Report on the FCC and IC Testing of the Robert Bosch Power Tools GmbH

Model: GCY 300-42

In accordance with FCC 47 CFR Part 1.1310 and Part 2.1093 & ISED RSS-GEN Issue 5, section 3.4 and ISED RSS-102, Issue 5, section 2.5

Prepared for: Robert Bosch Power Tools GmbH 70538 Stuttgart Germany

FCC ID: TXTGCY300-42 IC: 909H-GCY30042

COMMERCIAL-IN-CONFIDENCE

Date: 2021-07-19

Document Number: TR-57696-17551-06 | Issue: 02

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Project Management	Michael Ingerl	2021-07-19	M. Juni SIGN-ID 538035
Authorised Signatory	Alex Fink	2021-08-06	Sint SIGN-ID 540220

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 1.1310 and Part 2.1093 & ISED RSS-GEN Issue 5, section 3.4 and ISED RSS-102, Issue 5, section 2.5. The sample tested was found to comply with the requirements

defined	in	tho	annliad	rulas
ueiiiieu	111	uie	applieu	Tules.

aonnoa ni alo applica raico.					
RESPONSIBLE FOR	NAME		DATE		
Testing	Michael Ingerl		2021-07-	19	M. Junio 538037
Laboratory Accreditation		Laboratory recognition		ISED Canada	test site registration
DAkkS Reg. No. D-PL-113	21-11-02	Registration No. BNetzA-CAB-16	/21-15	3050A-2	
DAkkS Reg. No. D-PL-113	21-11-03				
EXECUTIVE SUMMARY					

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 1.1310 and Part 2.1093 & ISED RSS-GEN Issue 5, section 3.4 and ISED RSS-102, Issue 5, section 2.5

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD Product Service with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD Product Service. No part of this document may be reproduced without the prior written approval of TÜV SÜD Product Service. © 2021 TÜV SÜD Product Service.

ACCREDITATION

Our BNetzA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our BNetzA Accreditation. Results of tests not covered by our BNetzA Accreditation Schedule are marked NBA (Not BNetzA Accredited).

Trade Register Munich HRB 85742 VAT ID No. DE129484267 Information pursuant to Section 2(1) DL-InfoV (Germany) at www.tuev-sued.com/im

Managing Directors: Walter Reithmaier (CEO) Dr. Jens Butenandt Patrick van Welij

Phone: +49 (0) 9421 55 22-0 Fax: +49 (0) 9421 55 22-99 www.tuev-sued.de

TÜV SÜD Product Service GmbH

Äußere Frühlingstraße 45 94315 Straubing Germany

Product Service

Choose certainty. Add value.

TÜV SÜD Product Service

Contents

1	Report Summary	.2
1.1	Report Modification Record	.2
1.2 1.3	Brief Summary of Results	.2 .3
1.4 1.5	Basic information of EUT EUT Modification Record	.4 .5
1.6	Test Location	.5 c
∠ 2.1	Exposure of Humans to RF Fields	.0 .6
3	Measurement Uncertainty	10

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2021-07-09
2	Added Serial Numbers, HW and SW Version at chapter 1.2.	2021-07-19
	Corrected Type of equipment and Type of Antennas at chapter 1.4.	

Table 1

1.2 Introduction

Applicant	Robert Bosch Power Tools GmbH						
Manufacturer	Robert Bosch Power Tools GmbH						
Model Number(s)	GCY 300-42						
Serial Number(s)	Description	Conducted	Radiated	Modulation	Remarks	Serial Number	
	prepared with control wires, antenna port fitted on PCB	x			no potting needed	124V00222	
Hardware Version(s)	1.1.6						
Software Version(s)	2.6.0						
Number of Samples Tested	1						
Test Specification/Issue/Date	FCC 47 CFR Part 1.1310 and Part 2.1093 & ISED RSS-GEN Issue 5, section 3.4 and ISED RSS-102, Issue 5, section 2.5						
Test Plan/Issue/Date							
Order Number	5487175						
Date of Receipt of EUT	2021-06-04						
Start of Test	2021-06-24	2021-06-24					
Finish of Test	2021-06-24						
Name of Engineer(s)	Michael Ingerl						
Related Document(s)	KDB 447498 D ANSI C63.10 (2	01 General 2013)	RF Expo	sure Guidar	nce v06		

Product Service

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 1.1310 and Part 2.1093 & ISED RSS-GEN Issue 5, section 3.4 and ISED RSS-102, Issue 5, section 2.5 is shown below.

Section	Specification Clause	Test Description Result Comments/Base Standard		
Configuration and Mode: Continuously transmitting				
2.1	2.1 1.1310 Exposure of Humans to RF Fields Pas		Pass	KDB 447498 D01 v06

Table 2

1.4 Basic information of EUT

Equipment characteristics:					
Type designation	GCY 300-42				
Type of equipment:	Connectivity Module				
Power supply:	☐ AC Nominal: Minimum: Maximum: Nominal frequency: Hz	DC Nominal: 5V Minimum: 4.75V Maximum: 5.25V	Batterie Nominal:		
Note for power supply:	Coin cell was at any test in the	EUT but power supp	lied over 5V DC		
Kind of equipment:	Transceiver				
Frequency range:	2400-2483.5 MHz				
Number of RF-channels:	40				
Channel spacing	2 MHz				
Adaptive	No				
FHHS	No				
Type(s) of Modulation (e.g. BPSK, FSK, ASK,)	As per Bluetooth 4.2 Low Ene	rgy Standard			
Type of radio transmission / Use of frequency spectrum (e.g. DSSS, OFDM,.)	As per Bluetooth 4.2 Low Energy Standard				
Number / Type of Antenna(s)	Integral Antenna				
Antenna Gain:	2402 MHz: -0.22 dBi				
	2440 MHz: -1.08 dBi				
	2480 MHz: -1.82 dBi				
Temperature Range:	-20°C – 50°C				

1.5 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	As supplied by the customer (Conducted Sample) SN: 124V00222	Not Applicable	Not Applicable

Table 3

1.6 Test Location

TÜV SÜD Product Service conducted the following tests at our Straubing Test Laboratory.

Test Name	Name of Engineer(s)		
Configuration and Mode: Continuously transmitting			
Exposure of Humans to RF Fields	Michael Ingerl		

Table 4

Office Address:

Äußere Frühlingstraße 45 94315 Straubing Germany

2 **Test Details**

2.1 Exposure of Humans to RF Fields

2.1.1 Specification Reference

FCC 47 CFR Part 1.1310 and Part 2.1093 & ISED RSS-GEN Issue 5, section 3.4 and ISED RSS-102, Issue 5, section 2.5 KDB 447498 D01 General RF Exposure Guidance v06, chapter 4.3.1

2.1.2 Equipment Under Test and Modification State

GCY 300-42 (Conducted Sample), S/N: 124V00222 - Modification State 0

2.1.3 Date of Test

2021-06-24

2.1.4 Evaluation Results

acc. to KDB 447498 D01:

Maximum Radiated Power (EIRP) Pmax:

Compliance Boundary d: Frequency f: Numeric Threshold (Pmax / d) (f)^{0.5} Numeric Threshold Limit (1 g SAR): 0.00 dBm = 1.00 mW (See at TR-57696-17551-03, section 3.6) 1 mm 2440 MHz = 2.440 GHz 1.562 3.0

ISED RSS-GEN Issue 5, section 3.2 and ISED RSS-102, Issue 5, section 2.5 :

Exposure of Humans to RF Fields			Measured	Exemption
The antenna is				
The conducted output power (CP in watts) is measured at the antenna connector: CP =				
The effective isotropic radiated power (EIRP in watts) is calculated using				
\Box the numerical antenna gain: $G =$				
$EIRP = G \cdot CP \Longrightarrow EIRP =$				
$\Box \qquad \text{the field strength}^1 \text{ in V/m:} \qquad FS = \dots V/m$				
$EIRP = \frac{(FS \cdot D)^2}{30} \Longrightarrow EIRP = mW$				
with:				
Distance between the antennas in m: $D = mm$				
⊠ not detachable				
A field strength measurement is used to determine the effective isotropic radiated power (EIRP in watts) given by:				
$EIRP = \frac{(FS \cdot D)^2}{30} \Longrightarrow EIRP \stackrel{= 0.00 \text{ dBm} = 1.00 \text{ mW}}{\text{(See at TR-57696-17551-03, section 3.6)}}$				
with:				
Field strength in V/m: $FS =$				
=				
Distance between the two antennas in m. D =				
		[
The output power TP is the higher of the conducted or effective isotropic radiated power (e.i.r.p.):				
TP = 1.00 mW				

¹ The conversion formula is valid only for properly matched antennas. In other cases the transmitter output power may have to be measured by a terminated measurement when applying the exemption clauses. If an open area test site is used for field strength measurement, the effect due to the metal ground reflecting plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.

Exposure of Humans to RF Fields (continued)			Declared by applicant	Measured	Exemption	
Separation distance between the user and the transmitting device is						
\boxtimes less than or equal to 20 cm	greater than 20 cm		\square			
Transmitting device is						
in the vicinity of the human head	⊠ body-worn		\square			

SAR evaluati	on												
SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in the table.													
For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the													
exemption limits for routine evaluation in the table are multiplied by a factor of													
limits for routine evaluation in the table are multiplied by a factor of 2.5. If the													
operating frequency of the device is between two frequencies located in the													
table, linear interpolation shall be applied for the applicable separation													
distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine													
evaluation is required.													
For medical implants devices, the exemption limit for routine evaluation is set													
at 1 mW. The output power of a medical implants device is defined as the													
from the SAR evaluation.													
Frequency Exemption limits (mW) ² at separation distance of (MHz)													
	≤5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	35 mm	40 mm	45 mm	≥50 mm			
450	52	70	88	106	123	141	159	177	195	213			
835	17	30	42	55	67	80	92	105	117	130			
1900	7	10	18	34	60	99	153	225	316	431			
2450	4	7	15	30	52	83	123	173	235	309			
3500	2	6	16	32	55	86	124	170	225	290			
5800	1	6	15	27	41	56	/1	85	97	106			
Carrier frequency:		T d	= 24	440 MH	Z								
			u 	= 1									
rransmitter output power:			. 1P 	= 1.									
Limit:			IP_{lim}	$t_{it} = 4$	mvv								\bowtie

² The excemption limit in the table are based on measurements and simulations on half-wave dipole antennas at separaton distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

3 Measurement Uncertainty

For a 95% confidence level. the measurement uncertainties for defined systems are:

Radio Testing						
Test Name	kp	Expanded Uncertainty	Note			
Occupied Bandwidth	2.0	±1.14 %	2			
RF-Frequency error	1.96	±1 · 10-7	7			
RF-Power. conducted carrier	2	±0.079 dB	2			
RF-Power uncertainty for given BER	1.96	+0.94 dB / -1.05	7			
RF power. conducted. spurious emissions	1.96	+1.4 dB / -1.6 dB	7			
RF power. radiated						
25 MHz – 4 GHz	1.96	+3.6 dB / -5.2 dB	8			
1 GHz – 18 GHz	1.96	+3.8 dB / -5.6 dB	8			
18 GHz – 26.5 GHz	1.96	+3.4 dB / -4.5 dB	8			
40 GHz – 170 GHz	1.96	+4.2 dB / -7.1 dB	8			
Spectral Power Density. conducted	2.0	±0.53 dB	2			
Maximum frequency deviation						
300 Hz – 6 kHz	2	±2.89 %	2			
6 kHz – 25 kHz	2	±0.2 dB	2			
Maximum frequency deviation for FM	2	±2.89 %	2			
Adjacent channel power 25 MHz – 1 GHz	2	±2.31 %	2			
Temperature	2	±0.39 K	4			
(Relative) Humidity	2	±2.28 %	2			
DC- and low frequency AC voltage						
DC voltage	2	±0.01 %	2			
AC voltage up to 1 kHz	2	±1.2 %	2			
Time	2	±0.6 %	2			

Table 5

Radio Interference Emission Testing	Radio Interference Emission Testing						
Test Name	kp	Expanded Uncertainty	Note				
Conducted Voltage Emission							
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB	1				
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB	1				
100 kHz to 200 MHz (50Ω/5μH AMN)	2	± 3.6 dB	1				
Discontinuous Conducted Emission							
9 kHz to 150 kHz (50Ω/50µH AMN)	2	± 3.8 dB	1				
150 kHz to 30 MHz (50Ω/50μH AMN)	2	± 3.4 dB	1				
Conducted Current Emission							
9 kHz to 200 MHz	2	± 3.5 dB	1				
Magnetic Fieldstrength							
9 kHz to 30 MHz (with loop antenna)	2	± 3.9 dB	1				
9 kHz to 30 MHz (large-loop antenna 2 m)	2	± 3.5 dB	1				
Radiated Emission							
Test distance 1 m (ALSE)							
9 kHz to 150 kHz	2	± 4.6 dB	1				
150 kHz to 30 MHz	2	± 4.1 dB	1				
30 MHz to 200 MHz	2	± 5.2 dB	1				
200 MHz to 2 GHz	2	± 4.4 dB	1				
2 GHz to 3 GHz	2	± 4.6 dB	1				
Test distance 3 m							
30 MHz to 300 MHz	2	± 4.9 dB	1				
300 MHz to 1 GHz	2	± 5.0 dB	1				
1 GHz to 6 GHz	2	± 4.6 dB	1				
Test distance 10 m							
30 MHz to 300 MHz	2	± 4.9 dB	1				
300 MHz to 1 GHz	2	± 4.9 dB	1				
Radio Interference Power							
30 MHz to 300 MHz	2	± 3.5 dB	1				
Harmonic Current Emissions			4				
Voltage Changes. Voltage Fluctuations and Flicker			4				

Table 6

Immunity Testing	Immunity Testing						
Test Name	kp	Expanded Uncertainty	Note				
Electrostatic Discharges			4				
Radiated RF-Field							
Pre-calibrated field level	2	+32.2 / -24.3 %	5				
Dynamic feedback field level	2.05	+21.2 / -17.5 %	3				
Electrical Fast Transients (EFT) / Bursts			4				
Surges			4				
Conducted Disturbances. induced by RF- Fields							
via CDN	2	+15.1 / -13.1 %	6				
via EM clamp	2	+42.6 / -29.9 %	6				
via current clamp	2	+43.9 / -30.5 %	6				
Power Frequency Magnetic Field	2	+20.7 / -17.1 %	2				
Pulse Magnetic Field			4				
Voltage Dips. Short Interruptions and Voltage Variations			4				
Oscillatory Waves			4				
Conducted Low Frequency Disturbances							
Voltage setting	2	± 0.9 %	2				
Frequency setting	2	± 0.1 %	2				
Electrical Transient Transmission in Road Vehicles			4				

Table 7

Note 1: The expanded uncertainty reported according to CISPR 16-4-2:2003-11 is based on a standard uncertainty multiplied by a coverage factor of kp = 2. providing a level of confidence of p = 95.45%Note 2:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1. 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2. providing a level of confidence of p = 95.45% Note 3:

The expanded uncertainty reported according to UKAS Lab 34 (Edition 1. 2002-08) is based on a standard uncertainty multiplied by a coverage factor of kp = 2.05. providing a level of confidence of p = 95.45% Note 4:

It has been demonstrated that the used test equipment meets the specified requirements in the standard with at least a 95% confidence.

Note 5:

The expanded uncertainty reported according to IEC 61000-4-3 is based on a standard uncertainty multiplied by a coverage factor of kp = 2. providing a level of confidence of p = 95.45%Note 6:

The expanded uncertainty reported according to IEC 61000-4-6 is based on a standard uncertainty multiplied by a coverage factor of kp = 2. providing a level of confidence of p = 95.45%Note 7:

The expanded uncertainty reported according ETSI TR 100 028 V1.4.1 (all parts) to is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96. providing a level of confidence of p = 95.45% Note 8:

The expanded uncertainty reported according to ETSI TR 102 273 V1.2.1 (all parts) is based on a standard uncertainty multiplied by a coverage factor of kp = 1.96. providing a level of confidence of p = 95.45%