









# **TEST REPORT**

Test report no.: 1-9982/20-02-03-B

## **Testing laboratory**

#### CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com

Internet: <a href="http://www.ctcadvanced.co">http://www.ctcadvanced.co</a>
e-mail: <a href="mail@ctcadvanced.com">mail@ctcadvanced.com</a>

#### **Accredited Testing Laboratory:**

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

## **Applicant**

#### **Robert Bosch Power Tools GmbH**

Max-Lang-Straße 40-46

70771 Leinfelden-Echterdingen / GERMANY

Phone: +49 711 758-0 Contact: Julian Pfaundler

e-mail: Julian.Pfaundler@de.bosch.com

#### Manufacturer

Robert Bosch Tool Corp. Mount Prospect, IL 60056 USA

#### Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS-220, Issue 1 Devices Using Ultra-Wideband (UWB) Technology

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Battery driven detector

Model name: D-tect200C

 IC:
 909H-DTECT200C

 FCC ID:
 TXTDTECT200C

Frequency: 1800 MHz to 5800 MHz

Technology tested: UWB

Radio Communications & EMC

Antenna: Integrated antenna

Power supply: Li-Ion battery 10,8V/ 12V Max

Temperature range: -10°C to +50°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

| Test report authorized:     | Test performed:                    |  |  |
|-----------------------------|------------------------------------|--|--|
|                             |                                    |  |  |
|                             | p.o.                               |  |  |
| Meheza Walla<br>Lab Manager | Sebastian Janoschka<br>Lab Manager |  |  |

Radio Communications & EMC



# Table of contents

| 1   | Table of contents            |                                                                                                                                                                                                                   |          |  |  |  |  |
|-----|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
| 2   | Genera                       | al information                                                                                                                                                                                                    | 3        |  |  |  |  |
|     | 2.1<br>2.2<br>2.3            | Notes and disclaimerApplication detailsTest laboratories sub-contracted                                                                                                                                           | 3        |  |  |  |  |
| 3   | Test s                       | tandard/s and references                                                                                                                                                                                          | 4        |  |  |  |  |
| 4   | Test e                       | nvironment                                                                                                                                                                                                        | 4        |  |  |  |  |
| 6   |                              | em                                                                                                                                                                                                                |          |  |  |  |  |
|     | 6.1<br>6.2<br>6.3            | General description Test modes Additional information                                                                                                                                                             | 6<br>6   |  |  |  |  |
| 7   | Descri                       | ption of the test setup                                                                                                                                                                                           | 7        |  |  |  |  |
|     | 7.1<br>7.2<br>7.3            | Shielded semi anechoic chamberShielded fully anechoic chamberRadiated measurements > 18 GHz                                                                                                                       | 10       |  |  |  |  |
| 8   | Seque                        | nce of testing                                                                                                                                                                                                    | 13       |  |  |  |  |
|     | 8.1<br>8.2<br>8.3<br>8.4     | Sequence of testing radiated spurious 9 kHz to 30 MHzSequence of testing radiated spurious 30 MHz to 1 GHzSequence of testing radiated spurious 1 GHz to 18 GHzSequence of testing radiated spurious above 18 GHz | 14<br>15 |  |  |  |  |
| 9   | Measu                        | rement uncertainty                                                                                                                                                                                                | 17       |  |  |  |  |
| 10  | Sun                          | nmary of measurement results                                                                                                                                                                                      | 18       |  |  |  |  |
| 11  |                              | ditional comments                                                                                                                                                                                                 |          |  |  |  |  |
| 12  |                              | asurement results                                                                                                                                                                                                 | _        |  |  |  |  |
|     | 12.1<br>12.2<br>12.3<br>12.4 | 10 dB - Bandwidth  TX Radiated Emissions  §15.509(c) Efficient use of spectrum  Antenna requirements                                                                                                              | 22<br>37 |  |  |  |  |
| Anı | nex A                        | Glossary                                                                                                                                                                                                          | 40       |  |  |  |  |
| Anı | nex B                        | Document history                                                                                                                                                                                                  | 41       |  |  |  |  |
| Anı | nex C                        | Accreditation Certificate                                                                                                                                                                                         | 41       |  |  |  |  |



## 2 General information

#### 2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-9982/20-02-03-A and dated 2022-01-03.

## 2.2 Application details

Date of receipt of order: 2020-07-24
Date of receipt of test item: 2020-09-07
Start of test:\* 2020-10-05
End of test:\* 2020-11-06

Person(s) present during the test: -/-I

#### 2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 41

<sup>\*</sup>Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

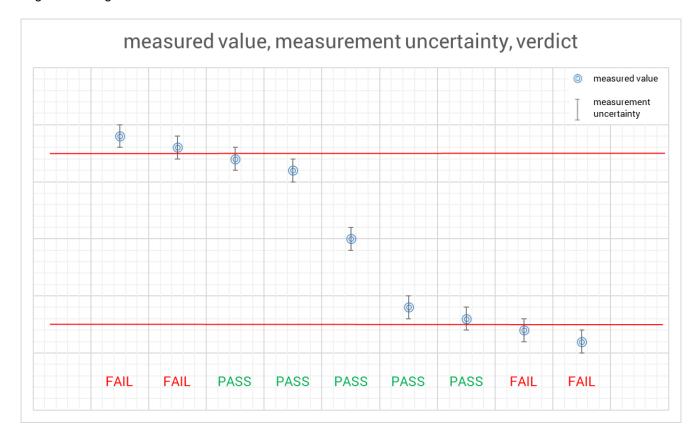


# 3 Test standard/s and references

| Test standard                       | Date        | Description                                                                                                                                                                                                                                                                   |
|-------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Part 15                      |             | Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices                                                                                                                                                                                     |
| RSS-220, Issue 1                    | July 2018   | Devices Using Ultra-Wideband (UWB) Technology                                                                                                                                                                                                                                 |
| RSS-GEN, Issue 5                    | March 2019  | General Requirements for Compliance of Radio Apparatus                                                                                                                                                                                                                        |
| Guidance                            | Version     | Description                                                                                                                                                                                                                                                                   |
| ANSI C63.4-2014<br>ANSI C63.10-2013 | -/-         | American national standard for methods of measurement of radio-<br>noise emissions from low-voltage electrical and electronic<br>equipment in the range of 9 kHz to 40 GHz  American national standard of procedures for compliance testing<br>of unlicensed wireless devices |
| Accreditation                       | Description | on                                                                                                                                                                                                                                                                            |
| D-PL-12076-01-04                    |             | dakks.de/as/ast/d/D-PL-12076-01-04e.pdf  DAKS  Deutsche Akkreditierungsstelle D-PL-12076-01-04                                                                                                                                                                                |
| D-PL-12076-01-05                    |             | nunication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05e.pdf  DAkkS  Deutsche Akkreditierungsstelle D-PL-12076-01-05                                                                                                                                                   |

# 4 Test environment

| Temperature               | : | $\begin{array}{c} T_{\text{nom}} \\ T_{\text{max}} \\ T_{\text{min}} \end{array}$ | +23 °C during room temperature tests<br>+50 °C during high temperature tests<br>-10 °C during low temperature tests |
|---------------------------|---|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Relative humidity content |   |                                                                                   | 55 %                                                                                                                |
| Barometric pressure       |   |                                                                                   | 1020 hPa                                                                                                            |
| Power supply              | ÷ | V <sub>nom</sub><br>V <sub>max</sub><br>V <sub>min</sub>                          | Li-Ion battery 10,8V/ 12V Max -/- V -/- V                                                                           |


© CTC advanced GmbH Page 4 of 41



## 5 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.



© CTC advanced GmbH Page 5 of 41



## 6 Test item

# 6.1 General description

| Kind of test item                                       | : | Battery driven detector                                                                            |
|---------------------------------------------------------|---|----------------------------------------------------------------------------------------------------|
| Type identification                                     | : | D-tect200C                                                                                         |
| S/N serial number                                       | : | Test device 1 / EUT 1: 027005120 Test device 2 / EUT 2: 027005089 Test device 3 / EUT 3: 027005111 |
| Hardware status                                         | : | C-Sample                                                                                           |
| IC-ID                                                   | : | 909H-DTECT200C                                                                                     |
| FCC ID                                                  | : | TXTDTECT200C                                                                                       |
| Software status                                         | : | Build Date 20200821.0                                                                              |
| Frequency band                                          | : | 1800 MHz to 5800 MHz                                                                               |
| Type of radio transmission<br>Use of frequency spectrum |   | SFCW                                                                                               |
| Type of modulation                                      | : | SFCW                                                                                               |
| Number of channels                                      | : | 1                                                                                                  |
| Antenna                                                 | : | Integrated antenna                                                                                 |
| Power supply                                            | : | Li-Ion battery 10,8V/ 12V Max, 2.0 Ah battery pack used                                            |
| Temperature range                                       | : | -10°C to +50°C                                                                                     |

## 6.2 Test modes

A special SW is used for continuous transmission (device 2 / EUT 2).

To verify the emissions of the digital circuitry, a specifically prepared device (device 3 / EUT 3) is used in which the UWB emissions are turned off.

## 6.3 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-9982/20-02-01\_AnnexA 1-9982/20-02-01\_AnnexB

1-9982/20-02-01\_AnnexD

| Measurement                                 | Test Report,<br>Number of plot   | Annex D,<br>Number of photo | Comment                                                                                                                         |
|---------------------------------------------|----------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| TX Radiated Emissions,<br>9 kHz to 1 GHz    | 3, 4                             | 20, 21, 22, 23              | No representative wall used;<br>DUT facing downwards onto anechoic material;<br>(According to ANSI 63.10 section 10.2 and 10.3) |
| TX Radiated Emissions,<br>960 MHz to 18 GHz | 2, 5, 6, 7, 8, 11, 12, 13,<br>14 | 9, 10, 11                   | Representative, absorbing wall used; full sphere scan;                                                                          |
| TX Radiated Emissions,<br>18 GHz to 40 GHz  | 9, 10                            | 15, 16, 17, 18              | No representative wall used, full sphere scan                                                                                   |
| Efficient use of spectrum                   | 15, 16                           | 24                          | Representative wall used                                                                                                        |
| Substitution                                |                                  | 12, 13, 14                  |                                                                                                                                 |
| -/-                                         |                                  | 5, 6, 7, 8                  | Only for reference, since DUT wouldn't be seen with wall                                                                        |

© CTC advanced GmbH Page 6 of 41

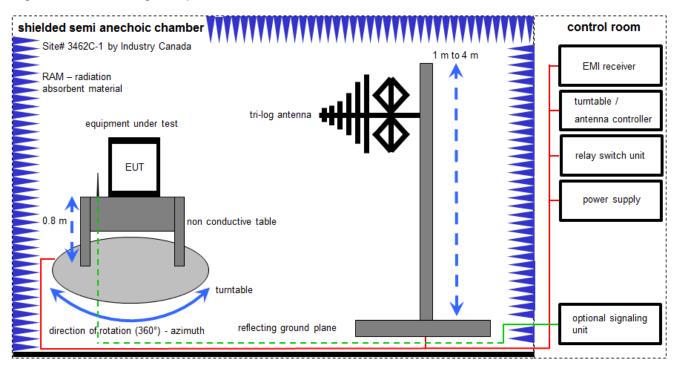


# 7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

#### Agenda: Kind of Calibration


| k     | calibration / calibrated                   | EK  | limited calibration                              |
|-------|--------------------------------------------|-----|--------------------------------------------------|
| ne    | not required (k, ev, izw, zw not required) | ZW  | cyclical maintenance (external cyclical          |
|       |                                            |     | maintenance)                                     |
| ev    | periodic self verification                 | izw | internal cyclical maintenance                    |
| Ve    | long-term stability recognized             | g   | blocked for accredited testing                   |
| vlkl! | Attention: extended calibration interval   |     |                                                  |
| NK!   | Attention: not calibrated                  | *)  | next calibration ordered / currently in progress |

© CTC advanced GmbH Page 7 of 41



## 7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.



Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

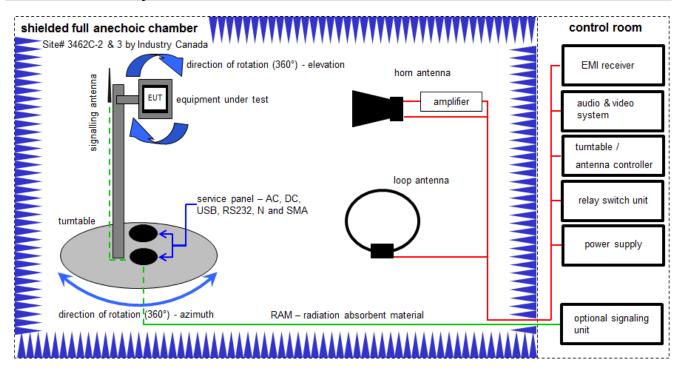
(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

#### Example calculation:

FS  $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$ 

© CTC advanced GmbH Page 8 of 41




# **Equipment table:**

| No. | Lab /<br>Item | Equipment                                          | Туре             | Manufacturer                     | Serial No. | INV. No.  | Kind of<br>Calibration | Last Calibration | Next<br>Calibration |
|-----|---------------|----------------------------------------------------|------------------|----------------------------------|------------|-----------|------------------------|------------------|---------------------|
| 1   | 45            | Switch-Unit                                        | 3488A            | HP                               | 2719A14505 | 300000368 | ev                     | -/-              | -/-                 |
| 2   | 50            | DC power supply,<br>60Vdc, 50A, 1200 W             | 6032A            | HP                               | 2920A04466 | 300000580 | ne                     | -/-              | -/-                 |
| 3   | 93            | Meßkabine 1                                        | HF-Absorberhalle | MWB AG 300023                    |            | 300000551 | ne                     | -/-              | -/-                 |
| 4   | n. a.         | EMI Test Receiver                                  | ESR3             | Rohde & Schwarz                  | 102587     | 300005771 | k                      | 21.05.2019       | 20.11.2020          |
| 5   | n. a.         | Antenna Tower                                      | Model 2175       | ETS-Lindgren                     | 64762      | 300003745 | izw                    | -/-              | -/-                 |
| 6   | n. a.         | Positioning<br>Controller                          | Model 2090       | ETS-Lindgren                     | 64672      | 300003746 | izw                    | -/-              | -/-                 |
| 7   | n. a.         | Turntable Interface-<br>Box                        | Model 105637     | ETS-Lindgren                     | 44583      | 300003747 | izw                    | -/-              | -/-                 |
| 8   | n. a.         | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz | VULB9163         | Schwarzbeck Mess -<br>Elektronik | 295        | 300003787 | vIKI!                  | 19.02.2019       | 18.02.2021          |
| 9   | n. a.         | Spectrum-Analyzer                                  | FSU26            | R&S                              | 200809     | 300003874 | k                      | 16.12.2019       | 15.12.2020          |

© CTC advanced GmbH Page 9 of 41



# 7.2 Shielded fully anechoic chamber



Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

#### Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$ 

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

#### Example calculation:

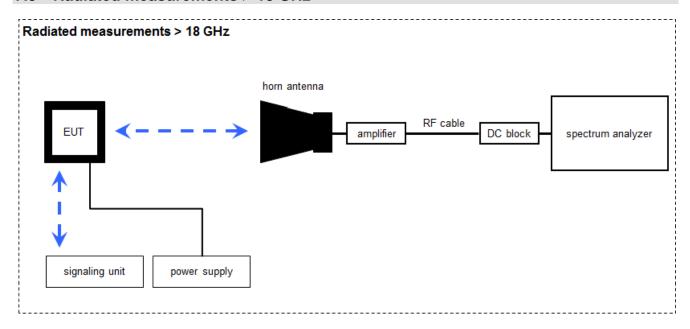
 $\overline{OP \text{ [dBm]}} = -39.0 \text{ [dBm]} + 57.0 \text{ [dB]} - 12.0 \text{ [dBi]} + (-36.0) \text{ [dB]} = -30 \text{ [dBm]} (1 \mu\text{W})$ 

© CTC advanced GmbH Page 10 of 41



# **Equipment table (Chamber C):**

| No. | Lab /<br>Item | Equipment                                            | Туре                                                | Manufacturer                     | Serial No. | INV. No.  | Kind of Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|------------------------------------------------------|-----------------------------------------------------|----------------------------------|------------|-----------|---------------------|---------------------|---------------------|
| 1   | A,B,C         | DC power supply,<br>60Vdc, 50A, 1200 W               | 6032A                                               | HP                               | 2818A03450 | 300001040 | vIKI!               | 12.12.2017          | 11.12.2020          |
| 2   | А             | Active Loop Antenna<br>9 kHz to 30 MHz               | 6502                                                | EMCO                             | 2210       | 300001015 | vIKI!               | 13.06.2019          | 12.06.2021          |
| 3   | A,B,C         | Anechoic chamber                                     | FAC 3/5m                                            | MWB / TDK                        | 87400/02   | 300000996 | ev                  | -/-                 | -/-                 |
| 4   | В             | Double-Ridged<br>Waveguide Horn<br>Antenna 1-18.0GHz | 3115                                                | EMCO                             | 9107-3697  | 300001605 | vIKI!               | 27.12.2019          | 26.02.2021          |
| 5   | A,B,C         | Switch / Control Unit                                | 3488A                                               | HP                               | *          | 300000199 | ne                  | -/-                 | -/-                 |
| 6   | A,B,C         | Variable isolating transformer                       | MPL IEC625 Bus<br>Variable isolating<br>transformer | Erfi                             | 91350      | 300001155 | ne                  | -/-                 | -/-                 |
| 7   | A,B,C         | EMI Test Receiver<br>20Hz- 26,5GHz                   | ESU26                                               | R&S                              | 100037     | 300003555 | k                   | 11.12.2019          | 10.12.2020          |
| 8   | В             | Highpass Filter                                      | WHKX7.0/18G-8SS                                     | Wainwright                       | 19         | 300003790 | ne                  | -/-                 | -/-                 |
| 9   | В             | Broadband Amplifier<br>0.5-18 GHz                    | CBLU5184540                                         | CERNEX                           | 22049      | 300004481 | ev                  | -/-                 | -/-                 |
| 10  | В             | Broadband Amplifier<br>5-13 GHz                      | CBLU5135235                                         | CERNEX                           | 22010      | 300004491 | ev                  | -/-                 | -/-                 |
| 11  | A,B,C         | 4U RF Switch<br>Platform                             | L4491A                                              | Agilent Technologies             | MY50000037 | 300004509 | ne                  | -/-                 | -/-                 |
| 12  | A,B,C         | NEXIO EMV-<br>Software                               | BAT EMC<br>V3.16.0.49                               | EMCO                             |            | 300004682 | ne                  | -/-                 | -/-                 |
| 13  | A,B,C         | PC                                                   | ExOne                                               | F+W                              |            | 300004703 | ne                  | -/-                 | -/-                 |
| 14  | В             | RF-Amplifier                                         | AMF-6F06001800-<br>30-10P-R                         | NARDA-MITEQ Inc                  | 2011572    | 300005241 | ev                  | -/-                 | -/-                 |
| 15  | С             | TRILOG Broadband<br>Test-Antenna 30<br>MHz - 3 GHz   | VULB9163                                            | Schwarzbeck Mess -<br>Elektronik | 295        | 300003787 | vIKI!               | 19.02.2019          | 18.02.2021          |


# **Equipment table (OTA):**

| No. | Lab /<br>Item | Equipment                                                   | Туре                                       | Manufacturer             | Serial No.  | INV. No.  | Kind of Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|-------------------------------------------------------------|--------------------------------------------|--------------------------|-------------|-----------|---------------------|---------------------|---------------------|
| 1   | A,B,C         | Power supply GPIB<br>dc power supply, 0-<br>50 Vdc, 0-2 A   | 6633A                                      | HP                       | 2851A01222  | 300001530 | vIKI!               | 10.12.2019          | 09.12.2022          |
| 2   | A,B,C         | CTIA-Chamber                                                | CTIA-Chamber AMS<br>8500                   | ETS-Lindgren<br>Finnland |             | 300003327 | ne                  | -/-                 | -/-                 |
| 3   | A,B,C         | CTIA-Chamber -<br>Positioning<br>Equipment                  | CTIA-Chamber -<br>Positioning<br>Equipment | EMCO/2                   |             | 300003328 | ne                  | -/-                 | -/-                 |
| 4   | A,B,C         | Signal- and<br>Spectrum Analyzer                            | FSW26                                      | R&S                      | 101455      | 300005697 | k                   | 12.12.2019          | 11.12.2020          |
| 5   | A,B,C         | PC                                                          | Precision M4800                            | DELL                     | 19414201934 | 300004957 | -/-                 |                     |                     |
| 6   | A,B,C         | EMC Software<br>Chamber A                                   | EMC32-MEB                                  | R&S                      | n.a.        | 300005477 | -/-                 |                     |                     |
| 7   | A,B,C         | RF Amplifier                                                | AMF-7D-01001800-<br>22-10P                 | MITEQ                    | n.a.        | n.a.      | ev                  |                     |                     |
| 8   | А             | Std. Gain Horn<br>Antenna 11.90-<br>18.00 GHz               | 1824-20                                    | Flann                    | 263         | 300002471 | ev                  | -/-                 | -/-                 |
| 9   | В             | Double-Ridged<br>Waveguide Horn<br>Antenna 1-18.0GHz        | 3115                                       | EMCO                     | 9709-5290   | 300000212 | ev                  | -/-                 | -/-                 |
| 10  | С             | Breitband<br>Doppelsteg-<br>Hornantenne 0.5-6<br>GHz, 300 W | BBHA 9120 E                                | Schwarzbeck              | 212         | 300003214 | vlKI!               | 22.06.2018          | 21.06.2021          |

© CTC advanced GmbH Page 11 of 41



## 7.3 Radiated measurements > 18 GHz



Measurement distance: horn antenna e.g. 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

## Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$ 

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

## Example calculation:

 $\overline{OP \text{ [dBm]}} = -59.0 \text{ [dBm]} + 44.0 \text{ [dB]} - 20.0 \text{ [dBi]} + 5.0 \text{ [dB]} = -30 \text{ [dBm]} (1 \mu\text{W})$ 

## **Equipment table:**

| No. | Lab /<br>Item | Equipment                                  | Туре          | Manufacturer | Serial No. | INV. No<br>CTC | Kind of Calibration | Last<br>Calibration | Next<br>Calibration |
|-----|---------------|--------------------------------------------|---------------|--------------|------------|----------------|---------------------|---------------------|---------------------|
| 1   | A             | Std. Gain Horn<br>Antenna 26.5-40.0<br>GHz | V637          | Narda        | 7911       | 300001751      | ev                  | -/-                 | -/-                 |
| 2   | A             | Std. Gain Horn<br>Antenna 18.0-26.5<br>GHz | 638           | Narda        |            | 300000487      | ev                  | -/-                 | -/-                 |
| 3   | Α             | Spectrum Analyzer<br>20 Hz - 50 GHz        | FSU50         | R&S          | 200012     | 300003443      | k                   | 19.02.2019          | 18.02.2021          |
| 4   | А             | Broadband LNA 18-<br>50 GHz                | CBL18503070PN | CERNEX       | 25240      | 300004948      | ev                  | -/-                 | -/-                 |
| 6   | А             | Power Supply                               | LA30/5GA      | Zentro       | 2046       | 300000711      | NK!                 | -/-                 | -/-                 |

© CTC advanced GmbH Page 12 of 41



## 8 Sequence of testing

## 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### Premeasurement\*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

#### Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
   (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 13 of 41

<sup>\*)</sup>Note: The sequence will be repeated three times with different EUT orientations.



## 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 41



## 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

#### **Setup**

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

#### **Premeasurement**

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

#### Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 41



## 8.4 Sequence of testing radiated spurious above 18 GHz

#### Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

#### **Premeasurement**

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

#### Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 16 of 41



# 9 Measurement uncertainty

| Test case                                                           | Uncertainty                                     |
|---------------------------------------------------------------------|-------------------------------------------------|
| Equivalent isotropically radiated power (e.i.r.p.)                  | Conducted value ± 1 dB<br>Radiated value ± 3 dB |
| Permitted range of operating frequencies                            | ± 100 kHz                                       |
| Conducted unwanted emissions in the spurious domain (up to 40 GHz)  | ± 1 dB                                          |
| Radiated unwanted emissions in the spurious domain (up to 40 GHz)   | ± 3 dB                                          |
| Conducted unwanted emissions in the spurious domain (40 to 50 GHz)  | ± 4 dB                                          |
| Radiated unwanted emissions in the spurious domain (40 to 50 GHz)   | ± 4 dB                                          |
| Conducted unwanted emissions in the spurious domain (50 to 300 GHz) | ± 5 dB                                          |
| Radiated unwanted emissions in the spurious domain (50 to 300 GHz)  | ± 5 dB                                          |
| DC and low frequency voltages                                       | ± 3 %                                           |
| Temperature                                                         | ±1°C                                            |
| Humidity                                                            | ± 3 %                                           |

© CTC advanced GmbH Page 17 of 41



# 10 Summary of measurement results

| ⊠ | No deviations from the technical specifications were ascertained                                                      |
|---|-----------------------------------------------------------------------------------------------------------------------|
|   | There were deviations from the technical specifications ascertained                                                   |
|   | This test report is only a partial test report. The content and verdict of the performed test cases are listed below. |

| TC Identifier | Description                        | Verdict   | Date       | Remark |
|---------------|------------------------------------|-----------|------------|--------|
| RF-Testing    | CFR47<br>§15.209, §15.509, §15.521 | see table | 2022-02-02 | -/-    |

| Test specification clause        | Test case                 | Temperature conditions | Power source | Pass        | Fail | NA | NP | Remark   |
|----------------------------------|---------------------------|------------------------|--------------|-------------|------|----|----|----------|
| §15.503,<br>§15.509 (a)          | 10 dB<br>Bandwidth        | Nominal                | Nominal      | $\boxtimes$ |      |    |    | complies |
| §15.509,<br>§15.209 (d)(e)(f)    | TX Radiated<br>Emissions  | Nominal                | Nominal      | $\boxtimes$ |      |    |    | complies |
| §15.509 (c)                      | Efficient use of spectrum | Nominal                | Nominal      | $\boxtimes$ |      |    |    | complies |
| §15.521 (b)<br>§§15.203 & 15.204 | Antenna requirement       | -/-                    | -/-          | $\boxtimes$ |      |    |    | complies |

Note: NA = Not Applicable; NP = Not Performed

© CTC advanced GmbH Page 18 of 41



## 11 Additional comments

Reference documents: None

Configuration descriptions: None

Special test descriptions: 1) A representative wall using absorptive material is being used according to

ETSI EN 302 065-4 V1.1.1 (2016-11) ANNEX D.2

Wall attenuation values are within given values according to Table D.1

Table D.1: Representative wall attenuation values

| Frequency<br>(GHz) | Attenuation values for the representative wall in dB |         |  |
|--------------------|------------------------------------------------------|---------|--|
|                    | average                                              | maximum |  |
| 1                  | 7.00                                                 | 9.00    |  |
| 2                  | 10.00                                                | 12.00   |  |
| 3                  | 12.00                                                | 14.00   |  |
| 4                  | 14.00                                                | 16.00   |  |
| 5                  | 16.00                                                | 18.00   |  |
| 6                  | 18.00                                                | 20.00   |  |
| 7                  | 20.00                                                | 22.00   |  |
| 8                  | 22.00                                                | 24.00   |  |

2) The following devices have been used for the stated measurements:

## Device 2 / EUT 2:

- 10 dB Bandwidth
- TX Radiated Emissions
- Efficient use of spectrum

## Device 3 / EUT 3:

- Emissions from digital circuitry (part of chapter: TX Radiated Emissions)

© CTC advanced GmbH Page 19 of 41



## 12 Measurement results

## 12.1 10 dB - Bandwidth

## **Description:**

§ 15.503 (a) *UWB bandwidth*. For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated  $f_{\text{H}}$  and the lower boundary is designated  $f_{\text{L}}$ . The frequency at which the highest radiated emission occurs is designated  $f_{\text{M}}$ .

## **Measurement:**

| Measurement parameter |          |  |
|-----------------------|----------|--|
| Detector:             | RMS      |  |
| Video bandwidth:      | 1 MHz    |  |
| Resolution bandwidth: | 3 MHz    |  |
| Trace-Mode:           | Max Hold |  |

Test Setup: 7.3

## **Limits:**

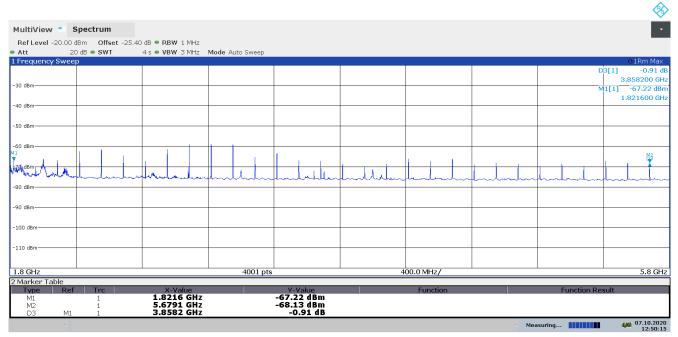
§ 15.503 (d)

| g 13.303 (u) |           |  |
|--------------|-----------|--|
|              | ≥ 500 MHz |  |

§ 15.509 (a)

|   | 3 10.000 (a) |
|---|--------------|
| ı | < 10.6 GHz   |
| Ш | ₹ 10.0 GHZ   |

## Results:


| EUT | Lower -10 dB point<br>[GHz] | Higher -10 dB point<br>[GHz] | UWB bandwidth [MHz] | Plot |
|-----|-----------------------------|------------------------------|---------------------|------|
| 2   | 1.8216                      | 5.6791                       | 3858.2              | 1    |

**Verdict:** Compliant

© CTC advanced GmbH Page 20 of 41



## Plot 1:



12:50:16 07.10.2020

© CTC advanced GmbH Page 21 of 41



# 12.2 TX Radiated Emissions

# **Description:**

Measurement of the radiated spurious emissions in transmit mode.

# **Measurement:**

## §15.209:

| Average Measurement parameter |            |  |  |  |
|-------------------------------|------------|--|--|--|
| Detector:                     | Peak/QPeak |  |  |  |
| Sweep time:                   | 1 s        |  |  |  |
| Number of points              | 8001       |  |  |  |
| Resolution bandwidth:         | 120kHz     |  |  |  |
| Video bandwidth:              | ≥ RBW      |  |  |  |
| Trace-Mode:                   | Max Hold   |  |  |  |

# §15.509 (d):

| Average Measurement parameter |          |  |  |
|-------------------------------|----------|--|--|
| Detector:                     | RMS      |  |  |
| Sweep time:                   | 1 ms/pt  |  |  |
| Resolution bandwidth:         | 1 MHz    |  |  |
| Video bandwidth:              | 3 MHz    |  |  |
| Trace-Mode:                   | Max Hold |  |  |

# §15.509 (e):

| Average Measurement parameter |          |  |  |
|-------------------------------|----------|--|--|
| Detector:                     | RMS      |  |  |
| Sweep time:                   | 1 ms/pt  |  |  |
| Resolution bandwidth:         | 1 kHz    |  |  |
| Video bandwidth:              | 100 kHz  |  |  |
| Trace-Mode:                   | Max Hold |  |  |

## §15.509 (f):

| Peak Measurement parameter |           |  |  |
|----------------------------|-----------|--|--|
| Detector:                  | Max Peak  |  |  |
| Resolution bandwidth:      | 50 MHz    |  |  |
| Video bandwidth:           | 80 MHz    |  |  |
| Span:                      | Zero span |  |  |
| Trace-Mode:                | Max Hold  |  |  |

© CTC advanced GmbH Page 22 of 41



#### **UWB-emission-Limits:**

#### RSS-220 6.2.1 (d)

Radiated emissions above 960 MHz from a device shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz.

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 960 to 1610      | -65.3       |
| 1610 to 1990     | -53.3       |
| 1990 to 3100     | -51.3       |
| 3100 to 10600    | -41.3       |
| Above 10600      | -51.3       |

#### RSS-220 6.2.1 (e)

In addition to the limits specified in paragraph (d) of this section; radiated emissions shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz. The measurements shall demonstrate compliance with the stated limits at whatever resolution bandwidth is used.

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 1164 to 1240     | -75.3       |
| 1559 to 1610     | -75.3       |

#### RSS-220 6.2.1 (g)

The peak level of the transmissions shall not exceed the peak equivalent of the average limit contained within any 50 MHz bandwidth, as defined in section 4 of the Annex.

#### RSS-220 Annex 4(c)

Peak measurements shall be made in addition to average measurements. Transmissions shall not exceed 0 dBm e.i.r.p. in any 50 MHz bandwidth when the average limit is -41.3 dBm/MHz. This is the equivalent peak limit as calculated by combining the 6 dB peak-to-average conversion with a resolution bandwidth (RBW) scaling factor of 20 log(1 MHz/50 MHz). Only the 50 MHz bandwidth, centred on the frequency fM where the highest power occurs, needs to be measured to satisfy the peak requirements for all frequencies. A different resolution bandwidth and a correspondingly different peak limit may also be used, in which case the RBW may be set anywhere between 1 MHz and 50 MHz. The peak e.i.r.p. limit is then calculated as 20 log(RBW/50) dBm where the RBW is in MHz. This may be converted to a peak field strength level at 3 metres using E(dBuV/m) = P(e.i.r.p.(dBm)) + 95.2. If the RBW is greater than 3 MHz, the application for certification shall contain a detailed description of the test procedure, the calibration of the test set-up and the instrumentation used in the testing.

#### RSS-220 Annex 4(m)

Emissions from digital circuitry (used only to enable the operation of the UWB transmitter and that does not control additional functions or capabilities) shall comply with the average and peak power limits applicable to the UWB transmitter. If it can be clearly demonstrated that an emission from a UWB transmitter is due solely to emissions from digital circuitry contained within the transmitter, and that the emission is not intended to be radiated from the transmitter's antenna, the limits for emissions from digital circuitry prescribed in RSS-Gen apply to that emission rather than the UWB limits.

© CTC advanced GmbH Page 23 of 41



#### §15.509 (c)

A GPR that is designed to be operated while being hand held and a wall imaging system shall contain a manually operated switch that causes the transmitter to cease operation within 10 seconds of being released by the operator. In lieu of a switch located on the imaging system, it is permissible to operate an imaging system by remote control provided the imaging system ceases transmission within 10 seconds of the remote switch being released by the operator.

#### §15.509 (d)

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following RMS average limits based on measurements using a 1 MHz resolution bandwidth:

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 960 to 1610      | -65.3       |
| 1610 to 1990     | -53.3       |
| 1990 to 3100     | -51.3       |
| 3100 to 10600    | -41.3       |
| Above 10600      | -51.3       |

#### §15.509 (e)

In addition to the radiated emission limits specified in the table in paragraph (d)(1) of this section, transmitters operating under the provisions of this section shall not exceed the following RMS average limits when measured using a resolution bandwidth of no less than 1 kHz:

| Frequency in MHz | EIRP in dBm |
|------------------|-------------|
| 1164 to 1240     | -75.3       |
| 1559 to 1610     | -75.3       |

#### §15.509 (d)

For UWB devices where the frequency at which the highest radiated emission occurs, fM, is above 960 MHz, there is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on fM. That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in § 15.521.

## §15.521 (c)

Emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in §15.209, rather than the limits specified in this subpart, provided it can be clearly demonstrated that those emissions from the UWB device are due solely to emissions from digital circuitry contained within the transmitter and that the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in §15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the UWB transmission, are subject to the limits contained in Subpart B of this part.

#### §15.521(e)

The frequency at which the highest radiated emission occurs,  $f_M$ , must be contained within the UWB bandwidth.

© CTC advanced GmbH Page 24 of 41



## §15.521(g)

When a peak measurement is required, it is acceptable to use a resolution bandwidth other than the 50 MHz specified in this subpart. This resolution bandwidth shall not be lower than 1 MHz or greater than 50 MHz, and the measurement shall be centered on the frequency at which the highest radiated emission occurs,  $f_{\rm M}$ . If a resolution bandwidth other than 50 MHz is employed, the peak EIRP limit shall be 20 log (RBW/50) dBm where RBW is the resolution bandwidth in megahertz that is employed. This may be converted to a peak field strength level at 3 meters using E(dBuV/m) = P(dBm EIRP) + 95.2. If RBW is greater than 3 MHz, the application for certification filed with the Commission must contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

## §15.521(h):

The highest frequency employed in §15.33 to determine the frequency range over which radiated measurements are made shall be based on the center frequency,  $f_c$ , unless a higher frequency is generated within the UWB device. For measuring emission levels, the spectrum shall be investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the frequency range shown in §15.33(a) or up to  $f_c$  + 3/(pulse width in seconds), whichever is higher. There is no requirement to measure emissions beyond 40 GHz provided  $f_c$  is less than 10 GHz; beyond 100 GHz if  $f_c$  is at or above 10 GHz and below 30 GHz; or beyond 200 GHz if  $f_c$  is at or above 30 GHz.

#### §15.521 (d)

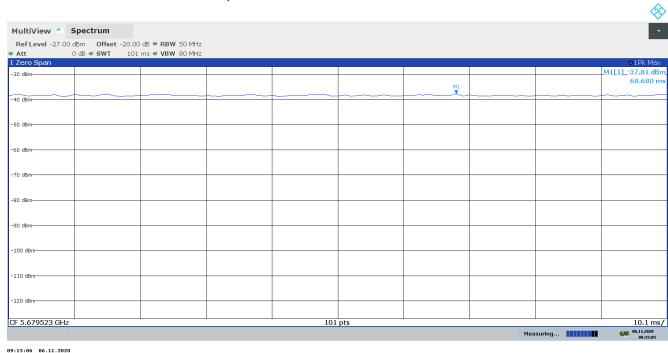
Within the tables in §§15.509, 15.511, 15.513, 15.515, 15.517, and 15.519, the tighter emission limit applies at the band edges. Radiated emission levels at and below 960 MHz are based on measurements employing a CISPR quasi-peak detector. Radiated emission levels above 960 MHz are based on RMS average measurements over a 1 MHz resolution bandwidth. The RMS average measurement is based on the use of a spectrum analyzer with a resolution bandwidth of 1 MHz, an RMS detector, and a 1 millisecond or less averaging time. Unless otherwise stated, if pulse gating is employed where the transmitter is quiescent for intervals that are long compared to the nominal pulse repetition interval, measurements shall be made with the pulse train gated on. Alternative measurement procedures may be considered by the Commission.

#### Emission limits below 960 MHz (§15.209, RSS-220 3.4):

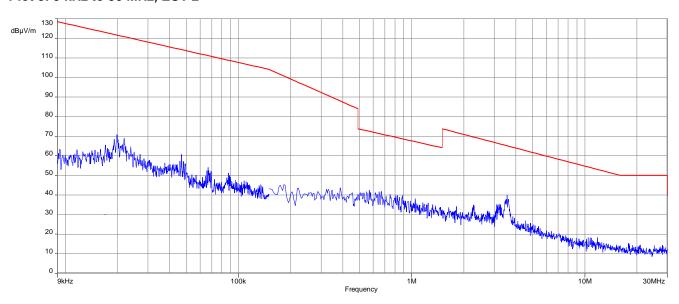
| Frequency (MHz) | Field strength (μV/m) | Measurement distance (m) |
|-----------------|-----------------------|--------------------------|
| 0.009 - 0.490   | 2400/F(kHz)           | 300                      |
| 0.490 – 1.705   | 24000/F(kHz)          | 30                       |
| 1.705 – 30      | 30 (29.5 dBμV/m)      | 30                       |
| 30 – 88         | 100 (40 dBμV/m)       | 3                        |
| 88 – 216        | 150 (43.5 dBμV/m)     | 3                        |
| 216 – 960       | 200 (46 dBμV/m)       | 3                        |
| > 960           | 500 (54 dBμV/m)       | 3                        |

© CTC advanced GmbH Page 25 of 41




## Result:

## **Measurements of the fundamental emission:**

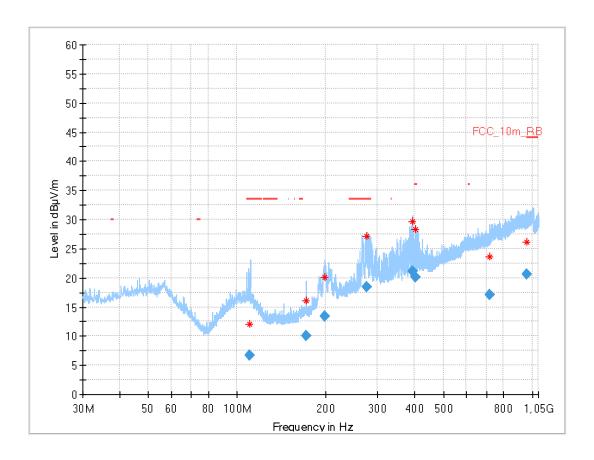

| EUT | Frequency /MHz | Frequency /MHz  Max RMS power in dBm/MHz |        | Plot |
|-----|----------------|------------------------------------------|--------|------|
| 2   | 5679.523       | -57.71                                   | -37.81 | 2, 6 |

# **Verdict:** complies

Plot 2: Peak fundamental emission, EUT 2



Plot 3: 9 kHz to 30 MHz, EUT 2




Limit according to FCC §15.209 & RSS-220 3.4.

© CTC advanced GmbH Page 26 of 41

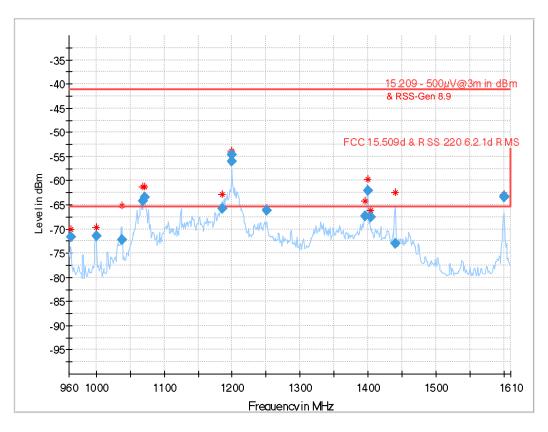


Plot 4: 30 MHz to 1 GHz, EUT 2



Final Result

| i iiiai_i\esuii | <u>.</u> |          |        |            |           |        |     |         |        |
|-----------------|----------|----------|--------|------------|-----------|--------|-----|---------|--------|
| Frequency       | QuasiPea | Limit    | Margin | Meas. Time | Bandwidth | Height | Pol | Azimuth | Corr.  |
| (MHz)           | k        | (dBµV/m) | (dB)   | (ms)       | (kHz)     | (cm)   |     | (deg)   | (dB/m) |
|                 | (dBµV/m) |          |        |            |           |        |     |         |        |
| 110.429         | 6.72     | 33.5     | 26.8   | 1000       | 120.0     | 195.0  | Н   | 152     | 12     |
| 171.001         | 10.00    | -        | -      | 1000       | 120.0     | 100.0  | ٧   | 285     | 10     |
| 198.001         | 13.35    | -        |        | 1000       | 120.0     | 100.0  | ٧   | 46      | 12     |
| 275.432         | 18.48    | 33.5     | 15.0   | 1000       | 120.0     | 400.0  | Н   | 94      | 14     |
| 393.738         | 21.16    | I        | -      | 1000       | 120.0     | 111.0  | ٧   | 246     | 17     |
| 401.803         | 20.06    | 36.0     | 15.9   | 1000       | 120.0     | 108.0  | ٧   | 256     | 17     |
| 718.314         | 17.08    | -        | -      | 1000       | 120.0     | 151.0  | ٧   | 135     | 21     |
| 960.003         | 20.55    | 44.0     | 23.5   | 1000       | 120.0     | 118.0  | Н   | 40      | 24     |


The measurement conducted @10m. The 3m limit is corrected by 10dB according ANSI 63.10 5.3.3.

Limit according to FCC §15.209 & RSS-220 3.4.

© CTC advanced GmbH Page 27 of 41



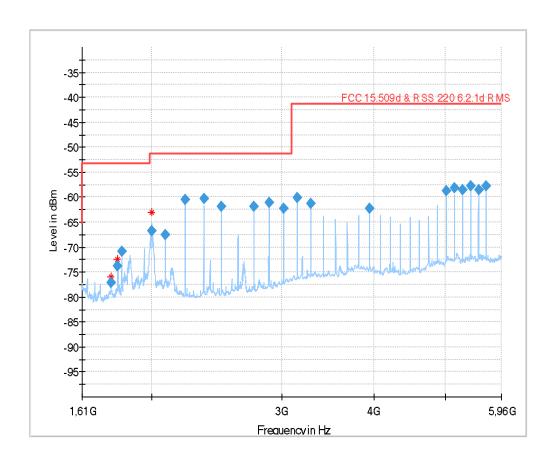
Plot 5: 960 MHz to 1610 MHz, EUT 2



\*as stated by the customer and as shown in plot 11 and 13, the emissions within the frequency range discussed here are presumably due to the digital circuit of the device. According to §15.521 (c), emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in §15.209, rather than the limits specified in § 15.509 (d).

The same applies according to RSS-220 Annex 4 (m). Therefore, the limits stated in RSS-Gen 8.9 are considered applicable.

The conversion of the limit mentioned in §15.209 is done according to ANSI C63.10-2013 9.6.


Final\_Result

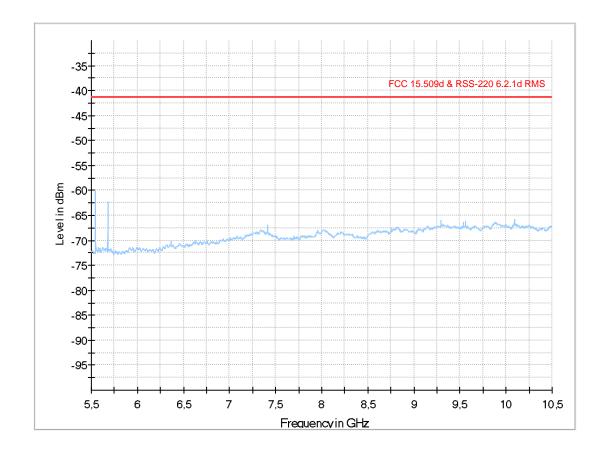
| Frequency<br>(MHz) | RMS<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Bandwidth<br>(kHz) | Pol | Azimuth (deg) | Elevation (deg) | Corr.<br>(dB) |
|--------------------|--------------|----------------|----------------|--------------------|-----|---------------|-----------------|---------------|
| 962.708000         | -71.61       | -41.23         | 30.38          | 1000.000           | Н   | 204.0         | 45.0            | -138.4        |
| 999.978000         | -71.52       | -41.23         | 30.29          | 1000.000           | Н   | 145.0         | 15.0            | -139.4        |
| 1037.489000        | -72.22       | -41.23         | 30.99          | 1000.000           | Н   | 147.0         | 120.0           | -139.3        |
| 1068.854000        | -64.16       | -41.23         | 22.93          | 1000.000           | Н   | 135.0         | 91.0            | -139.5        |
| 1071.783000        | -63.43       | -41.23         | 22.20          | 1000.000           | ٧   | 145.0         | 22.0            | -139.5        |
| 1185.719000        | -65.70       | -41.23         | 24.47          | 1000.000           | ٧   | 165.0         | 75.0            | -139.6        |
| 1199.805000        | -56.05       | -41.23         | 14.82          | 1000.000           | ٧   | 165.0         | 45.0            | -139.9        |
| 1199.994000        | -54.69       | -41.23         | 13.46          | 1000.000           | ٧   | 157.0         | 60.0            | -139.9        |
| 1250.800000        | -66.22       | -41.23         | 24.99          | 1000.000           | Н   | 167.0         | 54.0            | -139.1        |
| 1396.136000        | -67.33       | -41.23         | 26.10          | 1000.000           | ٧   | 182.0         | 75.0            | -139.1        |
| 1399.872000        | -62.12       | -41.23         | 20.89          | 1000.000           | ٧   | 175.0         | 56.0            | -139.1        |
| 1403.655000        | -67.61       | -41.23         | 26.38          | 1000.000           | Н   | 180.0         | 165.0           | -139.2        |
| 1440.181000        | -73.03       | -41.23         | 31.80          | 1000.000           | Н   | 175.0         | 29.0            | -138.9        |
| 1599.920000        | -63.41       | -41.23         | 22.18          | 1000.000           | ٧   | 235.0         | 56.0            | -138.1        |
| 1600.241000        | -63.25       | -41.23         | 22.02          | 1000.000           | ٧   | 235.0         | 61.0            | -138.1        |

© CTC advanced GmbH Page 28 of 41



Plot 6: 1610 MHz to 5.96 GHz, EUT 2

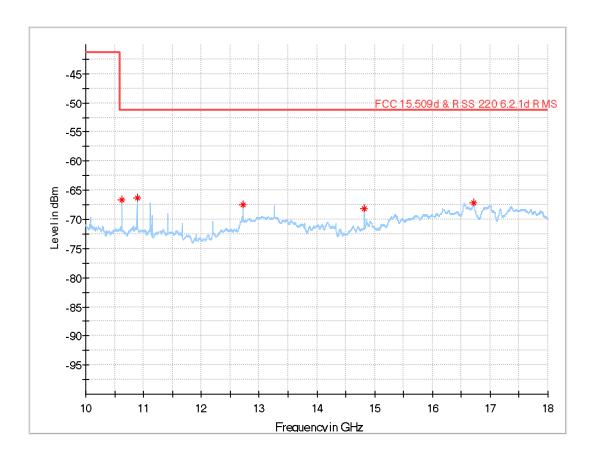



**Final Result** 

| Frequency<br>(MHz) | RMS<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Bandwidth<br>(kHz) | Pol | Azimuth (deg) | Elevation (deg) | Corr.<br>(dB) |
|--------------------|--------------|----------------|----------------|--------------------|-----|---------------|-----------------|---------------|
| 1761.619000        | -77.22       | -53.30         | 23.92          | 1000.000           | ٧   | 215.0         | 0.0             | -136.8        |
| 1798.934000        | -73.87       | -53.30         | 20.57          | 1000.000           | ٧   | 175.0         | 105.0           | -137.1        |
| 1821.535000        | -70.78       | -53.30         | 17.48          | 1000.000           | ٧   | -5.0          | 114.0           | -137.0        |
| 1998.731000        | -66.84       | -51.30         | 15.54          | 1000.000           | ٧   | 178.0         | 135.0           | -136.1        |
| 2087.625000        | -67.45       | -51.30         | 16.15          | 1000.000           | H   | 134.0         | 65.0            | -135.6        |
| 2220.636000        | -60.48       | -51.30         | 9.18           | 1000.000           | ٧   | 106.0         | 140.0           | -135.6        |
| 2353.673000        | -60.35       | -51.30         | 9.05           | 1000.000           | ٧   | 106.0         | 138.0           | -134.8        |
| 2486.716000        | -61.88       | -51.30         | 10.58          | 1000.000           | ٧   | 340.0         | 135.0           | -134.7        |
| 2752.799000        | -61.93       | -51.30         | 10.63          | 1000.000           | ٧   | 209.0         | 2.0             | -133.9        |
| 2885.829000        | -61.13       | -51.30         | 9.83           | 1000.000           | ٧   | 207.0         | 1.0             | -133.4        |
| 3018.828000        | -62.32       | -51.30         | 11.02          | 1000.000           | Н   | 112.0         | 0.0             | -132.4        |
| 3151.893000        | -60.18       | -41.30         | 18.88          | 1000.000           | H   | 112.0         | 0.0             | -131.5        |
| 3284.903000        | -61.26       | -41.30         | 19.96          | 1000.000           | I   | 112.0         | 0.0             | -130.9        |
| 3950.098000        | -62.30       | -41.30         | 21.00          | 1000.000           | I   | 236.0         | 0.0             | -129.4        |
| 5014.352000        | -58.84       | -41.30         | 17.54          | 1000.000           | I   | 130.0         | 92.0            | -127.7        |
| 5147.402000        | -58.21       | -41.30         | 16.91          | 1000.000           | I   | 130.0         | 93.0            | -127.3        |
| 5280.380000        | -58.55       | -41.30         | 17.25          | 1000.000           | Н   | 137.0         | 142.0           | -127.6        |
| 5413.430000        | -57.80       | -41.30         | 16.50          | 1000.000           | Н   | 230.0         | 61.0            | -126.9        |
| 5546.467000        | -58.56       | -41.30         | 17.26          | 1000.000           | H   | 230.0         | 62.0            | -127.2        |
| 5679.523000        | -57.71       | -41.30         | 16.41          | 1000.000           | Н   | 227.0         | 63.0            | -127.0        |

© CTC advanced GmbH Page 29 of 41




Plot 7: 5.5 GHz to 10.5 GHz, EUT 2

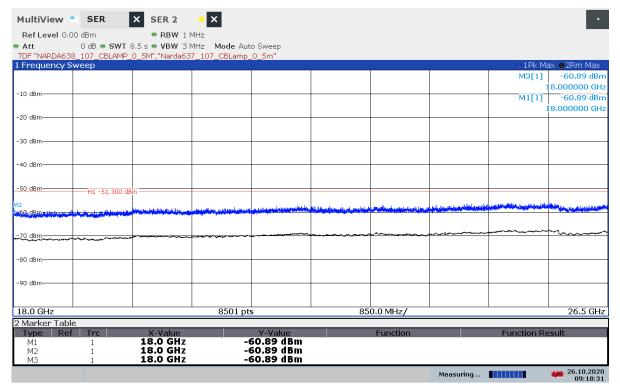


© CTC advanced GmbH Page 30 of 41



Plot 8: 10.5 GHz to 18 GHz, EUT 2

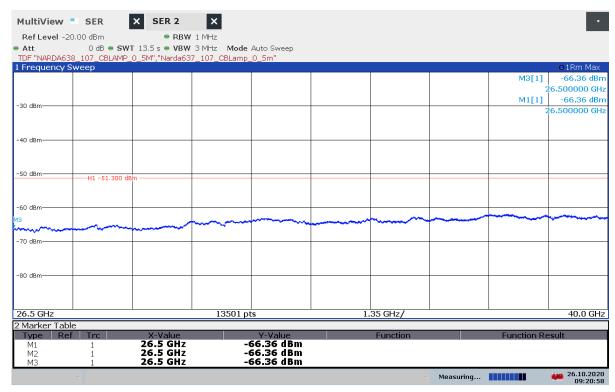



Final\_Result

| Frequency<br>(MHz) | RMS<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Bandwidth<br>(kHz) | Pol | Azimuth (deg) | Elevation (deg) | Corr.<br>(dB) |
|--------------------|--------------|----------------|----------------|--------------------|-----|---------------|-----------------|---------------|
| 10622.000000       | -66.68       | -51.30         | 15.38          | 1000               | ٧   | 110.0         | 0.0             | -127.3        |
| 10888.000000       | -66.27       | -51.30         | 14.97          | 1000               | ٧   | 210.0         | 90.0            | -127.0        |
| 12730.000000       | -67.47       | -51.30         | 16.17          | 1000               | ٧   | 240.0         | 90.0            | -125.5        |
| 14818.000000       | -68.23       | -51.30         | 16.93          | 1000               | Н   | 250.0         | 150.0           | -125.0        |
| 16715.000000       | -67.10       | -51.30         | 15.80          | 1000               | ٧   | 130.0         | 90.0            | -122.3        |

© CTC advanced GmbH Page 31 of 41




Plot 9: 18 GHz to 26.5 GHz, EUT 2



09:18:31 26.10.2020

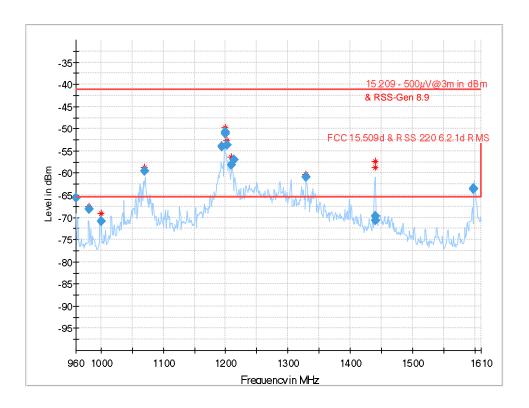
Limit according to FCC 15.509d & RSS-220 6.2.1d RMS

Plot 10: 26.5 GHz to 40.0 GHz, EUT 2



09:20:59 26.10.2020

Limit according to FCC 15.509d & RSS-220 6.2.1d RMS


© CTC advanced GmbH Page 32 of 41



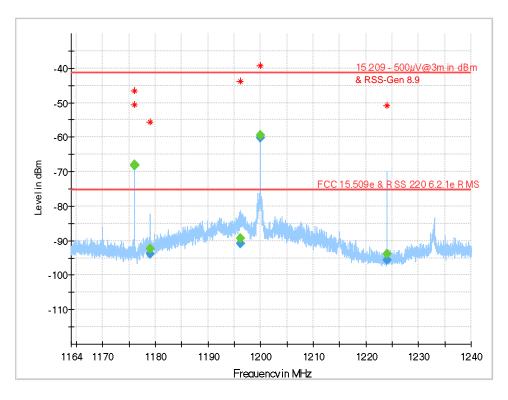
## **Detailed discussion of the frequency range from 960 MHz to 1610 MHz:**

To verify the emissions of the digital circuitry, a specifically prepared device (EUT 3) is used in which the UWB emissions are turned off.

Plot 11: 960 MHz to 1610 MHz, EUT 3



**Final Result** 


| Frequency<br>(MHz) | RMS<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Bandwidth<br>(kHz) | Pol | Azimuth (deg) | Elevation<br>(deg) | Corr.<br>(dB) |
|--------------------|--------------|----------------|----------------|--------------------|-----|---------------|--------------------|---------------|
| 960.013000         | -65.65       | -41.23         | 24.42          | 1000.000           | Н   | 197.0         | 77.0               | -138.4        |
| 980.817000         | -68.18       | -41.23         | 26.95          | 1000.000           | ٧   | 188.0         | 139.0              | -139.3        |
| 1000.194000        | -70.88       | -41.23         | 29.65          | 1000.000           | Н   | 175.0         | 156.0              | -139.4        |
| 1069.675000        | -59.43       | -41.23         | 18.20          | 1000.000           | H   | 143.0         | 93.0               | -139.5        |
| 1193.473000        | -53.98       | -41.23         | 12.75          | 1000.000           | ٧   | 165.0         | 38.0               | -139.7        |
| 1199.906000        | -50.78       | -41.23         | 9.55           | 1000.000           | ٧   | 155.0         | 13.0               | -139.9        |
| 1199.908000        | -51.06       | -41.23         | 9.83           | 1000.000           | ٧   | 155.0         | 15.0               | -139.9        |
| 1201.586000        | -53.74       | -41.23         | 12.51          | 1000.000           | H   | 177.0         | 3.0                | -139.9        |
| 1208.985000        | -58.25       | -41.23         | 17.02          | 1000.000           | H   | 175.0         | 1.0                | -139.9        |
| 1213.917000        | -56.90       | -41.23         | 15.67          | 1000.000           | ٧   | 155.0         | 62.0               | -139.9        |
| 1329.492000        | -60.89       | -41.23         | 19.66          | 1000.000           | ٧   | 177.0         | 6.0                | -139.3        |
| 1439.721000        | -70.59       | -41.23         | 29.36          | 1000.000           | ٧   | 165.0         | 155.0              | -138.9        |
| 1439.977000        | -69.77       | -41.23         | 28.54          | 1000.000           | ٧   | 156.0         | 165.0              | -138.9        |
| 1597.942000        | -63.61       | -41.23         | 22.38          | 1000.000           | ٧   | 198.0         | 66.0               | -138.1        |
| 1597.946000        | -63.45       | -41.23         | 22.22          | 1000.000           | ٧   | 205.0         | 60.0               | -138.1        |

The comparison of the results shown in plot 5 and plot 11 indicate that the emissions observed in this frequency range are due to the digital circuitry of the device. Hence, according to §15.521 (d) the limits mentioned in §15.209 are considered applicable.

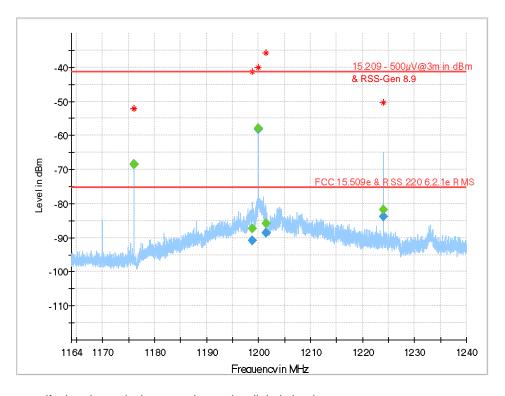
© CTC advanced GmbH Page 33 of 41



Plot 12: 15.509 (e), lower GPS Band. EUT 2



<sup>\*</sup>as discussed above, the limits mentioned in CFR §15.209 are considered applicable.


**Final Result** 

| Frequency<br>(MHz) | RMS<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Bandwidth<br>(kHz) | Pol | Azimuth (deg) | Elevation<br>(deg) | Corr.<br>(dB) |
|--------------------|--------------|----------------|----------------|--------------------|-----|---------------|--------------------|---------------|
| 1175.993536        | -68.09       | -41.23         | 26.86          | 1.000              | ٧   | 142.0         | 23.0               | -144.0        |
| 1175.993538        | -68.32       | -41.23         | 27.09          | 1.000              | ٧   | 142.0         | 16.0               | -144.0        |
| 1178.988614        | -93.82       | -41.23         | 52.59          | 1.000              | ٧   | 131.0         | 123.0              | -144.0        |
| 1196.083372        | -90.91       | -41.23         | 49.68          | 1.000              | ٧   | 130.0         | 99.0               | -144.2        |
| 1199.993667        | -60.06       | -41.23         | 18.83          | 1.000              | ٧   | 149.0         | 15.0               | -144.3        |
| 1224.003070        | -95.68       | -41.23         | 54.45          | 1.000              | ٧   | 158.0         | 35.0               | -144.4        |

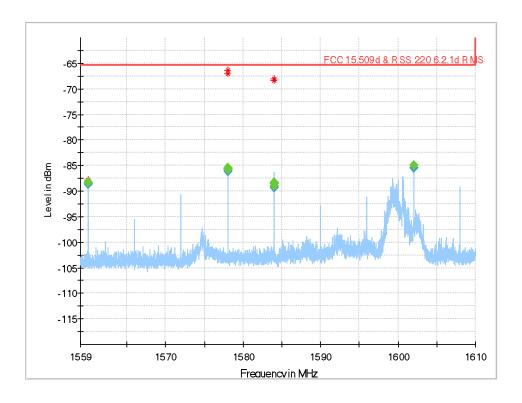
© CTC advanced GmbH Page 34 of 41



Plot 13: 15.509 (e), lower GPS Band, EUT 3



<sup>\*</sup>for comparison to verify that the emissions are due to the digital circuitry.


Final\_Result

| Frequency<br>(MHz) | RMS<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Bandwidth (kHz) | Pol | Azimuth (deg) | Elevation (deg) | Corr.<br>(dB) |
|--------------------|--------------|----------------|----------------|-----------------|-----|---------------|-----------------|---------------|
| 1175.996325        | -68.47       | -41.23         | 27.24          | 1.000           | ٧   | 152.0         | 41.0            | -144.0        |
| 1175.996326        | -68.50       | -41.23         | 27.27          | 1.000           | ٧   | 153.0         | 23.0            | -144.0        |
| 1198.812557        | -90.74       | -41.23         | 49.51          | 1.000           | ٧   | 158.0         | 37.0            | -144.2        |
| 1199.997042        | -58.08       | -41.23         | 16.85          | 1.000           | Н   | 145.0         | 103.0           | -144.3        |
| 1201.450333        | -88.47       | -41.23         | 47.24          | 1.000           | ٧   | 163.0         | 31.0            | -144.3        |
| 1223.997000        | -83.75       | -41.23         | 42.52          | 1.000           | ٧   | 152.0         | 15.0            | -144.4        |

© CTC advanced GmbH Page 35 of 41



Plot 14: 15.509 (e), upper GPS Band, EUT 2



Final\_Result

| i iidi_itcodit |        |        |        |           |     |         |           |        |
|----------------|--------|--------|--------|-----------|-----|---------|-----------|--------|
| Frequency      | RMS    | Limit  | Margin | Bandwidth | Pol | Azimuth | Elevation | Corr.  |
| (MHz)          | (dBm)  | (dBm)  | (dB)   | (kHz)     |     | (deg)   | (deg)     | (dB)   |
| 1559.991000    | -88.71 | -65.30 | 23.41  | 1.000     | H   | 188.0   | 107.0     | -141.7 |
| 1577.991323    | -85.61 | -65.30 | 20.31  | 1.000     | ٧   | 167.0   | 49.0      | -141.6 |
| 1577.991342    | -86.21 | -65.30 | 20.91  | 1.000     | ٧   | 164.0   | 75.0      | -141.6 |
| 1583.991295    | -88.54 | -65.30 | 23.24  | 1.000     | ٧   | 221.0   | 45.0      | -141.6 |
| 1583.991308    | -89.34 | -65.30 | 24.04  | 1.000     | ٧   | 215.0   | 45.0      | -141.6 |
| 1601.991200    | -85.51 | -65.30 | 20.21  | 1.000     | ٧   | 175.0   | 62.0      | -141.8 |

© CTC advanced GmbH Page 36 of 41

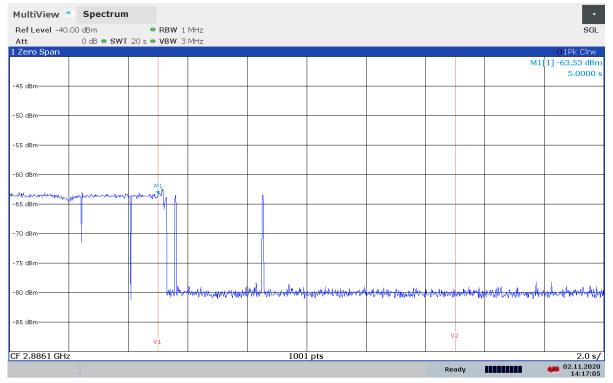


## 12.3 §15.509(c) Efficient use of spectrum

## **Description:**

(c) A GPR that is designed to be operated while being hand held and a wall imaging system shall contain a manually operated switch that causes the transmitter to cease operation within 10 seconds of being released by the operator. In lieu of a switch located on the imaging system, it is permissible to operate an imaging system by remote control provided the imaging system ceases transmission within 10 seconds of the remote switch being released by the operator.

## **Measurement:**


| Measurement parameter |       |  |  |  |
|-----------------------|-------|--|--|--|
| Detector:             | Peak  |  |  |  |
| Resolution bandwidth: | 1 MHz |  |  |  |
| Video bandwidth:      | 3 MHz |  |  |  |
| Span                  | Zero  |  |  |  |

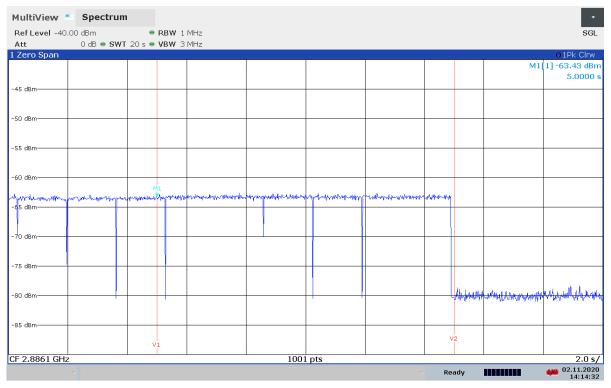
#### Limits:

The imaging system ceases transmission within 10 seconds of the remote switch being released.

#### Results:

Plot 15: Contact between device and representative wall interrupted




14:17:06 02.11.2020

Vertical line V1: Point in time when the contact between the device and the representative wall is interrupted. Vertical line V2:10 s after the contact between the device and the representative wall is interrupted.

© CTC advanced GmbH Page 37 of 41



Plot 16: Movement of the device at the representative wall stopped



14:14:33 02.11.2020

Vertical line V1: Point in time when the movement of the device at the representative wall is stopped. Vertical line V2:10 s after the movement of the device at the representative wall is stopped.

**Verdict:** Compliant

© CTC advanced GmbH Page 38 of 41



# 12.4 Antenna requirements

# **Description:**

§15.521(b)

Manufacturers and users are reminded of the provisions of §§15.203 and 15.204.

Integrated patch antenna.

**Verdict:** Compliant

© CTC advanced GmbH Page 39 of 41



## Annex A Glossary

**EUT** Equipment under test

**DUT** Device under test

**UUT** Unit under test

**GUE** GNSS User Equipment

**ETSI** European Telecommunications Standards Institute

**EN** European Standard

FCC Federal Communications Commission

FCC ID Company Identifier at FCC

IC Industry Canada

PMN Product marketing name

**HMN** Host marketing name

**HVIN** Hardware version identification number

**FVIN** Firmware version identification number

**EMC** Electromagnetic Compatibility

**HW** Hardware

**SW** Software

Inv. No. Inventory number

S/N or SN Serial number

**C** Compliant

**NC** Not compliant

NA Not applicable

**NP** Not performed

**PP** Positive peak

**QP** Quasi peak

**AVG** Average

**OC** Operating channel

**OCW** Operating channel bandwidth

**OBW** Occupied bandwidth

OOB Out of band

**DFS** Dynamic frequency selection

**CAC** Channel availability check

**OP** Occupancy period

NOP Non occupancy period

**DC** Duty cycle

**PER** Packet error rate

**CW** Clean wave

MC Modulated carrier

**WLAN** Wireless local area network

**RLAN** Radio local area network

**GPR** Ground penetrating radar

**DSSS** Dynamic sequence spread spectrum

**OFDM** Orthogonal frequency division multiplexing

**FHSS** Frequency hopping spread spectrum

**GNSS** Global Navigation Satellite System

**C/N₀** Carrier to noise-density ratio, expressed in dB-Hz



# Annex B Document history

| Version | Applied changes                                                                                                                                         | Date of release |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| -/-     | Initial release                                                                                                                                         | 2020-12-16      |
| А       | Photo reference table added according customer demand                                                                                                   | 2022-01-03      |
| В       | Explanation for 10m measurement, information on limits, information on used EUTs and some clarification information according to customer demands added | 2022-02-02      |

# Annex C Accreditation Certificate

| first page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | last page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deutsche Akkreditierungsstelle  Deutsche Akkreditierungsstelle GmbH  Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition  Accreditation  The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory  CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken  is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:  Telecommunication (FCC Requirements) | Deutsche Akkreditierungsstelle GmbH  Office Barlin Spittelmant 10 Europa-Allie S 2 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main Jill Braunschweig  The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf.  No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS.  The accreditation was granted pursuant to the Act on the Accreditation Body (AkKStelleG) of 31 July 2009 (Federal Law Gazette 1p. 2652) and the Regulation (EC) No 765/2008 of the European Parliament and of |
| The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages.  Registration number of the certificate: D-PL-12076-01-05  Frankfurt am Main, 09.06.2020  Frankfurt am Main, 09.06.2020  The certificate together with its onces reflects the status of the time of the date of issue. The current status of the scape of                                              | the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 1.28 of 9 July 2008, p. 30). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation for International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.  The up-to-date state of membership can be retrieved from the following websites:  EA: www.european-accreditation.org  IRAC: www.list.org  IAF: www.list.org                                                                                                                   |
| accreditation can be found in the database of accredited bodies of Orustoche Abhradiberungsstelle GmbH. https://www.dabis.da/en/content/accredited-bodies-dabis line sets switst.                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 41 of 41