

: 15th January 2009

Authorised Copy Number : PDF

Contents

Section 1:	Introduction 1.1 General 1.2 Tests Requested By 1.3 Manufacturer 1.4 Apparatus Assessed 1.5 Test Result Summary 1.6 Notes Relating To The Assessment 1.7 Deviations from Test Standards	3 4 4 5 6
Section 2:	Measurement Uncertainty 2.1 Application of Measurement Uncertainty 2.2 KTL Measurement Uncertainty Values	7 7 8
Section 3:	Modifications 3.1 Modifications Performed During Assessment	9 9
Appendix A:	Formal Emission Test Results A1 Conducted Fundamental Carrier Power A2 RF Antenna Conducted Spurious Emissions A3 Radiated Electric Field Emissions Within The Restricted Band 15.205 A4 Power Line Conducted Emissions A5 20 dB Bandwidth and Channel Spacing A6 Hopping frequencies A7 Channel Occupancy A8 Antenna Gain A9 Radiated Electric Field Emissions – Non Transmitting Mode	10 11 12 14 17 19 20 21 22 23
Appendix B:	Supporting Graphical Data	24
Appendix C:	Additional Test and Sample Details	63
Appendix D:	Additional Information	71
Appendix E:	Calculation of the duty cycle correction factor	73
Appendix F:	Photographs and Figures	74
Appendix G:	MPE Calculation	78

• Unit E, South Orbital Trading Park, Hedon Road, Hull, HU9 1NJ, UK.

T +44 (0)1482 801801
 F +44 (0)1482 801806
 E info@trac-ktl.com

Section 1:

Introduction

1.1 General

This report contains an assessment of an apparatus against Electromagnetic Compatibility Standards based upon tests carried out on samples submitted to the Laboratory.

Test performed by:

KTL Unit E South Orbital Trading Park Hedon Road Hull, HU9 1NJ. United Kingdom.

 Telephone:
 +44 (0) 1482 801801

 Fax:
 +44 (0) 1482 801806

 Email:
 ktl@ktl.com

 Web site:
 www.ktl.com

K 9 anderson

Tests performed by:

K J Anderson, Radio Test Engineer

Report author:.

As Above

This report supersedes KTL report 7H0648WUS3 due to a modification to the Applicant Name.

This report must not be reproduced except in full without prior written permission from KTL.

1.2 Tests Requested By

This testing in this report was requested by :

Avaya Inc 307 Middletown-Lincroft Rd. Lincroft, NJ 07738-1526 USA

1.3 Manufacturer

Flextronics International Xin Qing Science & Technology Industrial Park Jing An Town Doumen Zhuhai Guangdong P.R China

1.4 Apparatus Assessed

The following apparatus was assessed between 28/10/08 and 06/01/09:

IP Telephone 9670G with integrated Bluetooth Transceiver

The above equipment was a Voice over IP Phone fitted with a Bluetooth Module to allow connection with Bluetooth Headsets.

1.5 Test Result Summary

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

The statements relating to compliance with the standards below apply ONLY as qualified in the notes and deviations stated in sections 1.6 to 1.7 of this test report.

Full details of test results are contained within Appendix A. The following table summarises the results of the assessment.

Test Type	Regulation	Measurement standard	Result
Radiated spurious emissions (Restricted bands)	Title 47 of the CFR: 2008, Part 15 Subpart (c) 15.247	ANSI C63.4: 2003	Pass
Radiated spurious emissions Non- Transmitting mode	Title 47 of the CFR: 2008, Part 15 Subpart (b) 15.109	ANSI C63.4: 2003	Marginal
Conducted spurious emissions (Non-restricted bands)	Title 47 of the CFR: 2008, Part 15 Subpart (c) 15.247	Public Notice DA 00-705 March 30, 2000	Pass
AC Power conducted emissions	Title 47 of the CFR: 2008, Part 15 Subpart (c) 15.207	ANSI C63.4: 2003	Pass
20dB Bandwidth and Channel Spacing	Title 47 of the CFR :2008, Part 15 Subpart (c) 15.247(a)(1)(i)	Public Notice DA 00-705 March 30, 2000	Pass
Conducted Carrier Power	Title 47 of the CFR :2008, Part 15 Subpart (c) 15.247(b)(2)	Public Notice DA 00-705 March 30, 2000	Pass
Hopping Frequencies	Title 47 of the CFR :2008, Part 15 Subpart (c) 15.247(a)(1)	Public Notice DA 00-705 March 30, 2000	Pass
Channel Occupancy	Title 47 of the CFR :2008, Part 15 Subpart (c) 15.247(a)(1)(i)	Public Notice DA 00-705 March 30, 2000	Pass

Abbreviations used in the above table:

Mod : Modification

CFR : Code of Federal Regulations REFE : Radiated Electric Field Emissions ANSI PLCE : American National Standards Institution : Power Line Conducted Emissions

1.6 Notes Relating To The Assessment

With regard to this assessment, the following points should be noted:

The results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 1.7 of this test report (Deviations from Test Standards).

For emissions testing, throughout this test report, "Pass" indicates that the results for the sample as tested were below the specified limit (refer also to Section 2, Measurement Uncertainty).

Where relevant, the apparatus was only assessed using the monitoring methods and susceptibility criteria defined in this report.

All testing with the exception of testing at the Open Area Test Site was performed under the following environmental conditions:

Temperature	: 17 to 23 °C
Humidity	: 45 to 75 %
Barometric Pressure	: 86 to 106 kPa

All dates used in this report are in the format dd/mm/yy.

This assessment has been performed in accordance with the requirements of ISO/IEC 17025.

KTL Hull is a listed electromagnetic compatibility Conformance Assessment Body (CAB) for EC access to the US market. (Decision No 3/2000 of the Joint Committee established under the Agreement on Mutual Recognition between the European Community and the United States of America. This decision was effective from 16th January 2001).

FCC Facility Registration number (3m semi anechoic chamber): 90743

1.7 Deviations from Test Standards

There were no deviations from the standards tested to.

Section 2:

Measurement Uncertainty

2.1 Application of Measurement Uncertainty

The following table contains the measurement uncertainties for KTL measurements

The following procedure is used when determining the result of a measurement :

- (i) If specification limits are not exceeded by the measured result, extended by the positive component of the expanded uncertainty interval at a confidence level of 95%, then a pass result is recorded.
- (ii) Where a specification limit is exceeded by the result even when the result is decreased by the negative component of the expanded uncertainty interval, a fail result is recorded.
- (iii) Where measured result is below a limit, but by a margin less than the positive measurement uncertainty component, it is not possible to record a pass based on a 95% confidence level. However, the result indicates that a pass result is more probable than a fail result.
- (iv) Where a measured result is above a limit, but by a margin less than the negative measurement uncertainty component, it is not possible to record a fail based on a 95% confidence level. However the result indicates that a fail is more probable than a pass.

2.2 KTL Measurement Uncertainty Values

For the test data recorded in accordance with note (iii) of Section 2.2 the following measurement uncertainty was calculated:

Test type	Quantity Quantity frequency range		Expanded uncertainty
	Amplitude	30MHz to 300MHz Horizontal	±4.6dB
De dista de la stris fielde serie sis est		30MHz to 300MHz Vertical	±5.1dB
3m alternative test site		300MHz to 1000MHz Horizontal	±5.2dB
		300MHz to 1000MHz Vertical	±5.5dB
		1GHz to 18GHz Horizontal and Vertical	±4.1dB

Section 3:

Modifications

3.1 Modifications Performed During Assessment

No modifications were performed during the assessment

Appendix A:

Formal Emission Test Results

Abbreviations used in the tables in this appendix:

Spec Mod	: Specification : Modification	ALSR OATS ATS	: Absorber Lined Screened Room : Open Area Test Site : Alternative Test Site
EUT SE	: Equipment Under Test : Support Equipment		
		Ref	: Reference
		Freq	: Frequency
		MD	: Measurement Distance
L N	: Live Power Line : Neutral Power Line	SD	: Spec Distance
E	: Earth Power Line	Pol	: Polarisation
		Н	: Horizontal Polarisation
Pk	: Peak Detector	V	: Vertical Polarisation
QP	: Quasi-Peak Detector		
Av	: Average Detector	CDN	: Coupling & decoupling network

A1 Conducted Fundamental Carrier Power

Conducted carrier power was verified using a peak power meter, the EUT transmitting on its lowest, centre and highest carrier frequency in turn.

Test Details:				
Regulation	Title 47 of the CFR 2008, Part15 Subpart (c) 15.247(b)(1)			
EUT sample number	S25			
Modification state	0			
SE in test environment	REF828			
SE isolated from EUT	None			
EUT set up	Refer to Appendix C			

Channel No	Channel Frequency (MHz)	Measured Peak Conducted Carrier Power (W)	Limit (W) \geq 79 channels	Result
0	2402	0.00085		Pass
39	2441	0.00081	0.125	Pass
78	2480	0.00077		Pass

Notes

The carrier power was measured whilst varying the supply voltage between 85% and 105% of the nominal supply voltage as required by 15.31(e). No variation in carrier power was observed.

The peak carrier power did not vary between the three modulation modes.

Limit based on relaxed 20 dB Bandwidth requirement of 15.247(a)(1).

A2 RF Antenna Conducted Spurious Emissions

Measurement of conducted spurious emissions at the antenna port was performed using a peak detector with the RBW set to 100kHz and the VBW>RBW. Frequencies were scanned up through to the 10th harmonic with the EUT transmitting on its lowest, centre and highest carrier frequency in turn.

Test Details				
Regulation	Title 47 of the CFR 2008, Part 15 Subpart (c) Clause 15.247(d) and Clause 15.205			
Measurement standard	ANSI C63.4:2003			
Frequency range	9 kHz to 25 GHz			
EUT sample number	S25			
Modification state	0			
SE in test environment	REF 838			
SE isolated from EUT	None			
EUT set up	Refer to Appendix C			

No emissions within 20 dB of the tests limits were detected.

Notes:

- The conducted emission limit for emissions outside the restricted bands, defined in 47CFR15.205(a) are based on a transmitted carrier level of 15.247(b). With the EUT transmitting on its lowest, centre and highest carrier frequencies in turn, emissions from the EUT are required to be 20 dB below the level of the highest fundamental as measured within a 100 kHz RBW in accordance with 15.247(d) using a peak detector.
- 2. The RBW = 100 kHz, Video bandwidth (VBW) > RBW and the radio spectrum was investigated up to the 10th harmonic in accordance15.33 (a)(1).
- 3. The measurements at 2400 MHz and 2483.5 MHz were made to ensure band edge compliance.
- 4. The carrier level was measured whilst varying the supply voltage between 85% and 105% of the nominal supply voltage as required by 15.31(e). No variation in carrier level was observed.

The limit outside the restricted band in 100 kHz RBW is defined using the following formula in accordance with 15.247(d):

The limit in 100 kHz RBW = (Maximum Peak Conducted Carrier)-20dB

Where:

The maximum peak conducted power was measured using a peak power meter. Please refer to section A1 of this test report.

	Limit(dBµV)								
Channel No.	annel No. Channel Frequency (MHz) Measured Peak Conducted Carrier Power (W)		Measured Peak Conducted Carrier (dBµV)	Measured Peak Conducted Carrier – 20dB (dBµV)	Average Emission Limit 15.247(d) Outside the restricted band in 100 kHz RBW (dBµV)				
0	2402	0.00085	106.3	86.3	66.3				
39	2441	0.00081	106.1	86.1	66.1				
78	2480	0.00077	105.9	85.9	65.9				

A3 Radiated Electric Field Emissions Within The Restricted Band 15.205

Preliminary conducted emission testing was performed using a peak detector with the RBW = 100kHz. The radiated electric filed emission test applies to spurious emissions and harmonics that fall within the restricted bands listed in Section 15.205. The maximum permitted field strength is listed in Section 15.209. The EUT was set to transmit on its lowest, centre and highest carrier frequency in turn.

The following test site was used for final measurements as specified by the standard tested to :

10m open area test site :

3m alternative test site :

\checkmark	
--------------	--

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details				
Regulation	Title 47 of the CFR 2008, Part 15 Subpart (c) Clause 15.247(d) and Clause 15.205			
Measurement standard	ANSI C63.4:2003			
Frequency range	100 kHz to 25 GHz			
EUT sample number	S25			
Modification state	0			
SE in test environment	REF 838			
SE isolated from EUT	None			
EUT set up	Refer to Appendix C			
Photographs (Appendix F)	Photograph 1 and 2			

The worst case radiated emission measurements for spurious emissions and harmonics that fall within the restricted bands are listed below:

Ref No.	Freq (MHz)	Det.	Angle. Deg.	Height (cm)	Pol.	Result (dBµV/m)	Spec. Limit (dBµV/m)	Margin (dB)	Summary
1	2390	Pk	0	100	Н	47.1	74	-26.9	Pass
2	2390	Av	0	100	Н	31	54	-23	Pass
3	2483.5	Pk	0	100	Н	41.3	74	-32.7	Pass
4	2483.5	Av	0	100	Н	31.2	54	-22.8	Pass
5	2346.153846	Pk	35	100	Н	44.4	74	-29.6	Pass
6	2346.153846	Av	35	100	Н	30.9	54	-23.1	Pass
7	7443.910256	Pk	122	100	Н	45.4	74	-28.6	Pass
8	7443.910256	Av	122	100	Н	30.3	54	-23.7	Pass

The results above represent the worst-case emissions found at all carrier frequencies and operating modes.

Notes:

- 1 Any testing performed below 30 MHz was performed using a magnetic loop antenna in accordance with ANSI C63.4: 2003 section 8.2.1.
- 2 In accordance with 15.35(b), above 1 GHz, emissions measured using a peak detector shall not exceed a level 20 dB above the average limit.
- 3 The measurements 2483.5 MHz was made to ensure band edge compliance.
- 4 Demonstration of band edge compliance at 2.4GHz (which lies outside the restricted bands as defined in section 47CFR15.205(a) is contained in section A2, RF Antenna Conducted Spurious Emissions and Appendix B of this test report.
- 5 Testing was performed with the EUT orientated in three orthogonal planes and the maximum emissions level recorded. In addition, the EUT antenna was varied within its range of motion in order to maximise emissions.
- 6 For Frequencies Below 1 GHz, RBW= 100 kHz, testing was performed with CISPR16 compliant test receiver with QP detector. Above 1 GHz tests were performed using a spectrum analyser using the following settings:
 - Peak RBW=VBW= 1MHz
 - Average RBW= 1 MHz, VBW = 10 Hz

These settings as per ANSI C63.4 and DA 00-705.

7 In accordance with DA 00-705, the average level of the spurious radiated emission may be reduced by the duty cycle correction factor. If the dwell time per channel (refer to the measured channel occupancy time, section A7 of this test report) of the hopping signal is less than 100ms then the average measurement may be further adjusted by the duty cycle correction factor which is derived from

 $20\log_{10}\left(\frac{\text{dwell time}}{100ms}\right)$

The upper and lower frequency of the measurement range was decided according to 47 CFR 15:2008 Clause 15.33(a) and 15.33(a)(1).

Radiated emission limits (47 CFR 15:2008 Clause 15.209) for emissions falling within the restricted bands defined in 15.205(a):

Frequency of emission (MHz)	Field strength μ V/m	Measurement Distance m	Field strength $dB\mu V/m$
0.009-0.490	2400/F(kHz)	300	67.6/F (kHz)
0.490-1.705	24000/F(kHz)	30	87.6/F (kHz
1.705-30	30	30	29.5
30-88	100	3	40.0
88-216	150	3	43.5
216-960	210	3	46.4
Above 960	500	3	54.0

Notes:

(a) Where results have been measured at one distance, and a signal level displayed at another, the results have been extrapolated using the following formula:

Extrapolation (dB) = $20 \log_{10} \left(\frac{\text{measurement distance}}{\text{specification distance}} \right)$

The results displayed take into account applicable antenna factors and cable losses.

- (b) The levels may have been rounded for display purposes.
- (c) The following table summarises the effect of the EUT operating mode, internal configuration and arrangement of cables / samples on the measured emission levels :

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels				\checkmark
Effect of EUT internal configuration on emission levels	\checkmark			
Effect of Position of EUT cables & samples on emission levels	\checkmark			
 (i) Parameter defined by standard and / or single possible, refer to Appendix D (ii) Parameter defined by client and / or single possible, refer to Appendix D (iii) Parameter had a negligible effect on emission levels, refer to Appendix D (iv) Worst case determined by initial measurement, refer to Appendix D 				

A4 Power Line Conducted Emissions

Preview power line conducted emission measurements were performed with a peak detector in a screened room.

The effect of the EUT set-up on the measurements is summarised in note (b).

Where applicable formal measurements of the emissions were performed with a peak, average and/or quasi peak detector. The EUT was set to transmit on its lowest, centre and highest carrier frequency in turn. The formal measurements are detailed below:

Test Details:		
Regulation	Title 47 of the CFR 2008, Part 15 Subpart (c) Clause 15.207	
Measurement standard	ANSI C63.4:2003	
Frequency range	150kHz to 30MHz	
EUT sample number	S25	
Modification state	0	
SE in test environment	REF 838	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	
Photographs (Appendix F)	Photograph 3	

The worst-case power line conducted emission measurements are listed below:

				-		
Ref No.	Freq (MHz)	Conductor	Result (dBuV)	Spec Limit (dBuV)	Margin (dB)	Result Summary
1	0.189	Live	34.8	54.0	-19.2	Pass
2	0.509	Live	37.0	46.0	-9.0	Pass
3	0.572	Live	37.6	46.0	-8.4	Pass
4	2.097	Live	34.8	46.0	-11.2	Pass
5	2.216	Live	34.7	46.0	-11.3	Pass
6	2.513	Live	37.2	46.0	-8.8	Pass
7	0.189	Neutral	33.6	54.0	-20.4	Pass
8	0.509	Neutral	36.6	46.0	-9.4	Pass
9	0.572	Neutral	38.2	46.0	-7.8	Pass
10	2.097	Neutral	33.9	46.0	-12.1	Pass
11	2.216	Neutral	34.1	46.0	-11.9	Pass
12	2.513	Neutral	35.7	46.0	-10.3	Pass

Results measured using the peak detector compared to the average limit

Note: Power line conducted emissions were identical for all RF carrier frequencies

Specification limits :

Conducted emission limits (47 CFR 15:2008 Clause 15.207):

Conducted disturbance at the mains ports.

Frequency range MHz	Limits dBµV		
	Quasi-peak	Average	
0.15 to 0.5	66 to 56 ²	56 to 46^2	
0.5 to 5	56	46	
5 to 30	60	50	
Notes:			
1. The lower limit shall apply at the transition frequency.			
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.			

Notes:

- (a) The levels may have been rounded for display purposes.
- (b) The following table summarises the effect of the EUT operating mode and internal configuration on the measured emission levels :
- (c) When the average limit was met using the peak detector, the EUT was deemed to meet both the average detector and quasi-peak detector limits and measurement with the average detector and quasi-peak detector was not required

	See (i)	See (ii)	See (iii)	See (iv)
Effect of EUT operating mode on emission levels				\checkmark
Effect of EUT internal configuration on emission levels				
 (i) Parameter defined by standard and / or single possible, refer to Appendix C (ii) Parameter defined by client and / or single possible, refer to Appendix C (iii) Parameter had a negligible effect on emission levels, refer to Appendix C (iv) Worst case determined by initial measurement, refer to Appendix C 				

A5 20 dB Bandwidth and Channel Spacing

Title 47 of the CFR: 2002, Part 15 Subpart (c) 15.247(a)(1)(i) requires the measurement of the bandwidth of the transmission between the -20 dB points on the transmitted spectrum. The results of this test determine the limits for channel spacing. The channel spacing shall be a minimum of 25 kHz or the 20 dB bandwidth, whichever is the greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW The formal measurements are detailed below:

Test Details:		
Regulation	Title 47 of the CFR: 2008, Part 15 Subpart (c) 15.247(a)(1)(i)	
EUT sample number	S25	
Modification state	0	
SE in test environment	REF 838	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

Measured 20 dB Bandwidth (kHz)	Limit	Result
1350	N/A	N/A

Measured Channel Spacing (kHz)	Limit	Result
1000	25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater	Pass

Plots of the 20 dB bandwidth and channel spacing are contained in Appendix B of this test report. These are the worst-case values of all the modulations supported.

A6 Hopping frequencies

Hopping frequencies were verified using a spectrum analyser set to 20 MHz spans, displaying sub sets of the hopping channels in turn, while the EUT was operating in its normal frequency hopping mode.

Test Details:		
Regulation	Title 47 of the CFR :2008, Part 15 Subpart (c) 15.247(a)(1)(i)	
EUT sample number	S25	
Modification state	0	
SE in test environment	REF 838	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

No. of Hopping Channels	Requirement	Result
79	For 1W conducted carrier power Limit, greater than 75	Pass

Plots showing the hopping channels are contained in Appendix B. These are identical for all modulation modes.

A7 Channel Occupancy

Channel occupancy time was verified using a spectrum analyser in zero span mode, centred on the middle hopping channel frequency (2441 MHz), while the EUT was operating in its normal frequency hopping mode. The other channels were then verified to ensure that the channel occupancy was identical for all channels.

Test Details:		
Regulation	Title 47 of the CFR2008, Part15 Subpart (c) 15.247(a)(1)	
EUT sample number	S25	
Modification state	0	
SE in test environment	REF 838	
SE isolated from EUT	None	
EUT set up	Refer to Appendix C	

Measured Channel	Calculated Average Channel	Average Channel Occupancy	Result
Occupancy Time (ms)	Occupancy Time (ms)	Time Limit (ms)	
3.046	223.8	400	Pass

Plots showing the channel occupancy time and time between successive transmissions are contained in Appendix B of this test report. These are identical for all modulation modes.

Average Channel Occupancy Time Calculation:

No. Of utilised hopping channels (N) = Repetition Time $(T_{rep}) = (x)$ ms Measured channel occupancy time $(T_{occ}) = (x)$ ms

No. of transmission cycles in specified averaging period =

 $\frac{400 \times 10^{-3} \times N}{(x)T_{rep} (ms)} = (x) \text{ cycles}$ \therefore $\frac{400 \times 10^{-3} \times (e.g \ 79 \text{ channels})}{(x)T_{rep} (ms)} = (x) \text{ cycles}$

\therefore The Average Channel Occupancy Time =

Total activation time T_{ooc} (ms) x No. of transmission cycles in specified averaging period = (x)ms Average Channel Occupancy Time = T_{ooc} (ms) x (x) cycles = (x) ms

A8 Antenna Gain

The maximum antenna gain for the antenna types to be used with the EUT, as declared by the client, is -1.1 dBi.

A9 Radiated Electric Field Emissions – Non Transmitting Mode

Preliminary conducted emission testing was performed using a peak detector with the RBW = 100kHz. The radiated electric filed emission test applies to spurious emissions relating to the digital circuitry within the EUT. The maximum permitted field strength is listed in Section 15.209.

The following test site was used for final measurements as specified by the standard tested to :

10m open area test site :

3m alternative test site :

st site :

The effect of the EUT set-up on the measurements is summarised in note (c) below.

Test Details						
Regulation	Title 47 of the CFR 2008, Part 15 Subpart (b) Clause 15.109					
Measurement standard	ANSI C63.4:2003					
Frequency range	100 kHz to 25 GHz					
EUT sample number	S25					
Modification state	0					
SE in test environment	REF 838					
SE isolated from EUT	None					
EUT set up	Refer to Appendix C					
Photographs (Appendix F)	Photograph 1 and 2					

The worst case radiated emission measurements are listed below:

The worst case radiated emission measurements are listed below:

Ref No	Freq (MHz)	Det	Ang Deg	Hgt (cm)	Pol	MD (m)	Res at MD (dBuV/m)	SD (m)	Res at SD (dBuV/m)	Spec Limit (dBuV/m)	Margin (dB)	Res Sum
1	40.150	QP	170	100	V	3	32.7	3	32.7	40.0	-7.3	Pass
2	40.866	QP	170	100	V	3	33.6	3	33.6	40.0	-6.4	Pass
3	42.355	QP	175	100	V	3	31.5	3	31.5	40.0	-8.5	Pass
4	250.000	QP	176	100	Н	3	41.1	3	41.1	46.0	-4.9	Pass
5	374.988	QP	170	100	Н	3	45.3	3	45.3	46.0	-0.7	Pass*
6	1000.000	QP	175	100	Н	3	43.6	3	43.6	46.0	-10.4	Pass*

*See section 2.2 Note (iii).

Appendix B:

Supporting Graphical Data

This appendix contains graphical data obtained during testing.

Notes:

(a) The conducted emissions graphical data in this appendix is preview data. Any emissions detected within the restricted band were formally assessed against the limits in 15.209. For details of formal results, refer to Appendix A and Appendix B.

Power Line Conducted emissions

20 dB Bandwidth

Channel Spacing

Channels 0 to 19

Channels 20 to 39

Channels 40 to 59

Channels 60 to 78

Channel occupancy

Channel repetition time

Date: 29.0CT.2008 18:13:26

Conducted Spurious emissions 9 kHz to 150 kHz - 2402MHz 1Mb/s

jiVVW Date: 29.0CT.2008 18:14:55

Conducted Spurious emissions 150 kHz to 30 MHz - 2402MHz 1Mb/s

jiVVW Date: 29.0CT.2008 18:08:34

jiVVW Date: 29.0CT.2008 17:50:20

Conducted Spurious emissions 1 GHz to 5 GHz - 2402MHz 1Mb/s

jiVVW Date: 29.0CT.2008 17:59:31

Conducted Spurious emissions 5 GHz to 10 GHz - 2402MHz 1Mb/s

jiVVW Date: 29.0CT.2008 18:00:28

Conducted Spurious emissions 10 GHz to 20 GHz - 2402MHz 1Mb/s

Conducted Spurious emissions 20 GHz to 25 GHz - 2402MHz 1Mb/s

jiVVW Date: 31.0CT.2008 12:18:37

jiVVW

Date: 29.0CT.2008 18:02:47

Conducted Spurious emissions 9 kHz to 150 kHz - 2442MHz 1Mb/s

Date: 31.007.2008 12:19:58 Conducted Spurious emissions 150 kHz to 30 MHz – 2442MHz 1Mb/s

Date: 31.0CT.2008 13:09:51

jiVVW

Conducted Spurious emissions 30 MHz to 1 GHz - 2442MHz 1Mb/s

jiVVW Date: 31.0CT.2008 11:35:36

Conducted Spurious emissions 1 GHz to 5 GHz - 2442MHz 1Mb/s

jiVVW Date: 31.0CT.2008 11:43:59

Conducted Spurious emissions 5 GHz to 10 GHz - 2442MHz 1Mb/s

Date: 31.0CT.2008 12:12:45

Conducted Spurious emissions 10 GHz to 20 GHz - 2442MHz 1Mb/s

Date: 31.0CT.2008 12:15:20

jiVVW

Conducted Spurious emissions 20 GHz to 25 GHz - 2442MHz 1Mb/s

Conducted Spurious emissions 9 kHz to 150 kHz – 2480MHz 1Mb/s

jivvw Date: 31.0CT.2008 13:01:07

jiVVW

Date: 31.0CT.2008 13:02:43

Conducted Spurious emissions 150 kHz to 30 MHz - 2480MHz 1Mb/s

jiVVW Date: 31.0CT.2008 12:55:04

Conducted Spurious emissions 30 MHz to 1 GHz - 2480MHz 1Mb/s

jiVVW Date: 31.0CT.2008 12:27:31

Conducted Spurious emissions 1 GHz to 5 GHz - 2480MHz 1Mb/s

jiVVW Date: 31.0CT.2008 12:43:26

Conducted Spurious emissions 5 GHz to 10 GHz- 2480MHz 1Mb/s

jiVVW Date: 31.0CT.2008 12:50:24

Conducted Spurious emissions 10 GHz to 20 GHz- 2480MHz 1Mb/s

jiVVW Date: 31.0CT.2008 12:51:18

Conducted Spurious emissions 20 GHz to 25 GHz- 2480MHz 1Mb/s

Date: 28.0CT.2008 16:37:55

Conducted Spurious emissions 9 kHz to 150 kHz- 2402MHz 2Mb/s

jiVVW Date: 28.0CT.2008 16:33:46

Conducted Spurious emissions 150 kHz to 30 MHz- 2402MHz 2Mb/s

jiVVW Date: 28.0CT.2008 16:27:21

Conducted Spurious emissions 30 MHz to 1 GHz- 2402MHz 2Mb/s

jiVVW Date: 28.0CT.2008 13:06:01

Date: 28.0CT.2008 13:24:58

Conducted Spurious emissions 5 GHz to 10 GHz- 2402MHz 2Mb/s

jiVVW Date: 28.0CT.2008 13:26:49

Conducted Spurious emissions 10 GHz to 20 GHz- 2402MHz 2Mb/s

jiVVW Date: 28.0CT.2008 13:33:33

Conducted Spurious emissions 20 GHz to 25 GHz- 2402MHz 2Mb/s

jiVVW Date: 28.0CT.2008 16:58:54

Conducted Spurious emissions 9 kHz to 150 kHz- 2442MHz 2Mb/s

jiVVW Date: 28.0CT.2008 17:00:49

Conducted Spurious emissions 150 kHz to 30 MHz

jiVVW Date: 28.0CT.2008 17:03:55

Conducted Spurious emissions 30 MHz to 1 GHz

jiVVW Date: 28.0CT.2008 16:51:10

Conducted Spurious emissions 1 GHz to 5 GHz

jivvw Date: 28.0CT.2008 17:11:03

Conducted Spurious emissions 5 GHz to 10 GHz

jiVVW Date: 28.0CT.2008 17:13:41

Conducted Spurious emissions 10 GHz to 20 GHz

jiVVW Date: 28.0CT.2008 17:15:22

Conducted Spurious emissions 20 GHz to 25 GHz

jiVVW Date: 29.0CT.2008 09:44:04

Conducted Spurious emissions 9 kHz to 150 kHz

jiVVW Date: 29.0CT.2008 09:42:33

Conducted Spurious emissions 150 kHz to 30 MHz

jiVVW Date: 28.0CT.2008 18:30:50

Conducted Spurious emissions 30 MHz to 1 GHz

jiVVW Date: 28.0CT.2008 17:31:20

Conducted Spurious emissions 1 GHz to 5 GHz

jiVVW Date: 28.0CT.2008 17:37:00

Conducted Spurious emissions 5 GHz to 10 GHz

jiVVW Date: 28.0CT.2008 17:37:47

Conducted Spurious emissions 10 GHz to 20 GHz

jiVVW Date: 28.0CT.2008 17:38:34

Conducted Spurious emissions 20 GHz to 25 GHz

jiVVW Date: 29.0CT.2008 13:23:20

Conducted Spurious emissions 9 kHz to 150 kHz

jiVVW Date: 29.0CT.2008 13:31:54

Conducted Spurious emissions 150 kHz to 30 MHz

jiVVW Date: 29.0CT.2008 13:21:12

Conducted Spurious emissions 30 MHz to 1 GHz

jiVVW Date: 29.0CT.2008 11:58:18

Conducted Spurious emissions 1 GHz to 5 GHz

jiVVW Date: 29.0CT.2008 12:45:22

Conducted Spurious emissions 5 GHz to 10 GHz

jiVVW Date: 29.0CT.2008 13:11:45

Conducted Spurious emissions 10 GHz to 20 GHz

jiVVW Date: 29.0CT.2008 13:17:31

Conducted Spurious emissions 20 GHz to 25 GHz

jiVVW Date: 29.0CT.2008 16:37:54

Conducted Spurious emissions 9 kHz to 150 kHz

jiVVW Date: 29.0CT.2008 16:39:02

Conducted Spurious emissions 150 kHz to 30 MHz

jiVVW Date: 29.0CT.2008 16:36:26

Conducted Spurious emissions 30 MHz to 1 GHz

jiVVW Date: 29.0CT.2008 15:00:24

Conducted Spurious emissions 1 GHz to 5 GHz

jiVVW Date: 29.0CT.2008 16:17:06

Conducted Spurious emissions 5 GHz to 10 GHz

jiVVW Date: 29.0CT.2008 16:18:42

Conducted Spurious emissions 10 GHz to 20 GHz

jiVVW Date: 29.0CT.2008 16:19:21

Conducted Spurious emissions 20 GHz to 25 GHz

jiVVW Date: 29.0CT.2008 17:21:47

Conducted Spurious emissions 9 kHz to 150 kHz

jiVVW Date: 29.0CT.2008 17:30:01

Conducted Spurious emissions 150 kHz to 30 MHz

jivvw Date: 29.0CT.2008 17:19:22

Conducted Spurious emissions 30 MHz to 1 GHz

jiVVW Date: 29.0CT.2008 17:00:22

Conducted Spurious emissions 1 GHz to 5 GHz

jiVVW Date: 29.0CT.2008 17:01:18

Conducted Spurious emissions 5 GHz to 10 GHz

jiVVW Date: 29.0CT.2008 17:13:44

Conducted Spurious emissions 10 GHz to 20 GHz

jiVVW Date: 29.0CT.2008 17:15:01

Conducted Spurious emissions 20 GHz to 25 GHz

Appendix C:

Additional Test and Sample Details

This appendix contains details of:

- 1. The samples submitted for testing.
- 2. Details of EUT operating mode(s)
- 3. Details of EUT configuration(s) (see below).
- 4. EUT arrangement (see below).

Throughout testing, the following numbering system is used to identify the sample and it's modification state:

Sample No:	Sxx Mod w

where:

хх	= sample number	eg. S01
w	= modification number	eg. Mod 2

The following terminology is used throughout the test report:

Support Equipment (SE) is any additional equipment required to exercise the EUT in the applicable operating mode. Where relevant SE is divided into two categories:

SE in test environment: The SE is positioned in the test environment and is not isolated from the EUT (e.g. on the table top during REFE testing).

SE isolated from the EUT: The SE is isolated via filtering from the EUT. (e.g. equipment placed externally to the ALSR during REFE testing).

EUT configuration refers to the internal set-up of the EUT. It may include for example:

Positioning of cards in a chassis. Setting of any internal switches. Circuit board jumper settings. Alternative internal power supplies.

Where no change in EUT configuration is **possible**, the configuration is described as "single possible configuration".

EUT arrangement refers to the termination of EUT ports / connection of support equipment, and where relevant, the relative positioning of samples (EUT and SE) in the test environment.

For further details of the test procedures and general test set ups used during testing please refer to the related document "EMC Test Methods - An Overview", which can be supplied by KTL upon request.

C1) Test samples

The following samples of the apparatus were submitted by the client for testing :

Sample No.	Description	Identification
S25	IP Telephone 9670G	S/N: 08N 539103931
S12	PSU Model No. 7004 34897	07 DT 32 066 705

The following samples of apparatus were supplied by KTL as support or drive equipment (auxiliary equipment):

KTL Identification	Description
REF838	Agilent N4010A Bluetooth Test Set
REF1270	VARIAC

C2) EUT Operating Mode During Testing.

During testing, the EUT was exercised as described in the following tables :

Test	Description of Operating Mode
	EUT transmitting on maximum power using FHSS over 79 channels with 1 MHz channel spacing using DH5 packets with the following modulations:
All tests detailed in this report	1 Mb/s GFSK 2Mb/s π/4-DQPSK 3Mb/s 8DPSK

In addition

Test	Description of Operating Mode:
Spurious emissions (radiated and conducted)	EUT active but non-transmitting.

C3) EUT Configuration Information.

The EUT was submitted for testing in one single possible configuration.

C4) List of EUT Ports

The table below describes the termination of EUT ports:

Sample	: S25
Tests	: All

Port Description of Cable Attached		Cable length	Equipment Connected
dc Power	2 core Unscreened	1.5m	S12
Serial	Multicore Unscreened	2m	EMC Laptop*

Sample : S12 Tests : All

Port	Description of Cable Attached	Cable length	Equipment Connected
dc Power	2 core Unscreened	1m	S25
ac Power	3 core Unscreened	2m	Mains Supply

* Only connected during setup.

C5 Details of Equipment Used

LAB10

For Radiated Electric Field Emissions 30MHz to 1GHz: (Restricted band 15.205)

RFG No	Туре	Description	Manufacturer	Date Calibrated.	
274	ATS	Ferrite Lined Chamber	KTL	29/02/08	
231	CBL6111	Blue Bilog Antenna (0.03 - 1GHz)	Chase	12/08/08	
214	ESAI	Spec Analyser/Test Rxer (LF/HF)	R & S	22/01/08	
404	E4407B	Spectrum Analyser	Agilent	07/04/08	
127	HP8563E	Spectrum Analyser	HP	17/03/08	
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08	
REF837	PSA E4440A	Spectrum Analyser	Agilent	21/02/08	
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08	
267	N-type	RF coaxial cable (Lab 10)	KTL	28/01/08	
270	N-type	RF coaxial cable (Lab 10)	KTL	28/01/08	
278	N-type	RF coaxial cable (Lab 10)	KTL	28/01/08	

For Radiated Electric Field Emissions 1GHz to 18GHz (Restricted band 15.205)

RFG No	Туре	Description	Manufacturer	Date Calibrated
274	ATS	Ferrite Lined Chamber	KTL	11/01/08
129	3115	Horn Antennas	EMCO	29/07/98
130	3115	Horn Antennas	EMCO	29/07/98
307	HP8449B	Microwave Pre-Amp (1-26.5GHz)	HP	18/02/08
650	N-106	Sucoflex uW Cable 3m	Suhner	14/07/08
651	N-106	Sucoflex uW Cable 7m	Suhner	14/07/08
643	ST18/Nm/ Nm/48	48 inch Sucoflex cable	Suhner	18/07/08
404	E4407B	Spectrum Analyser	Agilent	07/04/08
127	HP8563E	Spectrum Analyser	HP	17/03/08
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08
REF837	PSA E4440A	Spectrum Analyser	Agilent	21/02/08
244	4478	Bandstop Filter	BSC	N/A (Cal during use)

Details of Equipment Used Continued:

RFG No	Туре	Description	Manufacturer	Date Calibrated
274	Lab 10	Large anechoic chamber	KTL	N/A
629	QSH20S20S	Horn antenna	Q-par	02/11/06
630	QSH20S20S	Horn antenna	Q-par	02/11/06
476	60637	50Ω Coax 3m	Semflex	14/04/08
477	60637	50Ω Coax 3m	Semflex	14/04/08
307	8449B	Microwave pre amp	HP	18/02/08
404	E4407B	Spectrum analyser	Agilent	07/04/08
127	HP8563E	Spectrum Analyser	HP	17/03/08
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08
REF837	PSA E4440A	Spectrum Analyser	Agilent	21/02/08
138	N-104	Sucoflex uW Cable 2m	Suhner	28/03/07
158	N-106	Sucoflex uW Cable 7m	Suhner	28/03/07
244	4478	Bandstop Filter	BSC	N/A (Cal during use)

For Radiated Electric Field Emissions 18GHz to 26GHz (Restricted band 15.205)

For Conducted Emissions

RFG No	Туре	Description	Manufacturer	Date Calibrated
404	E4407B	Spectrum Analyser	Agilent	07/04/08
127	HP8563E	Spectrum Analyser	HP	17/03/08
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08
REF837	PSA E4440A	Spectrum Analyser	Agilent	21/02/08
244	4478	Bandstop Filter	BSC	N/A (Cal during use)

For Conducted RF power

RFG No	Туре	Description	Manufacturer	Date Calibrated
404	E4407B	Spectrum Analyser	Agilent	07/04/08
127	HP8563E	Spectrum Analyser	HP	17/03/08
REF837	PSA E4440A	Spectrum Analyser	Agilent	21/02/08
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08
REF	N1922A &	Power head and meter	Agilent	08/02/08
835/836	N1911A			
031	436A	Power Meter	HP	10/04/08
032	8482A	Power Head (-20 to +20dBm)	HP	10/04/08
171	8481D	Power Head (-20 to –70dBm)	HP	10/04/08

For 6dB Bandwidth measurement

RFG No	Туре	Description	Manufacturer	Date Calibrated
404	E4407B	Spectrum Analyser	Agilent	07/04/08
127	HP8563E	Spectrum Analyser	HP	17/03/08
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08
REF837	PSA E4440A	Spectrum Analyser	Agilent	21/02/08

Details of Equipment Used Continued:

RFG No	Туре	Description	Manufacturer	Date Calibrated
404	E4407B	Spectrum Analyser	Agilent	07/04/08
127	HP8563E	Spectrum Analyser	HP	17/03/08
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08
REF837	PSA E4440A	Spectrum Analyser	Agilent	21/02/08

For Power Spectral density

For Power Line Conducted Emissions

RFG No	Туре	Description	Manufacturer	Date Calibrated
274	Lab 10	Ferrite Lined Chamber	KTL	11/01/08
n/a	Lab 11	Small Screened Chamber	KTL	-
n/a	Lab 14	Small Screened Chamber	KTL	-
030	ESH3-Z5	Single-phase LISN	R & S	23/04/08
189	ESH3-Z5	Single-phase LISN	R & S	14/05/08
190	ESH3-Z2	Pulse Limiter	R & S	24/04/08
232	ESH3-Z2	Pulse Limiter	R & S	07/02/08
214	ESAI	Spec Analyser/Test Rxer (LF/HF)	R&S	22/01/08
012	ESH3	Test Receiver (LF)	R&S	05/02/08
125	ESHS 10	Test Receiver (LF)	R & S	22/11/07
127	HP8563E	Spectrum Analyser	HP	17/03/08
404	E4407B	Spectrum Analyser	Agilent	07/04/08
REF847	ESU	EMI Test Receiver (Spectrum analyser)	R&S	29/02/08
REF837	PSA E4440A	Spectrum Analyser	Agilent	21/02/08
267	N-type	RF coaxial cable (Lab 10)	KTL	28/01/08
269	N-type	RF coaxial cable (Lab 10)	KTL	28/01/08
293	BNC	RF coaxial cable (Lab 10)	KTL	28/01/08
297	BNC	RF coaxial cable (Lab 11)	KTL	28/01/08
298	BNC	RF coaxial cable (Lab 11)	KTL	28/01/08
092	BNC	RF coaxial cable (Lab 14)	KTL	28/01/08
295	BNC	RF coaxial cable (Lab 14)	KTL	28/01/08

Appendix D:

Additional Information

The following additional information was supplied by the client to support this assessment:

Extract from Antenna Manufacturer's data sheet detailing antenna gain

Appendix E:

Calculation of the duty cycle correction factor

Using a spectrum analyser in zero span mode, centred on the fundamental carrier frequency with a RBW of 1MHz and a video Bandwidth of 1MHz the sweep time was set accordingly to capture the pulse train. The transmit pulsewidths and period was measured. A plots of the pulse train is contained in Appendix B of this test report.

If the pulse train was less than 100 ms, including blanking intervals, the duty cycle was calculated by averaging the sum of the pulsewidths over one complete pulse train. However if the pulse train exceeds 100ms then the duty cycle was calculated by averaging the sum of the pulsewidths over the 100ms width with the highest average value. (The duty cycle is the value of the sum of the pulse widths in one period (or 100ms), divided by the length of the period (or 100ms). The duty cycle correction factor was then expressed in dB and the peak emissions adjusted accordingly to give an average value of the emission.

Correction factor $dB = 20 \times (Log_{10} \text{ Calculated Duty Cycle})$

Therefore the calculated duty cycle was determined:

The pulse train period was greater than >100ms and in as shown from the plots in contained in appendix B of this test report.

Duty cycle = the sum of the highest average value pulsewidths over 100ms

e.g

 $=\frac{7.459ms}{100ms}=0.07459$

0.07459 or 7.459%

Correction factor (dB) = 20 x (Log₁₀ 0.07459) = -22.54dB

OR

For EUT that uses Zigbee device technology the EUT is designed to be compliant with the requirements of IEEE 802.15.4, which in general assumes a maximum duty cycle of 1%. Therefore in accordance with 47CFR 15.35(c), the emissions may be reduced by a factor of 100 (40 dB). Plots of the duty cycle showing the duty cycle to be less than 1% are contained in Appendix B of this report.

Appendix F:

Photographs and Figures

The following photographs were taken of the test samples:

- 1. Radiated electric field emissions arrangement: front view.
- 2. Radiated electric field emissions arrangement: rear view.
- 3. Power line conducted emissions arrangement.

Note¹: The photograph shows the EUT tested, which was specially fitted with a 50Ω coax to SMA type connector to facilitate testing.

Photograph 1

Photograph 2

Photograph 3

Appendix G:

MPE Calculation

OET Bulletin No. 65, Supplement C 01-01

47 CFR §§1.1307 and 2.1091

2.1091 Radio frequency radiation exposure evaluation: mobile devices.

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimetres is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than 1mW/cm² power density limit, as required under FCC rules.

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4 \pi R^2}$$
 re - arranged $R = \sqrt{\frac{P G}{S 4 \pi}}$

where:

- S = power density
- P = power input to the antenna
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the centre of radiation of the antenna

Maximum peak output power at the antenna terminal:	-0.7	dBm
Maximum peak output power at the antenna terminal:	0.85	mW
Power density	1.0	mW/cm ²
Antenna gain (typical):	-1.1	dBi
Maximum antenna gain:	0.77	numeric
Prediction frequency:	2402	MHz

Result

Prediction Frequency (MHz)	Maximum allowable antenna gain: (dBi)	Power density limit (S) (mW/cm ²)	Distance (R) cm required to be less than 1mW/cm ²
2402	-1.1	1.000000	0.22

• Unit E, South Orbital Trading Park, Hedon Road, Hull, HU9 1NJ, UK.

T +44 (0)1482 801801
F +44 (0)1482 801806
E info@trac-ktl.com

