

RADIO PERFORMANCE TEST REPORT

Test Report No.	: OT-21O-RWD-059
Reception No.	: 2110004416
Applicant	: Remote Solution Co., Ltd.
Address	: 92, Chogokri Nammyun, Kimchon City, Kyungbuk, 740-871, South Korea
Manufacturer	: Remote Solution Co., Ltd.
Address	: 92, Chogokri Nammyun, Kimchon City, Kyungbuk, 740-871, South Korea
Type of Equipment	: BLE/RF4CE Remote controller
FCC ID.	: TX4RD68A
Model Name	: RD68A00
Multiple Model Name	: RD68XYY (X : A~Z, YY : 00~99)
Serial number	: N/A
Total page of Report	: 32 pages (including this page)
Date of Incoming	: October 07, 2021
Date of issue	: October 28, 2021

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART C Section 15.247

This test report only contains the result of a single test of the sample supplied for the examination. It is not a generally valid assessment of the features of the respective products of the mass-production.

유수민

Tested by / Su-Min You / Assistant Manager ONETECH Corp. Reviewed by / Tae-Ho, Kim / Senior Manager ONETECH Corp.

Approved by / Ki-Hong, Nam / General Manager ONETECH Corp.

This Report is not correlated with the authentication of KOLAS It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

CONTENTS

PAGE

1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	6
2.1 TEST ITEMS AND RESULTS	6
2.2 Additions, deviations, exclusions from standards	6
2.3 RELATED SUBMITTAL(S) / GRANT(S)	6
2.4 PURPOSE OF THE TEST	6
2.5 TEST METHODOLOGY	6
2.6 TEST FACILITY	6
3. GENERAL INFORMATION	7
3.1 PRODUCT DESCRIPTION	7
4. EUT MODIFICATIONS	8
5. SYSTEM TEST CONFIGURATION	9
5.1 JUSTIFICATION	9
5.2 PERIPHERAL EQUIPMENT	9
5.3 MODE OF OPERATION DURING THE TEST	9
6. PRELIMINARY TEST	11
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	11
6.2 GENERAL RADIATED EMISSIONS TESTS	11
7. MINIMUM 6 DB BANDWIDTH	12
7.1 OPERATING ENVIRONMENT	12
7.2 TEST SET-UP	12
7.3 TEST DATE	12
7.4 TEST DATA	13
8. MAXIMUM PEAK OUTPUT POWER	15
8.1 OPERATING ENVIRONMENT	15
8.2 TEST SET-UP	15
8.3 TEST DATE	15
8.4 TEST DATA	16
9. 100 KHZ BANDWIDTH OUTSIDE THE FREQUENCY BAND	18
9.1 OPERATING ENVIRONMENT	18
9.2 TEST SET-UP FOR CONDUCTED MEASUREMENT	18

This Report is not correlated with the authentication of KOLAS

It should not be reproduced except in full, without the written approval of ONETECH Corp.

ONETECH

Page 3 of 32

9.3 TEST SET-UP FOR RADIATED MEASUREMENT	
9.4 Test Date	
9.5 TEST DATA FOR CONDUCTED EMISSION	
9.6 TEST DATA FOR RADIATED EMISSION	
9.6.1 Radiated Emission which fall in the Restricted Band	
9.6.2 Spurious & Harmonic Radiated Emission	
10. PEAK POWER SPECTRAL DENSITY	
10.1 Operating environment	
10.2 TEST SET-UP	
10.3 TEST DATE	
10.4 TEST DATA	
11. RADIATED EMISSION TEST	29
11.1 Operating environment	
11.2 TEST SET-UP	
11.3 TEST DATE	
11.4 Test data for 30 MHz ~ 1000 MHz	
11.5 TEST DATA FOR BELOW 30 MHz	
11.6 TEST DATA FOR ABOVE 1 GHz	
12. LIST OF TEST EQUIPMENT	

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-21O-RWD-059	October 28, 2021	Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant : Remote Solution Co., Ltd.

Address : 92, Chogokri Nammyun, Kimchon City, Kyungbuk, 740-871, South Korea

Contact Person: Byung-Cheol Kim / Manager

Telephone No. : +82-54-420-4517

FCC ID : TX4RD68A

Model Name : RD68A00

Brand Name : RS OTS / RCU / Remotesolution

Serial Number : N/A

Date : October 28, 2021

EQUIPMENT CLASS	DTS – DIGITAL TRNSMISSION SYSTEM	
E.U.T. DESCRIPTION	BLE/RF4CE Remote controller	
THIS REPORT CONCERNS	Original Grant	
MEASUREMENT PROCEDURES	ANSI C63.10: 2020	
TYPE OF EQUIPMENT TESTED	Pre-Production	
KIND OF EQUIPMENT	Certification	
AUTHORIZATION REQUESTED		
EQUIPMENT WILL BE OPERATED	FCC PART 15 SUBPART C Section 15.247	
UNDER FCC RULES PART(S)	KDB 558074 D01 15.247 Meas Guidance v05r02	
Modifications on the Equipment to Achieve		
Compliance	None	
Final Test was Conducted On	3 m, Semi Anechoic Chamber	

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.247 (a) (2)	Minimum 6 dB Bandwidth	Met the Limit / PASS
15.247 (b) (3)	Maximum Peak Conducted Output Power	Met the Limit / PASS
15.247 (d)	100 kHz Bandwidth Outside the Frequency Band	Met the Limit / PASS
15.247 (d)	Radiated Emission which fall in the Restricted Band	Met the Limit / PASS
15.247 (e)	Peak Power Spectral Density	Met the Limit / PASS
15.209	Radiated Emission Limits	Met the Limit / PASS
15.207	Conducted Limits	N/A(See Note)
15.203	Antenna Requirement	Met requirement / PASS

Note .: This test item is not required as EUT is operated by the DC battery.

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.247.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2020. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-20122/ C-14617/ G-10666/ T-11842

ISED (Innovation, Science and Economic Development Canada) - Registration No. Site# 3736A-3

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

3. GENERAL INFORMATION

3.1 Product Description

The Remote Solution Co., Ltd., Model RD68A00 (referred to as the EUT in this report) is a BLE/RF4CE Remote controller. The product specification described herein was obtained from product data sheet or user's manual.

Device Type	BLE/RF4CE Remote controller		
	Bluetooth LE	2 402 MHz ~ 2 480 MHz	
Operating Frequency	Zigbee	2 405 MHz ~ 2 475 MHz	
	Bluetooth LE	5.58 dBm	
RF Output Power	Zigbee	5.68 dBm	
	Bluetooth LE	40 Channels	
Number of Channel	Zigbee	15 Channels	
Modulation Type	Bluetooth LE	GFSK	
	Zigbee	DSSS	
Antenna Type	PCB Antenna		
Antenna Gain	-1.0 dBi		
Rated Supply Voltage	DC 3.0 V		
List of each Osc. or crystal			
Freq.(Freq. >= 1 MHz)	32 MHz		

ONETECH

3.2 Alternative type(s)/model(s); also covered by this test report.

-. The following lists consist of the added model and their differences.

Model Name	Differences	
RD68A00	Basic Model	Ŋ
RD68XYY (See Note 3)	This model is identical to the basic model except that the printed information (Label, Front cover and Brand) on the appearance is different.	

Note: 1. Applicant consigns only basic model to test. Therefore this test report just guarantees the units, which have been tested.

2. The Applicant/manufacturer is responsible for the compliance of all variants.

3. Multiple model name RD68XYY is made up of a combination of X (A~Z) and Y (00~99),

X depends on electric parts, YY depends on appearance, design and brand

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the

following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Main Board	Remote Solution Co., Ltd.	N/A	N/A

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to
RD68A00	Remote Solution Co., Ltd.	BLE/RF4CE Remote controller (EUT)	-

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting is programmed.

For final testing, the EUT was set at 2 405 MHz, 2 440 MHz, and 2 475 MHz to get a maximum emission levels from the EUT. The EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis, but the worst data was recorded in this report.

-. Frequency / Channel Operations

Channel	Frequency
11	2 405
12	2 410
13	2 415
14	2 420
15	2 425
16	2 430
17	2 435
18	2 440
19	2 445
20	2 450
21	2 455
22	2 460
23	2 465
24	2 470
25	2 475

-. Duty Cycle

Tx On Time [ms]	Tx Off Time [ms]	Duty Cycle [%]	FCC Duty Cycle Correction [dB]
4	10 - 4 = 6	40	7.96

5.4 Configuration of Test System

Line Conducted Test: This test item is not required as EUT is operated by the DC battery.

Radiated Emission Test:Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:
2020 to determine the worse operating conditions. Final radiated emission tests were
conducted at 3 meter Semi Anechoic Chamber.
The turntable was rotated through 360 degrees and the EUT was tested by positioned
three orthogonal planes to obtain the highest reading on the field strength meter. Once
maximum reading was determined, the search antenna was raised and lowered in both
vertical and horizontal polarization.

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is PCB Antenna on the main board in the EUT, so no consideration of replacement by the user.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

This test item is not required as EUT is operated by the DC battery.

6.2 General Radiated Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	Х

7. MINIMUM 6 dB BANDWIDTH

7.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	46 % R.H.

7.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, and peak detection was used. The 6 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 6 dB.

7.3 Test Date

October 12, 2021 ~ October 22, 2021

7.4 Test data

Channel	Frequency (MHz)	Measured Value (kHz)	Limit (kHz)	Margin (kHz)
Low	2 405.00	1 573.40	500.00	1 073.40
Middle	2 440.00	1 573.40	500.00	1 073.40
High	2 475.00	1 578.40	500.00	1 078.40

Remark. Margin = Measured Value - Limit

It should not be reproduced except in full, without the written approval of ONETECH Corp.

8. MAXIMUM PEAK OUTPUT POWER

8.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	46 % R.H.

8.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to \geq DTS Bandwidth, the video bandwidth is set to 3 times the resolution bandwidth.

8.3 Test Date

October 12, 2021 ~ October 22, 2021

8.4 Test data

-. Test Result

Channel	Frequency (MHz)	6 dB Bandwidth (kHz)	Measured Value (dBm)	Limit (dBm)	Margin (dB)
Low	2 405.00	1 573.40	5.43	30.00	24.57
Middle	2 440.00	1 573.40	5.68	30.00	24.32
High	2 475.00	1 578.40	5.43	30.00	24.57

Remark. Margin = Limit – Measured value (=Receiver Reading + Cable Loss)

: Pass

Ref Level 20	1.00 dBm	Offset ().70 dB 👄 I	RBW 3 MHz	2			(*
Att	30 dB	SWT	1.3 µs 😑 '	VBW 10 MHz	2 Mode 4	uto FFT		
UPK VIEW					м	1[1]		5.68 dBm
							2.440	48000 GHz
10 dBm					М1			
		_						
0 dBm								
-10 dBm	-							
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CE 2 44 CHz				1001	nte		Snan	10.0 MHz
or zirr drie				1001			opui	TOID MILE
Spectrum		Offcot	0 70 dB 👄 I	Middle	Channel			
Spectrum Ref Level 20 Att).00 dBm 30 dB	Offset (SWT	D.70 dB ● I 1.3 µs ● '	Middle	Channel	Auto FFT	 	
Spectrum Ref Level 20 Att 1Pk View).00 dBm 30 dB	Offset (SWT	D.70 dB ● I 1.3 μs ● '	Middle	Channel	Auto FFT		
Spectrum Ref Level 20 Att 1Pk View	0.00 dBm 30 dB	Offset (SWT	D.70 dB 👄 I 1.3 µs 👄 '	Middle	Channel	Auto FFT	2 475	5.43 dBm
Spectrum Ref Level 20 Att 1Pk View).00 dBm 30 dB	Offset (SWT	D.70 dB ● I 1.3 µs ● '	Middle	Channel	auto FFT 1[1]	 2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 1Pk View).00 dBm 30 dB	Offset (SWT	D.70 dB ● 1 1.3 μs ● 1	Middle	Channel	Auto FFT	 2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 1Pk View 10 dBm	0.00 dBm 30 dB	Offset (SWT	D.70 dB ● 1 1.3 μs ● 1	Middle	Channel	1[1]	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 1Pk View 10 dBm 0 dBm	0.00 dBm 30 dB	Offset (SWT	D.70 dB ● I 1.3 μs ● Y	Middle	Channel	1[1]	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 10 dBm 0 dBm -10 dBm).00 dBm 30 dB	Offset (SWT	D.70 dB ● I 1.3 μs ● '	Middle	Channel	auto FFT	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 1Pk View 10 dBm -10 dBm	0.00 dBm 30 dB	Offset (SWT	D.70 dB • I 1.3 μs • '	Middle	Channel	auto FFT	2.475	5.43 dBm 548000 GH2
Spectrum Ref Level 20 Att 10 dBm 0 dBm -10 dBm	0.00 dBm 30 dB	Offset (SWT	D.70 dB • I 1.3 μs • '	Middle	Channel	auto FFT	2.475	5.43 dBm ;48000 GHz
Spectrum Ref Level 20 Att 10 dBm 0 dBm -10 dBm -20 dBm	0.00 dBm 30 dB	Offset (SWT	0.70 dB • I 1.3 μs • '	Middle	Channel	1[1]	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm 30 dB	Offset (SWT	0.70 dB • 1 1.3 μs • 1	Middle	Channel	luto FFT	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0.00 dBm 30 dB	Offset (SWT	D.70 dB 1.3 μs	Middle	Channel	1[1]	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0.00 dBm 30 dB	Offset (SWT	D.70 dB • I 1.3 μs • '	Middle	Channel	auto FFT	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 • Att • 1Pk View 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	0.00 dBm 30 dB	Offset (SWT	D.70 dB • 1 1.3 μs • '	Middle	Channel	1[1]	2.475	5.43 dBm 548000 GH2
Spectrum Ref Level 20 Att 20 10 dBm 0 0 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -40 dBm 0).00 dBm 30 dB	Offset (SWT	D.70 dB	Middle	Channel	auto FFT	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 20 10 dBm 0 0 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -40 dBm 0	0.00 dBm 30 dB	Offset (SWT	D.70 dB 1.3 μs 1.3	Middle	Channel	1[1]	2.475	5.43 dBm 548000 GH2
Spectrum Ref Level 20 Att 20 10 dBm 20 10 dBm 20 -10 dBm 20 -20 dBm 20 -30 dBm 20 -50 dBm 20	0.00 dBm 30 dB	Offset (SWT	D.70 dB • 1 1.3 μs • 1	Middle	Channel	1[1]	2.475	5.43 dBm i48000 GHz
Spectrum Ref Level 20 Att 20 10 dBm 20 0 dBm 20 -10 dBm 20 -20 dBm 20 -30 dBm 20 -40 dBm 20 -60 dBm 20	0.00 dBm 30 dB	Offset (SWT	D.70 dB • I 1.3 μs • '	Middle	Channel	Auto FFT	2.475	5.43 dBm i48000 GHz
Spectrum Ref Level 20 Att 20 10 dBm 20 0 dBm 20 -10 dBm 20 -20 dBm 20 -30 dBm 20 -40 dBm 20 -50 dBm 20 -70 dBm 20	0.00 dBm 30 dB	Offset (SWT	D.70 dB • I 1.3 μs • '	Middle	Channel	Auto FFT	2.475	5.43 dBm 48000 GH2
Spectrum Ref Level 20 Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	0.00 dBm 30 dB	Offset (SWT	D.70 dB • 1 1.3 μs • '	Middle	Channel	Auto FFT	2.475	5.43 dBm 348000 GHz
Spectrum Ref Level 20 Att 20 10 dBm 20 0 dBm 20 -10 dBm 20 -20 dBm 20 -30 dBm 20 -40 dBm 20 -50 dBm 20 -70 dBm 20	0.00 dBm 30 dB	Offset (SWT	D.70 dB • 1 1.3 μs • '	Middle	Channel	1[1]	2.475	5.43 dBm 548000 GHz
Spectrum Ref Level 20 Att 20 10 dBm 20 0 dBm 20 -10 dBm 20 -20 dBm 20 -30 dBm 20 -40 dBm 20 -50 dBm 20 -70 dBm 20 -70 dBm 20 -70 dBm 20	0.00 dBm 30 dB	Offset (SWT	D.70 dB • 1 1.3 µs • 1	Middle	Channel	Auto FFT	2.475	5.43 dBm 548000 GH2

It should not be reproduced except in full, without the written approval of ONETECH Corp.

9. 100 kHz BANDWIDTH OUTSIDE THE FREQUENCY BAND

9.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	46 % R.H.

9.2 Test set-up for conducted measurement

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, the video bandwidth is set to 3 times the resolution bandwidth and peak detection was used.

9.3 Test set-up for radiated measurement

The radiated emissions measurements were performed on the 3 m semi anechoic chamber. The EUT was placed on turntable approximately 1.5 m above the ground plane.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

9.4 Test Date

October 12, 2021 ~ October 22, 2021

9.5 Test data for conducted emission

This Report is not correlated with the authentication of KOLAS

Spectrum	Sp	ectrum 2	× e	Spectrum 3	×				[₩
Ref Level Att	20.00 dBm 30 dB	Offset SWT	0.70 dB 👄 24.7 ms 👄	RBW 100 kH	lz Iz Mode /	Auto Sweep			
●1Pk View									
					M	1[1]		2	56.44 dBm
10 dBm									
0 dBm									
-10 dBm									
20 dBm-	D1 -18.730	dBm							
-20 00111									
-30 dBm									
-40 dBm									
-50 dBm				1					MI
-60 dBm							In the line of the	the initianal conductor	augunthed year
here have been been to	enellaberter	Graphill States and	photonic with the work of	~~~	e-AppleApril/Apple	alladation of a second	աՌուստ (իշտիքինթի չո	an Manuflah Manuflahan Ja	
-70 dBm									
Start 30.0	MHz			1001	. pts			Sta	p 2.5 GHz
				Low C	hannel				
Spectrum	Sp	ectrum 2	X S	Low C Spectrum 3	hannel				
Spectrum Ref Level	20.00 dBm	ectrum 2 Offset	x € 0.90 dB ●	Low C Spectrum 3 RBW 100 kH		uto Succes			
Spectrum Ref Level Att	20.00 dBm 30 dB	ectrum 2 Offset (SWT	(X) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep			
Spectrum Ref Level Att 1Pk View	20.00 dBm 30 dB	ectrum 2 Offset (SWT	8 5 0.90 dB 240 ms	Low C Spectrum 3 RBW 100 kH VBW 300 kH	^z Mode A	Auto Sweep			
Spectrum Ref Level Att 1Pk View	20.00 dBm 30 dB	ectrum 2 Offset (SWT	240 ms	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep 1[1]			(₩ ▼ 44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 1Pk View	20.00 dBm 30 dB	ectrum 2 Offset (SWT	240 ms	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep			(₩ ▼ 44.48 dBm 4.8140 GHz
Spectrum Ref Level • Att • 1Pk View 10 dBm	20.00 dBm 30 dB	ectrum 2 Offset (SWT	240 ms	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep		-	(₩ ▼ 44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm	20.00 dBm 30 dB	ectrum 2 Offset (SWT	240 ms	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep			(₩ 44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB	ectrum 2 Offset (SWT	8 50.90 dB • 240 ms •	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep			(₩ ▼ 44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB 30 dB	ectrum 2 Offset (SWT	x 5 0.90 dB 4 240 ms 4	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep		-	(₩ 44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 30 dB	ectrum 2 Offset (SWT	240 ms	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep			44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	20.00 dBm 30 dB 30 dB	dBm	8 5 0.90 dB • 240 ms •	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep			(₩ 44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB	ectrum 2 Offset (SWT	X 5	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep			(₩ 44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 30 dB	ectrum 2 Offset (SWT	x 5	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	Auto Sweep			(₩ 44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 0 dB	dBm	x =	Low C	hannel	Auto Sweep			44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB 0 dB	dBm	X 5 0.90 dB 240 ms	Low C	hannel	Auto Sweep 1[1]			44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	20.00 dBm 30 dB 0 - 18.730	dBm	x 5	Low C Spectrum 3 RBW 100 kH VBW 300 kH	hannel	<u>Auto Sweep</u> 1[1]			44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	20.00 dBm 30 dB 0 - 18.730	dBm	x 5	Low C	hannel	<u>Auto Sweep</u>	entrol the served		(44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm	20.00 dBm 30 dB 30 dB	dBm	x 5	Low C	hannel	۵uto Sweep 1[1] (ایری)	where		44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.00 dBm 30 dB 30 dB	dBm	x 5	Low C	hannel	Auto Sweep 1[1]	ent statute		(44.48 dBm 4.8140 GHz
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.00 dBm 30 dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	dBm	x 5	Low C	hannel	Auto Sweep 1[1]	white deared		44.48 dBm 4.8140 GHz

It should not be reproduced except in full, without the written approval of ONETECH Corp.

			× s	pectrum 3	(X)				(⊽
Ref Leve Att	20.00 dBm 30 dB	Offset	0.70 dB 👄 24.7 ms 👄	RBW 100 kH VBW 300 kH	lz Iz Mode /	Auto Sween			
●1Pk View									
					M:	1[1]		2	·57.77 dBm .32360 GHz
10 dBm									
0 dBm									
-10 dBm—									
20 dBm-	D1 -17.790	dBm							
-20 0011									
-30 dBm									
-40 dBm									
-50 dBm									M1
-60 dBm					and the latest		toolla itoo o da Bedi	the stilled to an extent	Time 4
444 How low	have been and the second	will performent	offal, traffordetwoodby	water	Ularweld www.erone	nanginanging	www.uniquis.com.com		and designed and the left
-70 dBm									
Start 30.0	MH2			1001	pts			Sto	p 2.5 GHz
Start 50.0	171112								
5tart 50.0	1711 12								
start 50.0				Middle	Channel				
Spectrun	n Sp	ectrum 2	x s	Middle pectrum 3	Channel				
Spectrun Ref Leve	n Sp I 20.00 dBm 20 dB	ectrum 2	X S	Middle	Channel	uto Swoon			
Spectrun Ref Leve Att	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT		Middle Spectrum 3 RBW 100 kH VBW 300 kH	Channel × Z Mode A	Auto Sweep			
Spectrun Ref Leve Att 1Pk View	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	€ 5 0.90 dB ● 240 ms ●	Middle (Spectrum 3 RBW 100 kH VBW 300 kH	Channel (X) Z Mode A (M)	Auto Sweep			.44.77 dBm
Spectrun Ref Leve Att 1Pk View	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	X S 0.90 dB 240 ms	Middle (pectrum 3 RBW 100 kH VBW 300 kH	Channel (X) Z Mode A M:	Auto Sweep			.44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 1Pk View	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	X S 0.90 dB • 240 ms •	Middle (Spectrum 3 RBW 100 kH VBW 300 kH	Channel (X) Z Z Mode A M:	Auto Sweep			.44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 10 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	240 ms	Middle (spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep			(₩ ▼ 44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 10 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	€ S 0.90 dB 240 ms ●	Middle (pectrum 3 RBW 100 kH VBW 300 kH	Channel	auto Sweep			(₩ ▼ 44.77 dBm 4.8860 GHz
Spectrun Ref Leve • Att • 1Pk View 10 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	X S	Middle (Spectrum 3 RBW 100 kH VBW 300 kH	Channel (X) Z Z Mode A M:	Auto Sweep			-44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 1Pk View 10 dBm 0 dBm -10 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	240 ms	Middle (pectrum 3 RBW 100 kH vBW 300 kH	Channel	Auto Sweep			(₩ ▼ 44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 10 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	8 S	Middle (pectrum 3 RBW 100 kH VBW 300 kH	Channel	1[1]			(₩ ▼ 44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	X S	Middle (Spectrum 3 RBW 100 kH VBW 300 kH	Channel (X) Z Z Mode A M:	Auto Sweep			.44.77 dBm 4.8860 GHz
Spectrun Ref Leve • Att • 1Pk View 10 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	X S	Middle (pectrum 3 RBW 100 kH vBW 300 kH	Channel	Auto Sweep			-44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	X S	Middle (pectrum 3 RBW 100 kH VBW 300 kH	Channel	LI[1]			(₩ ₹44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset () SWT	8 S	Middle (Channel	1[1]			.44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n Sp I 20.00 dBm 30 dE	ectrum 2 Offset (SWT	X S 0.90 dB • 240 ms •	Middle (Channel	.uto Sweep 1[1]			.44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 20.00 dBm 30 dE 01 -17.790	ectrum 2 Offset (SWT dBm-	X S 0.90 dB 240 ms 240 ms 3	Middle (Channel	<u>الالم</u>	Li frence and		44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	n Sp I 20.00 dBm 30 dE 	ectrum 2 Offset (SWT dBm		Middle	Channel	uto Sweep	L. M. J. Marken and		(₩ 44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	n Sp I 20.00 dBm 30 dE 	dBm	х S	Middle (Channel	uto Sweep	Li June ma		(
Spectrun Ref Leve Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	1 20.00 dBm 30 dE	dBm	X S 0.90 dB • 240 ms • 240 ms •	Middle (Channel	uto Sweep	i My (y My beck army)		(-44.77 dBm 4.8860 GHz
Spectrun Ref Leve Att ● 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm Start 2.5 C	1 20.00 dBm 30 dB 	dBm-		Middle (Channel	il[1]	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(

It should not be reproduced except in full, without the written approval of ONETECH Corp.

opecaram	Sp	ectrum 2	× E	Spectrum 3	×				(♥
Ref Level Att	20.00 dBm 30 dB	Offset SWT	0.70 dB 👄 24.7 ms 👄	RBW 100 kH VBW 300 kH	iz Iz Mode	Auto Sween	1		
●1Pk View						F			
					м	1[1]		2	-58.27 dBm 35070 GHz
10 dBm									
0 dBm									
-10 dBm									
20 d8m	D1 -18.590	dBm							
-20 ubiii									
-30 dBm			ļ						
-40 dBm									
-50 dBm									
-60.dBm					1. 1. 1			المعام المعامل معاصداك	MI MANA
any gratelia describe	withurshall	Maynepopulation	wergehelgen werden generation feiner	MANHINGANAMININ	aller and a second a	anna hailtean du	an or the all office of the all and	 ANDOR ADDRESS 	Two
-70 dBm									
Start 30.0 M	MHz			1001	. pts			St	pp 2.5 GHz
				High C	Channel				
Spectrum	Sp	ectrum 2	× 5	High C Spectrum 3	Thannel				
Spectrum Ref Level	20.00 dBm	ectrum 2 Offset	× 5	High C Spectrum 3 RBW 100 kH	Channel				
Spectrum Ref Level Att	20.00 dBm 30 dB	ectrum 2 Offset SWT	(X) 5 0.90 dB ● 240 ms ●	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep			
Spectrum Ref Level Att 1Pk View	20.00 dBm 30 dB	ectrum 2 Offset SWT	8 5 0.90 dB 240 ms	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep			-45.35 dBm
Spectrum Ref Level Att 1Pk View	20.00 dBm 30 dB	ectrum 2 Offset SWT	8 5 0.90 dB • 240 ms •	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep 1[1]			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm	20.00 dBm 30 dB	ectrum 2 Offset SWT	(X) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep 1[1]			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att P1Pk View 10 dBm 0 dBm	20.00 dBm 30 dB	ectrum 2 Offset SWT	8 5 0.90 dB 240 ms	High C Spectrum 3 RBW 100 kH VBW 300 kH	Z Mode	Auto Sweep			-45.35 dBm 4.9580 GH2
Spectrum Ref Level Att 1Pk View 10 dBm 0 dBm	20.00 dBm 30 dB	ectrum 2 Offset SWT	8 5 0.90 dB • 240 ms •	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB	ectrum 2 Offset SWT	X 5 0.90 dB • 240 ms •	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm	20.00 dBm 30 dB	ectrum 2 Offset SWT	8 5 0.90 dB 240 ms	High C Spectrum 3 RBW 100 kH VBW 300 kH	Zhannel	Auto Sweep			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB 20.01 -18.590	ectrum 2 Offset SWT	8 5 0.90 dB • 240 ms •	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm	20.00 dBm 30 dB	ectrum 2 Offset SWT	X 5	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB	ectrum 2 Offset SWT	X 5	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB 0 dB	ectrum 2 Offset SWT	S S S S	High C Spectrum 3 RBW 100 kH VBW 300 kH	Z Mode	Auto Sweep			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm M	20.00 dBm 30 dB 20.01 -18.590	dBm	x 5 0.90 dB • 240 ms •	High C Spectrum 3 RBW 100 kH YBW 300 kH	Channel	Auto Sweep			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 1D dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB 20.01 -18.590	ectrum 2 Offset SWT	x 5	High C Spectrum 3 RBW 100 kH VBW 300 kH		Auto Sweep 1[1]			-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 110 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm M -50 dBm	20.00 dBm 30 dB 0 dB	dBm	C.90 dB C	High C Spectrum 3 RBW 100 kH VBW 300 kH 	Channel	Auto Sweep 1[1]		perfection and an and a second	-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 1 Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB 20.00 dBm 30 dB	dBm		High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep 1[1]	Automatic and the		-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm M -50 dBm -70 dBm	20.00 dBm 30 dB 20.00 dBm 30 dB 20.00 dBm 30 dB 20.00 dBm 20.00 dB	dBm	x 5	High C Spectrum 3 RBW 100 kH VBW 300 kH	Channel	Auto Sweep	en and a second se	gert at half in the same	-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 110 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -70 dBm	20.00 dBm 30 dB 20.00 dBm 30 dB	dBm		High C	Channel	Auto Sweep		perchard attack proves	-45.35 dBm 4.9580 GHz
Spectrum Ref Level Att 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	20.00 dBm 30 dB 30 dB	dBm		High C	Channel	Auto Sweep		port and the hyper of	-45.35 dBm 4.9580 GHz

It should not be reproduced except in full, without the written approval of ONETECH Corp.

9.6 Test data for radiated emission

9.6.1 Radiated Emission which fall in the Restricted Band

Resolution bandwidth	: 1 MHz and Peak Detector for Peak Mode
	1 MHz and RMS Detector for Average Mode

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Measurement distance : 3 m

-. Duty Cycle : 40 %

-. Result : <u>PASSED</u>

Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	AMP	Duty Factor	Total	Limits	Margin
(MHz)	(dBµV)	Mode	(H/V)	Factor	Loss	Gain	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			r	Fest Data	for Low	Channe	1			
2 388.54	58.47	Peak	Н	28.30	8.20	44.10	-	50.87	74.00	23.13
2 389.08	-	Average	Н	28.30	8.20	44.10	7.96	42.91	54.00	11.09
2 389.44	57.62	Peak	v	28.30	8.20	44.10	-	50.02	74.00	23.98
2 389.98	-	Average	V	28.30	8.20	44.10	7.96	42.06	54.00	11.94
]	Fest Data 1	for High	Channe	1			
2 483.50	59.40	Peak	Н	28.70	8.33	44.10		52.33	74.00	21.67
2 483.50	-	Average	Н	28.70	8.33	44.10	7.96	44.37	54.00	9.63
2 483.50	55.20	Peak	v	28.70	8.33	44.10		48.13	74.00	25.87
2 483.50	-	Average	v	28.70	8.33	44.10	7.96	40.17	54.00	13.83

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Duty Factor - AMP Gain

9.6.2 Spurious & Harmonic Radiated Emission

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

1 MHz for Peak Mode for the emissions outside restricted band

- -. Video bandwidth : 3 MHz for Peak and Average Mode
- -. Frequency range : 1 GHz ~ 26.5 GHz
- -. Measurement distance : 3 m
- -. Duty Cycle : 40 %
- -. Result : <u>PASSED</u>

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	AMP Gain	Duty Factor (dB)	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)	
Test Data for Low Channel											
4 810.00	57.15	Peak	Н	33.40	11.21	44.10	-	57.66	74.00	16.34	
4 810.00	-	Average	Н	33.40	11.21	44.10	7.96	49.70	54.00	4.30	
4 810.00	57.86	Peak	V	33.40	11.21	44.10	-	58.37	74.00	15.63	
4 810.00	-	Average	V	33.40	11.21	44.10	7.96	50.41	54.00	3.59	
	Test Data for Middle Channel										
4 880.00	57.53	Peak	Н	33.50	11.23	44.10	-	58.16	74.00	15.84	
4 880.00	-	Average	Н	33.50	11.23	44.10	7.96	50.20	54.00	3.80	
4 880.00	57.61	Peak	V	33.50	11.23	44.10	-	58.24	74.00	15.76	
4 880.00	-	Average	V	33.50	11.23	44.10	7.96	50.28	54.00	3.72	
Test Data for High Channel											
4 950.00	56.50	Peak	Н	33.40	11.31	44.10	-	57.11	74.00	16.89	
4 950.00	_	Average	Н	33.40	11.31	44.10	7.96	49.15	54.00	4.85	
4 950.00	56.64	Peak	V	33.40	11.31	44.10	-	57.25	74.00	16.75	
4 950.00	-	Average	v	33.40	11.31	44.10	7.96	49.29	54.00	4.71	

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss - Duty Factor - AMP Gain

This Report is not correlated with the authentication of KOLAS It should not be reproduced except in full, without the written approval of ONETECH Corp.

10. PEAK POWER SPECTRAL DENSITY

10.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	46 % R.H

10.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to 3 kHz \leq RBW \leq 100 kHz, the video bandwidth is set to 3 times the resolution bandwidth.

10.3 Test Date

October 12, 2021 ~ October 22, 2021

10.4 Test data

-. Test Result

: Pass : Continuous transmitting mode -. Operating Condition

Channel	Frequency	Measured Value	Limit	Margin
	(MHZ)	(авш)	(авш)	(UD)
Low	2 405.00	-8.81	8.00	16.81
Middle	2 440.00	-7.96	8.00	15.96
High	2 475.00	-9.10	8.00	17.10

Remark. Margin = Limit – Measured value (=Receiver Reading + Cable Loss)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

It should not be reproduced except in full, without the written approval of ONETECH Corp.

11. RADIATED EMISSION TEST

11.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	46 % R.H.

11.2 Test set-up

The radiated emissions measurements were on the 3 m semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

11.3 Test Date

October 12, 2021 ~ October 22, 2021

Page 30 of 32

11.4 Test data for 30 MHz ~ 1000 MHz

Humidity Level	: <u>46 % R.H.</u>	Temperature: <u>22 °C</u>
Limits apply to	: FCC CFR 47, PART 15, SUBPART C, SECTION 15.247	
Result	: <u>PASSED</u>	
EUT	: BLE/RF4CE Remote controller	
D i i		

Detector

: CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 5 dB

No.	FREQ	READING QP F	ANT ACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1	77.530	27.9	12.9	1.7	32.0	10.5	40.0	29.5	100	119
2	115.360	25.3	17.8	1.9	32.0	13.0	43.5	30.5	100	175
3	172.590	28.2	17.1	2.3	32.0	15.6	43.5	27.9	100	152
4	272.500	25.8	18.4	2.9	32.0	15.1	46.0	30.9	100	135
5	535.370	25.6	23.5	4.0	32.3	20.8	46.0	25.2	100	168
6	838.971	27.7	27.3	5.1	31.9	28.2	46.0	17.8	100	129
Ve	ertical									
7	57.160	27.0	12.4	1.5	32.1	8.8	40.0	31.2	100	138
8	115.360	25.1	17.8	1.9	32.0	12.8	43.5	30.7	100	138
9	172.590	26.7	17.1	2.3	32.0	14.1	43.5	29.4	100	130
10	254.070	26.8	17.9	2.8	32.0	15.5	46.0	30.5	100	138
11	338.460	25.9	19.8	3.2	32.0	16.9	46.0	29.1	100	95
12	478.141	26.7	22.6	3.8	32.3	20.8	46.0	25.2	100	95

This Report is not correlated with the authentication of KOLAS It should not be reproduced except in full, without the written approval of ONETECH Corp.

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

11.5 Test data for Below 30 MHz

-. Resolution bandwidth 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

- -. Measurement distance : 3 m
- -.Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
Emission from the EUT more than 20 dB below the limit in each frequency range.									

11.6 Test data for above 1 GHz

- -. Resolution bandwidth : 1 MHz for Peak and Average Mode
- -. Video bandwidth : 3 MHz for Peak and Average Mode
- -. Frequency range : 1 GHz ~ 26.5 GHz
- -. Measurement distance : 3 m
- -.Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
Emission from the EUT more than 20 dB below the limit in each frequency range.									

12. LIST OF TEST EQUIPMENT

Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
FSV40-N	Rohde & Schwarz	Signal Analyzer	101457	Apr. 16, 2021 (1Y)
ESW	Rohde & Schwarz	EMI Test Receiver	101851	Mar. 23, 2021 (1Y)
310N	Sonoma Instrument	Pre-Amplifier	312544	Mar. 16, 2021 (1Y)
SCU40A	Rohde & Schwarz	Signal Conditioning unit	100436	Feb. 28, 2021 (1Y)
SCU18	Rohde & Schwarz	Signal Conditioning unit	10041	Oct. 14, 2021 (1Y)
DT3000-3t	Innco System	Turn Table	DT3000/093	N/A
CO3000	Innco System	Controller	1026/40960617/P	N/A
MA-4000XPET	Innco System	Antenna Master	MA4000/509	N/A
HLP-2008	TDK RF Solutions	Hybrid Antenna	131316	Feb. 27, 2020 (2Y)
AH-118	Com-Power	Horn Antenna	10050061	Oct. 15, 2021 (1Y)
BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Jan. 07, 2021(1Y)
FMZB 1513	Schwarzbeck	Loop Antenna	1513-235	Mar. 24, 2020 (2Y)
HPF 3GHz	Rohde & Schwarz	High Pass Filter	N/A	Feb. 08, 2021 (1Y)