

FCC Measurement/Technical Report on

Bluetooth® / Bluetooth® Low Energy Wireless Module 50164

FCC ID: TXH-50164
IC: 6315A-50164

Test Report Reference: MDE_COGNEX_1803_FCC_01_rev1

Test Laboratory:
7layers GmbH
Borsigstrasse 11
40880 Ratingen
Germany

Deutsche
Akkreditierungsstelle
D-PL-12140-01-01
D-PL-12140-01-02
D-PL-12140-01-03

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH
Borsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/
Managing Directors:
Frank Spiller
Bernhard Retka
Alexandre Norré-Oudard

Registergericht/registered:
Düsseldorf HRB 75554
USt-Id.-Nr./VAT-No. DE203159652
Steuer-Nr./TAX-No. 147/5869/0385

a Bureau Veritas
Group Company
www.7layers.com

Table of Contents

1 Applied Standards and Test Summary	3
1.1 Applied Standards	3
1.2 FCC-IC Correlation Table	4
1.3 Measurement Summary	5
2 Revision History / Signatures	9
3 Administrative Data	10
3.1 Testing Laboratory	10
3.2 Project Data	10
3.3 Applicant Data	10
3.4 Manufacturer Data	10
4 Test object Data	11
4.1 General EUT Description	11
4.2 EUT Main components	12
4.3 Ancillary Equipment	12
4.4 Auxiliary Equipment	13
4.5 EUT Setups	13
4.6 Operating Modes / Test Channels	14
4.7 Product labelling	14
5 Test Results	15
5.1 Conducted Emissions at AC Mains	15
5.2 Occupied Bandwidth (20 dB)	20
5.3 Occupied Bandwidth (99%)	24
5.4 Peak Power Output	27
5.5 Spurious RF Conducted Emissions	30
5.6 Transmitter Spurious Radiated Emissions	34
5.7 Band Edge Compliance Conducted	43
5.8 Band Edge Compliance Radiated	47
5.9 Channel Separation	50
5.10 Dwell Time	53
5.11 Number of Hopping Frequencies	56
6 Test Equipment	59
7 Antenna Factors, Cable Loss and Sample Calculations	65
7.1 LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	65
7.2 Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	66
7.3 Antenna R&S HL562 (30 MHz – 1 GHz)	67
7.4 Antenna R&S HF907 (1 GHz – 18 GHz)	68
7.5 Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	69
7.6 Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	70
8 Setup Drawings	71
9 Photo Report	71
10 Measurement Uncertainties	72

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-19 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
Peak conducted output power	§ 15.247 (b) (1), (4)	RSS-247 Issue 2: 5.4 (b)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Channel separation	§ 15.247 (a) (1)	RSS-247 Issue 2: 5.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-247 Issue 2: 5.1 (d)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-247 Issue 2: 5.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15

§ 15.207

Subpart C §15.247

Conducted Emissions at AC Mains

The measurement was performed according to ANSI C63.10

OP-Mode

Operating mode, Connection to AC mains

worst case, via ancillary/auxiliary equipment

Setup

Date

Final Result

FCC

IC

2020-03-12

Passed

Passed

47 CFR CHAPTER I FCC PART 15

§ 15.247 (a) (1)

Subpart C §15.247

Occupied Bandwidth (20 dB)

The measurement was performed according to ANSI C63.10

OP-Mode

Radio Technology, Operating Frequency

Setup

Date

Final Result

FCC

IC

Bluetooth BDR, high

S01_AH02

2020-02-20

Passed

Passed

Bluetooth BDR, low

S01_AH02

2020-02-20

Passed

Passed

Bluetooth BDR, mid

S01_AH02

2020-02-20

Passed

Passed

Bluetooth EDR 2, high

S01_AH02

2020-02-20

Passed

Passed

Bluetooth EDR 2, low

S01_AH02

2020-02-20

Passed

Passed

Bluetooth EDR 2, mid

S01_AH02

2020-02-20

Passed

Passed

Bluetooth EDR 3, high

S01_AH02

2020-02-20

Passed

Passed

Bluetooth EDR 3, low

S01_AH02

2020-02-20

Passed

Passed

Bluetooth EDR 3, mid

S01_AH02

2020-02-20

Passed

Passed

47 CFR CHAPTER I FCC PART 15

IC RSS-Gen & IC TRC-43; Ch. 6.7 & Ch. 8

Subpart C §15.247

Occupied Bandwidth (99%)

The measurement was performed according to ANSI C63.10

OP-Mode

Radio Technology, Operating Frequency

Setup

Date

Final Result

FCC

IC

Bluetooth BDR, high

S01_AH02

2020-02-20

N/A

Performed

Bluetooth BDR, low

S01_AH02

2020-02-20

N/A

Performed

Bluetooth BDR, mid

S01_AH02

2020-02-20

N/A

Performed

Bluetooth EDR 2, high

S01_AH02

2020-02-20

N/A

Performed

Bluetooth EDR 2, low

S01_AH02

2020-02-20

N/A

Performed

Bluetooth EDR 2, mid

S01_AH02

2020-02-20

N/A

Performed

Bluetooth EDR 3, high

S01_AH02

2020-02-20

N/A

Performed

Bluetooth EDR 3, low

S01_AH02

2020-02-20

N/A

Performed

Bluetooth EDR 3, mid

S01_AH02

2020-02-20

N/A

Performed

47 CFR CHAPTER I FCC PART 15
Subpart C §15.247
§ 15.247 (b) (1) (2)
Peak Power Output

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency, Measurement method				
Bluetooth BDR, high, conducted	S01_AH02	2020-02-20	Passed	Passed
Bluetooth BDR, low, conducted	S01_AH02	2020-02-20	Passed	Passed
Bluetooth BDR, mid, conducted	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 2, high, conducted	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 2, low, conducted	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 2, mid, conducted	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 3, high, conducted	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 3, low, conducted	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 3, mid, conducted	S01_AH02	2020-02-20	Passed	Passed

47 CFR CHAPTER I FCC PART 15
Subpart C §15.247
§ 15.247 (d)
Spurious RF Conducted Emissions

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency				
Bluetooth BDR, high	S01_AH02	2020-02-21	Passed	Passed
Bluetooth BDR, low	S01_AH02	2020-02-21	Passed	Passed
Bluetooth BDR, mid	S01_AH02	2020-02-21	Passed	Passed
Bluetooth EDR 2, high	S01_AH02	2020-02-21	Passed	Passed
Bluetooth EDR 2, low	S01_AH02	2020-02-21	Passed	Passed
Bluetooth EDR 2, mid	S01_AH02	2020-02-21	Passed	Passed
Bluetooth EDR 3, high	S01_AH02	2020-02-21	Passed	Passed
Bluetooth EDR 3, low	S01_AH02	2020-02-21	Passed	Passed
Bluetooth EDR 3, mid	S01_AH02	2020-02-21	Passed	Passed

47 CFR CHAPTER I FCC PART 15
Subpart C §15.247
§ 15.247 (d)

Transmitter Spurious Radiated Emissions

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency, Measurement range				
Bluetooth BDR, high, 1 GHz - 26 GHz	S01_AE02	2020-03-04	Passed	Passed
Bluetooth BDR, high, 30 MHz - 1 GHz	S01_AE02	2020-03-11	Passed	Passed
Bluetooth BDR, low, 1 GHz - 26 GHz	S01_AE02	2020-03-05	Passed	Passed
Bluetooth BDR, low, 30 MHz - 1 GHz	S01_AE02	2020-03-11	Passed	Passed
Bluetooth BDR, mid, 1 GHz - 26 GHz	S01_AE02	2020-03-05	Passed	Passed
Bluetooth BDR, mid, 30 MHz - 1 GHz	S01_AE02	2020-03-11	Passed	Passed
Bluetooth BDR, mid, 9 kHz - 30 MHz	S01_AE02	2020-03-11	Passed	Passed
Bluetooth EDR 2, high, 1 GHz - 26 GHz	S01_AE02	2020-03-04	Passed	Passed
Remark: tested in the range 1-8 GHz only!				
Bluetooth EDR 2, low, 1 GHz - 26 GHz	S01_AE02	2020-03-05	Passed	Passed
Remark: tested in the range 1-8 GHz only!				
Bluetooth EDR 2, mid, 1 GHz - 26 GHz	S01_AE02	2020-03-05	Passed	Passed
Remark: tested in the range 1-8 GHz only!				

47 CFR CHAPTER I FCC PART 15
Subpart C §15.247
§ 15.247 (d)

Band Edge Compliance Conducted

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency, Band Edge				
Bluetooth BDR, high, high	S01_AH02	2020-02-20	Passed	Passed
Bluetooth BDR, hopping, high	S01_AH02	2020-02-20	Passed	Passed
Bluetooth BDR, hopping, low	S01_AH02	2020-02-20	Passed	Passed
Bluetooth BDR, low, low	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 2, high, high	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 2, hopping, high	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 2, hopping, low	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 2, low, low	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 3, high, high	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 3, hopping, high	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 3, hopping, low	S01_AH02	2020-02-20	Passed	Passed
Bluetooth EDR 3, low, low	S01_AH02	2020-02-20	Passed	Passed

47 CFR CHAPTER I FCC PART 15
Subpart C §15.247
§ 15.247 (d)

Band Edge Compliance Radiated

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Date	Final Result	
			FCC	IC
Radio Technology, Operating Frequency, Band Edge				
Bluetooth BDR, high, high	S01_AE02	2020-03-04	Passed	Passed
Bluetooth EDR 2, high, high	S01_AE02	2020-03-04	Passed	Passed
Bluetooth EDR 3, high, high	S01_AE02	2020-03-05	Passed	Passed

47 CFR CHAPTER I FCC PART 15
Subpart C §15.247

§ 15.247 (a) (1)

Channel Separation

The measurement was performed according to ANSI C63.10	Setup	Date	Final Result	
OP-Mode			FCC	IC
Radio Technology				
Bluetooth BDR	S01_AH02	2020-02-20	Passed	Passed

47 CFR CHAPTER I FCC PART 15
Subpart C §15.247

§ 15.247 (a) (1) (i) (ii) (iii)

Dwell Time

The measurement was performed according to ANSI C63.10	Setup	Date	Final Result	
OP-Mode			FCC	IC
Radio Technology				
Bluetooth BDR	S01_AH02	2020-08-19	Passed	Passed

47 CFR CHAPTER I FCC PART 15
Subpart C §15.247

§ 15.247 (a) (1) (i) (ii) (iii)

Number of Hopping Frequencies

The measurement was performed according to ANSI C63.10	Setup	Date	Final Result	
OP-Mode			FCC	IC
Radio Technology				
Bluetooth BDR	S01_AH02	2020-08-19	Passed	Passed

N/A: Not applicable

2 REVISION HISTORY / SIGNATURES

Report version control			
Version	Release date	Change Description	Version validity
initial	2020-08-26	--	valid
rev1	2020-09-02	Plots of path correction added to test cases related to absolute power (conducted measurements)	valid

COMMENT: -

(responsible for accreditation scope)
Dipl.-Ing. Daniel Gall

(responsible for testing and report)
Dipl.-Ing. Andreas Petz

7 layers GmbH, Borsigstr. 11
40880 Ratingen, Germany
Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH
Address: Borsigstr. 11
40880 Ratingen
Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01 | -02 | -03
FCC Designation Number: DE0015
FCC Test Firm Registration: 929146
ISED CAB Identifier: DE0007; ISED#: 3699A
Responsible for accreditation scope: Dipl.-Ing. Daniel Gall
Report Template Version: 2020-06-15

3.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Andreas Petz
Employees who performed the tests: documented internally at 7Layers
Date of Report: 2020-09-02
Testing Period: 2020-02-20 to 2020-08-19

3.3 APPLICANT DATA

Company Name: Cognex Germany Aachen GmbH
Address: Krefelder Straße 218
52070 Aachen
Germany
Contact Person: Mr. Simon Juenger

3.4 MANUFACTURER DATA

Company Name: please see Applicant Data

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Cognex wireless module 50164 for integration in Cognex 8700 series Handheld Readers and Base Stations
Product name	Bluetooth® / Bluetooth® Low Energy Wireless Module
Type	50164
Declared EUT data by the supplier	
Voltage Type	DC
Voltage Level	5 V
Tested Modulation Type	BT Classic: GFSK Modulation, 1-DHx packets; π/4 DQPSK Modulation, 2-DHx packets; 8-DPSK Modulation, 3-DHx packets
General product description	wireless communication module for Cognex industrial vision systems
Specific product description for the EUT	Cognex wireless module 50164 for integration in Cognex 8700 series Handheld Readers and Base Stations
The EUT provides the following ports:	UART, SDIO, I2C ,+5V,GND
Tested datarates	GFSK Modulation 1 Mbps; π/4 DQPSK Modulation 2 Mbps; 8-DPSK Modulation 3 Mbps
Special software used for testing	Cognex device specific Diags2 ver 0.12

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
#ae02	DE1408000ae02	
Sample Parameter	Value	
Serial No.	-	
HW Version	IDI88 RC	
SW Version	Diags2 0.12	
Comment		
Integral Antenna	yes, antenna gain = 4.0 dBi	

Sample Name	Sample Code	Description
#ah02	DE1408000ah02	
Sample Parameter	Value	
Serial No.	-	
HW Version	IDI88 RC	
SW Version	Diags2 0.12	
Comment		
Integral Antenna	yes, antenna gain = 4.0 dBi	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AC adapter (DE1408000ACDC0)	GlobTek, GTM96060-0606-0.5, -, -, 786356123/19	providing additional current to USB input of cradle
Cradle (DE1408000CRA1)	Cognex, DM8700 series Base Station R00087, IDB83-RE, Diags2 0.12, -	Part of Base Station modified to test modules
Cradle (DE1408000CRA3)	Cognex, DM8700 series Base Station R00087, IDB83-RE, Diags2 0.12, -	Part of Base Station modified to test modules
Laptop RE06	Fujitsu Ltd., Laptop RE06: Lifebook U758, -, -, DSAL009842	Lifebook U758

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AE02	#ae02, Cradle (DE1408000CRA1), AC adapter (DE1408000ACDC0),	Module in Cradle, supplied by USB and ext. AC adapter (for radiated tests)
S01_AH02	#ah02, AC adapter (DE1408000ACDC0), Cradle (DE1408000CRA3),	Module in Cradle, supplied by USB and ext. AC adapter (for conducted tests)
S02_AE02	#ae02, Cradle (DE1408000CRA1), AC adapter (DE1408000ACDC0), Laptop RE06,	Module in Cradle, supplied by USB and ext. AC adapter, Laptop

4.6 OPERATING MODES / TEST CHANNELS

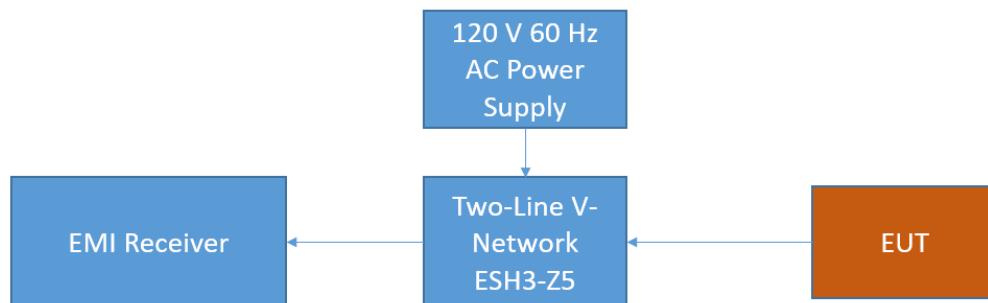
This chapter describes the operating modes of the EUTs used for testing.

BT Test Channels:	2.4 GHz ISM		
	2400 - 2483.5 MHz		
Channel:	low	mid	high
	0	39	78
Frequency [MHz]	2402	2441	2480

4.7 PRODUCT LABELLING

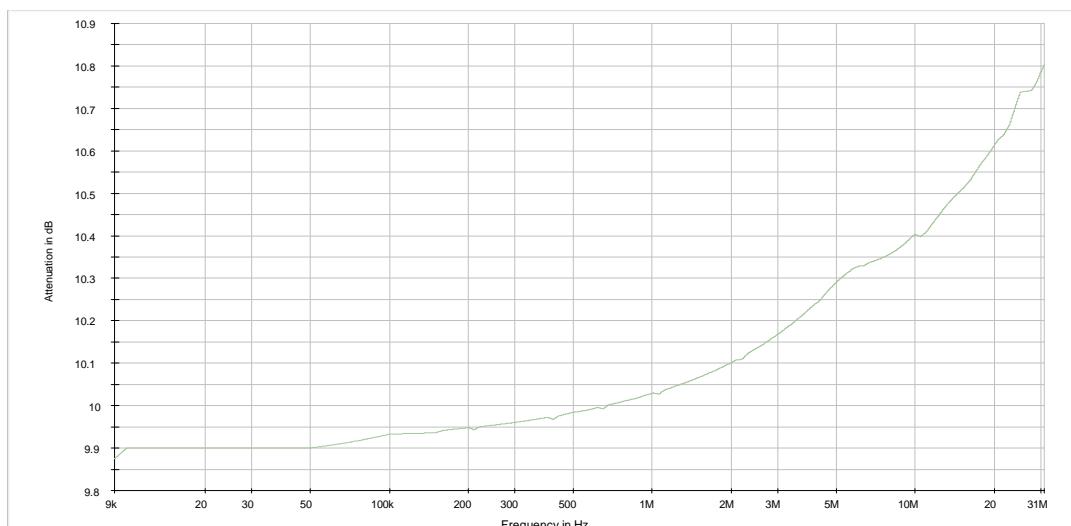
Please refer to the documentation of the applicant.

5 TEST RESULTS


5.1 CONDUCTED EMISSIONS AT AC MAINS

Standard **FCC Part 15 Subpart C**

The test was performed according to:
 ANSI C63.10


5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.10. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50 μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

FCC Conducted Emissions on AC

Path loss EUT – EMI Receiver:

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak – Maxhold & Average
- Frequency range: 150 kHz – 30 MHz
- Frequency steps: 2.5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak & (CISPR) Average
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead - reference ground (PE grounded)
- 2) Phase lead - reference ground (PE grounded)
- 3) Neutral lead - reference ground (PE floating)
- 4) Phase lead - reference ground (PE floating)

The highest value is reported.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.207

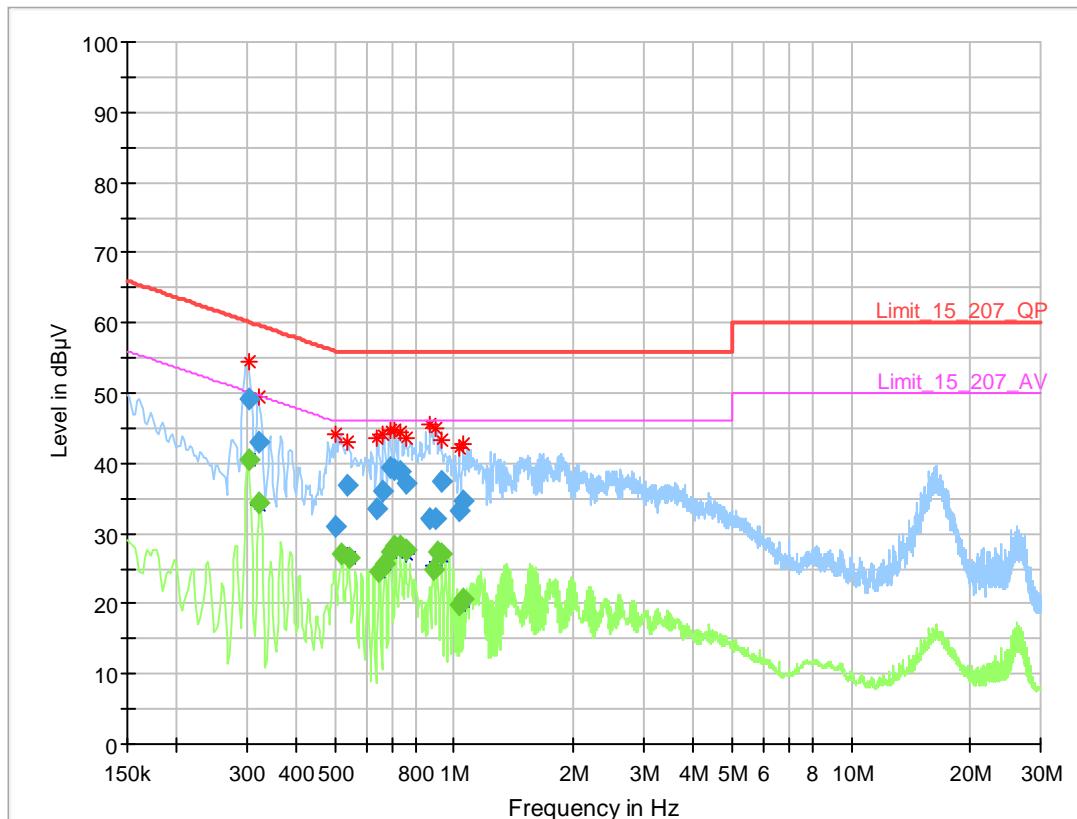
Frequency (MHz)	QP Limits (dB μ V)	AV Limits (dB μ V)
0.15 – 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

5.1.3 TEST PROTOCOL

Temperature: 25 °C
 Air Pressure: 1005 hPa
 Humidity: 37 %

Power line	PE	Frequency [MHz]	Measured value QP [dB μ V]	Measured value AV [dB μ V]	Limit [dB μ V]	Margin [dB]
L1	GND	0.303	---	40.4	50.2	9.7
N	GND	0.303	49.2	---	60.2	11.0
N	FLO	0.321	43.0	---	59.7	16.6
L1	GND	0.323	---	34.3	49.6	15.4
N	FLO	0.503	31.0	---	56.0	25.0
L1	GND	0.521	---	27.0	46.0	19.0
N	FLO	0.537	36.8	---	56.0	19.2
L1	FLO	0.542	---	26.5	46.0	19.5
N	GND	0.641	33.5	---	56.0	22.6
L1	GND	0.647	---	24.5	46.0	21.5
N	FLO	0.663	36.0	---	56.0	20.0
L1	GND	0.668	---	25.7	46.0	20.3
N	FLO	0.688	39.5	---	56.0	16.6
L1	GND	0.690	---	27.3	46.0	18.8
L1	GND	0.710	---	28.3	46.0	17.8
N	FLO	0.710	39.1	---	56.0	16.9
N	GND	0.731	38.9	---	56.0	17.1
L1	GND	0.733	---	28.3	46.0	17.7
N	GND	0.753	37.1	---	56.0	18.9
L1	GND	0.753	---	27.6	46.0	18.5
N	FLO	0.870	32.2	---	56.0	23.9
L1	GND	0.888	---	25.0	46.0	21.0
N	FLO	0.893	32.2	---	56.0	23.8
L1	FLO	0.908	---	27.3	46.0	18.7
N	FLO	0.929	37.4	---	56.0	18.6
L1	FLO	0.929	---	27.0	46.0	19.0
N	FLO	1.030	33.3	---	56.0	22.7
L1	GND	1.034	---	19.9	46.0	26.1
N	GND	1.052	34.7	---	56.0	21.3
L1	GND	1.055	---	20.6	46.0	25.4


Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Operating mode = worst case, Connection to AC mains = via ancillary/auxiliary equipment (S02_AE02)

Common Information

Test Description:	Conducted Emissions
Test Standard:	FCC §15.207, ANSI C63.10
EUT / Setup Code:	DE1408000 ae02
Operating Conditions:	120 V 60 Hz, BTTest (CH:39)
Operator Name:	MER
Comment:	
Legend:	Trace: blue = PK, green = CISPR AV; Star: red or blue = critical frequency; Rhombus: blue = final QP, green = final CISPR AV
Tested Port / used LISN:	AC mains => ESH3-Z5
Termination of other ports:	N/A

Final_Result

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Limit (dB μ V)	Margin (dB)	Meas. Time	Bandwidth (kHz)	Line	PE	Corr. (dB)
0.303000	---	40.42	50.16	9.74	1000.0	9.000	L1	GND	10.1
0.303000	49.21	---	60.16	10.95	1000.0	9.000	N	GND	10.1
0.321000	43.04	---	59.68	16.64	1000.0	9.000	N	FLO	10.1
0.323250	---	34.25	49.62	15.37	1000.0	9.000	L1	GND	10.1
0.503250	30.98	---	56.00	25.02	1000.0	9.000	N	FLO	10.1
0.521250	---	27.01	46.00	18.99	1000.0	9.000	L1	GND	10.1
0.537000	36.76	---	56.00	19.24	1000.0	9.000	N	FLO	10.1
0.541500	---	26.52	46.00	19.48	1000.0	9.000	L1	FLO	10.1
0.640500	33.45	---	56.00	22.56	1000.0	9.000	N	GND	10.1
0.647250	---	24.52	46.00	21.48	1000.0	9.000	L1	GND	10.1
0.663000	35.96	---	56.00	20.04	1000.0	9.000	N	FLO	10.1
0.667500	---	25.72	46.00	20.28	1000.0	9.000	L1	GND	10.1
0.687750	39.45	---	56.00	16.55	1000.0	9.000	N	FLO	10.1
0.690000	---	27.25	46.00	18.75	1000.0	9.000	L1	GND	10.1
0.710250	---	28.25	46.00	17.75	1000.0	9.000	L1	GND	10.1
0.710250	39.14	---	56.00	16.86	1000.0	9.000	N	FLO	10.1
0.730500	38.91	---	56.00	17.09	1000.0	9.000	N	GND	10.1
0.732750	---	28.29	46.00	17.71	1000.0	9.000	L1	GND	10.1
0.753000	37.14	---	56.00	18.86	1000.0	9.000	N	GND	10.1
0.753000	---	27.55	46.00	18.45	1000.0	9.000	L1	GND	10.1
0.870000	32.15	---	56.00	23.85	1000.0	9.000	N	FLO	10.1
0.888000	---	24.97	46.00	21.03	1000.0	9.000	L1	GND	10.1
0.892500	32.19	---	56.00	23.81	1000.0	9.000	N	FLO	10.1
0.908250	---	27.30	46.00	18.70	1000.0	9.000	L1	FLO	10.1
0.928500	37.38	---	56.00	18.62	1000.0	9.000	N	FLO	10.1
0.928500	---	26.96	46.00	19.04	1000.0	9.000	L1	FLO	10.1
1.029750	33.28	---	56.00	22.72	1000.0	9.000	N	FLO	10.2
1.034250	---	19.91	46.00	26.09	1000.0	9.000	L1	GND	10.2
1.052250	34.69	---	56.00	21.31	1000.0	9.000	N	GND	10.2
1.054500	---	20.63	46.00	25.37	1000.0	9.000	L1	GND	10.2

5.1.5 TEST EQUIPMENT USED

- Conducted Emissions FCC

5.2 OCCUPIED BANDWIDTH (20 DB)

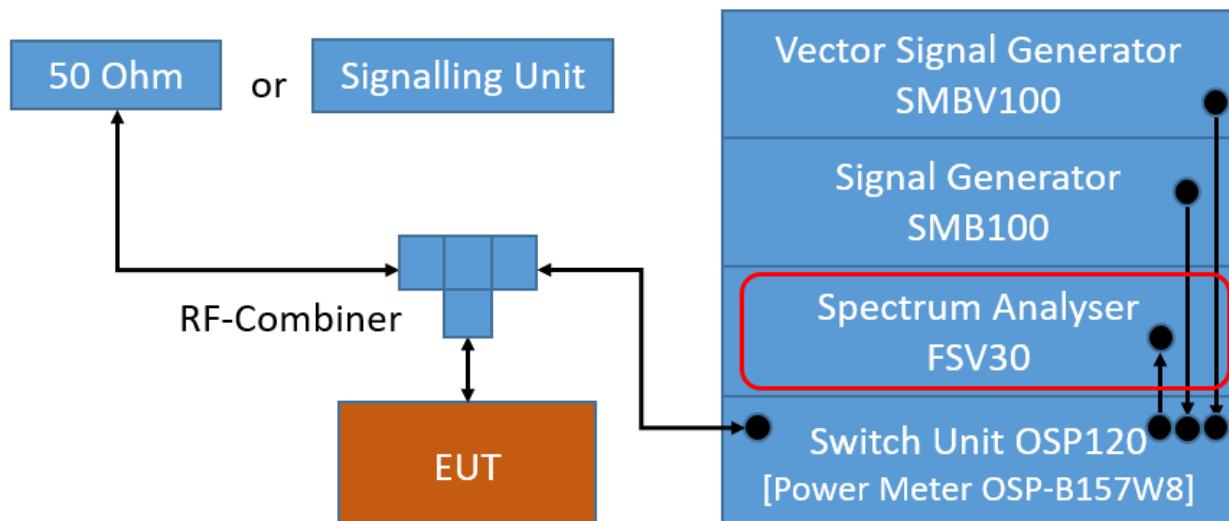
Standard **FCC Part 15 Subpart C**

The test was performed according to:
 ANSI C63.10

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.


The results recorded were measured with the modulation which produce the worst-case (widest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 1% to 5 % of the OBW
- Video Bandwidth (VBW): $\geq 3 \times$ RBW
- Span: 2 to 5 times the OBW
- Trace: Maxhold
- Sweeps: Till stable (min. 1000, max. 30000)
- Sweptime: Auto
- Detector: Peak

The technology depending measurement parameters can be found in the measurement plot.

TS8997; Channel Bandwidth

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

For the band: 902 – 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

For the band: 5725 – 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The maximum allowed 20 dB bandwidth of the hopping channel is 1 MHz

For the frequency band 2400 – 2483.5 MHz:

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Implication by the test laboratory:

Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power:

1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz

2. If the system output power exceeds 125 mW (21.0 dBm):

Implicit Limit: Max. 20 dB BW = 1.0 MHz (exact value will be calculated on basis of measured channel separation)

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report.

Therefore the limit is determined as 1.5 MHz (exact value will be calculated on basis of measured channel separation).

5.2.3 TEST PROTOCOL

Ambient temperature: 26 °C

Air Pressure: 1010 hPa

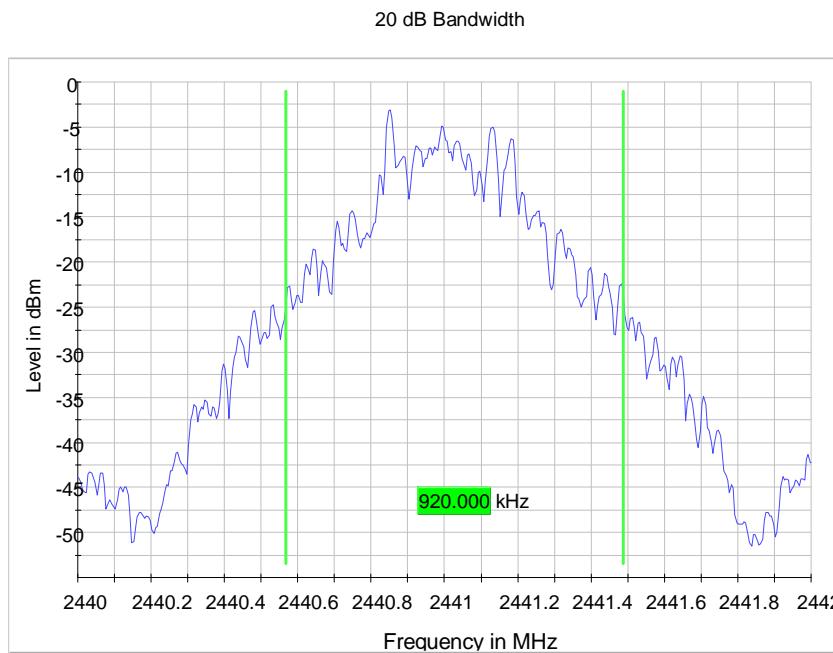
Humidity: 32 %

BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0.920	1.470	0.550
	39	2441	0.920	1.470	0.550
	78	2480	0.920	1.470	0.550

BT n/4 DQPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.280	1.470	0.190
	39	2441	1.280	1.470	0.190
	78	2480	1.280	1.470	0.190


BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	20 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1.310	1.470	0.160
	39	2441	1.320	1.470	0.150
	78	2480	1.315	1.470	0.155

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = mid (S01_AH02)

5.2.5 TEST EQUIPMENT USED

- R&S TS8997

5.3 OCCUPIED BANDWIDTH (99%)

Standard **FCC Part 15 Subpart C**

The test was performed according to:
 ANSI C63.10

5.3.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 1 to 5 % of the OBW
- Video Bandwidth (VBW): ≥ 3 times the RBW
- Span: 1.5 to 5 times the OBW
- Trace: Maxhold
- Sweeps: Till stable (min. 500, max. 75000)
- Sweptime: Auto
- Detector: Peak

TS8997; Channel Bandwidth

5.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit.

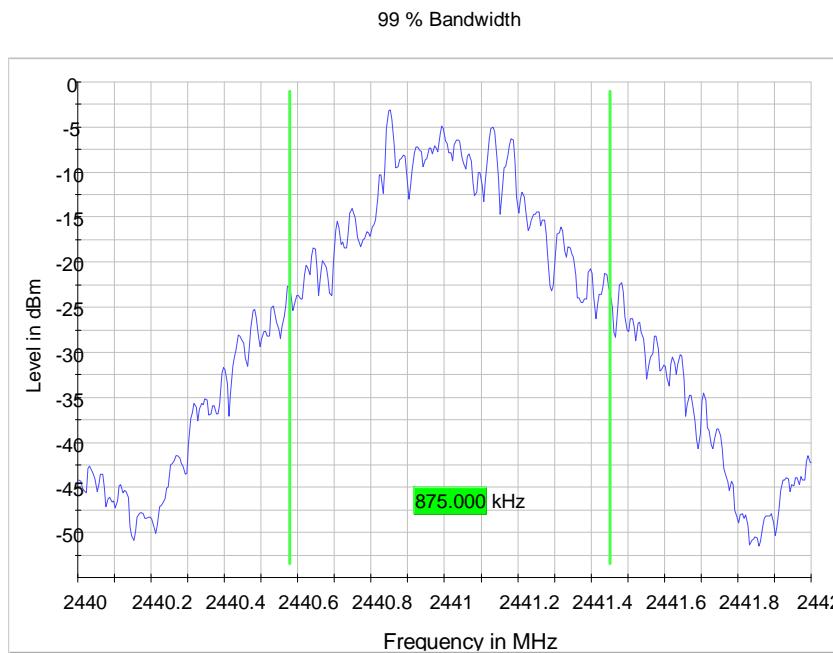
5.3.3 TEST PROTOCOL

Ambient temperature: 26 °C
 Air Pressure: 1010 hPa
 Humidity: 32 %
 BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	0.875
	39	2441	0.875
	78	2480	0.875

BT π/4 DQPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.180
	39	2441	1.180
	78	2480	1.180


BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1.180
	39	2441	1.180
	78	2480	1.150

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = mid (S01_AH02)

5.3.5 TEST EQUIPMENT USED

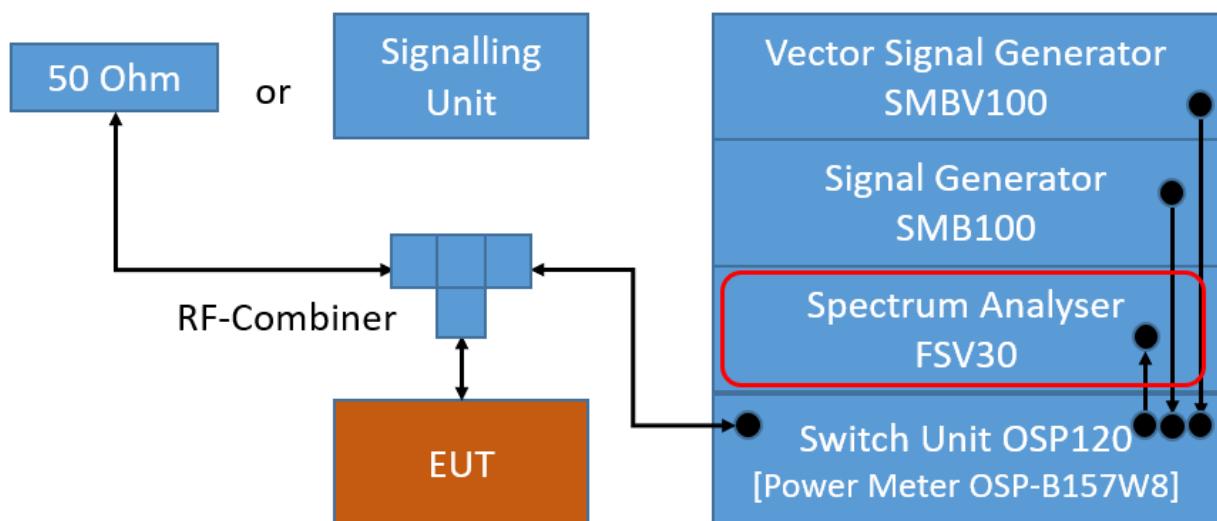
- R&S TS8997

5.4 PEAK POWER OUTPUT

Standard **FCC Part 15 Subpart C**

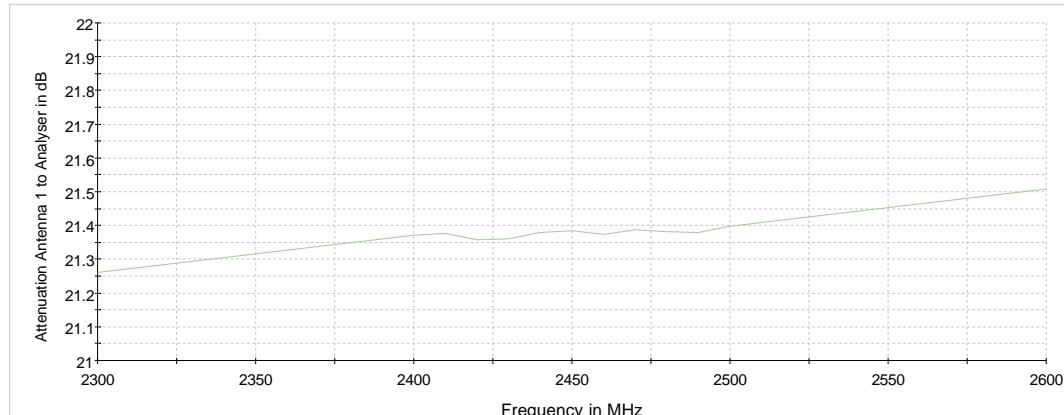
The test was performed according to:
 ANSI C63.10

5.4.1 TEST DESCRIPTION


FHSS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyser was set higher than the output power of the EUT.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Analyser settings:

- Resolution Bandwidth (RBW): ≥ 20 dB BW
- Video Bandwidth (VBW): ≥ 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable (min. 300, max. 15000)
- Sweptime: Auto
- Detector: Peak

TS8997; Output Power

Path loss EUT – Spectrum Analyser:

5.4.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

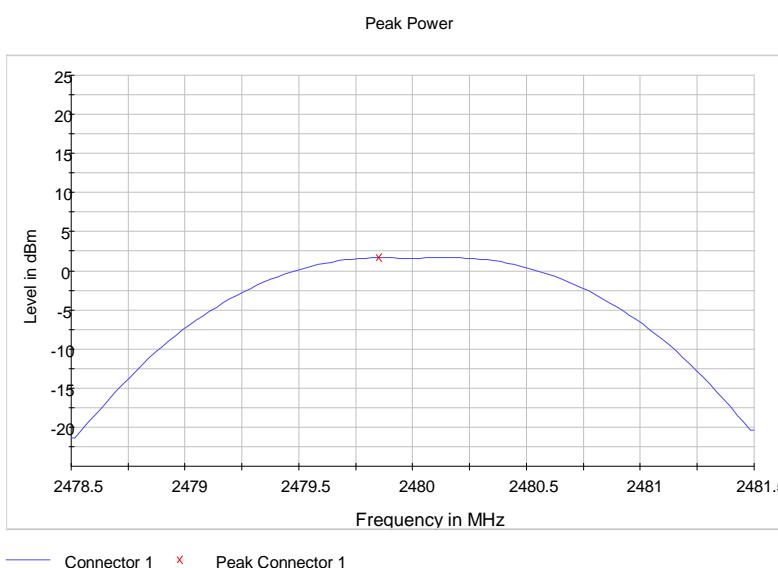
5.4.3 TEST PROTOCOL

Ambient temperature: 26 °C
 Air Pressure: 1010 hPa
 Humidity: 32 %
 BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	3.2	21.0	17.8	7.2
	39	2441	3.0	21.0	18.0	7.0
	78	2480	2.3	21.0	18.7	6.3

BT n/4 DQPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	-1.0	21.0	22.0	3.0
	39	2441	-1.2	21.0	22.2	2.8
	78	2480	-2.0	21.0	23.0	2.0


BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	-0.4	21.0	21.4	3.6
	39	2441	-1.3	21.0	22.3	2.7
	78	2480	-1.7	21.0	22.7	2.3

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement method = conducted
 (S01_AH02)

Note: The plot does not include the antenna gain or adapter cable loss

5.4.5 TEST EQUIPMENT USED

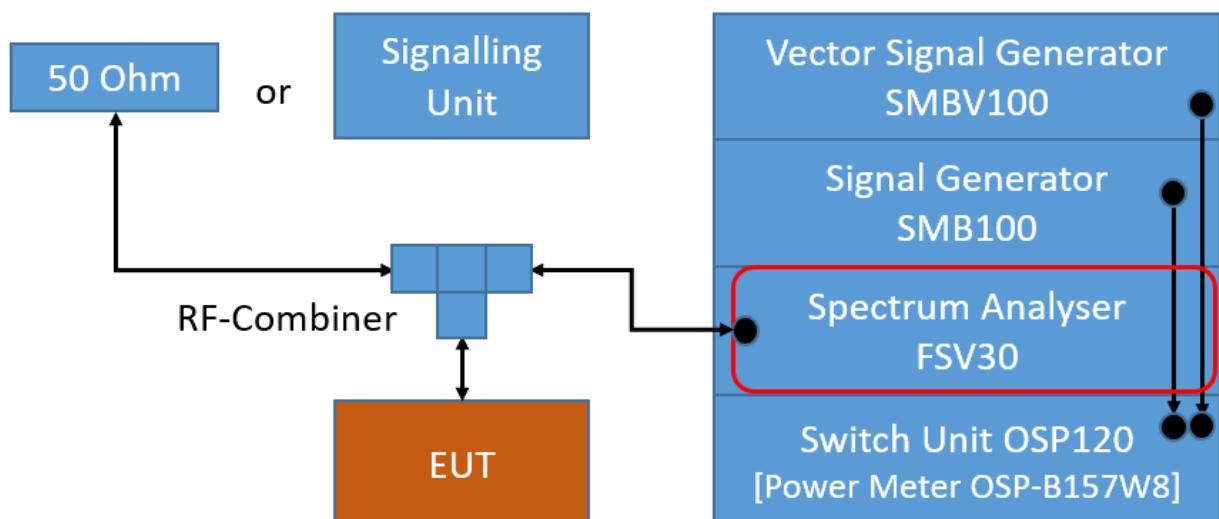
- R&S TS8997

5.5 SPURIOUS RF CONDUCTED EMISSIONS

Standard **FCC Part 15 Subpart C**

The test was performed according to:
 ANSI C63.10

5.5.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Frequency range: 30 – 26000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: Till Stable (max. 120)
- Sweep Time: Auto
- Detector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.

TS8997; Spurious RF Conducted Emissions

Path loss EUT – Spectrum analyser:

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

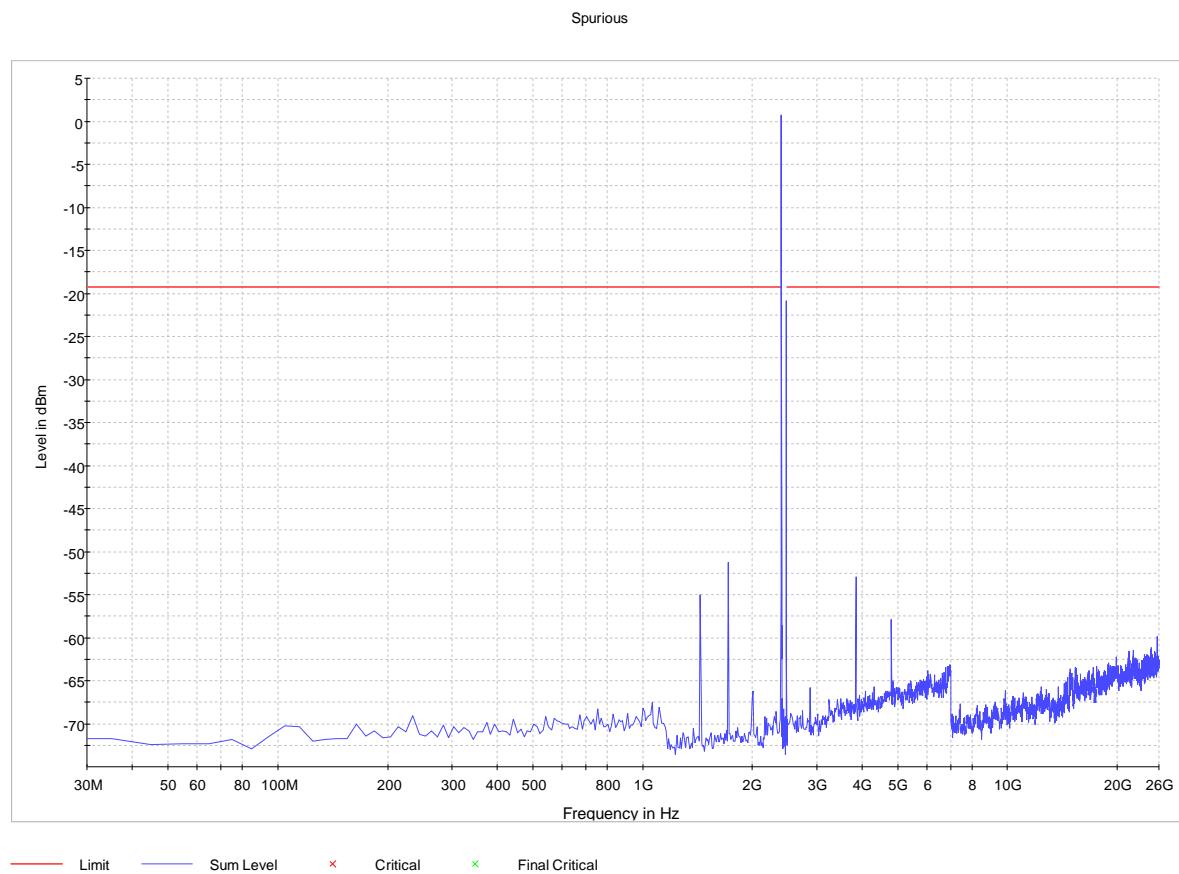
5.5.3 TEST PROTOCOL

Ambient temperature: 26 °C
Air Pressure: 1010 hPa
Humidity: 32 %
BT GFSK (1-DH1)

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	4807.2	-48.8	PEAK	100	4.8	-15.2	33.6
39	2441	4877.1	-49.9	PEAK	100	4.4	-15.6	34.3
78	2480	4957.1	-49.7	PEAK	100	3.9	-16.1	33.6

BT π/4 DQPSK (2-DH1)

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	3847.7	-53.4	PEAK	100	-1.2	-21.2	32.2
39	2441	3907.7	-54.8	PEAK	100	-1.5	-21.5	33.3
78	2480	3967.6	-56.6	PEAK	100	-1.8	-21.8	34.8


BT 8-DPSK (3-DH1)

Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	1717.9	-51.2	PEAK	100	0.7	-19.3	31.9
39	2441	3907.7	-55.0	PEAK	100	-3.0	-23.0	32.0
78	2480	1488.8	-56.6	PEAK	100	-1.9	-21.9	34.7

Remark: Please see next sub-clause for the measurement plot.

5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth EDR (3-DH1), Operating Frequency = low (S01_AH02)

5.5.5 TEST EQUIPMENT USED

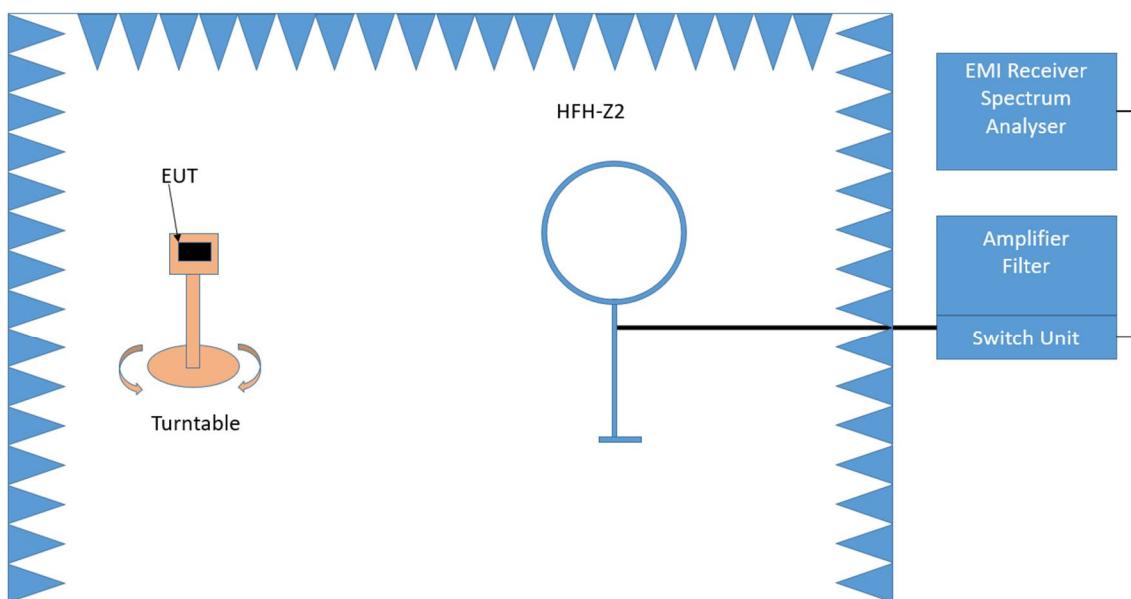
- R&S TS8997

5.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard **FCC Part 15 Subpart C**

The test was performed according to:
ANSI C63.10

5.6.1 TEST DESCRIPTION


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

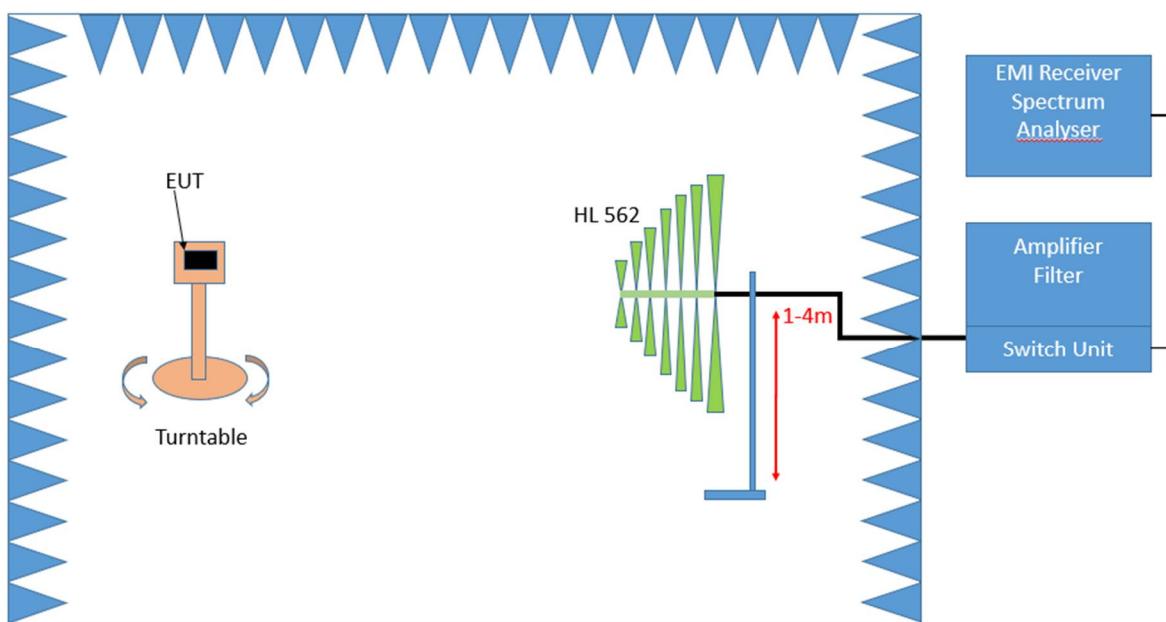
Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 - 0.15 MHz and 0.15 – 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz

- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz – 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 – 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 - 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 – 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 – 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by $\pm 45^\circ$ around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by ± 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

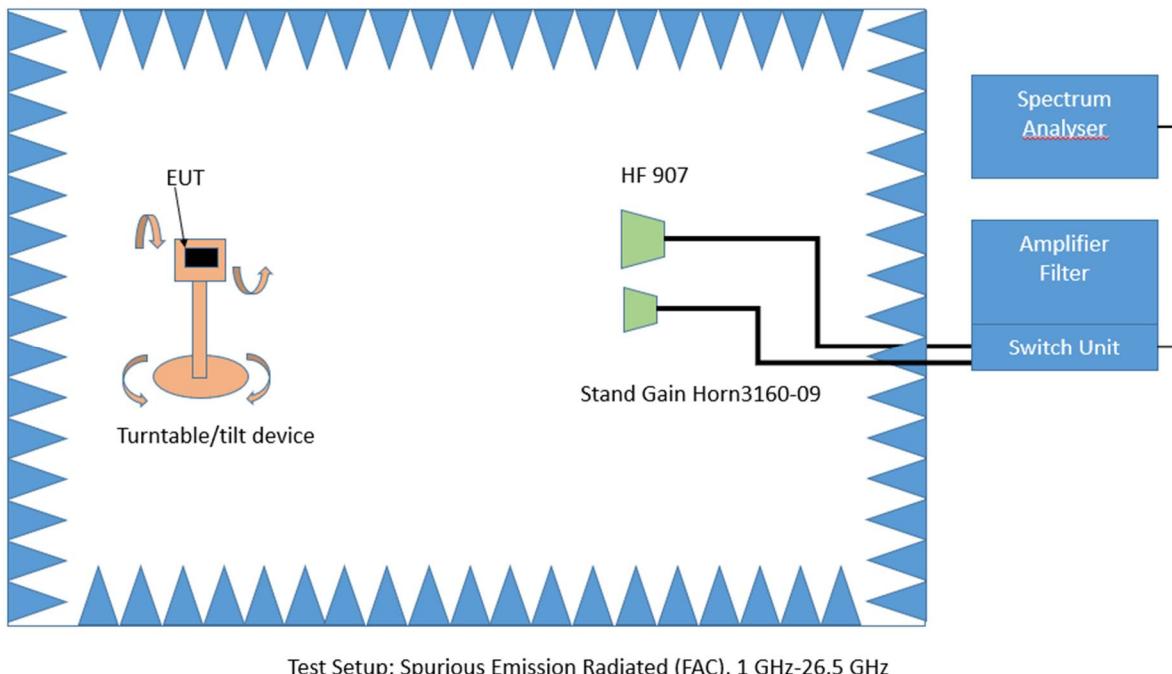
- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: $\pm 45^\circ$ around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 1 s


After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna in step 2 is omitted. Instead of this, a maximum search with a step size $\pm 45^\circ$ for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^\circ$.

The elevation angle will slowly vary by $\pm 45^\circ$.

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 1 MHz
- Measuring time: 1 s

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limits (dB μ V/m)
0.009 – 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 – 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

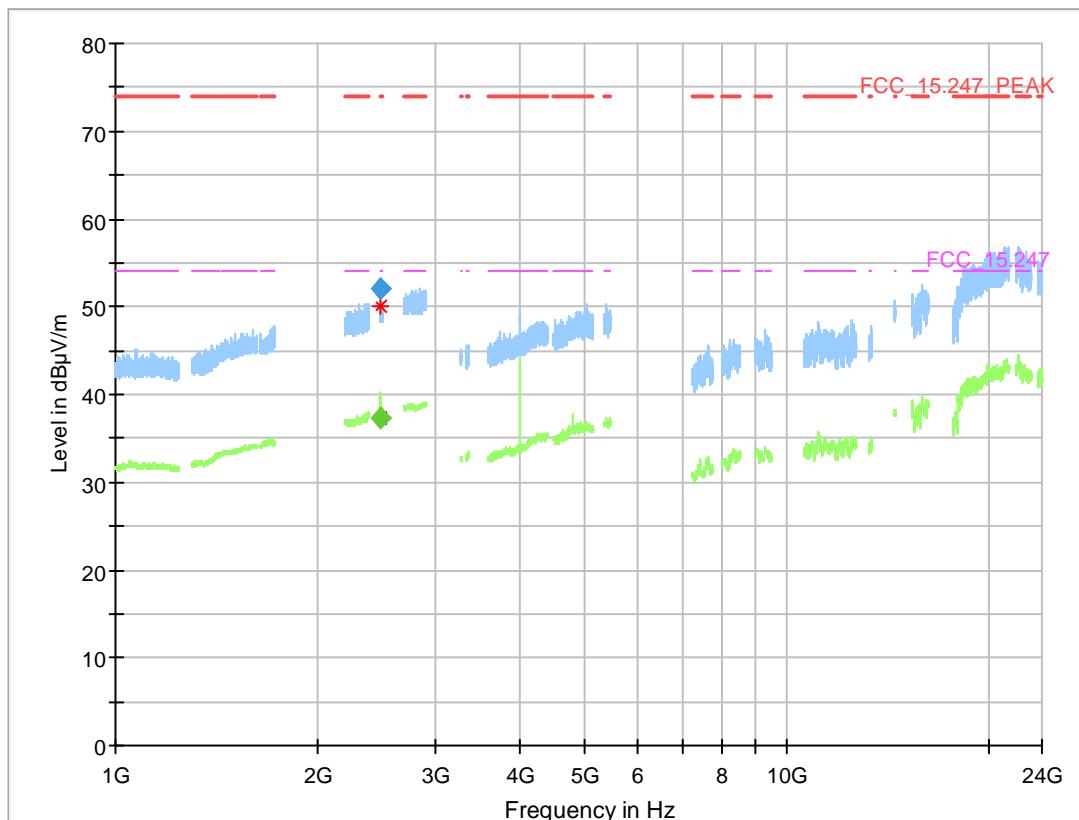
Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limits (dB μ V/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.6.3 TEST PROTOCOL

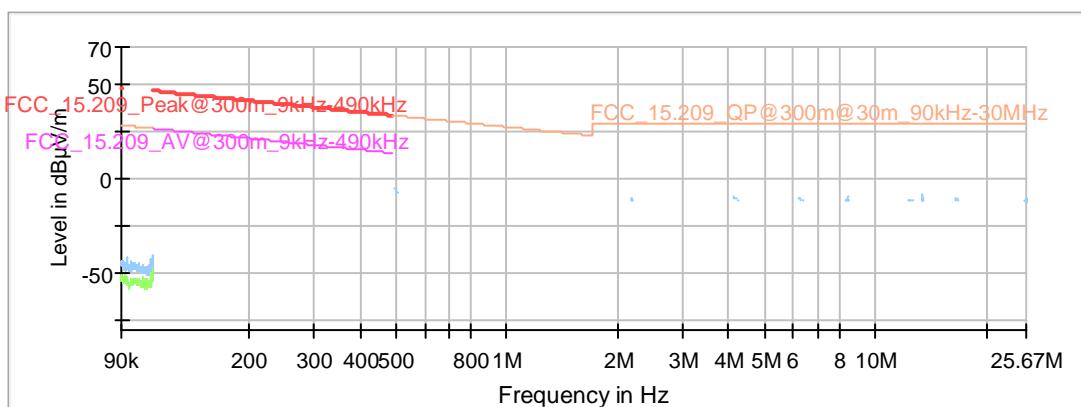

Ambient temperature: 23–24 °C
 Air Pressure: 985-1004 hPa
 Humidity: 33-36 %
 BT GFSK (1-DH1)
 Applied duty cycle correction (AV): 10.3 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dB μ V/m]	Detector	RBW [kHz]	Limit [dB μ V/m]	Margin to Limit [dB]	Limit Type
0	2402	149.99	37.3	QP	120	43.5	6.2	RB
0	2402	249.99	38.7	QP	120	46.0	7.3	RB
0	2402	399.99	23.8	QP	120	46.0	22.2	RB
0	2402	> 1 GHz	---	---	---	---	---	RB
39	2441	< 30	---	PEAK	9	-	---	RB
39	2441	149.99	37.3	QP	120	43.5	6.2	RB
39	2441	249.99	39.3	QP	120	46.0	6.7	RB
39	2441	399.99	24.4	QP	120	46.0	21.6	RB
39	2441	> 1 GHz	---	---	---	---	---	RB
78	2480	149.99	30.3	QP	120	43.5	13.2	RB
78	2480	249.99	36.4	QP	120	46.0	9.7	RB
78	2480	399.99	25.8	QP	120	46.0	20.2	RB
78	2480	> 1 GHz	---	---	---	---	---	RB

Remark: Please see next sub-clause for the measurement plot.

5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

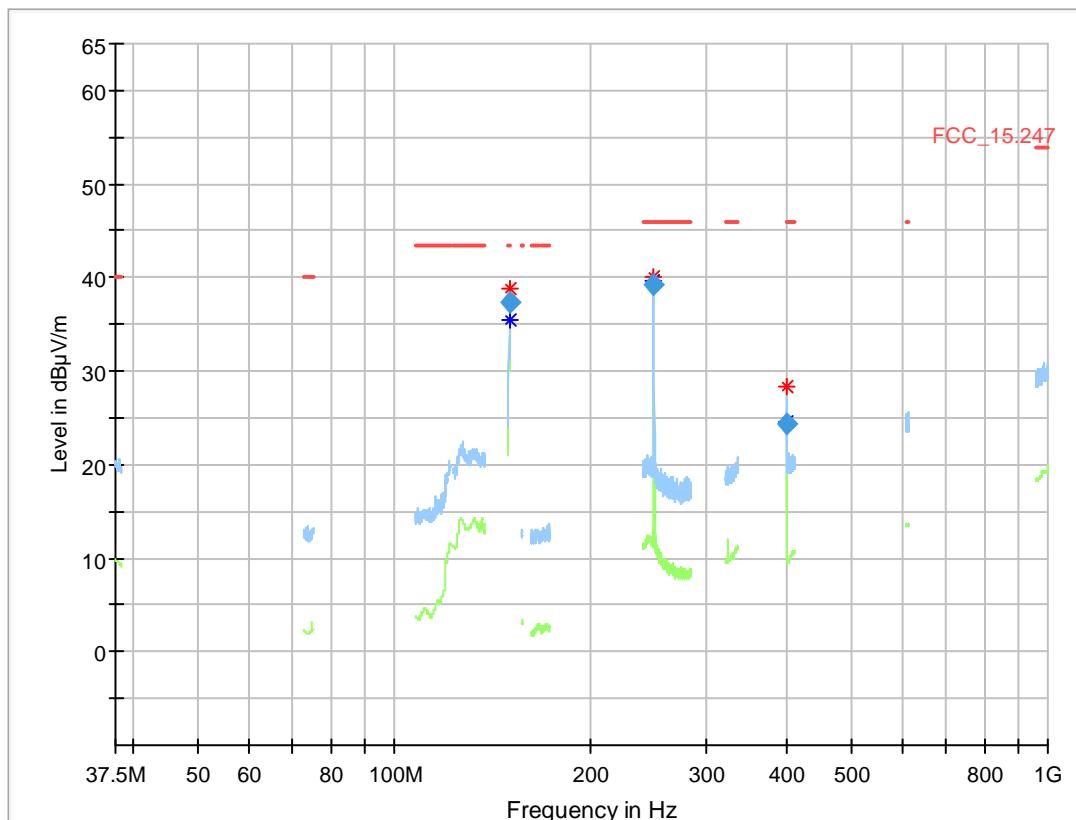
Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz
 (S01_AE02)


Final_Result

Frequency (MHz)	MaxPeak (dB μ V/m)	CAverage (dB μ V/m)	Limit (dB μ V/m)	Margin	Meas. Time (ms)	Bandwidth	Height	Pol	Azimuth	Elevation
2483.913	52.0	---	74.00	21.99	1000.0	1000.000	150.0	H	84.0	15.0

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz
 - 30 MHz
 (S01_AE02)

Common Information


Test Description: Radiated Emissions, Test Site: Semi Anechoic Chamber @ 3 m
 Test Standard FCC15c247
 Operating Conditions: DE1408000 ae02, BT Test
 Operator Name: Nel
 Comment: x-y-z axis

Final_Result

Frequency (MHz)	MaxPeak (dB μ V/m)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin	Meas. Time (ms)	Bandwidth	Height	Pol	Azimuth	Corr. (dB/m)
---	---	---	---	---	---	---	---	---	---	---

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz
 (S01_AE02)

Final_Result

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin	Meas. Time (ms)	Bandwidth	Height	Pol	Azimuth	Corr. (dB/m)	Comment
149.990000	37.34	43.50	6.16	1000.0	120.000	207.0	H	-131.0	9.2	
249.990000	39.27	46.00	6.73	1000.0	120.000	108.0	H	92.0	11.3	
399.990000	24.37	46.00	21.63	1000.0	120.000	100.0	H	-98.0	15.9	

5.6.5 TEST EQUIPMENT USED

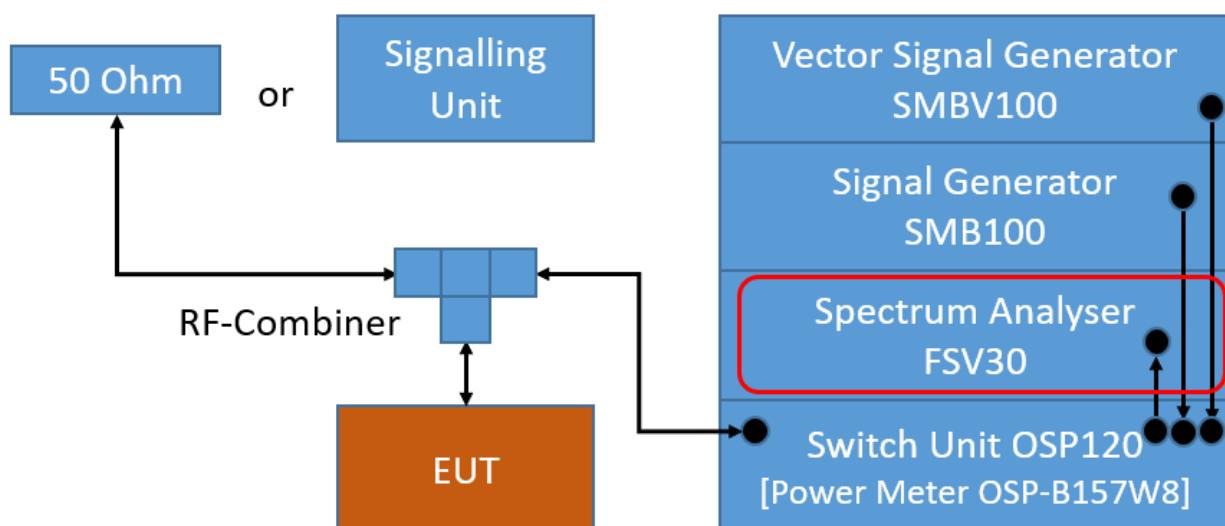
- Radiated Emissions

5.7 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

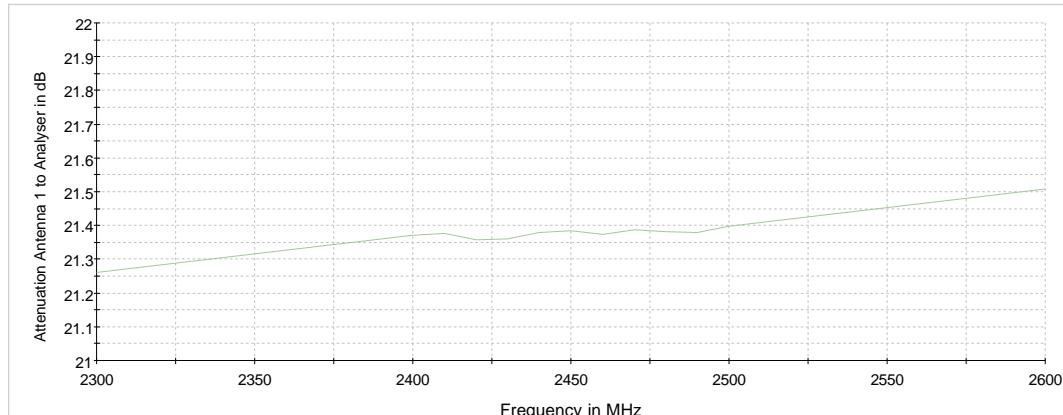
The test was performed according to:

ANSI C63.10


5.7.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Analyser settings:

- Lower Band Edge:
Measured range: 2310.0 MHz to 2483.5 MHz
- Upper Band Edge
Measured range: 2400.0 MHz to 2500 MHz
- Detector: Peak
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweeptime: Auto
- Sweeps: Till stable (min. 300, max. 15000)
- Trace: Maxhold

TS8997; Band Edge Conducted

Path loss EUT – Spectrum Analyser:

5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

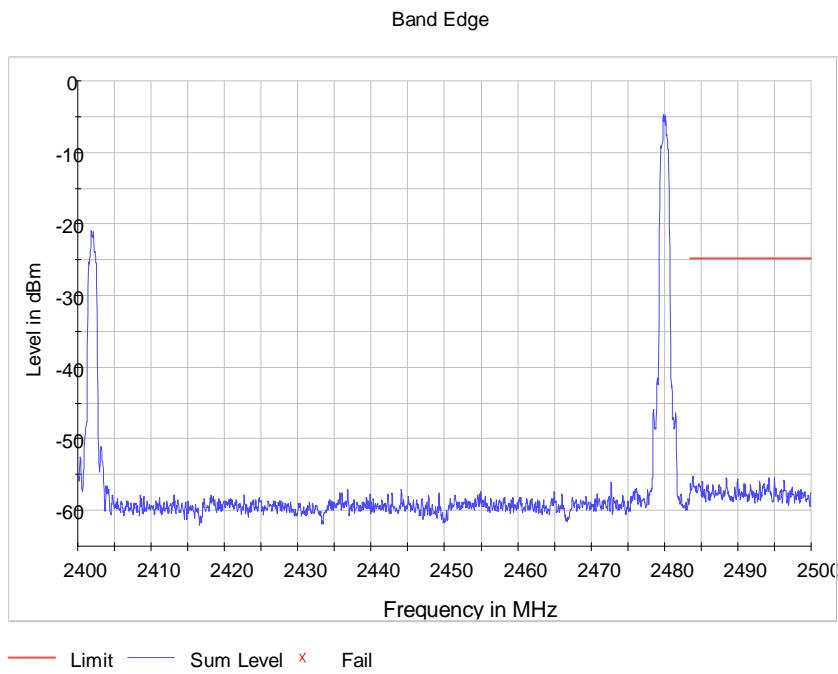
5.7.3 TEST PROTOCOL

Ambient temperature: 26 °C
Air Pressure: 1010 hPa
Humidity: 32 %
BT GFSK (1-DH1)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2398.08	-50.7	PEAK	100	2.7	-17.3	33.4
78	2480	2483.88	-51.7	PEAK	100	1.6	-18.4	33.3
hopping	hopping	2398.13	-52.4	PEAK	100	2.8	-17.2	35.2
hopping	hopping	2483.98	-55.6	PEAK	100	2.8	-17.2	38.4

BT n/4 DQPSK (2-DH1)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2398.03	-55.4	PEAK	100	-3.7	-23.7	31.7
78	2480	2483.93	-55.3	PEAK	100	-4.7	-24.7	30.5
hopping	hopping	2400.00	< -54	PEAK	100	-3.6	-23.6	> 30
hopping	hopping	2483.53	-56.0	PEAK	100	-3.6	-23.6	32.4


BT 8-DPSK (3-DH1)

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2398.18	-55.2	PEAK	100	-3.7	-23.7	31.5
78	2480	2484.03	-55.2	PEAK	100	-1.7	-21.7	33.5
hopping	hopping	2400.00	< -54	PEAK	100	-3.6	-23.6	> 30
hopping	hopping	2483.73	-55.7	PEAK	100	-3.6	-23.6	32.1

Remark: Please see next sub-clause for the measurement plot.

5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Band Edge = high (S01_AH02)

5.7.5 TEST EQUIPMENT USED

- R&S TS8997

5.8 BAND EDGE COMPLIANCE RADIATED

Standard **FCC Part 15 Subpart C**

The test was performed according to:

ANSI C63.10

5.8.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

5.8.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limits (dB μ V/m)
0.009 – 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 – 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 – 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μ V/m)	Measurement distance (m)	Limits (dB μ V/m)
30 – 88	100@3m	3	40.0@3m
88 – 216	150@3m	3	43.5@3m
216 – 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.8.3 TEST PROTOCOL

Ambient temperature:

24 °C

Air Pressure:

1002 hPa

Humidity:

36 %

BT GFSK (1-DH1)

Applied duty cycle correction (AV): 10.3 dB

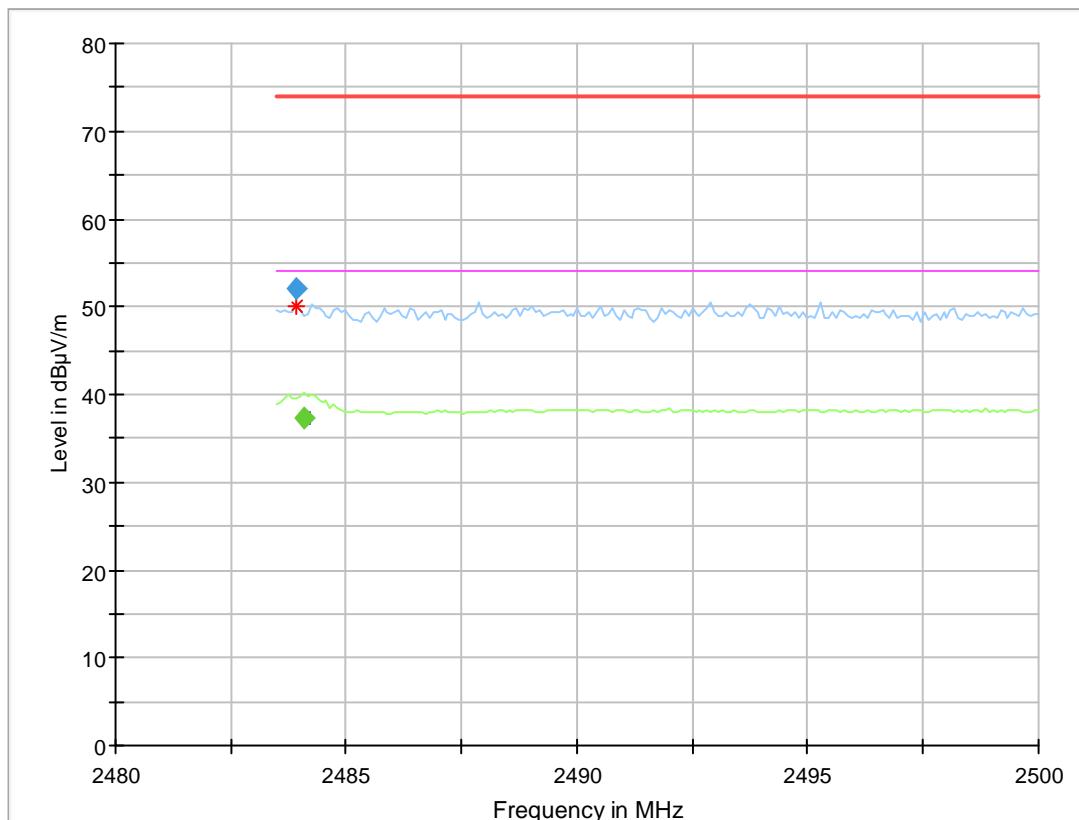
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dB μ V/m]	Detector	RBW [kHz]	Limit [dB μ V/m]	Margin to Limit [dB]	Limit Type
78	2480	2483.913	52.0	PEAK	1000	74.0	22.0	BE
78	2480	2484.078	47.6	AV	1000	54.0	6.4	BE

BT $\pi/4$ DQPSK (2-DH1)

Applied duty cycle correction (AV): 10.3 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dB μ V/m]	Detector	RBW [kHz]	Limit [dB μ V/m]	Margin to Limit [dB]	Limit Type
78	2480	2484.160	51.0	PEAK	1000	74.0	23.0	BE
78	2480	2483.830	46.3	AV	1000	54.0	7.7	BE

BT 8-DPSK (3-DH1)


Applied duty cycle correction (AV): 10.3 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dB μ V/m]	Detector	RBW [kHz]	Limit [dB μ V/m]	Margin to Limit [dB]	Limit Type
78	2480	2484.275	50.4	PEAK	1000	74.0	23.6	BE
78	2480	2484.275	46.3	AV	1000	54.0	7.7	BE

Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S01_AE02)

Final_Result

Frequency (MHz)	MaxPeak (dB μ V/m)	CAverage (dB μ V/m)	Limit (dB μ V/m)	Margin	Meas. Time (ms)	Bandwidth	Height	Pol	Azimuth	Elevation
2483.913	52.0	---	74.00	21.99	1000.0	1000.000	150.0	H	84.0	15.0
2484.078	---	37.3	54.00	16.70	1000.0	1000.000	150.0	V	152.0	105.0

5.8.5 TEST EQUIPMENT USED

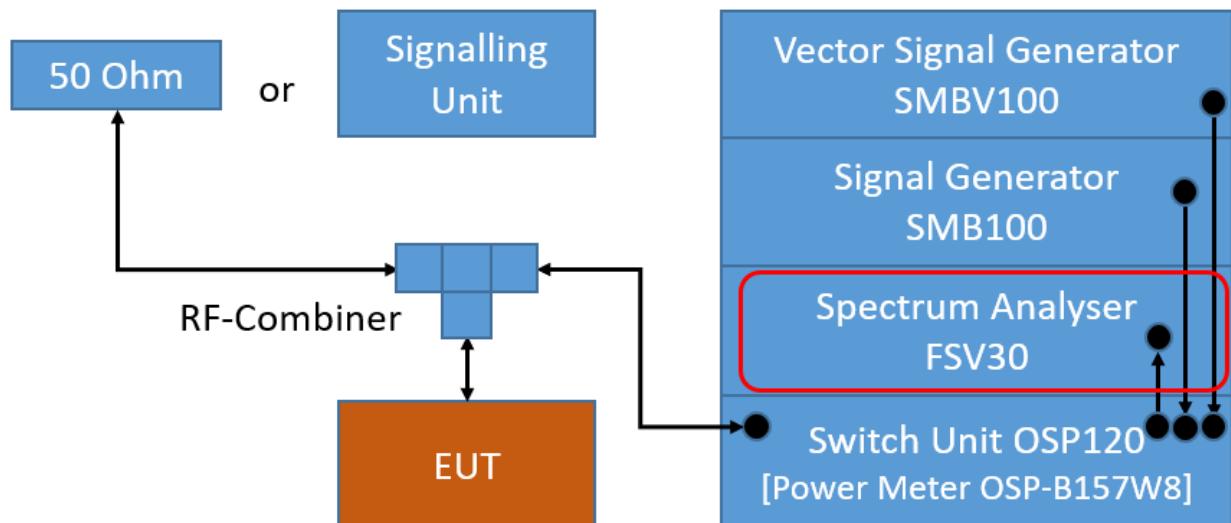
- Radiated Emissions

5.9 CHANNEL SEPARATION

Standard **FCC Part 15 Subpart C**

The test was performed according to:
 ANSI C63.10

5.9.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the channel separation measurement. The channel separation is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Detector: Peak
- Trace: Maxhold
- Span: appr. 3 x OBW
- Centre Frequency: approximate mid of two channels
- Resolution Bandwidth (RBW): appr. 3 % of channel spacing
- Video Bandwidth (VBW): \geq RBW
- Sweep Time: Auto
- Sweeps: Till stable (min. 2000, max. 30000)

The technology depending measurement parameters can be found in the measurement plot.

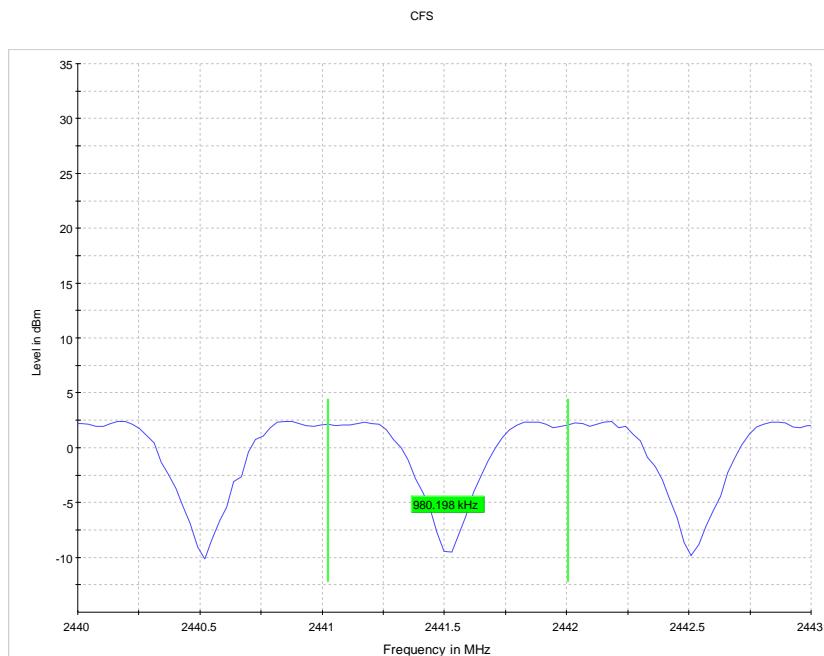
TS8997; Channel Separation

5.9.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.9.3 TEST PROTOCOL


Ambient temperature: 26 °C
 Air Pressure: 1010 hPa
 Humidity: 32 %

Radio Technology	Channel Separation [MHz]	Limit [MHz]	Margin to Limit [MHz]
BT GFSK (1-DH1)	0.980	0.920	0.06

Remark: Please see next sub-clause for the measurement plot.

5.9.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR
(S01_AH02)

5.9.5 TEST EQUIPMENT USED

- R&S TS8997

5.10 DWELL TIME

Standard **FCC Part 15 Subpart C**

The test was performed according to:

ANSI C63.10

5.10.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the dwell time measurement.

The dwell time is independent of the modulation pattern.

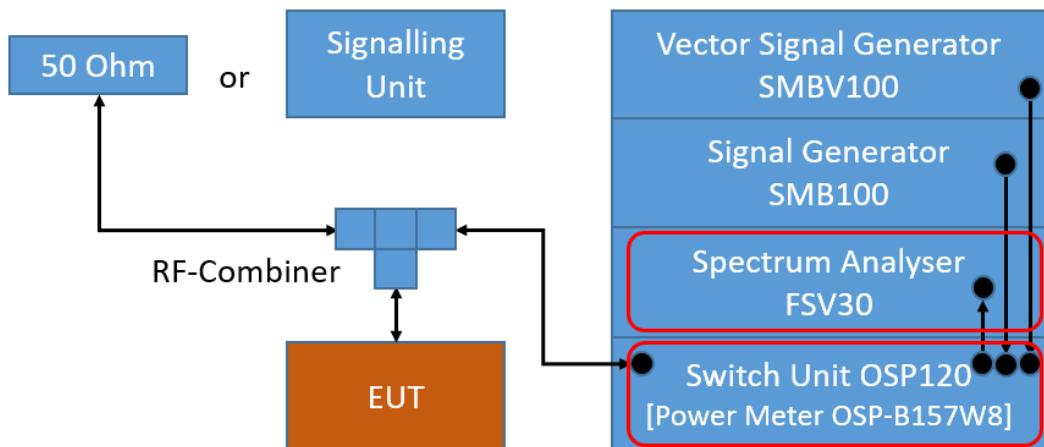
The EUT is set to its maximum dwell time.

The dwell time is measured by spectrum analyser and power meter in parallel. The spectrum analyser video output is connected to the power meter allowing the power meter to measure transmission time only when the EUT is actively transmitting on the measured channel. The power meter is using a time resolution of 1 μ s resulting in a more accurate measurement than possible using the spectrum analyser. In addition, measurement of burst length on more than one transmission is performed this way.

A spectrum analyser plot for a single burst is thus not performed.

In addition to the calculated dwell time from single burst length, measured dwell time summing up all measured bursts lengths is given in the result table.

Calculation for Bluetooth Classic:


Maximum Duty Cycle is given for DH5 packets, resulting in 5 time slots transmission, 1 time slots reception. Each time slot lasts 625 μ s.

Dwell time is calculated as: Sweep Time / transmission period / number of channels * max. measured length of a single burst

Analyser settings:

- Center Frequency: mid channel frequency
- Span: Zero span
- Detector: Peak
- Resolution Bandwidth (RBW): \leq Channel separation
- Trigger: External
- Sweep Time: 31.6 s
- Sweep Points: 30001
- Single Sweep

Time resolution of power meter: 1 μ s

TS8997; Dwell Time

5.10.2 TEST REQUIREMENTS / LIMITS

For the band: 902 – 928 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

For the band: 5725 – 5850 MHz

FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 30 second period.

For the frequency band 2400 – 2483.5 MHz:

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

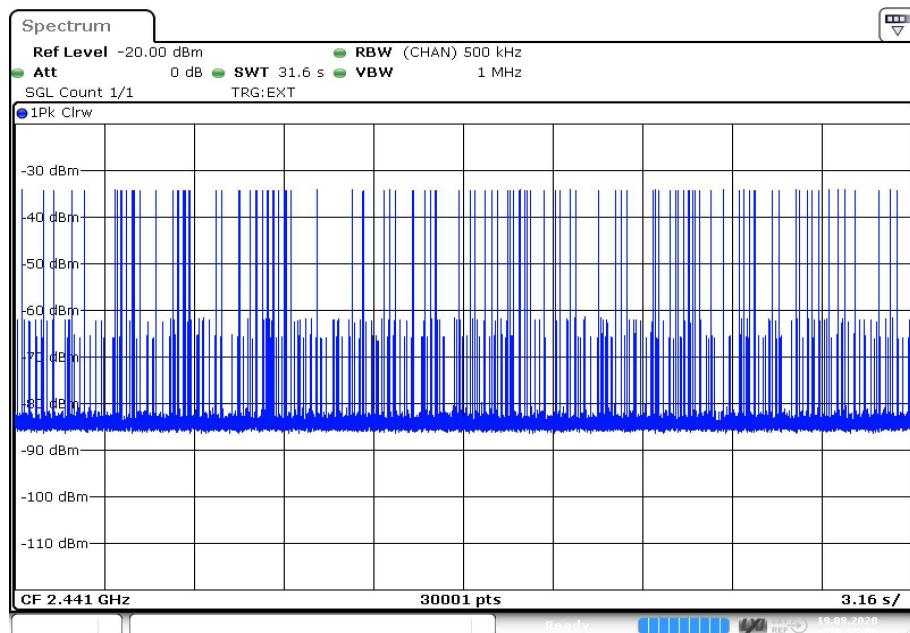
...The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4.

...

5.10.3 TEST PROTOCOL


Ambient temperature: 27 °C
 Air Pressure: 1010 hPa
 Humidity: 32 %

Radio Technology	Time Slot Length [ms]	Dwell Time [ms]	Limit [s]	Margin to Limit [ms]
BT GFSK (1-DH5)	2.898	370.944	0.4	29.056

Remark: Please see next sub-clause for the measurement plot.

5.10.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR
 (S01_AH02)

Date: 19.AUG.2020 19:15:01

5.10.5 TEST EQUIPMENT USED

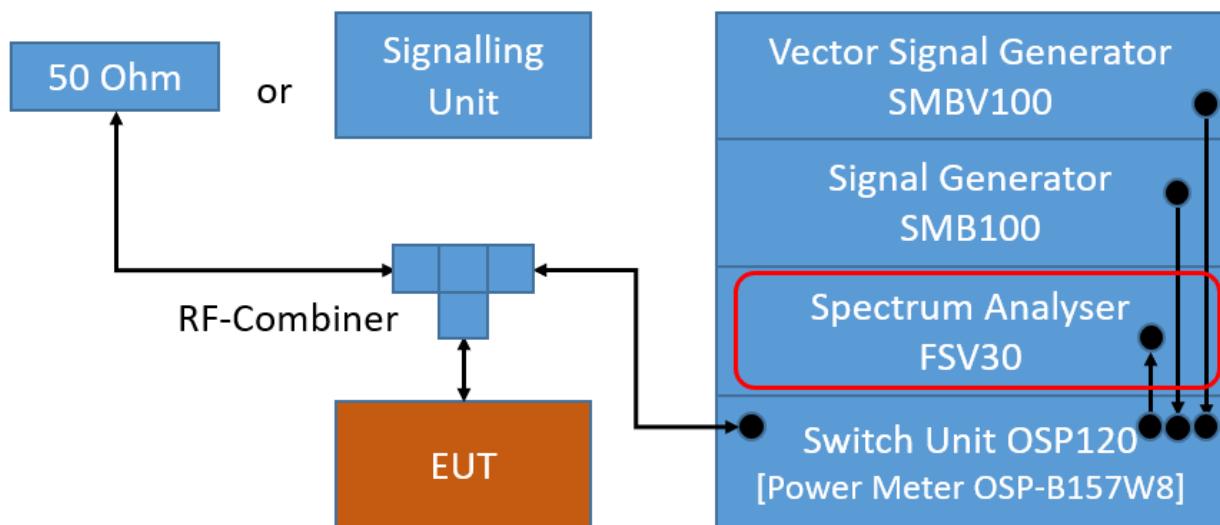
- R&S TS8997

5.11 NUMBER OF HOPPING FREQUENCIES

Standard **FCC Part 15 Subpart C**

The test was performed according to:
 ANSI C63.10

5.11.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent of the modulation pattern.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Detector: Peak
- Trace: Maxhold
- Frequency span: Frequency band of operation
- Resolution Bandwidth (RBW): < 30 % of channel spacing or 20 dB bandwidth (whichever is smaller)
- Video Bandwidth (VBW): 3 x RBW
- Sweep Time: Auto
- Sweeps: Till stable (min. 300, max. 15000)

The technology depending measurement parameters can be found in the measurement plot.

TS8997; Number of Hopping Frequencies

5.11.2 TEST REQUIREMENTS / LIMITS

For the band: 902 – 928 MHz
 FCC Part 15, Subpart C, §15.247 (a) (1) (i)

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies

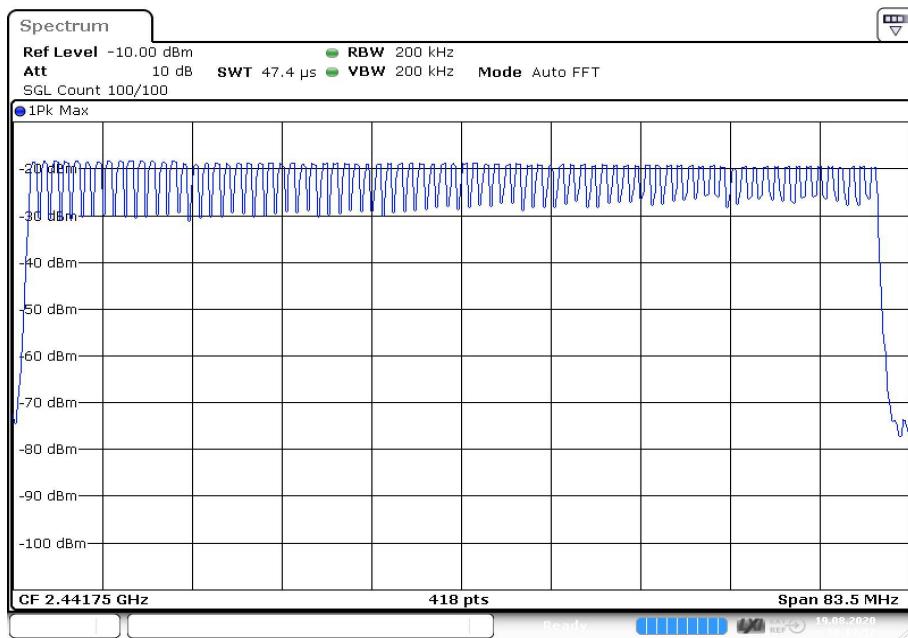
For the band: 5725 – 5850 MHz
 FCC Part 15, Subpart C, §15.247 (a) (1) (ii)

Frequency hopping systems operating in the 5725-5850 MHz band shall use at least 75 hopping frequencies.

For the band: 2400 – 2483.5 MHz
 FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

5.11.3 TEST PROTOCOL


Ambient temperature: 27 °C
 Air Pressure: 1010 hPa
 Humidity: 32 %

Radio Technology	Number of Hopping Frequencies	Limit	Margin to Limit
BT GFSK (1-DH5)	79	15	64

Remark: Please see next sub-clause for the measurement plot.

5.11.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR
 (S01_AH02)

Date: 19.AUG.2020 19:13:52

5.11.5 TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

1 Conducted Emissions FCC: Conducted Emissions AC Mains for FCC Standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
1.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
1.3	SMBV100A	Vector Signal Generator 9 kHz - 3.2 GHz (GNSS / Broadcast Signalling Unit)	Rohde & Schwarz GmbH & Co. KG	260001	2018-01	2021-01
1.4	ESH3-Z5	Two-Line V-Network (AUX)	Rohde & Schwarz GmbH & Co. KG	828304/029	2019-06	2021-06
1.5	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
1.6	CMU 200	"CMU2" Universal Radio Communication Tester	Rohde & Schwarz	837983/052	2018-05	2021-05
1.7	Chroma 6404	AC Source	Chroma ATE INC.	64040001304		
1.8	CMW500	Callbox OIL-RE, SUW	Rohde & Schwarz GmbH & Co. KG	155999-Ei	2019-09	2022-09
1.9	CMU 200	"CMU1" Universal Radio Communication Tester	Rohde & Schwarz GmbH & Co. KG	102366	2017-12	2020-12
1.10	CBT	Bluetooth Tester "CBT-02" incl. BLE-Option	Rohde & Schwarz	100302	2018-03	2021-03
1.11	CMW500	Callbox OIL-RE, SUW	Rohde & Schwarz GmbH & Co. KG	163529-bw	2020-07	2023-07
1.12	Shielded Room 02	Shielded Room 4m x 3m	Frankonia Germany EMC Solution GmbH	-		
1.13	CMW500	Callbox OIL-RE, SUA-160 MHz	Rohde & Schwarz GmbH & Co. KG	168927-cv	2020-05	2023-05
1.14	CMW 500	callbox, 2G, 3G, LTE, WLAN, BT, Audio	Rohde & Schwarz GmbH & Co. KG	149268-Qf	2018-04	2021-04
1.15	CMD 55	Digital Radio Communication Tester	Rohde & Schwarz	831050/020		
1.16	ESH3-Z5	Two-Line V-Network (EUT)	Rohde & Schwarz GmbH & Co. KG	829996/002	2019-06	2021-06
1.17	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2019-01	2021-01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.18	CMW500	Callbox OIL-RE, SUA-160 MHz	Rohde & Schwarz GmbH & Co. KG	167766-By	2019-07	2020-07
1.19	Opus10 THI (8152.00)	T/H Logger 02	Lufft Mess- und Regeltechnik GmbH	7489	2019-05	2021-05
1.20	SMU 200A	Vector Signal Generator (GPS Signalling Unit)	Rohde & Schwarz GmbH & Co. KG	100912		
1.21	CMW 500	Wideband Radio communication Tester	Rohde & Schwarz	107500		
1.22	CBT	Bluetooth Tester "CBT-01"	Rohde & Schwarz GmbH & Co. KG	100589	2018-05	2021-05

2 R&S TS8997: FCC Part 15 Subpart C Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2020-08	2023-08
2.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2020-05	2022-05
2.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
2.4	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456	2020-01	2022-01
2.5	SMBV100A	Enhanced GNSS	Rohde & Schwarz GmbH & Co. KG	262682-eP	2018-01	2021-01
2.6	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2020-05	2022-05
2.7	Opus10 THI (8152.00)	T/H Logger 03	Lufft Mess- und Regeltechnik GmbH	7482	2019-06	2021-06
2.8	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2019-11	2022-11
2.9	OSP120	Contains Power Meter and Switching Unit OSP-B157W8	Rohde & Schwarz	101158	2018-05	2021-05
2.10	Temperature Chamber VT 4002	Temperature Chamber Vötsch 05	Vötsch	58566080550010	2020-05	2022-05

3 Radiated Emissions: Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2019-10	2020-10
3.2	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
3.3	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
3.4	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2019-12	2021-12
3.5	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	2018-06	2020-06
3.6	HL 562 ULTRALOG	Biconical-log-per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2018-07	2021-07
3.7	AMF-7D00101800-30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq			
3.8	5HC2700/12750	High Pass Filter	Trilithic	9942012		
3.9	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
3.10	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001-PRB	2018-06	2020-06
3.11	SMBV100A	Vector Signal Generator 9 kHz - 3.2 GHz (GNSS / Broadcast Signalling Unit)	Rohde & Schwarz GmbH & Co. KG	260001	2018-01	2021-01
3.12	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2020-04	2022-04
3.13	WRD1920/1980-5/22-5EESD	Tunable Band Reject Filter	Wainwright Instruments GmbH	11		
3.14	TDS 784C	Digital Oscilloscope [SA2] (Aux)	Tektronix	B021311		
3.15	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2019-06	2021-06
3.16	foRS232 Unit 2	Fibre optic link RS232	PONTIS Messtechnik GmbH	4031516037		
3.17	PONTIS Con4101	PONTIS Camera Controller		6061510370		
3.18	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2019-08	2020-08
3.19	OLS-1 R	Fibre optic link USB 1.1	Ingenieurbüro Scheiba	018		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.20	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
3.21	JS4-18002600-32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
3.22	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02
3.23	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
3.24	foRS232 Unit 1	Fibre optic link RS232	PONTIS Messtechnik GmbH	4021516036		
3.25	FSP3	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	836722/011		
3.26	WHKX 7.0/18G-8SS	High Pass Filter	Wainwright Instruments GmbH	09		
3.27	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
3.28	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
3.29	foUSB-M Converter 2	Fibre optic link USB 2.0	PONTIS Messtechnik GmbH	4471520061		
3.30	WRCD1879.8-0.2/40-10EE	Notch Filter Ultra Stable	Wainwright Instruments GmbH	16		
3.31	SMB100A	Signal Generator 100 kHz - 40 GHz	Rohde & Schwarz Vertriebs-GmbH	181486	2019-11	2021-11
3.32	JS4-00102600-42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
3.33	TT 1.5 WI	Turn Table	Maturo GmbH	-		
3.34	HL 562 ULTRALOG	Biconical-log-per Antenna (30 MHz - 3 GHz)	Rohde & Schwarz GmbH & Co. KG	100609	2019-05	2022-05
3.35	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001	2018-03	2021-03
3.36	foCAN (v 4.0)	Fibre optic link CAN	Audio GmbH (PONTIS EMC)	492 1607 014		
3.37	CMW500	Callbox OIL-RE, SUW	Rohde & Schwarz GmbH & Co. KG	155999-Ei	2019-09	2022-09
3.38	CMU 200	"CMU1" Universal Radio Communication Tester	Rohde & Schwarz GmbH & Co. KG	102366	2017-12	2020-12
3.39	MA4985-XP-ET	Bore Sight Antenna Mast	innco systems GmbH	none		
3.40	CBT	Bluetooth Tester "CBT-02" incl. BLE-Option	Rohde & Schwarz	100302	2018-03	2021-03
3.41	CMW500	Callbox OIL-RE, SUW	Rohde & Schwarz GmbH & Co. KG	163529-bw	2020-07	2023-07
3.42	CMW500	Callbox OIL-RE, SUA-160 MHz	Rohde & Schwarz GmbH & Co. KG	168927-cv	2020-05	2023-05
3.43	A8455-4	4 Way Power Divider (SMA)		-		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.44	JUN-AIR Mod. 6-15	Air Compressor	JUN-AIR Deutschland GmbH	612582		
3.45	foEthernet_M	Fibre optic link Ethernet / Gb-LAN	PONTIS Messtechnik GmbH	4841516023		
3.46	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
3.47	OLS-1 M	Fibre optic link USB 1.1	Ingenieurbüro Scheiba	018		
3.48	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2018-01	2021-01
3.49	Voltcraft M-3860M	Digital Multimeter 01 (Multimeter)	Conrad	IJ096055		
3.50	CMW 500	callbox, 2G, 3G, LTE, WLAN, BT, Audio	Rohde & Schwarz GmbH & Co. KG	149268-Qf	2018-04	2021-04
3.51	Opus10 THI (8152.00)	T/H Logger 12	Lufft Mess- und Regeltechnik GmbH	12482	2019-06	2021-06
3.52	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2019-01	2021-01
3.53	SB4-100.OLD20-3T/10 Airwin 2 x 1.5 kW	Air compressor (oil-free)	airWin Kompressoren UG	901/00503		
3.54	UNI-T UT195E	True RMS Digital Multimeter	UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD.	C190729561		
3.55	foEthernet_M	Fibre optic link Ethernet / Gb-LAN	PONTIS Messtechnik GmbH	4841516022		
3.56	JS4-00101800-35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
3.57	AS 620 P	Antenna Mast (pneumatic polarisation)	HD GmbH	620/37		
3.58	CMW500	Callbox OIL-RE, SUA-160 MHz	Rohde & Schwarz GmbH & Co. KG	167766-By	2019-07	2020-07
3.59	6005D (30 V / 5 A)	Laboratory Power Supply 120 V 60 Hz	PeakTech	81062045		
3.60	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5-10kg/024/3790709		
3.61	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004		
3.62	Innco Systems CO3000	Controller for bore sight mast SAC	innco systems GmbH	CO3000/967/393 71016/L		
3.63	NRV-Z1	Sensor Head B	Rohde & Schwarz GmbH & Co. KG	827753/006	2019-08	2020-08
3.64	HF 907-2	Double-ridged horn	Rohde & Schwarz	102817	2019-04	2022-04
3.65	foCAN (v 4.0)	Fibre optic link CAN	Audio GmbH (PONTIS EMC)	492 1607 013		
3.66	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.67	AFS42-00101800-25-S-42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324		
3.68	WRCA800/960-0.2/40-6EEK	Tunable Notch Filter	Wainwright Instruments GmbH	20		
3.69	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		
3.70	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07
3.71	E4408B	Spectrum Analyser (9 kHz to 26.5 GHz)	Agilent Technologies Deutschland GmbH	MY45103714		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ)

Frequency	Corr.	LISN insertion loss ESH3-Z5	cable loss (incl. 10 dB attenuator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

Sample calculation

$$U_{\text{LISN}} (\text{dB } \mu\text{V}) = U (\text{dB } \mu\text{V}) + \text{Corr. (dB)}$$

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Frequency	AF HFH-Z2)	Corr.	cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-40 dB/ decade)	d_{limit} (meas. distance (limit))	d_{used} (meas. distance (used))
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

Sample calculation

$$E \text{ (dB } \mu\text{V/m)} = U \text{ (dB } \mu\text{V)} + AF \text{ (dB } 1/\text{m)} + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

distance correction = $-40 * \text{LOG } (d_{\text{limit}} / d_{\text{used}})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

($d_{\text{limit}} = 3 \text{ m}$)

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d_{limit} (meas. distance (limit))	d_{used} (meas. distance (used))
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

($d_{\text{limit}} = 10 \text{ m}$)

30	18.6	-9.9
50	6.0	-9.6
100	9.7	-9.2
150	7.9	-8.8
200	7.6	-8.6
250	9.5	-8.3
300	11.0	-8.1
350	12.4	-7.9
400	13.6	-7.6
450	14.7	-7.4
500	15.6	-7.2
550	16.3	-7.0
600	17.2	-6.9
650	18.1	-6.9
700	18.5	-6.8
750	19.1	-6.3
800	19.6	-6.3
850	20.1	-6.0
900	20.8	-5.8
950	21.1	-5.6
1000	21.6	-5.6

0.29	0.04	0.23	0.02	-10.5	10	3
0.39	0.09	0.32	0.08	-10.5	10	3
0.56	0.14	0.47	0.08	-10.5	10	3
0.73	0.20	0.59	0.12	-10.5	10	3
0.84	0.21	0.70	0.11	-10.5	10	3
0.98	0.24	0.80	0.13	-10.5	10	3
1.04	0.26	0.89	0.15	-10.5	10	3
1.18	0.31	0.96	0.13	-10.5	10	3
1.28	0.35	1.03	0.19	-10.5	10	3
1.39	0.38	1.11	0.22	-10.5	10	3
1.44	0.39	1.20	0.19	-10.5	10	3
1.55	0.46	1.24	0.23	-10.5	10	3
1.59	0.43	1.29	0.23	-10.5	10	3
1.67	0.34	1.35	0.22	-10.5	10	3
1.67	0.42	1.41	0.15	-10.5	10	3
1.87	0.54	1.46	0.25	-10.5	10	3
1.90	0.46	1.51	0.25	-10.5	10	3
1.99	0.60	1.56	0.27	-10.5	10	3
2.14	0.60	1.63	0.29	-10.5	10	3
2.22	0.60	1.66	0.33	-10.5	10	3
2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

$$E \text{ (dB } \mu\text{V/m)} = U \text{ (dB } \mu\text{V)} + AF \text{ (dB } 1/\text{m)} + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

distance correction = $-20 * \text{LOG} (d_{\text{limit}}/d_{\text{used}})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1 (relay + cable inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit, attenuator & pre-amp)	cable loss 4 (to receiver)		
dB	dB	dB	dB		
0.99	0.31	-21.51	0.79		
1.44	0.44	-20.63	1.38		
1.87	0.53	-19.85	1.33		
2.41	0.67	-19.13	1.31		
2.78	0.86	-18.71	1.40		
2.74	0.90	-17.83	1.47		
2.82	0.86	-16.19	1.46		

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, attenuator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable loss 1 (relay inside chamber)	cable loss 2 (High Pass)	cable loss 3 (pre-amp)	cable loss 4 (inside chamber)	cable loss 5 (outside chamber)	cable loss 6 (to receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ – 26.5 GHZ)

Frequency	AF EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

cable loss 1 (inside chamber)	cable loss 2 (pre- amp)	cable loss 3 (inside chamber)	cable loss 4 (switch unit)	cable loss 5 (to receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

$$E (\text{dB } \mu\text{V/m}) = U (\text{dB } \mu\text{V}) + AF (\text{dB } 1/\text{m}) + \text{Corr. (dB)}$$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ – 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

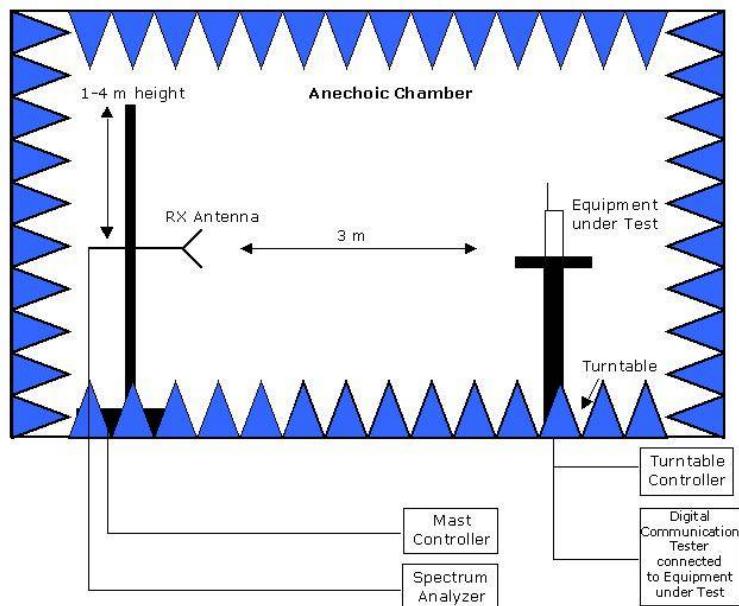
Sample calculation

$$E \text{ (dB } \mu\text{V/m)} = U \text{ (dB } \mu\text{V)} + AF \text{ (dB } 1/\text{m)} + \text{Corr. (dB)}$$

U = Receiver reading

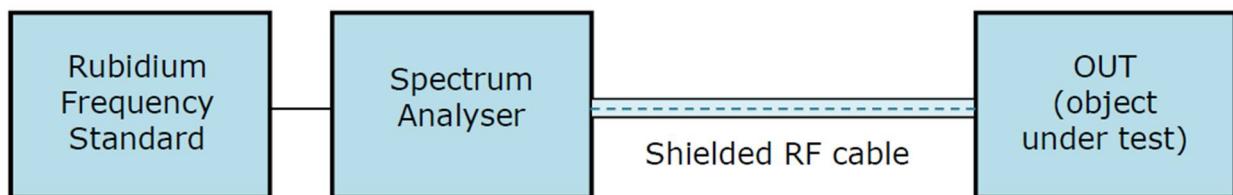
AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)


Linear interpolation will be used for frequencies in between the values in the table.

distance correction = $-20 * \text{LOG} (d_{\text{limit}}/ d_{\text{used}})$

Linear interpolation will be used for frequencies in between the values in the table.

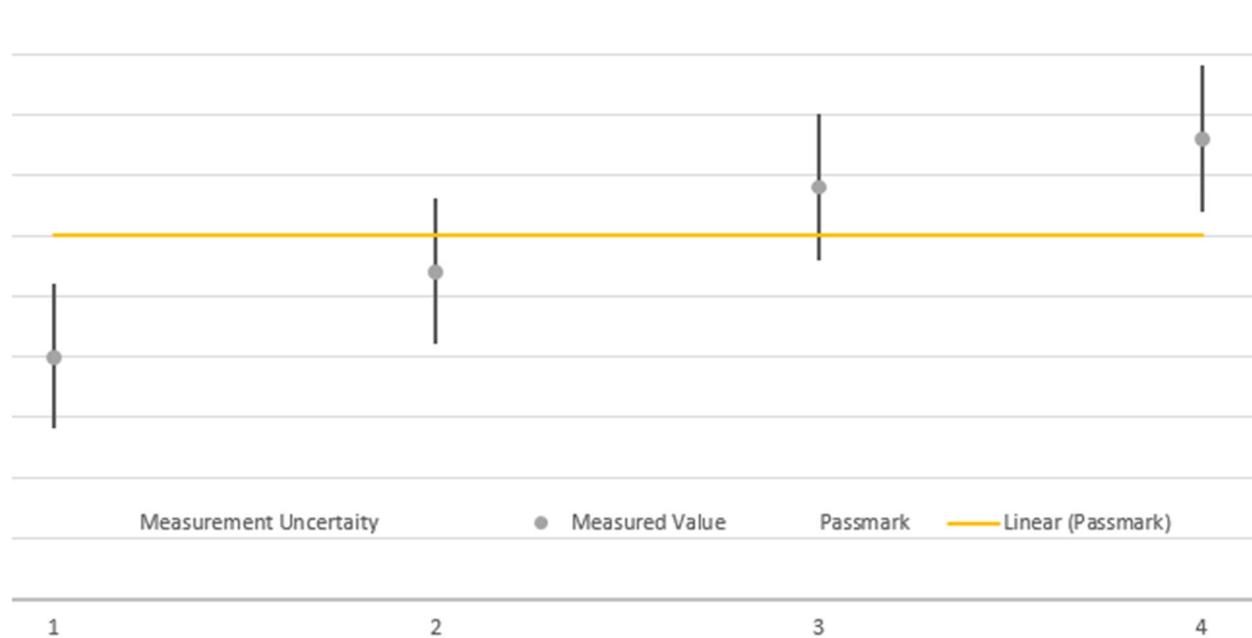

Table shows an extract of values.

8 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

Drawing 2: Setup for conducted radio tests.


9 PHOTO REPORT

Please see separate photo report.

10 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) $k = 1.96$. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.