

RADIO TEST REPORT – 466714-2TRFWL

Type of assessment: Class 2 Permissive Change		
Type of radio equipment: Bluetooth Device	Equipment class: DSS	
Applicant: Avaya Inc.		
Product marketing name: Avaya B199 / Konftel 800 IP Conference phone		
Model (Avaya): B199	Model variant (Konftel): KT 800 IP	
FCC ID: TYM-FLAM	ISED Registration number: 3794C-FLAM	
Specifications: FCC 47 CFR Part 15 Subpart	C, §15.247	

RSS-247, Issue 2, Feb 2017, Section 5

Date of issue: July 14, 2022

Avul Nzenza, EMC/RF Specialist

Tested by

Andrey Adelberg, Senior EMC/RF Specialist

Reviewed by

Signature

adelberg pols

Signature

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation. The SCC Accreditation Symbol is an official symbol of the Standards Council of Canada, used under licence.

SCC File Number: 15064 (Ottawa/Almonte); 151100 (Montreal); 151097 (Cambridge)

FCC 15.247 and RSS-247; Date: February 2021

www.nemko.com

Lab locations

Company name	Nemko Canada	nc.			
Facilities	Ottawa site:	Montré	al site:	Cambridge site:	Almonte site:
	303 River Road	292 Lab	orosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe-	Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canada		Canada	Canada
	K1V 1H2	H9R 5L8	3	N3E 0B2	KOA 1LO
	Tel: +1 613 737	9680 Tel: +1 !	514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737	9691 Fax: +1	514 694 3528		
Test site identifier	Organization	Ottawa/Almonte	Montreal	Cambridge	
	FCC:	CA2040	CA2041	CA0101	
	ISED:	2040A-4	2040G-5	24676	
Website	www.nemko.co	<u>n</u>			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Table of Contents

Table of 0	Contents	. 3
Section 1	Report summary	. 4
1.1	Test specifications	. 4
1.2	Test methods	. 4
1.3	Exclusions	. 4
1.4	Statement of compliance	. 4
1.5	Test report revision history	. 4
Section 2	Engineering considerations	. 5
2.1	Modifications incorporated in the EUT for compliance	. 5
2.2	Technical judgment	. 5
2.3	Model variant declaration	. 5
2.4	Deviations from laboratory tests procedures	. 5
Section 3	Test conditions	. 6
3.1	Atmospheric conditions	. 6
3.2	Power supply range	. 6
Section 4	Measurement uncertainty	. 7
4.1	Uncertainty of measurement	. 7
Section 5	Information provided by the applicant	. 8
5.1	Disclaimer	. 8
5.2	Applicant/Manufacture	. 8
5.3	EUT information	. 8
5.4	Radio technical information	. 9
5.5	EUT setup details	. 9
Section 6	Summary of test results	11
6.1	Testing location	11
6.2	Testing period	11
6.3	Sample information	11
6.4	FCC test results	11
6.5	ISED test results	12
Section 7	Test equipment	13
7.1	Test equipment list	13
Section 8	Testing data	14
8.1	Variation of power source	14
8.2	Number of frequencies	15
8.3	Antenna requirement	17
8.4	AC power line conducted emissions limits	18
8.5	Frequency Hopping Systems requirements, 2 GHz operation	21
8.6	Transmitter output power and e.i.r.p. requirements for FHSS 2 GHz	27
8.7	Spurious (out-of-band) unwanted emissions	29
Section 9	EUT photos	45
9.1	External photos	45

Section 1 Report summary

1.1 Test specifications

Nèmko

FCC 47 CFR Part 15, Subpart C, Clause 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–585 MHz
RSS-247, Issue 2, Feb 2017, Section 5	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area
	Network (LE-LAN) Devices

1.2 Test methods

558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on digital transmission system, frequency hopping spread
(April 2, 2019)	spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.
DA 00-705, Released March 30, 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested. Determining compliance is based on the results of the compliance measurement, not taking into account measurement uncertainty, in accordance with section 1.3 of ANSI C63.10 v2013.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	July 14, 2022	Original report issued

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Model variant declaration

As declared by the applicant both models are identical exept for the branding.

2.4 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

Nèmko

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, ±dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Information provided by the applicant Section 5

5.1 Disclaimer

Nèmko

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Avaya Inc.
Applicant address	250 Sidney Street, Belleville, Ontario, K8P 3Z3 Canada
Manufacturer name	Avaya Inc.
Manufacturer address	2605 Meridian Parkway, Suite 200, Durham, NC 27713 USA

5.3 **EUT** information

Product name	Avaya B199 / Konftel 800 IP Conference Phone
Models	B199, KT 800 IP
Serial number	E1A9410014 (Radiated); EA9360262 (Conducted)
Item number	910101088
Operating conditions	EUT has software version 1.0.2.0.13 installed. RF testing was carried out with the use of serial data lines installed
	directly to the Panasonic RF module. Panasonic RF test sw PAN13xxx was used to control RF transmit functions
	(frequency, power level and modulation).
Product description and theory	The EUT is an IP conference phone with Bluetooth connectivity.
of operation	

lêmko

5.4 Radio technical information

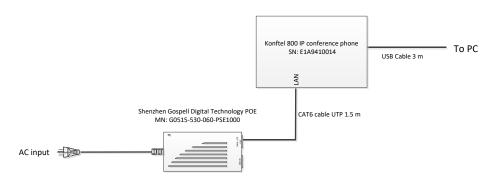
Category of Wideband Data	Frequency Hopping Spread Spectrum (FHSS) equipment
Transmission equipment	Other types of Wideband Data Transmission equipment (e.g. DSSS, OFDM, etc.).
Frequency band	2400–2483.5 MHz
Frequency Min (MHz)	2402
Frequency Max (MHz)	2480
Channel numbers	79 (0–78)
RF power Max (W), Conducted	0.0022 (3.41 dBm GFSK); 0.0027 (4.32 dBm EDR3); 0.0024 (3.84 EDR2)
Measured BW (kHz), 99% OBW	871 (GFSK); 1244 (EDR3); 1223 (EDR2)
Type of modulation	GFSK, EDR3, EDR2
Emission classification	F1D
Transmitter spurious, dBµV/m @ 3 m	51.3 @ 7320 MHz (GFSK); 52.3 @ 7318.6 MHz (EDR3); 51.8 @ 7320 MHz (EDR2)
Power supply requirements	–48 V _{DC} (via external 100–240 V _{AC} , 50/60 Hz PoE adapter)
Antenna information	Integral antenna 2.7 dBi gain

5.5 EUT setup details

5.5.1 Radio exercise details

Methods used to exercise the EUT and all relevant ports:

EUT was exercised from computer using PAN13XX_Test_V1.5 application with CC256xC_initscripts-TIInit_6.12.26_TEST.SCRIPT for continuous transmission.


Configuration details:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:
 - The following deviations were:
 - None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
 - The following deviations were:
 - For antenna port (conducted) measurements, antenna was unsoldered, and matching connector was attached.

Section 5

EUT setup configuration, continued

Radiated setup

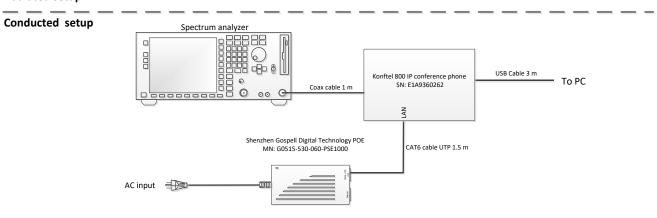


Figure 5.5-1: Radiated testing block diagram

Section 6 Summary of test results

6.1 Testing location

Test location (s)	Ottawa		
C 2 Testing region			
6.2 Testing period			
Test start date	June 20, 2022	Test end date	June 28, 2022
6.3 Sample information	on		
-			
Receipt date	May 31, 2022	Nemko sample ID number(s)	1

6.4 FCC test results

Table 6.4-1: FCC requirements result	ts
--------------------------------------	----

Part	Test description	Verdict
Generic require	ments	
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass
§15.247(c)(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Pass
§15.247(d)	Spurious emissions	Pass
FHSS specific re	quirements	
§15.247(a)(1)(iii)	Requirements for operation in the 2400–2483.5 MHz band	Pass
§15.247(b)(1)	Maximum peak output power in the 2400–2483.5 MHz band and 5725–5850 MHz band	Pass

Notes: EUT is an AC powered device.

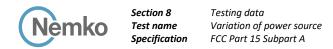
6.5 ISED test results

Table 6.5-1: ISED requirements results

Part	Test description	Verdict
Generic require	ments	
RSS-Gen, 8.8	AC powerline conducted emissions limits	Pass
RSS-247, 5.5	Unwanted emissions	Pass
FHSS specific re	quirements	
RSS-247, 5.1 (a)	Bandwidth of a frequency hopping channel	Pass
RSS-247, 5.1 (b)	Minimum channel spacing	Pass
RSS-247, 5.1 (d)	Systems operating in the 2400–2483.5 MHz band	Pass
RSS-247, 5.4	Transmitter output power and e.i.r.p. requirements	
RSS-247, 5.4 (b)	Systems operating in the 2400–2483.5 MHz band	Pass
RSS-247, 5.4 (e)	Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band	Not applicable
RSS-247, 5.4 (f)	Transmitters which operate in the 2400–2483.5 MHz band with multiple directional beams	Not applicable

Notes: ¹According to sections 5.2 and 5.3 of RSS-Gen, Issue 5 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

EUT is an AC powered device.


Section 7 Test equipment

7.1 Test equipment list

Nèmko

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	January 20, 2023
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	-	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	November 25, 2022
Horn (1–18 GHz)	ETS Lindgren	3117	FA002840	1 year	February 10, 2023
Preamp (1–18 GHz)	ETS Lindgren	124334	FA002873	1 year	September 22, 2022
Pre-amplifier (18–26 GHz)	Narda	BBS-1826N612	FA001550	_	VOU
61505 AC source	Chroma	61509	FA003036	-	VOU
LISN	Rohde & Schwarz	ENV216	FA002515	1 year	February 4, 2023
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	February 14, 2023
Horn antenna (18–26.5 GHz)	Electro-metrics	SH-50/60-1	FA000479	_	VOU
50 Ω coax cable	C.C.A.	SF104B	FA003099	1 year	May 3, 2023
2.4 GHz band Notch Filter	Microwave Circuits	N0324413	FA003306	_	May 11, 2023
50 Ω coax cable	C.C.A.	SF104B	FA003099	1 year	May 3, 2023

Notes: NCR - no calibration required

Section 8 Testing data

8.1 Variation of power source

8.1.1 References, definitions and limits

FCC §15.31 (e):

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

8.1.2 Test summary

		Pass	Verdict
June 16, 2022	Test date	Avul Nzenza	Tested by
 June 16, 2022	Test date	Avul Nzenza	Tested by

8.1.3 Observations, settings and special notes

The testing was performed as per ANSI C63.10 Section 5.13.

- a) Where the device is intended to be powered from an external power adapter, the voltage variations shall be applied to the input of the adapter provided with the device at the time of sale. If the device is not marketed or sold with a specific adapter, then a typical power adapter shall be used.
- b) For devices, where operating at a supply voltage deviating ±15% from the nominal rated value may cause damages or loss of intended function, test to minimum and maximum allowable voltage per manufacturer's specification and document in the report.
- c) For devices with wide range of rated supply voltage, test at 15% below the lowest and 15% above the highest declared nominal rated supply voltage.
- d) For devices obtaining power from an input/output (I/O) port (USB, firewire, etc.), a test jig is necessary to apply voltage variation to the device from a support power supply, while maintaining the functionalities of the device.

For battery-operated equipment, the equipment tests shall be performed using a variable power supply.

8.1.4 Test data

EUT Power requirements:	🖾 AC	□ DC	□ Battery
If EUT is an AC or a DC powered, was the noticeable output power variation observed?	□ YES	🛛 NO	🗆 N/A
If EUT is battery operated, was the testing performed using fresh batteries?	□ YES	🗆 NO	🖾 N/A
If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?	□ YES	□ NO	🖾 N/A

8.2 Number of frequencies

8.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

RSS-Gen, Clause 6.9:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

Freque	ency range over which the device		Location of measurement frequency inside the	
	operates (in each band)	Number of test frequencies required	operating frequency range	
	1 MHz or less	1	Center (middle of the band)	
	1–10 MHz	2	1 near high end, 1 near low end	
	Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low er	
Notes:		r at the centre / low end / high end of the frequency ra	5	
Notes: 8.2.2		r at the centre / low end / high end of the frequency ra	5	
	"near" means as close as possible to c	r at the centre / low end / high end of the frequency ra	5	
	"near" means as close as possible to c	r at the centre / low end / high end of the frequency ra	5	

8.2.3 Observations, settings and special notes

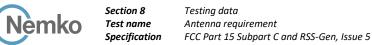
ANSI C63.10, Clause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

ANSI C63.10, Clause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worstcase modes are as follows:


- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Testing data Number of frequencies FCC Part 15 Subpart A and RSS-Gen, Issue 5

8.2.4 Test data

Table 8.2-2: Test channels selection						
Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz	
2400	2483.5	83.5	2402	2440	2480	

8.3 Antenna requirement

8.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

FCC §15.247:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-Gen, Clause 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test summary

Verdict		Pass				
Tested by	/	Avul Nzenza		Test dat	e	June 16, 2022
				_		
8.3.3	Observations, setting	s and special notes				
None						
8.3.4	Test data					
Must the E	UT be professionally install	ed?	🗆 YES	⊠ NO		
Does the El	UT have detachable antenr	na(s)?	□ YES	🛛 NO		
	If detachable, is the antenr	na connector(s) non-standard?	□ YES	\Box NO	🖾 N/A	

Testing data AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5

8.4 AC power line conducted emissions limits

8.4.1 References, definitions and limits

FCC §15.207:

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI C63.10, Clause 6.2:

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

RSS-Gen, Clause 8.8:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.4-1: Conducted emissions limit

		Conducted emissions limit, dBµV			
F	requency of emission, MHz	Quasi-peak	Average**		
	0.15–0.5	66 to 56*	56 to 46*		
	0.5–5	56	46		
	5–30	60	50		
Notes:	* - The level decreases linearly with the lo	garithm of the frequency.			

* - The level decreases linearly with the logarithm of the frequency.
 ** - A linear average detector is required.

8.4.2 Test summary

Verdict	Pass		
Tested by	Avul Nzenza	Test date	June 24, 2022

Testing data AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5

8.4.3 Observations, settings and special notes

Port under test – Coupling device	AC Mains – Artificial Mains Network (AMN)
EUT power input during test	-48 V _{DC} (via external 100-240 V _{AC} , 50/60 Hz PoE adapter)
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.
Additional notes:	 The EUT was set up as tabletop configuration per ANSI C63.10-2013 measurement procedure. The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance. Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB) Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

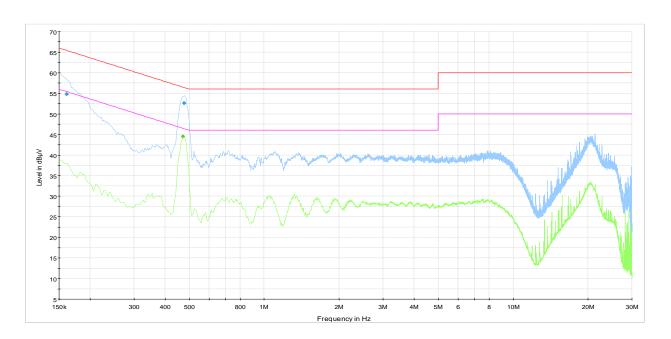
Receiver settings:

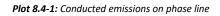
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)

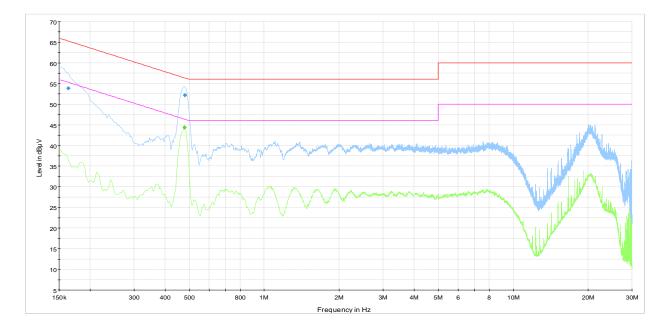
8.4.4 Test data

Table 8.4-2: Conducted emissions results on phase line

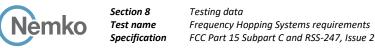
Frequency, MHz	Quasi-Peak result, dBµV	Quasi-Peak limit, dBµV	Quasi-Peak margin, dB	Correction factor, dB
0.161	54.8	65.4	10.6	10.1
0.476	52.6	56.4	3.8	10.1
Frequency, MHz	CAverage result, dBµV	CAverage limit, dBμV	CAverage margin, dB	Correction factor, dB
0.472	44.5	46.5	2.0	10.1


Table 8.4-3: Conducted emissions results on neutral line


Frequency, MHz	Quasi-Peak result, dBµV	Quasi-Peak limit, dBµV	Quasi-Peak margin, dB	Correction factor, dB
0.164	53.8	65.3	11.5	10.1
0.481	52.2	56.3	4.1	10.1
Frequency, MHz	CAverage result, dBµV	CAverage limit, dBµV	CAverage margin, dB	Correction factor, dB
0.479	44.3	46.4	2.0	10.1



Testing data AC power line conducted emissions limits FCC Part 15 Subpart C and RSS-Gen, Issue 5


Test data, continued

Plot 8.4-2: Conducted emissions on neutral line

8.5 Frequency Hopping Systems requirements, 2 GHz operation

8.5.1 References, definitions and limits

FCC §15.247:

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
- (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- (iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
- (f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

	P _{max-pk} ≤ 1 W	P _{max-pk} ≤ 0.125 W
	N _{ch} ≥ 75	N _{ch} ≥ 15
	$\Delta f \ge MAX \{ 25 \text{ kHz}, BW_{20 \text{ dB}} \}$	$\Delta f \ge MAX [MAX \{ 25 \text{ kHz}, 0.67 \times BW_{20 \text{ dB}} \} OR MAX \{ 25 \text{ kHz}, BW_{20 \text{ dB}} \}]$
	max. BW _{20 dB} not specified	max. BW _{20 dB} not specified
	$t_{ch} \leq 0.4 \text{ s}$ for T = 0.4×Nch	$t_{ch} \le 0.4$ s for T = 0.4×Nch
Note:	t _{ch} = average time of occupancy; T = peri	od; N_{ch} = # hopping frequencies; BW = bandwidth; Δf = hopping channel carrier frequency separation

Table 8.5-1: Summary of the basic requirements

RSS-247, Clause 5.1:

- a. The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system's radio frequency (RF) bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopping. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- b. FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400–2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.
- d. FHSs operating in the band 2400–2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Testing data Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

8.5.2 Test summary

Verdict	Pass		
Tested by	Avul Nzenza	Test date	June 17, 2022
8.5.3 Observatior	ns, settings and special notes		
Carrier frequency separat	ion was tested per ANSI C63.10 subclause 7	7.8.2. Spectrum analyser settings:	
Resolution bandwidth	Start with the RBW set to approximat individual channel.	ely 30% of the channel spacing; adjust as	necessary to best identify the center of each
/ideo bandwidth	≥RBW		
- requency span	Wide enough to capture the peaks of	two adjacent channels	
Detector mode	Peak		
Trace mode	Max Hold		
Video bandwidth Frequency span		pending on the number of channels the d pss multiple spans, to allow the individua	evice supports, it may be necessary to divide I channels to be clearly seen.
Detector mode	Peak		
Trace mode	Max Hold		
Time of occupancy (dwell Resolution bandwidth Video bandwidth	time) was tested per ANSI C63.10 subclaus shall be ≤ channel spacing and where ≥ RBW		ere T is the expected dwell time per channel.
Frequency span	Zero span, centered on a hopping cha	nnel.	
Detector mode	Peak		
Trace mode	Max Hold		
20 dB bandwidth was test Resolution bandwidth	ed per ANSI C63.10 subclause 6.9.2. Spectr $\geq 1-5\%$ of the 20 dB bandwidth	um analyser settings:	
Video bandwidth	≥ RBW		
Frequency span	approximately 2 to 5 times the 20 dB	bandwidth, centered on a hopping chanr	nel
Detector mode	Deel		

Peak

Max Hold

Detector mode Trace mode

Testing data Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

8.5.4 Test data

Table 8.5-2: 20 dB bandwidth results			
Modulation	Frequency, MHz	20 dB bandwidth, kHz	
	2402	809.2	
GFSK	2440	809.2	
	2480	809.2	
	2402	1380.0	
EDR2	2440	1390.0	
	2480	1380.0	
	2402	1390.0	
EDR3	2440	1410.0	
	2480	1390.0	

Table 8.5-3: 99% occupied bandwidth results

Modulation	Frequency, MHz	99% occupied bandwidth, kHz
	2402	859.7
GFSK	2440	871.5
	2480	856.9
	2402	1220.1
EDR2	2440	1223.3
	2480	1222.6
	2402	1244.4
EDR3	2440	1223.0
	2480	1224.5

Testing data Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

Table 8.5-4: Number of hopping frequencies results for all modulations

Number of hopping frequencies*	Minimum limit	Margin
79	15	64

Note: *EUT transmits on all Bluetooth channels 0 to 78.

	Table 8.5-5: Carrier frequency separation results				
Modulation	Carrier frequency separation, kHz	Minimum limit*, kHz	Margin, kHz		
GFSK	1000.7	539.5	461.2		
EDR2	1005.0	920.0	85		
EDR3	987.0	940.0	47		

Note: Max power is \leq 0.125 W, therefore minimum limit is 2/3 of 20 dB BW.

Table 8.5-6: Average time of occupancy results

Modulation	Dwell time of each pulse, ms	Number of pulses within 100 ms	Number of pulses** within period	Total dwell time within *period, ms	Limit, ms	Margin, ms
GFSK	0.392	2.0	632.0	247.7	400.0	152.3
EDR2	0.282	2.0	632.0	178.2	400.0	221.8
EDR3	0.242	2.0	632.0	152.9	400.0	247.1

Note: *Measurement period is 31.6 s = 0.4 s × 79 channels

**Number of pulses was counted within 100 ms interval and then multiplied by the 31.6 s/0.1 s = 316.

Testing data Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

02:29:11 25.06.2022

Figure 8.5-1: 20 dB bandwidth sample plot

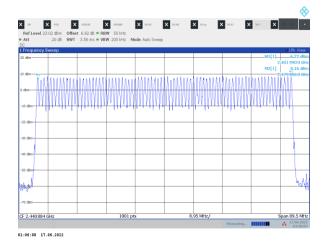


Figure 8.5-3: Number of hopping channels sample plot

Figure 8.5-2: 99% occupied bandwidth sample plot

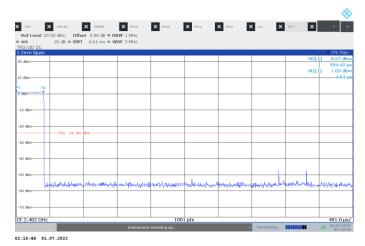


Figure 8.5-4: Dwell time, sample plot

 \bigotimes

•

Count 1/1

amore

Span 5.0 MHz

Testing data Frequency Hopping Systems requirements FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

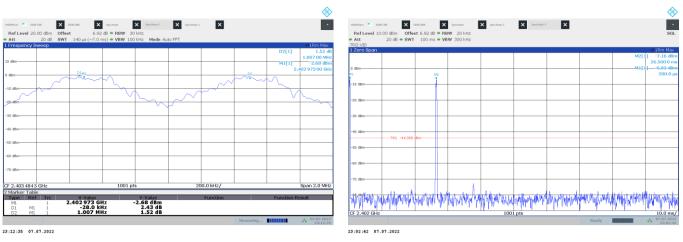


Figure 8.5-5: Channel frequency separation sample plot

Figure 8.5-6: Number of pulses within 100 ms.

8.6 Transmitter output power and e.i.r.p. requirements for FHSS 2 GHz

8.6.1 References, definitions and limits

FCC §15.247:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt (30 dBm). For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts (21 dBm).
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247, Clause 5.4:

Devices shall comply with the following requirements, where applicable:

- For FHSs operating in the band 2400–2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W (30 dBm) if the hopset uses
 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W (21 dBm) if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (36 dBm), except as provided in section 5.4(e).
- e. Fixed point-to-point systems in the bands 2400–2483.5 MHz and 5725–5850 MHz are permitted to have an e.i.r.p. higher than 4 W provided that the higher e.i.r.p. is achieved by employing higher gain directional antennas and not higher transmitter output powers. Point-to-multipoint systems, omnidirectional applications and multiple co-located transmitters transmitting the same information are prohibited from exceeding an e.i.r.p. of 4 W.

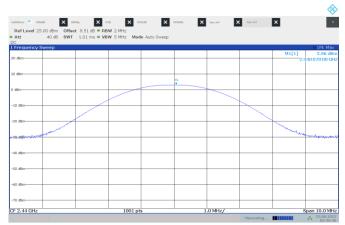
8.6.2 Test summary

Verdict	Pass		
Tested by	Avul Nzenza	Test date	June 24, 2022

8.6.3 Observations, settings and special notes

Conducted output power was tested per ANSI C63.10 subclause 7.8.5. The hopping shall be disabled for this test. Spectrum analyser settings:

Resolution bandwidth	> 20 dB bandwidth of the emission being measured
Video bandwidth	≥ RBW
Frequency span	approximately 5 times the 20 dB bandwidth, centered on a hopping channel
Detector mode	Peak
Trace mode	Max Hold



Testing data Transmitter output power and e.i.r.p. requirements FCC Part 15 Subpart C and RSS-247, Issue 2

8.6.4 Test data

	Table 8.6-1: Output power and EIRP results								
			Output						
	Frequency,	Output	power limit,	Output power	Antenna		EIRP limit,	EIRP margin,	
Modulation	MHz	power, dBm	dBm	margin, dB	gain, dBi	EIRP, dBm	dBm	dB	
	2402	3.41	30.00	26.59	2.70	6.11	36.00	29.89	
GFSK	2440	2.96	30.00	27.09	2.70	5.61	36.00	30.39	
	2480	2.86	30.00	27.14	2.70	5.56	36.00	30.44	
	2402	3.84	30.00	26.16	2.70	6.54	36.00	29.46	
EDR2	2440	3.42	30.00	26.58	2.70	6.12	36.00	29.88	
	2480	3.38	30.00	26.62	2.70	6.08	36.00	29.92	
	2402	4.32	30.00	25.68	2.70	7.02	36.00	28.98	
EDR3	2440	3.94	30.00	26.06	2.70	6.64	36.00	29.36	
	2480	3.87	30.00	26.13	2.70	6.57	36.00	29.43	

EIRP = Output power + Antenna gain

02:46:47 25.06.2022

Figure 8.6-1: Output power sample plot

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

8.7 Spurious (out-of-band) unwanted emissions

8.7.1 References, definitions and limits

FCC §15.247:

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247, Clause 5.5:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Table 8.7-1: FCC §15.209 and RSS-Gen - Re	adiated emission limits
---	-------------------------

Field strength of emissions							
Frequency, MHz	μV/m	dBµV/m	Measurement distance, m				
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300				
0.490-1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30				
1.705-30.0	30	29.5	30				
30–88	100	40.0	3				
88–216	150	43.5	3				
216–960	200	46.0	3				
above 960	500	54.0	3				

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

References, definitions and limits, continued

MHz	MHz	MHz	GHz
0.090-0.110	12.57675-12.57725	399.9–410	7.25–7.75
0.495-0.505	13.36–13.41	608–614	8.025-8.5
2.1735-2.1905	16.42–16.423	960–1427	9.0–9.2
3.020-3.026	16.69475–16.69525	1435–1626.5	9.3–9.5
4.125-4.128	16.80425-16.80475	1645.5-1646.5	10.6–12.7
4.17725-4.17775	25.5–25.67	1660–1710	13.25–13.4
4.20725-4.20775	37.5–38.25	1718.8–1722.2	14.47–14.5
5.677–5.683	73–74.6	2200–2300	15.35–16.2
6.215-6.218	74.8–75.2	2310–2390	17.7–21.4
6.26775-6.26825	108–138	2483.5-2500	22.01-23.12
6.31175-6.31225	149.9–150.05	2655–2900	23.6–24.0
8.291-8.294	156.52475-156.52525	3260–3267	31.2–31.8
8.362-8.366	156.7–156.9	3332–3339	36.43–36.5
8.37625-8.38675	162.0125–167.17	3345.8–3358	
8.41425-8.41475	167.72–173.2	3500-4400	Above 28.6
12.29–12.293	240–285	4500–5150	Above 38.6
12.51975-12.52025	322–335.4	5350-5460	

Note:

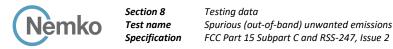

Certain frequency bands listed in Table 8.7-2 and above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Table 8.7-3: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600–4400	Above 38.6
13.36-13.41			

8.7.2 Test summary

Verdict	Pass		
Tested by	Avul Nzenza	Test date	June 24, 2022

8.7.3 Observations, settings and special notes

- As part of the current assessment, the test range of 9 kHz to 10th harmonic has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.
- EUT was set to transmit with 100 % duty cycle.
- Radiated measurements were performed at a distance of 3 m.
- Average was calculated from peak results using duty cycle correction factor (DCCF).
- Pulse width = 0.394 ms, 2 pulses within 100 ms; DCCF = MAX(-20 dB or 20 × Log₁₀ ((0.396 × 2) / 100) = -42.06 dB)
- DCCF of the maximum (–20 dB) was used for average calculation.

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

	,	0	
Resolution l	bandwidth:		100 kHz
Video band	width:		300 kHz
Detector m	ode:		Peak
Trace mode	e:		Max Hole

Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz				
Video bandwidth:	3 MHz				
Detector mode:	Peak				
Trace mode:	Max Hold				
Spectrum analyser settings fo	Spectrum analyser settings for conducted spurious emissions measurements:				

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

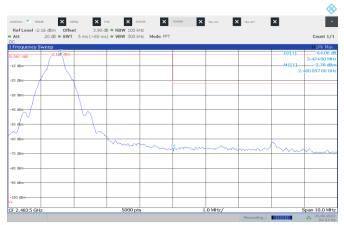
8.7.4 Test data

Table 8.7-4: Radiated field strength measurement results

Modulation	Channel	Frequency,	Peak Field strer	ngth, dBµV/m	Margin,	Average Field stre	ength, dBμV/m	Margin,
wouldtion	Channel	MHz	Measured	Limit	dB	Calculated	Limit	dB
GFSK	Low	2390.0	39.3	74.0	34.7	19.3	54.0	34.7
GFSK	Low	4804.0	44.5	74.0	29.5	24.5	54.0	29.5
GFSK	Mid	7320.0	51.3	74.0	22.7	31.3	54.0	22.7
GFSK	High	2483.5	45.6	74.0	28.4	25.6	54.0	28.4
EDR2	Low	2390.0	38.6	74.0	35.4	18.6	54.0	35.4
EDR2	Mid	7320.0	51.8	74.0	22.2	31.8	54.0	22.2
EDR2	High	2483.5	43.2	74.0	30.8	23.2	54.0	30.8
EDR3	Low	2390.0	37.9	74.0	36.2	17.9	54.0	36.2
EDR3	Mid	7318.6	52.3	74.0	21.7	32.3	54.0	21.7
EDR3	High	2483.5	46.4	74.0	27.7	26.4	54.0	27.7

Note: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Average field strength was calculated: Peak field strength + DCCF (-20 dB)


Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

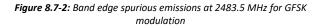
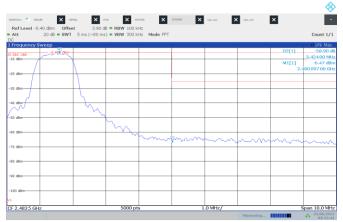


Figure 8.7-1: Band edge spurious emissions at 2400 MHz for GFSK

modulation


02:57:33 25.06.2022

02:35:35 25.06.2022

Figure 8.7-3: Band edge spurious emissions at 2400 MHz for EDR2/ EDR3 Modulation

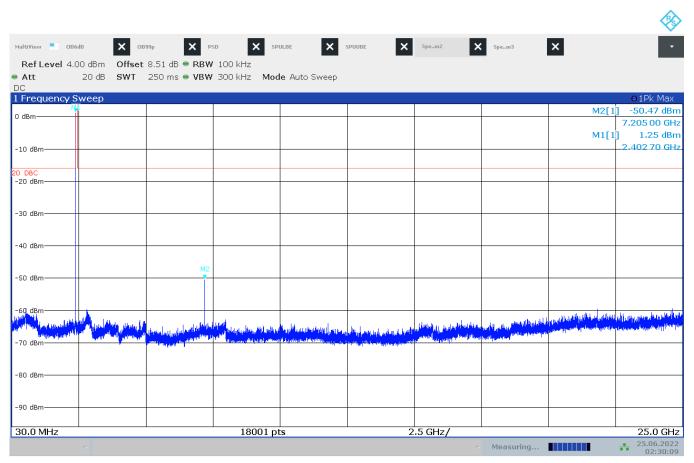
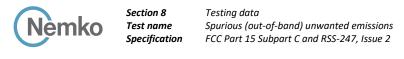

03:12:45 25.06.2022

Figure 8.7-4: Band edge spurious emissions at 2483.5 MHz for EDR2/ EDR3 modulation

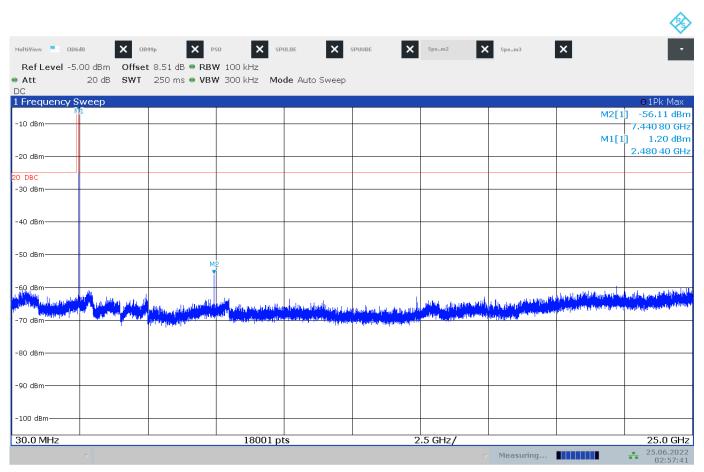

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

02:30:10 25.06.2022

Figure 8.7-5: Conducted spurious emissions for GFSK modulation at low channel

									I
Multi¥iew 📕 OB	едв 🗙 ов	99р 🗙 Р	sD 🗙 sp	JLBE X	SPUUBE X	Spem2	Spem3	×	•
Ref Level -5	.00 dBm Offset	t 8.51 dB 🗢 RBV	V 100 kHz						
Att	20 dB SWT	250 ms 🖷 VBV	V 300 kHz Mo	de Auto Sweep					
DC 1 Frequency S	Sween								o 1Pk Max
I I I Equency a	n N							M2[1	
-10 dBm								WZ[1	7.320 10 GHz
								M1[1	
								in the second se	2.440 20 GH
-20 dBm									2111020 011
0 DBC									
-30 dBm									
00 0011									
-40 dBm									
		M2							
-50 dBm		Ĭ							
-60 dBm									. kiki
a state of the second second	الارجامين الألياني وروالا			an an a faile and a street		والماسر الدور وروامليس	مالك بنبائه ورائدانا ورور والم		here and the plant of the second states
and play prove the state		obline to patients and a second		inder alle fan de bliefter de bereiten. Inder andere skiller de service		Allow and a second branching	the first states		
-70 dBm	1	a second s			a second a second state of the second se				
-80 dBm									
-su usm									
-90 dBm									
-100 dBm									
30.0 MHz			18001 pt			.5 GHz/			25.0 GHz
3010 MHZ			16001 pi	.5					
							Measuring		25.06.2022 02:46:19


02:46:19 25.06.2022

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

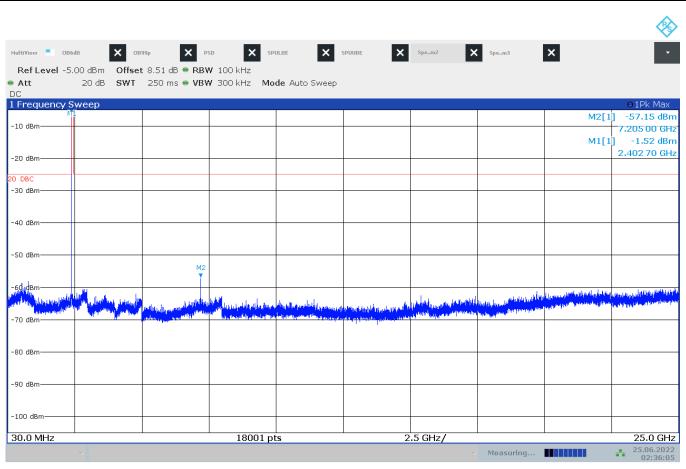
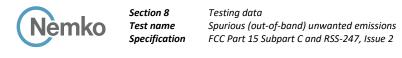

02:57:42 25.06.2022

Figure 8.7-7: Conducted spurious emissions for GFSK modulation at high channel

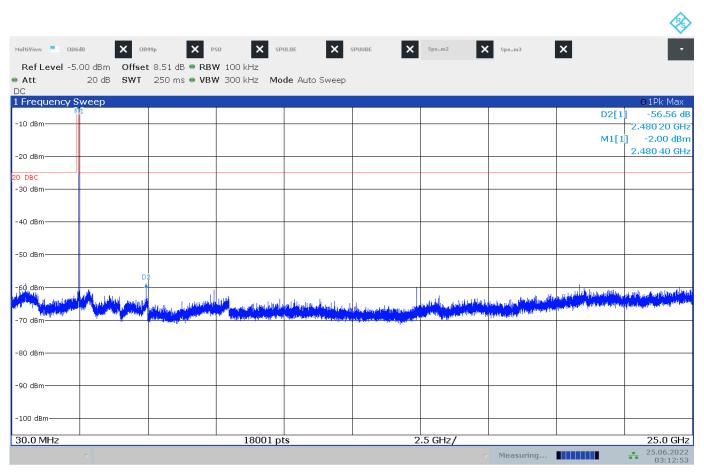

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

02:36:05 25.06.2022

Figure 8.7-8: Conducted spurious emissions for EDR2 modulation at low channel

MultiView 🗧 OB6	ав 🗙 ов	99p 🗙 PS	SD 🗙 SPI	JLBE X	SPUUBE 🗙	Spem2	Spem3	×	•
Ref Level -5.	.00 dBm Offset	8.51 dB 🖷 RBW	V 100 kHz						
• Att	20 dB SWT	250 ms 🖷 VBW	/ 300 kHz 🛛 Mo	de Auto Sweep					
DC 1 Frequency S									●1Pk Max
. Frequency S	weep							M2[1	_
-10 dBm								WZ[1	7.320 10 GH
								M1[1] -1.82 dBr
20 dBm								_	2.440 20 GH
20 0011									
O DBC									
·30 dBm									
-40 dBm									
-50 dBm									
-50 UBIII-		110							
		Y							
-601dBm								والألفان والديابين المتعادية	en al la facta de la calenda de la calend
politica and and the particular	المحالي الأطليس ما الألي	والملاط المحر وبراري والالعالي	a state a state that is	المراجع المراجع والمطاورة والمحاج ومراجع المكافئا فالم	للفرزان الدائران الرابي مريز مريا	المعادية البرياني ورواحا المراي	hashing to had a district of the		aloud the public matching of the
-70 dBm	und the share	na in Uprava na na sana sa bisa sa s	and the second states and	and the second pression of the second	i den en propositionen a provinsi	and the state of the	The second s		
00.40									
-80 dBm									
90 dBm									
-100 dBm									
30.0 MHz			18001 pt	S	2	.5 GHz/			25.0 GH
							Measuring		25.06.2022


02:49:52 25.06.2022

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

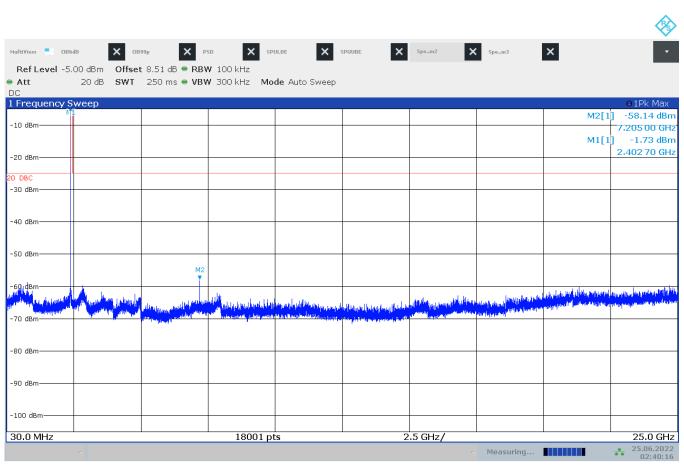

03:12:54 25.06.2022

Figure 8.7-10: Conducted spurious emissions for EDR2 modulation at high channel


Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

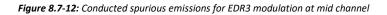
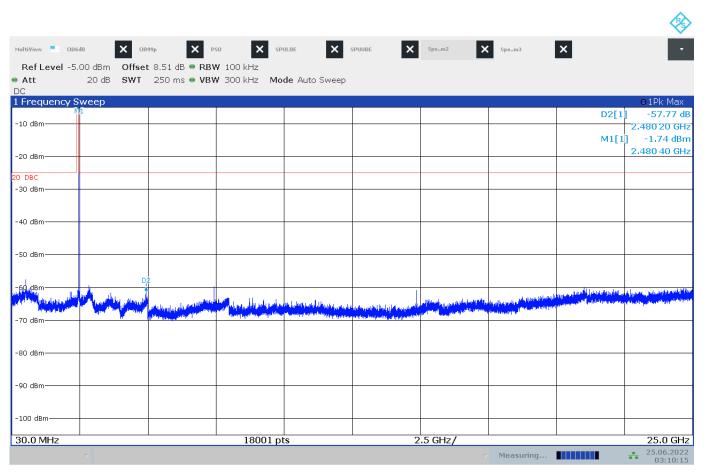

^{02:40:16 25.06.2022}

Figure 8.7-11: Conducted spurious emissions for EDR3 modulation at low channel

									× ×
1ulti¥iew <mark>–</mark> OB6	ав 🗙 ов	99p 🗙 PS	a 🗙 sp	ULBE X	SPUUBE X	Spem2	Spem3	×	-
Ref Level -5.	00 dBm Offset	t 8.51 dB 😑 RBV	/ 100 kHz				-		_
Att	20 dB SWT	250 ms 🖷 VBV	/ 300 kHz Mo	de Auto Sweep					
)C Frequency S	weep								o1Pk Max
M	1							M2[1	_
10 dBm									7.320 10 GF
								M1[1] -1.31 dB
20 dBm									2.440 20 GF
D DBC									
30 dBm									
40 dBm									
50 dBm									
		M2							
60 dBm		Ţ							
	a barren ba		- In-				L. Discussion	, hoga a he chatta, na ila getta (daha) Anga a he chatta anga a anga a huga a huga	holosile, which we will be
and the property of the second second	ALL CALLED AND ADDRESS	والمتحربا الالار ومعارج أرزان بالبلاك	he was a strategier of the second	and the sector beaution of the	والمقرور والمرد والمحاري والمطالع		Little photon from the second	and states and an instantial, safe a	hang series and the series of
70 dBm	in a start share a	ين المركز ال	and the state of the	<mark>jinatan sinta san</mark> tan	and a second way and a second	الله المراحدين المراجعين المراجعين المراجعين المراجعين المراجعين المراجعين المراجعين المراجعين المراجعين المراجع المراجع المراجع	hereiten abel ist eine providere selder		
80 dBm									
90 dBm									
100 dBm									
100 UDIII			-						
30.0 MHz	1	1	18001 pt	S S	2	.5 GHz/			25.0 GF
	~						Measuring		25.06.202


02:53:17 25.06.2022

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

03:10:16 25.06.2022

Figure 8.7-13: Conducted spurious emissions for EDR3 modulation at high channel

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

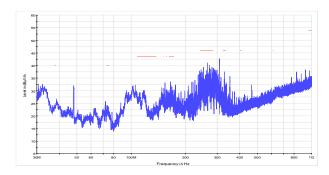


Figure 8.7-14: Radiated spurious emissions below 1 GHz for GFSK modulation low channel

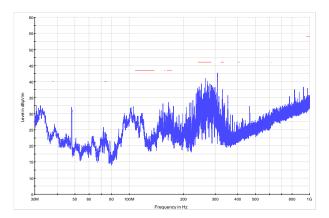


Figure 8.7-16: Radiated spurious emissions below 1 GHz for GFSK modulation Mid channel

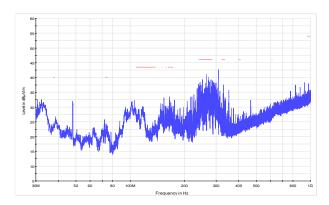


Figure 8.7-18: Radiated spurious emissions below 1 GHz for GFSK modulation Mid channel

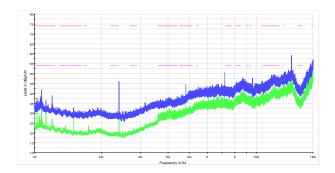


Figure 8.7-15: Radiated spurious emissions within 1–18 GHz for GFSK modulation low channel

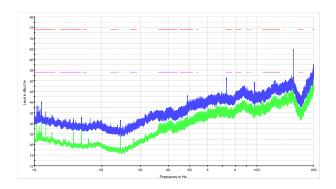


Figure 8.7-17: Radiated spurious emissions within 1–18 GHz for GFSK modulation Mid channel

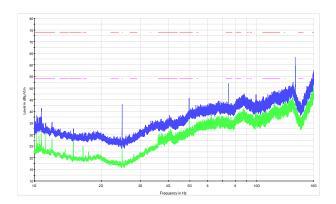


Figure 8.7-19: Radiated spurious emissions within 1–18 GHz for GFSK modulation Mid channel

Note: Spectrum was investigated up to 25 GHz, no emission related to RF transmission was detected within 6 dB below the limit above 18 GHz

Testing data Spurious (out-of-band) unwanted emissions FCC Part 15 Subpart C and RSS-247, Issue 2

Test data, continued

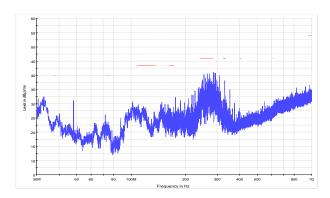


Figure 8.7-20: Radiated spurious emissions below 1 GHz for EDR2 modulation low channel

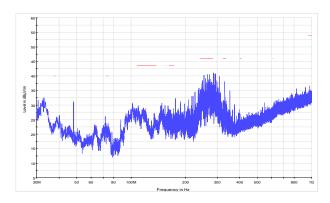


Figure 8.7-22: Radiated spurious emissions below 1 GHz for EDR2 modulation Mid channel

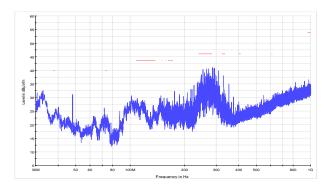


Figure 8.7-24: Radiated spurious emissions below 1 GHz for EDR2 modulation Mid channel

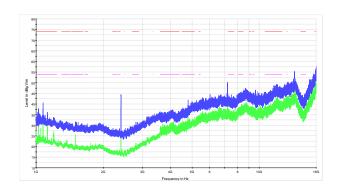


Figure 8.7-21: Radiated spurious emissions within 1–18 GHz for EDR2 modulation low channel

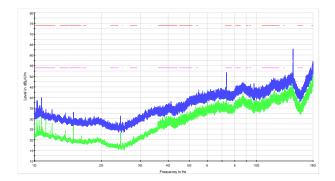


Figure 8.7-23: Radiated spurious emissions within 1–18 GHz for EDR2 modulation Mid channel

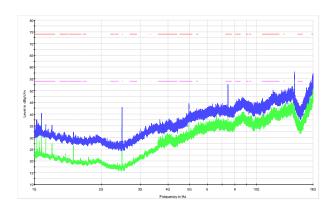


Figure 8.7-25: Radiated spurious emissions within 1–18 GHz for EDR2 modulation Mid channel

Note: Spectrum was investigated up to 25 GHz, no emission related to RF transmission was detected within 6 dB below the limit above 18 GHz