 20 NOV 2012 46:20:22			
Date: 29.NOV.2012 16:29:33			
Engstrum			
MultiView B Spectrum			
Ref Level 10.30 dBm Offset 0.30 dB ● Att 30 dB SWT 52.3 ms			
1 Frequency Sweep			●1Pk Max
Limit Check Line US DECT OUT-OF-BAND	PASS PASS	M1[1]	-68.41 dBm 2.565040 GHz
	PADD		2,303040 012
0 dBm			
-10 dBm			
-20 dBm			
-20 0011			
-30 dBm			
US DECT OUT-OF-BAND			

-50 dBm									
-60 dBm									
	M1								
-70 dBm	and the state of the state	and a standard and a star		h data da sera se	in the sector of the later of the	والمتألف والمتحد والمتحد والتحا	and the stille		i i i i i i i i i i i i i i i i i i i
phospatistic and the state	Ashepsterior and a second	ton the shift of the state of the	Lindol and a second basis	en sejar pel mar Alfred Tre Pel Per Pri La sela de la seconda de la seconda de la seconda de la seconda de la s	Contracted in the Departure	Hack Bearing and And	enderstanderstellt Red territore	ويقابل فاقترف والمارين	
-80 dBm		a with the	. teacher airt	de autores, de land la suls ser ser :	Mudan		ana and a	and place in a provide the second	ورزاري بالمتعمية والألا
Start 1.95 GHz	2		12001 p	ts	40	5.0 MHz/			Stop 6.0 GHz
							Measuring 【		29.11.2012 16:30:55

Date: 29.NOV.2012 16:30:55

Out-of-Band Emissions, Conducted

Upper Channel:

										\frown
Mul	tiView 🖇	🗊 Spectrum								\bigtriangledown
Ref	Level 10	.30 dBm Offse	t 0.30 dB - RB	W 20 kHz						
Att			77.6 ms 👄 VB	W 100 kHz M	ode Auto FFT					
1 Fre	quency S			PAS	0		M1[1]			1Pk Max -65.84 dBm
		ECT OUT-OF-B		PAS PAS			M1[1]		:	-65.84 dBm 11.384300 GHz
0 dBm										
-10 dB	m									
oo do										
-20 dB										
-30 dB	m									
	T OUT-OF-BA	NID.								
OS DEC	1 001-01-04									
-50 dB	m									
-60 dB	m									
									M	L
-70 dB	m							al da dhanka a an sa	a labar na tana adalah Jabah na majapitan bar	history and the
uluana.	an ha an <mark>isla</mark> hiji silaki	a the state of the	and the state of t	واسالف فسيراج والطاطاتين	Design of the second second	Allowing and the second		laria da la barana da da al barana b Angelaria da	a para ana ang ang ang ang ang ang ang ang an	philipping the state
Madatabl	Algeben Manaple	apline of the produced of the	and the strangest all the		ne, dometrich Modelle al Dela	and the second play of the second		al monte a co		a contrast totage Physics
-80 dB	m		1.1.1							
Ctout	6.0 GHz			12001 m		60				Ctop 10 0 CUp
Start	6.0 GHZ	1		12001 pt	.5	00	0.0 MHz/			Stop 12.0 GHz 29.11.2012
								Measuring 🔳		16:31:41
Date: 2	9.NOV.20	12 16:31:41								
		12 10:01:11								
Mul	tiView 8	Spectrum	t 0.30 dB • RB	₩ 20 kHz						
Muli Ref • Att	tiView	Spectrum .30 dBm Offse 30 dB SWT	t 0.30 dB • RB 115 ms • VB	₩ 20 kHz ₩ 100 kHz Mo	de Auto FFT					
Muli Ref • Att	tiView Level 10 quency S	30 dBm Offse 30 dB SWT	t 0.30 dB ● RB 115 ms ● VB	W 100 kHz Mo						●1Pk Max
Muli Ref • Att	tiView Level 10 quency S Limit Che	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Mulf Ref Att 1 Fre	tiView Level 10 quency S Limit Che Line US I	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]		:	●1Pk Max
Muli Ref • Att	tiView Level 10 quency S Limit Che Line US I	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Mulf Ref Att 1 Fre	tiView Level 10 quency S Limit Che Line US I	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]		:	● 1Pk Max -64.16 dBm
Mulf Ref Att 1 Fre	tiView Level 10 quency S Limit Che Line US I	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref • Att 1 Fre	tiView Level 10 quency S Limit Che Line US I	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref Att I Fre	tiView (Level 10 quency S Limit Che Line US I	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref • Att 1 Fre	tiView (Level 10 quency S Limit Che Line US I	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref Att I Fre	tiView (Level 10 quency S Limit Che Line US I	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref Att I Fre	tiView (Level 10 quency S Limit Che Line US I m	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Mult Ref Att 1 Fre -10 dB -20 dB	tiView (Level 10 quency S Limit Che Line US I m	30 dBm Offse 30 dB SWT	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref • Att 1 Fre 0 dBm -10 dB -20 dB	tiView (i Level 10 quency S Limit Che Line US (m m	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref • Att 1 Fre 0 dBm -10 dB -20 dB	tiView (Level 10 quency S Limit Che Line US I m	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref • Att 1 Free -10 dBm- -20 dB -30 dB	tiView (i Level 10 quency S Limit Ch Line US I m m m T OUT-OF-BA	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref • Att 1 Fre 0 dBm -10 dB -20 dB	tiView (i Level 10 quency S Limit Ch Line US I m m m T OUT-OF-BA	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref • Att 1 Free -10 dBm- -20 dB -30 dB	tiView (i Level 10 quency S Limit Ch Line US I m m m T OUT-OF-BA	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref • Att 1 Free -10 dBm- -20 dB -30 dB	tiView (i Level 10 quency S Limit Che Line US I m m T OUT-OF-8/	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm 19.925670 GHz
Muli Ref • Att 1 Fre -10 dB -20 dB -30 dB -30 dB	tiView (i Level 10 quency S Limit Che Line US I m m T OUT-OF-8/	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S		M1[1]			● 1Pk Max -64.16 dBm
Muli Ref Att I Fre 0 dBm -10 dB -20 dB -30 dB -30 dB -50 dB -60 dB	tiView (i Level 10 quency S Limit Che Line US I m m T OUT-OF-B4 m m	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S					● 1Pk Max -64.16 dBm 19.925670 GHz
Muli Ref • Att 1 Fre -10 dB -20 dB -30 dB -30 dB	tiView (i Level 10 quency S Limit Che Line US I m m T OUT-OF-B4 m m	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S					● 1Pk Max -64.16 dBm 19.925670 GHz
Muli Ref - Att - 10 dB -20 dB -20 dB -30 dB -30 dB -50 dB -50 dB -60 dB	tiView (Level 10 quency S Limit Che Line US I m m T OUT-OF-B4 m m m m m m m m m m m m m	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S					● 1Pk Max -64.16 dBm 19.925670 GHz
Muli Ref Att I Fre 0 dBm -10 dB -20 dB -30 dB -30 dB -50 dB -60 dB	tiView (Level 10 quency S Limit Che Line US I m m T OUT-OF-B4 m m m m m m m m m m m m m	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S					● 1Pk Max -64.16 dBm 19.925670 GHz
Muli Ref - Att - 10 dB -20 dB -20 dB -30 dB -30 dB -50 dB -50 dB -60 dB	tiView (Level 10 quency S Limit Che Line US I m m T OUT-OF-B4 m m m m m m m m m m	Spectrum .30 dBm Offse 30 dB SWT weep ck ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo	S					● 1Pk Max -64.16 dBm 19.925670 GHz
Muli Ref Att 1 Free -10 dB -20 dB -20 dB -30 dB -30 dB -50 dB -60 dB -70 dB -70 dB -80 dB	tiView (Level 10 quency S Limit Che Line US I m m m T OUT-OF-BA m m m m m m m m m m m m m	Spectrum .30 dBm Offse 30 dB SWT weep dk ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo PAS PAS						• 1Pk Max -64.16 dBm 19.925670 GHz
Muli Ref Att 1 Free -10 dB -20 dB -30 dB -30 dB -50 dB -50 dB -60 dB -70 dB -70 dB	tiView (Level 10 quency S Limit Che Line US I m m T OUT-OF-B4 m m m m m m m m m m	Spectrum .30 dBm Offse 30 dB SWT weep dk ECT OUT-OF-B/	115 ms 👄 VB'	W 100 kHz Mo			M1[1]	τ - πush		● 1Pk Max -64.16 dBm 19.925670 GHz

Date: 29.NOV.2012 16:32:31

4.13 Carrier Frequency Stability

Test Method:

ANSI C63.17, clause 6.2.1.

Test Results: Complies

Measurement Data:

The Frequency Stability is measured with the CMD60. The CMD60 was logged by a computer programmed to get new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max. Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	
1924.992033	0.811	-2.176	-1.1	±10 ppm

Deviation ppm = ((Diff. - Mean Diff) / Mean Carrier Freq.) $\times 10^{6}$

Deviation (ppm) is calculated from 3000 readings.

Frequency Stability over Power Supply Voltage at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit
V _{nom}	1924.951939	0	0	
85% of V _{nom}	1924.952133	0.2	0.1	±10 ppm
115% of V _{nom}	1924.952174	0.2	0.1	

Deviation ppm = ((Mean – Measured Frequency) / Mean) $\times 10^{6}$

This test was performed with a regulated external power supply.

Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit
T = +20 °C	1924.951939	0	0	
T = -20 °C	1924.950107	-1.8	-1.0	±10 ppm
T = +50 °C	1924.950577	-1.4	-0.7	

Deviation ppm = ((Mean – Measured Frequency) / Mean) $\times 10^{6}$

4.14 Frame Repetition Stability

Test Method:

ANSI C63.17, clause 6.2.2.

Test Results: Complies

Measurement Data:

The envelope of the RF signal from the EUT is detected with a Crystal Detector and the mean and standard deviation of the frame repetition frequency is then gated over 100 frames and measured with a Frequency Domain Analyzer. The frame repetition stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation	Frame Repetition
(MHz)	(Hz)	(Hz)	Stability (ppm)
1924.992	100.000039	0.000024	0.724

Limit:

Frame Repetition Stability	±10 ppm (TDMA)
----------------------------	----------------

Ref. FCC 15.323(e), ANSI C63.17, clause 6.2.2

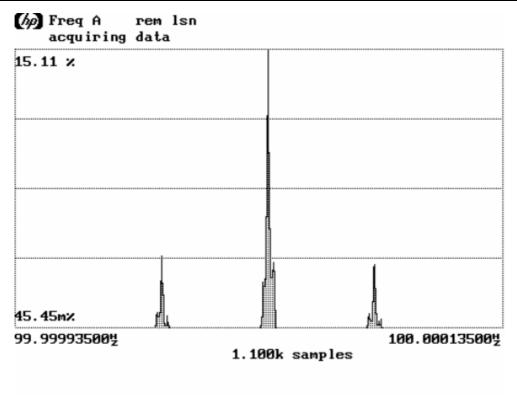
4.15 Frame Period and Jitter

Test Method:

ANSI C63.17, clause 6.2.3.

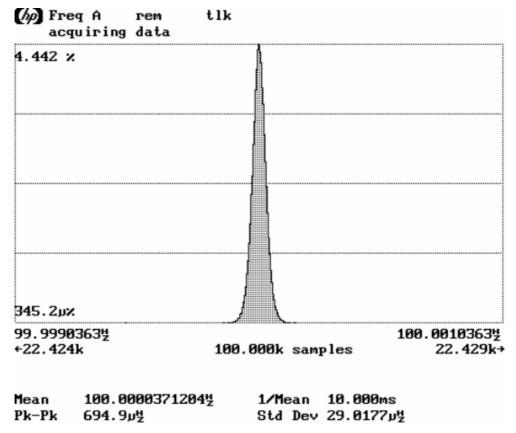
Test Results: Complies

Measurement Data:


Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation
(MHz)	(ms)	(μs)	of Jitter (μs)
1924.992	10.000	-0.035	-0.009

Max Jitter = (1/ (Frame period + Pk-Pk/2)) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz $3xSt.Dev.Jitter = 3x (1/(Frame Period + St.Dev) - 1/St.Dev) x 10^{6}$

Limit:


Frame Period	20 or 10 ms
Max Jitter	25 µs
3 times St.Dev of Jitter	12.5 µs

Ref. FCC 15.323(e), ANSI C63.17, clause 6.2.3

Mean	100.00003866855	1/Mean	10.000ms
Pk–Pk	93.10JJ	Std Dev	24. 1285 צ ^י ע

Frame Repetition Stability, Gated over 100 Frames

Frame Period and Jitter

) Nemko

4.16 Monitoring Threshold, Least Interfered Channel

Monitoring Threshold Limits:

Lower Threshold:

 $T_L = 15 \log B - 184 + 30 - P_{EUT}$ (dBm)

Upper Threshold:

 $T_{U} = 15 \log B - 184 + 50 - P_{EUT}$ (dBm)

B is measured Emission Bandwidth in Hz P_{EUT} is measured Transmitter Power in dBm

Calculated values:

	FCC 15.323	RSS-213, Issue 2
Lower Threshold	-81.5 dBm	-82.7 dBm
Upper Threshold	N/A	-62.7 dBm

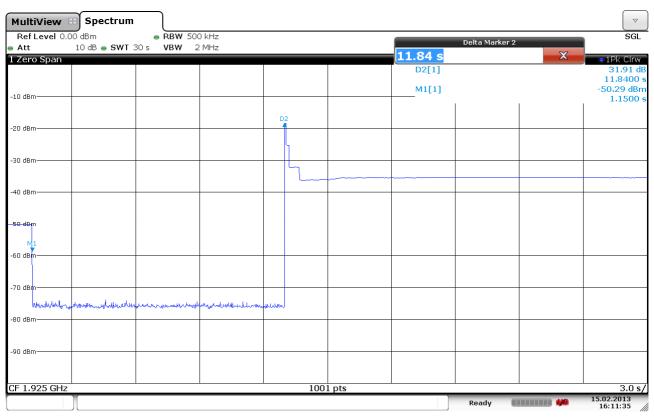
The Lower Threshold is applicable for systems which have defined less than 40 duplex system access channels. The Upper Threshold is applicable for systems with more than 40 duplex system access channels and that implements the Least Interfered Channel Procedure (LIC).

Measurement Procedure:

The Upper or Lower Threshold is found by the procedure defined in ANSI C63.17 clause 7.3.1 or 7.3.2.

Least Interfered Channel Procedure NOT used:			
Lower Threshold	N/A dBm		
Least Interfered Channel Procedure:			
Upper Threshold	-58.3 dBm		

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(b), (c)(2) and (c)(5)


ANSI C63.17 clause 7.3.3 ref.	Observation	Verdict
b) $f_1 T_L + 13 \text{ dB}$, $f_2 \text{ at } T_L + 6 \text{ dB}$	Transmission always on f_2	Pass
c) $f_1 T_L + 6 \text{ dB}$, $f_2 \text{ at } T_L + 13 \text{ dB}$	Transmission always on f_I	Pass
d) $f_1 T_L + 7 dB$, $f_2 at T_L$	Transmission always on f_2	Pass
e) $f_1 T_L$, f_2 at T_L + 7 dB	Transmission always on f_I	Pass

Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.4	Observation	Verdict
b) Shall not transmit on f_i	EUT transmits on f_2	Pass
d) Shall not transmit on f_2	EUT transmits on f_I	Pass

Limits:

	FCC 15.323	RSS-213, Issue 2
Lower Threshold + 6 dB margin	-75.5 dBm	-76.7 dBm
Upper Threshold + 6 dB margin	N/A	-56.7 dBm

Date: 15.FEB.2013 16:11:36

7.3.4 Selected Channel Confirmation, Connection 11.8s After Interferer Removed, Handset Mode

4.17 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. However, if the test is not carried out the manufacturer shall declare and provide proper evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if **either** the Simple Compliance Test or the More Detailed test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance test, at $\pm 30\%$ of B	No transmissions	Pass
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The more detailed test must be pass at both the -6 and -12 dB points if the Simple Compliance test fails.

Comment: The Simple Compliance Test was performed with the level at $T_U + U_M + 10$ dB to check that the EUT did not transmit at all.

The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required. However the test has been performed nonetheless and the test is passed.

Limits, FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

4.18 Reaction Time and Monitoring Interval

Measurement Procedure

ANSI C63.17, clause 7.5

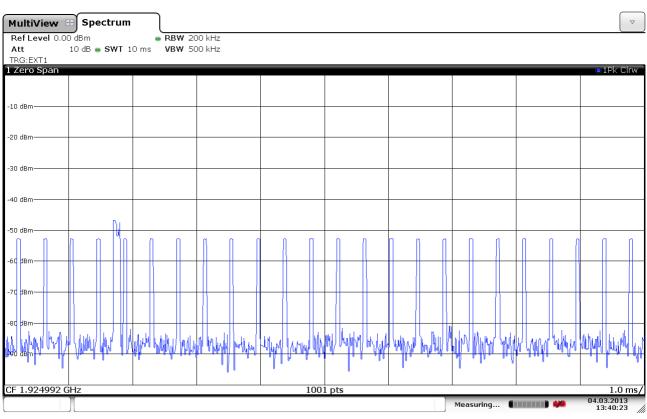
Test results:

By administrative commands and out-of-operating region interference, the EUT is restricted to operate on a single carrier frequency.

Time-synchronized pulsed interference was then applied on the carrier at pulsed levels $T_U + U_M$ to check that the EUT does not transmit at all. The level was raised 6 dB for part d) with 35 µs pulses.

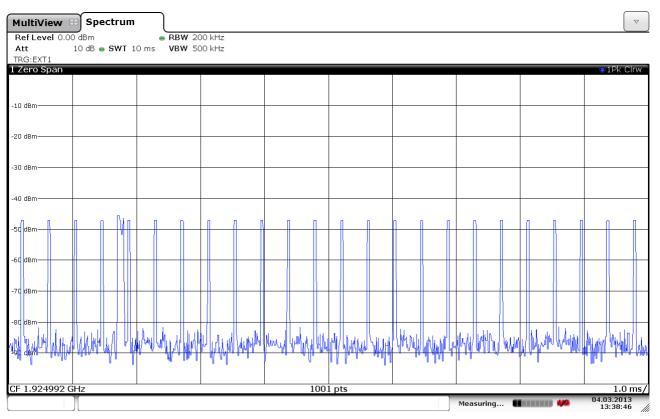
The pulses are synchronized with the EUT timeslots and applied centered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 µs and 50*SQRT(1.25/ <i>B</i>)	No transmissions	Pass
d) > largest of 35 μs and 35*SQRT(1.25/ <i>B</i>), and with interference level raised 6 dB	No transmissions	Pass


Comment: Since *B* is larger than 1.25 MHz the test was performed with pulse lengths of 50 µs and 35 µs.

Limits, FCC 15.323(c)(1), (5) and (7)

The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.


If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

Date: 4.MAR.2013 13:40:23

50 µs Pulses, Handset

Date: 4.MAR.2013 13:38:46

35 µs Pulses, Handset

4.19 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information.

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time-slot	EUT transmits on the interference free time-slot	Pass
b) The EUT must terminate or pause in its repetitive transmission of the control and signalling channel on the open channel to repeat the access criteria not less frequently than every 30 s	Transmission paused every 1.28 s	Pass

If FCC 15.323(c)(6) option, If Random Waiting Interval is NOT implemented

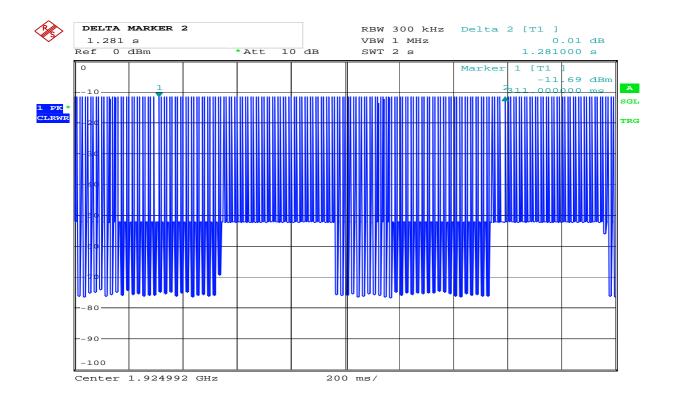
Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to an interference-free slot when interference is introduced on the time slot in use	EUT changes to the interference-free time-slot, and stays there	Pass

If FCC 15.323(c)(6) option, Only if Random Waiting Interval is implemented

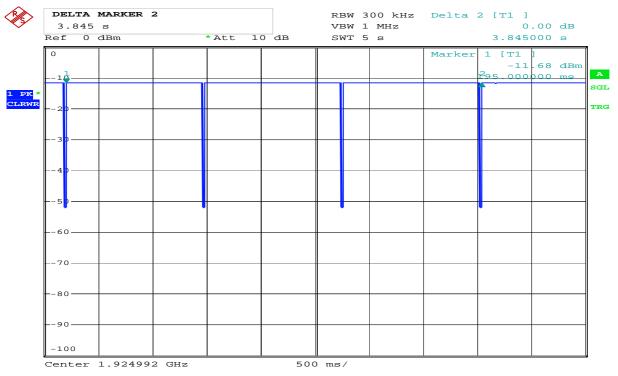
Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

Comment: This test was performed with the EUT programmed as a Base station. The tested EUT does not support the Random Waiting Interval option.

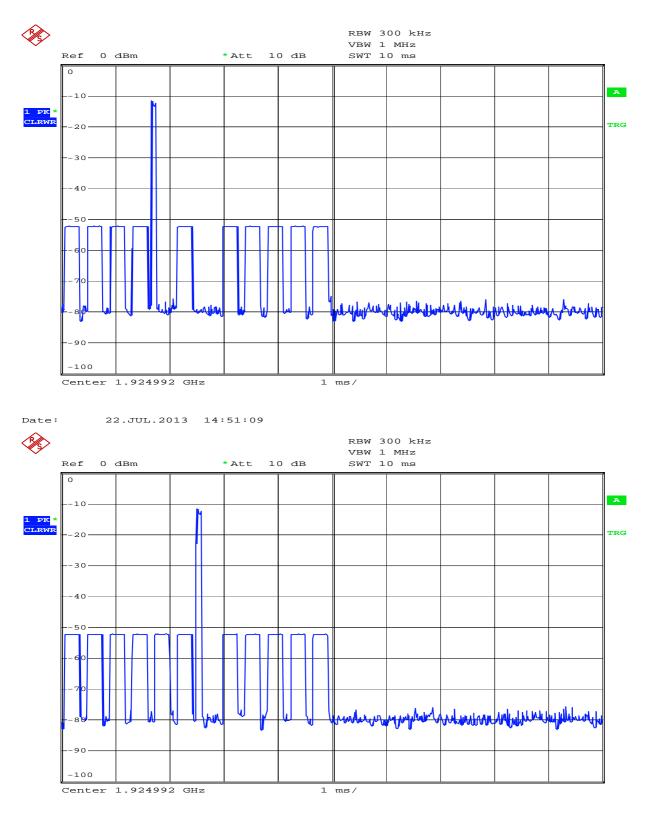
Limits:


FCC 15.323(c)(4):

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgements must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which time the access criteria must be repeated.


FCC 15.323(c)(6):

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.


Date: 22.JUL.2013 14:50:05

Date: 22.JUL.2013 14:48:02

8.1.1b) Access Criteria check Interval

Date: 22.JUL.2013 14:52:08

8.1.1b) Access Criteria Functional Test, Before and After

4.20 Acknowledgements and Transmission Duration

Measurement Procedure:

Acknowledgements: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgements** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgements** is performed by cutting-off the signal from the companion device by a RF switch and measuring the time until the EUT stops transmitting.

The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

Acknowledgements

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgements	0.030 s	Pass
c) Transmission time after loss of acknowledgements	5.0 s	Pass

Transmission Duration

Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
b) Transmission duration on same time and frequency window	4.0 hours	Pass

Comment: Tested with the EUT in Handset Mode.

Limits, FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease.

Periodic acknowledgements must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which time the access criteria must be repeated.

MultiView	Spectrum								
Ref Level 0.0 Att TRG:EXT1	0 dBm 10 dB - SWT 1	 RBW 2001 s VBW 5001 				30.0 ms	Delta Marker 2	X	SGL
1 Zero Span									● 1Pk Clrw
						D2[1]			-0.03 dB
									30.000 ms
-10 dBm						M1[1]			-29.96 dBm
-10 0011							I	I.	375.960 ms
-20 dBm									
			M1	02					
-30 dBm			Ĭ	1					
-40 dBm									
io abiii									
-50 dBm									
-60 dBm									
-70 dBm									
1.1.1					and some				111
-89 dBm to	A labor to the state of the	al Mich Walder	alder whatthe			u hal datalah k		a allow a large of the se	8 Mar Aller Lake
Las one altheadars are		e Di là c là cal - d	ել անվերացի ներագրույլը է ստերույլը է է	No. a Microbial Cons	a ana - Micon MiCia	m als on a limite mo-	al almondered a fall	acceller des marchel	A. M. Protection of the
00 JD									
-90 dBm									
CE 1 00 4000 4	21.1-			100					100.0
CF 1.924992 (jHZ			1001	l pts				100.0 ms/
	Л						Ready 🔳		14:38:46

8.2.1a) Initial Transmission Without Acknowledgements

MultiView 88	Spectrum							\bigtriangledown
Ref Level 0.00 of Att 10		RBW 200 s VBW 500				Delta Marker 2		SGL
TRG:EXT1					5.0 s		X	
1 Zero Span					D2[1]			●1Pk Clrw -0.16 dB
								5.00000 s
-10 dBm					M1[1]			-30.10 dBm
							I	979.96 ms
00.40-								
-20 dBm								
ма				_				
- 30 dBm			 		*			
-40 dBm								
-50 dBm								
co do-								
-60 dBm								
-70 dBm								
-80 dBm			 		www.twww.www.	and the property of the second	www.howward	alexinter www. Marine for
-90 dBm								
CF 1.924992 GH	lz		1001	pts				1.0 s/
			 			Ready 📃		04.03.2013 14:57:13

Date: 4.MAR.2013 14:57:13

8.2.1c) Transmission Time After Loss of Acknowledgements

Date: 4.MAR.2013 14:38:46

4.21 Dual Access Criteria Check

Measurement Procedure:

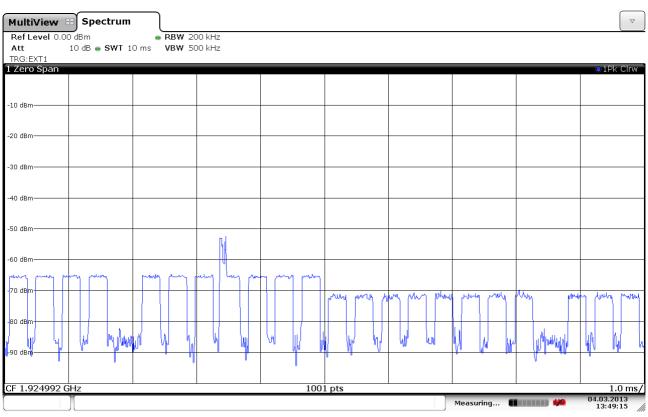
EUTs that does not implement the Upper Threshold: ANSI C63.17, clause 8.3.1

EUTs that implement the Upper Threshold: ANSI C63.17, clause 8.3.2

This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

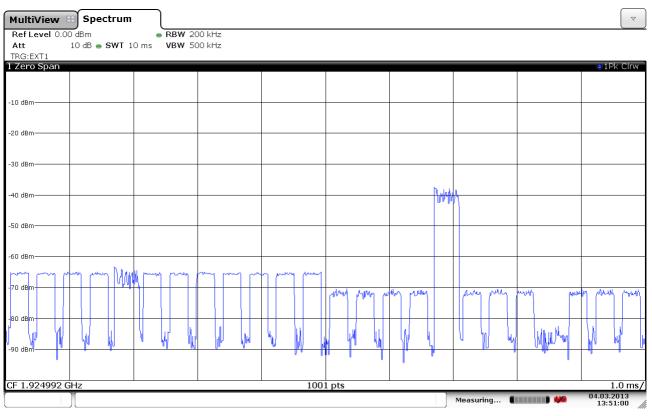
Test Results:

EUTs that Implements the Upper Threshold:

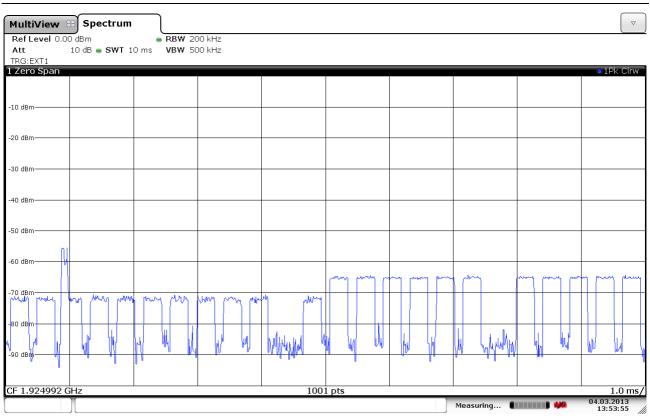

Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
b) EUT is restricted to a single carrier f_i for TDMA systems. The Test is Pass if EUT can transmit	EUT can transmit	Pass
c) d) Transmission on interference-free receive time/spectrum window	EUT transmits on interference free receive slot	Pass
e) f) Transmission on interference-free transmit time/spectrum window	EUT transmits on interference free transmit slot	Pass
g) Transmission not possible on any time/spectrum window	No connection possible	Pass

Comment: Tested with the EUT in Handset Mode. See plots.

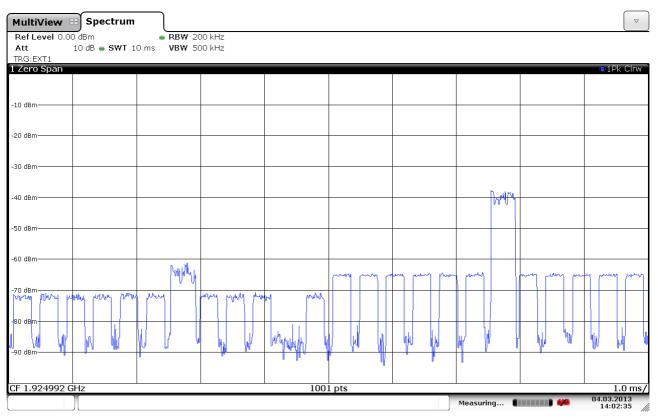
Limits, FCC 15.323(c)(10)


An initiating device may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

Date: 4.MAR.2013 13:49:16

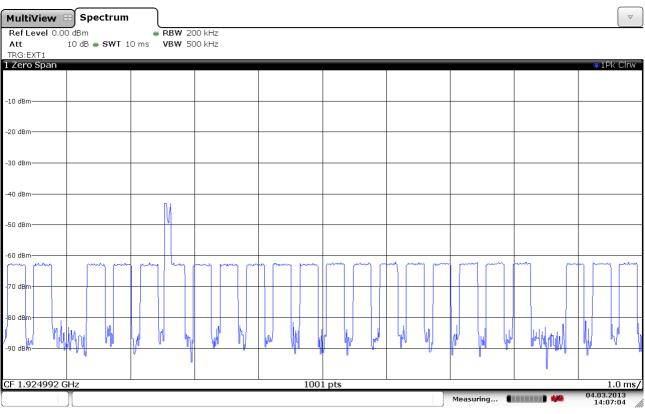

8.3.2c) EUT Transmits on Interference Free RECEIVE Slot, BEFORE

Date: 4.MAR.2013 13:51:00


8.3.2c) EUT Transmits on Interference Free RECEIVE Slot, AFTER

Date: 4.MAR.2013 13:53:56

8.3.2e) EUT Transmits on Interference Free TRANSMIT Slot, BEFORE



Date: 4.MAR.2013 14:02:35

8.3.2e) EUT Transmits on Interference Free TRANSMIT Slot, AFTER

TEST REPORT FCC part 15D Report no.: 220131-4 FCC ID: Y82-SC14S

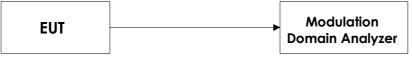
Date: 4.MAR.2013 14:07:04

8.3.2g) No Connection

4.22 Alternative Monitoring Interval

Test procedure described in ANSI C63.17 clause 8.4.

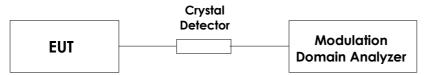
This test is required if the EUT implements the provisions of FCC 15.323(c)(11).


Test result:

Not Tested. The tested EUT does not implement this provision. See manufacturers' declaration.

5 Test Setups

5.1 Frequency Measurements

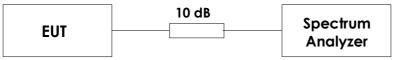

Test equipment included: 5, 9, 28

Test Set-up 1

This setup is used for measuring Carrier frequency stability at normal and extreme temperatures.

The EUT was in loopback-mode and was controlled with the CMD60 for this test. The modulation pattern was set to 01010101...

5.2 Timing Measurements


Test equipment included: 5, 7, 9, 28

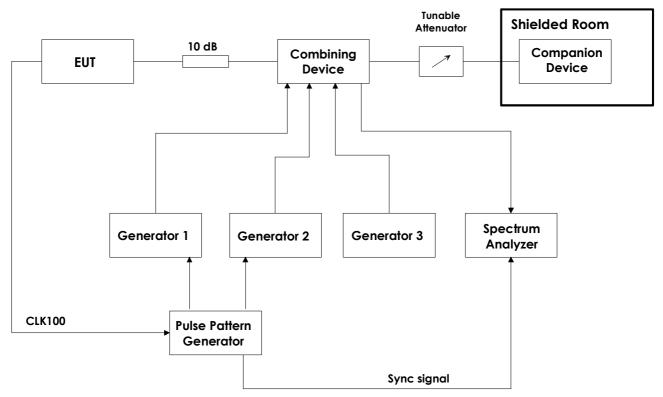
Test Set-up 2

This setup is used for measuring Frame repetition stability, Frame period and Jitter.

The EUT was in loopback-mode and was controlled with the CMD60 for this test. The modulation pattern was set to 01010101...

5.3 Conducted Emission Test

Test equipment included: 1, 2, 9, 26


Test Set-up 3

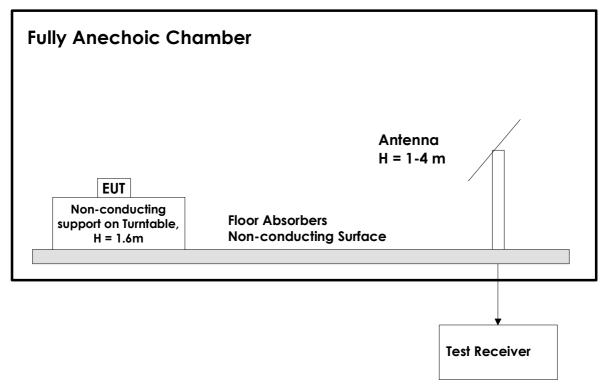
This setup is used for all conducted emission tests.

The EUT was in loopback-mode and was controlled with the CMD60 for this test. The modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

5.4 Monitoring Tests

Test equipment: 1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 19, 23, 24, 25, 26

Test Set-Up 6


This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generators to the EUT is measured with a power meter before the testing is started.

The CLK100 is used to synchronize the Pulse-/ Pattern generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the CLK100 signal will come form the Companion Device.

The sync signal to the Spectrum Analyzer is the CLK100 signal that is regenerated in the Pulse-/ Pattern Generator, this is used to synchronize the Spectrum Analyzer to the DECT frame when in zero span. The Pulse-/ Pattern Generator is used for tests that require time synchronized pulses or blocking of specific time slots.

5.5 Radiated Emissions Test, Fully Anechoic Chamber

Test equipment: 9, 16, 19, 20, 21, 29, 30

Test Set-Up 7

This test setup is used for measuring radiated output power. The measurements are performed in a 3m Fully Anechoic Chamber with a Spectrum Analyzer and Horn Antenna, a preamplifier may be used after the antenna. The measuring distance is 3m.

6 Test Equipment Used

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the Testhouse.

No.	Model number	Description	Manufacturer	Ref. no.	Cal. date	Cal. Due
1	FSU26	Spectrum Analyzer	Rohde & Schwarz	LR 1504	2011.11.03	2013.11.03
2	SME03	Signal generator	Rohde & Schwarz	LR 1238	2011.04.11	2013.04.11
3	SMIQ03B	Signal generator	Rohde & Schwarz	LR 1516	Cal b4 use	
4	SMP22	Signal generator	Rohde & Schwarz	LR 1287	Cal b4 use	
5	53310A	Modulation Domain Analyzer	Hewlett Packard	LR 1483	2011.12.13	2013.12.13
6	81104A	Pulse-/ Pattern Generator	Agilent	LR 1502	2013.04.26	2013.04.26
7	8470B	Crystal Detector	Hewlett Packard	LR 1207	N/A	
9	4768-10	Attenuator	Narda	LR1356	Cal b4 use	
10	745-69	Step Attenuator	Narda	LR 1442	2011.10.19	2013.10.19
11	WE 1506A	Power Splitter	Weinchel	LR 244	Cal b4 use	
12	WE 1506A	Power Splitter	Weinchel	LR 245	Cal b4 use	
13	H-9	Hybrid	Anzac	LR 86	Cal b4 use	
14	H-9	Hybrid	Anzac	LR 257	Cal b4 use	
15	S212DS	RF Switch	Narda	LR 1244	N/A	
16	3115	Double Ridged Horn Antenna	EMCO	LR 1226	N/A	
19	B300D	Power Supply	Oltronics	LR 1000	Cal b4 use	
20	FSP30	Spectrum Analyzer	Rohde & Schwarz	LR 1551	2013.03.04	2015.03.04
21	JS4	Pre-Amplifier	Miteq	LR 1552	2012.09	2013.09
22	Model 87 V	Multimeter	Fluke	N-4669	2012.09.05	2013.09.05
23	87H35-1	Circulator	Racal-MESL	s.no.: 140	N/A	
24	87H35-1	Circulator	Racal-MESL	s.no.: 141	N/A	
25	87H35-1	Circulator	Racal-MESL	s.no.: 142	N/A	
26	U2000A	USB Power Sensor	Agilent	LR 1523	2011.03.26	2013.03.26
28	CMD60	DECT Tester	Rohde & Schwarz	LR 1335	2012.11.01	2014.11.01
29	Model 7200	Signal generator	Gigatronics	LR 1188	2012.10.31	2014.10.31
30	3115	Double Ridged Horn Antenna	EMCO	LR 1330	2010.08.05	2013.08.05