

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LOW-POWER, NON-LICENSED TRANSMITTER

Test Report No. : E12NR-027

AGR No : A129A-209

Applicant : Remote Solution Co., Ltd.

Address : 92, Chogok-ri, Nam-myun, Kimchon-city, Kyungbuk, 740-871, Korea

Manufacturer : Remote Solution Co., Ltd.

Address : 92, Chogok-ri, Nam-myun, Kimchon-city, Kyungbuk, 740-871, Korea

Type of Equipment : IR&RF Remote

FCC ID. : TX4CRB46A

Model Name : CRB46A

Multiple Model Name : XR5

Serial number : None

Total page of Report : 25 pages (including this page)

Date of Incoming : November 08, 2012

Date of issue : November 14, 2012

SUMMARY

The equipment complies with the regulation; FCC Part 15 Subpart C Section 15.249.

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Prepared by:

Ki-Hong, Nam / Senior Engineer

Ki-Hong, Nam / Senior Engineer ONETECH Corp.

Reviewed by:

Y. K. Kwon / Exe. Managing Director

Y. K. Kwon / Exe. Managing Director ONETECH Corp.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Report No.: E12NR-027

CONTENTS

Report No.: E12NR-027

	PAGE
1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	6
2.1 TEST ITEMS AND RESULTS.	6
2.2 Additions, deviations, exclusions from standards	6
2.3 RELATED SUBMITTAL(S) / GRANT(S)	6
2.4 PURPOSE OF THE TEST	6
2.5 TEST METHODOLOGY	6
2.6 TEST FACILITY	6
3. GENERAL INFORMATION	7
3.1 PRODUCT DESCRIPTION	7
3.2 MODEL DIFFERENCES	7
4. EUT MODIFICATIONS	7
5. SYSTEM TEST CONFIGURATION	8
5.1 JUSTIFICATION	8
5.2 PERIPHERAL EQUIPMENT	8
5.3 MODE OF OPERATION DURING THE TEST	8
5.4 CONFIGURATION OF TEST SYSTEM	8
5.5 ANTENNA REQUIREMENT	8
6. PRELIMINARY TEST	9
6.1 AC Power line Conducted Emissions Tests	9
6.2 GENERAL RADIATED EMISSIONS TESTS	9
7. RADIATED EMISSION TEST	10
7.1 TEST SET-UP	10
7.2 MEASUREMENT UNCERTAINTY	10
7.3 TEST EQUIPMENT USED	10
7.4 FINAL RESULT OF MEASUREMENT	11
7.4.1 Field Strength of the Fundamental Frequency	
7.4.2 Emissions Radiated Outside of the Specified Frequency Bands	
8. 20 DB BANDWIDTH	23
8.1 OPERATING ENVIRONMENT	23
It should not be reproduced except in full, without the written approval of ONETECH.	EMC-003 (Rev.2)

	Page 3 of 25	Report No.: E12NR-027
8.2 TEST SET-UP		23
8.3 TEST EQUIPMENT USED		23

Page 4 of 25 Report No.: E12NR-027

Revision History

Issue Report No.	Issued Date	Revisions	Effect Section
E12NR-027	November 14, 2012	Initial Release	All

Page 5 of 25 Report No.: E12NR-027

1. VERIFICATION OF COMPLIANCE

APPLICANT : Remote Solution Co., Ltd.

ADDRESS : 92, Chogok-ri, Nam-myun, Kimchon-city, Kyungbuk, 740-871, Korea

CONTACT PERSON : Mr. Dae-Gyu, Lim / Assistant Research Engineer

TELEPHONE NO : +82-54-420-4500

FCC ID : TX4CRB46A

MODEL NAME : CRB46A

BRAND NAME : N/A SERIAL NUMBER : N/A

DATE : November 14, 2012

EQUIPMENT CLASS	DXX - Low Power Communications Transmitter
KIND OF EQUIPMENT	IR&RF Remote
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.4: 2009
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED UNDER FCC RULES PART(S)	FCC PART 15 SUBPART C Section 15.249
MODIFICATIONS ON THE EQUIPMENT TO ACHIEVE COMPLIANCE	No
FINAL TEST WAS CONDUCTED ON	3 m, Semi Anechoic Chamber

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 6 of 25 Report No.: E12NR-027

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.249 (a)	Field Strength of Emission	Met the Limit / PASS
15.249 (c)	Measurement distance	Met the Requirement / PASS
15.249 (d)	Emissions Radiated Outside of the Specified Frequency Band	Met the Limit / PASS
15.249 (e)	Radiated Emissions above 1 000 MHz	Met the Limit / PASS
15.209	Radiated Emission Limits, General Requirement	Met the Limit / PASS
15.207	Conducted Limits	N/A (See Note)
15.203	Antenna Requirement	Met the Requirement / PASS

Note: This test is not performed because the EUT is operated by DC battery.

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in section 2.1.

2.5 Test Methodology

Radiated testing was performed according to the procedures in ANSI C63.4: 2009 at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The open area test site and conducted measurement facilities are located on at 301-14, Daessangryung-ri, Chowol-eup, Gwangju-si, Gyeonggi-do, 464-862, Korea. The Onetech Corp. has been accredited as a Conformity Assessment Body (CAB) with designation number KR0013.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 7 of 25 Report No.: E12NR-027

3. GENERAL INFORMATION

3.1 Product Description

The Remote Solution Co., Ltd., Model: CRB46A (referred to as the EUT in this report) is an IR&RF Remote. Product specification information described herein was obtained from product data sheet or user's manual.

h	
DEVICE TYPE	Portable Device
OPERATING FREQUENCY	2 405 MHz ~ 2 480 MHz
RATED RF OUTPUT POWER	0 dBm
ANTENNA TYPE	Inserted into the main board (Pattern Antenna)
MODULATION	O-QPSK
Tx DATA SPEED	250 kbps
USED RF CHIP	Maker: GreenPeak, Model Name: GP541
LIST OF EACH OSC. OR	
CRY. FREQ.(FREQ. >= 1 MHz)	16 MHz
RATED SUPPLY VOLTAGE	DC 3 V from a battery

3.2 Model Differences

-. The following lists consist of the added model and their differences.

Model Name	Differences	Tested
CRB46A	Basic Model	V
XR5	This model is identical to basic model except for model designation only according to buyer's request.	

Note: 1. Applicant consigns only basic model to test. Therefore this test report just guarantees the units, which have been tested.

2. The Applicant/manufacturer is responsible for the compliance of all variants.

4. EUT MODIFICATIONS

-. None

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 8 of 25 Report No.: E12NR-027

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID	
Main Board	Remote Solution Co., Ltd.	CRB46A XR5 1BF-1015A	N/A	

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested: None

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting is programmed.

For final testing, the EUT was set at Low Channel (2 405 MHz), Middle Channel (2 450 MHz), and High Channel (2 480 MHz). To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis.

5.4 Configuration of Test System

Line Conducted Test

: It is not need to test this requirement, because the EUT shall be operated by DC

battery.

Radiated Emission Test

: Preliminary radiated emissions test were conducted using the procedure in ANSI C63.4: 2009 8.3.1.1 and 13.4.1 to determine the worse operating conditions. Final radiated emission tests were conducted at 3 m open area test site.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once maximum reading was determined, the search antenna was raised and lowered in both vertical and horizontal polarization.

5.5 Antenna Requirement

According to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is a pattern antenna on the main board in the EUT, so no consideration of replacement by the user.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 9 of 25 Report No.: E12NR-027

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

During Preliminary Tests, the following operating mode was investigated

Operation Mode	The Worse operating condition (Please check one only)
It is not need to test this requirement, beca	use the power of the EUT is supplied by battery.

6.2 General Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
TX Mode	X

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

7. RADIATED EMISSION TEST

7.1 Test set-up

The radiated emissions measurements were on the 3 m, semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from up to 25 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

Test set-up photos are included in appendix I.

7.2 Measurement uncertainty

Radiated emission electric field intensity, 0.15 MHz \sim 30 MHz : \pm 2.61 dB Radiated emission electric field intensity, 30 MHz \sim 300 MHz : \pm 4.43 dB Radiated emission electric field intensity, 300 MHz \sim 1 000 MHz : \pm 3.80 dB Radiated emission electric field intensity, 1 000 MHz \sim 3 000 MHz: \pm 4.40 dB

Measurement uncertainty is calculated in accordance with CISPR 16-4-2. The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
□ -	ESCI	Rohde & Schwarz	EMI Test Receiver	101012	Feb. 06, 2012 (1Y)
■ -	ESU	Rohde & Schwarz	EMI Test Receiver	100261	Sep. 11, 2012 (1Y)
□ -	8564E	HP	Spectrum Analyzer	3650A00756	Apr. 04, 2012 (1Y)
□ -	FSP	Rohde & Schwarz	Spectrum Analyzer	100017	Mar 12, 2012(1Y)
■ -	310N	Sonoma Instrument	AMPLIFIER	312544	Oct. 11, 2012(1Y)
■ -	FSV30	Rohde & Schwarz	Signal Analyzer	101372	May 31, 2012(1Y)
■ -	SCU-18	Rohde & Schwarz	PRE-AMPLIFIER	10041	Dec. 15, 2011 (1Y)
■ -	MA240	HD GmbH	Antenna Master	N/A	N/A
■ -	HD100	HD GmbH	Position Controller	N/A	N/A
■ -	DS420S	HD GmbH	Turn Table	N/A	N/A
■ -	HFH2-Z2	Rohde & Schwarz	Loop Antenna	889 285 / 26	Nov. 08, 2010(2Y)
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	VULB9163-255	Apr. 24, 2012(2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D294	Jun. 17, 2011 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Jun. 17, 2011 (2Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH. EMC-003 (Rev.2)

7.4 Final Result of Measurement

7.4.1 Field Strength of the Fundamental Frequency

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Humidity Level : 38 % R.H. Temperature: 20 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249(a)

Result : PASSED

EUT : IR&RF Remote Date: November 13, 2012

Operating Condition : TX mode
Distance : 3 m

	Radiated Emissions		Ant	Correction Factors			Total	FCC Limit		
Channel	Carrier Freq. (MHz)	Amplitude (dBµV)	Detect Mode	Pol.	Antenna (dB/m)	Cable (dB)	Pre-Amp (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
		101.00	Peak	Н				90.07	113.98	23.91
_		97.50	Average	Н				86.57	93.98	7.41
Low	2 405.00	99.43	Peak	V	27.15	5.02	2 43.10	88.50	113.98	25.48
		93.50	Average	V				82.57	93.98	11.41
	2 450.00	100.80	Peak	Н		5.04	43.10	89.96	113.98	24.02
		97.00	Average	Н				86.16	93.98	7.82
Middle		99.00	Peak	V	27.22			88.16	113.98	25.82
		93.10	Average	V				82.26	93.98	11.72
		99.80	Peak	Н				89.04	113.98	24.94
High	2 480.00	96.50	Average	Н				85.74	93.98	8.24
		98.40	Peak	V	27.28 5.	5.06	43.10	87.64	113.98	26.34
		92.83	Average	V				82.07	93.98	11.91

^{*}Remark: To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes,

but the worst plane data were recorded in the report.

 $Margin \; (\; dB) = Limit \; (dBuV/m) - Total \; (dBuV/m)$

Total = Reading + Antenna Factor + Cable Loss - Pre-amplifier gain.

公八喜

Report No.: E12NR-027

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 12 of 25 Report No.: E12NR-027

7.4.2 Emissions Radiated Outside of the Specified Frequency Bands

7.4.2.1 Test Data for Harmonic

Humidity Level : 38 % R.H. Temperature: 20 °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249(a)

Result : PASSED

EUT : IR&RF Remote Date: November 13, 2012

Operating Condition : TX mode
Distance : 3 m

Channel	Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Pre-Amp (dB)	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)		
		58.20	Peak	Н				53.44	73.98	20.54		
		51.50	Average	Н			42.80	46.74	53.98	7.24		
Low	4 810.00*	55.50	Peak	V	31.14	6.90		50.74	73.98	23.24		
		46.25	Average	V				41.49	53.98	12.49		
	Other frequencies were not found up to 25 GHz.											
	4 900.00*	55.83	Peak	Н	31.22	6.93		51.18	73.98	22.80		
		50.00	Average	Н			4.00	45.35	53.98	8.63		
Middle		53.00	Peak	V			42.80	48.35	73.98	25.63		
		40.83	Average	V				36.18	53.98	17.80		
		Other frequencies were not found up to 25 GHz.										
		54.50	Peak	Н				49.97	73.98	24.01		
		48.50	Average	Н				43.97	53.98	10.01		
High	4 960.00*	52.50	Peak	V	31.30	6.97	42.80	47.97	73.98	26.01		
		40.12	Average	V				35.59	53.98	18.39		
			Oth	er frequenci	es were no	t found u	p to 25 GH	Z.				

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical, "*" Frequency fall in restricted band

Margin (dB) = Limit (dBuV/m) – Total (dBuV/m)

Total = Reading + Antenna Factor + Cable Loss - Pre-amplifier gain.

公八喜

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 13 of 25 Report No.: E12NR-027

7.4.2.2 Test Data for Frequency range: 30 MHz ~ 1 000 MHz

Humidity Level : <u>38 % R.H.</u> Temperature: <u>20 °C</u>

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d)

Result : PASSED

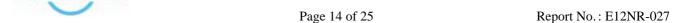
EUT : IR&RF Remote Date: November 13, 2012

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

Operating condition : Low Channel

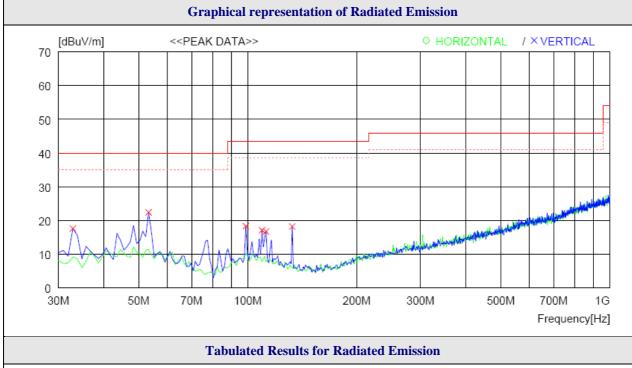
		Gra	phical rep	resentation o	f Radiated	Emission				
70 [dBuV/	m]	< <peak [<="" th=""><th>DATA>></th><th></th><th></th><th>O HORI</th><th>ZONTAL</th><th>/ ×</th><th>VERTI</th><th>CAL</th></peak>	DATA>>			O HORI	ZONTAL	/ ×	VERTI	CAL
70										
60										
50		+++								
40										
40										
30	×								<u>.</u>	القمادا
20	+	+	**				ALL AND	A-Haranda	and the second	
10			11 Mal.		· · · · · · · · · · · · · · · · · · ·	Silver Proportion of the State	ale political in the same			
" ~		J. AVIN	Marsagen	modernologie	ACID TOP TO SERVICE STATE OF THE SERVICE STATE OF T					
0 ☐ 30M	50M	70M	100M		200M 3	L BOOM	5001	И	700M	10
								1	Freque	ncy[Hz
		T	abulated l	Results for R	adiated Em	ission				
No.			ANT LOS	S GAIN R	ESULT LI	MIT MAF	RGIN AN	NTENI	NA TAI	BLE
			CTOR [dB] [dE	[dB] [dB]	dBuV/m] [dBi	uV/m] [dE	3]	[cm]	[DE	:G]

			Tabula	icu Kest	1113 101	Radiated	Elilission				
No.	FREQ	READING PEAK F	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE	
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]	
Ho	orizontal -										
1	304.510	30.2	14.9	3.3	32.9	15.5	46.0	30.5	100	74	
Ve	ertical										
2 3 4 5 6	51.340 78.500 102.750 110.510 262.800	42.5 36.3 37.3 37.5 31.5	15.0 8.8 13.4 12.5 13.9	1.2 1.6 1.8 1.9 3.0	33.1 33.1 33.0 33.0 32.9	25.6 13.6 19.5 18.9 15.5	40.0 40.0 43.5 43.5 46.0	14.4 26.4 24 24.6 30.5	100 100 100 100 100	101 54 0 0 294	


Remark: Margin (dB) = Limit – Result and Result = Reading Peak + Antenna Factor + Loss – Gain Loss and Gain in above table means Cable Loss and Pre-amplifier gain.

<u>~718.</u>

Tested by: Ki-Hong, Nam / Senior Engineer


It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

ONETECH

			Tabu	llated Ro	esults for	Radiated 1	Emission			
No.	FREQ	READING PEAK	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
V	Vertical									
1	32.910	36.6	13.2	0.9	33.1	17.6	40.0	22.4	100	226
2	53.280	39.5	14.8	1.2	33.1	22.4	40.0	17.6	100	156
3	98.870	36.1	13.4	1.8	33.0	18.3	43.5	25.2	100	0
4	109.540		12.6	1.9	33.0	17.1	43.5	26.4	100	136
5	112.450	35.5	12.3	1.9	33.0	16.7	43.5	26.8	100	198
6	132.820	39.1	10.0	2.1	33.0	18.2	43.5	25.3	100	245

Remark: Margin (dB) = Limit – Result and Result = Reading Peak + Antenna Factor + Loss – Gain Loss and Gain in above table means Cable Loss and Pre-amplifier gain.

Tested by: Ki-Hong, Nam / Senior Engineer

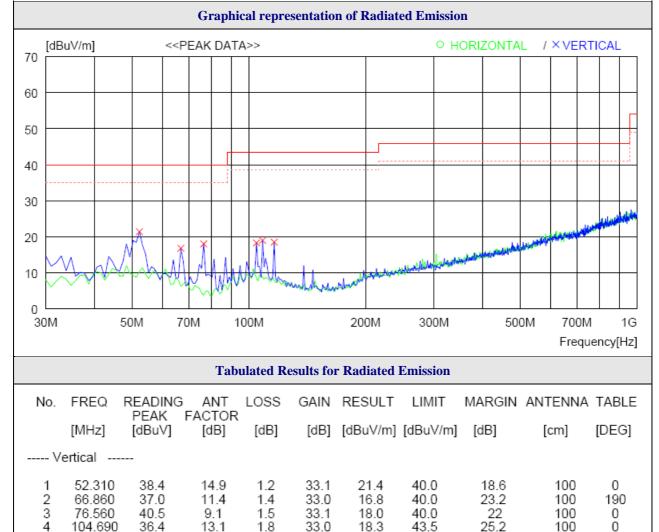
It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

5

108.570

116.330


37.4

37.7

12.7

11.9

Operating condition : High Channel

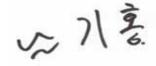
Remark: Margin (dB) = Limit - Result and Result = Reading Peak + Antenna Factor + Loss - Gain Loss and Gain in above table means Cable Loss and Pre-amplifier gain.

33.0

33.0

19.0

18.5


43.5

43.5

24.5

1.9

1.9

100

100

0

19

Report No.: E12NR-027

Tested by: Ki-Hong, Nam / Senior Engineer

Page 16 of 25 Report No.: E12NR-027

7.4.2.3 Test Data for Below 30 MHz

Humidity Level : <u>38 % R.H.</u> Temperature: <u>20 °C</u>

Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

Frequency range : 9 kHz ~ 30 MHz

Measurement distance : 3 m

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d)

Result : PASSED

EUT : IR&RF Remote Date: November 13, 2012

Detector : CISPR Quasi-Peak (Resolution Bandwidth: 9 kHz)

Frequen (MHz)	Reading (dBµV)	Ant. Height (m)	0	Ant. Factor (dB/m)	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)

It was not observed any emissions from the EUT.

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 17 of 25 Report No.: E12NR-027

7.4.2.4 Test Data above 1 GHz except for harmonic

-. Test Date : November 13, 2012

- . Humidity Level : 38 % R.H.-. Temperature $: 20 \degree \text{C}$

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 25 GHz

-. Measurement distance : 3 m

-. Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d)

- Result : PASSED

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)

It was not observed any emissions from the EUT.

公八喜

Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.2)

Page 18 of 25 Report No.: E12NR-027

7.4.2.5 Band Edge

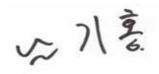
-. Test Date : November 13, 2012

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m

-. Operating Condition : Low / High Channel


-. Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d)

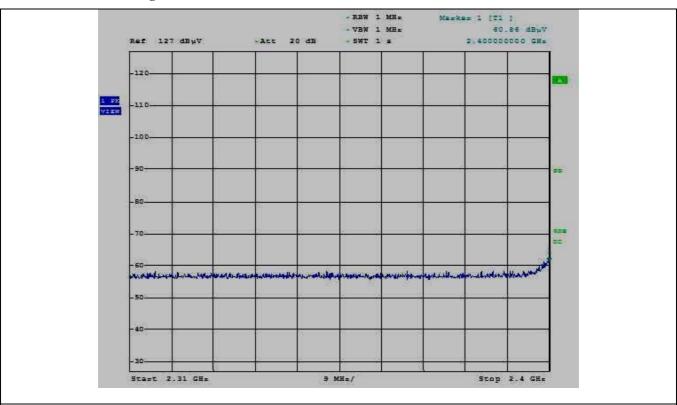
-. Result : <u>PASSED</u>

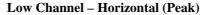
Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Pre-Amp (dB)	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)	
Test Data for Low Channel										
2 400.00	60.88	Peak	Н		3.14 43.		47.97	74.00	26.03	
2 400.00	50.55	Average	Н				37.64	54.00	16.36	
2 400.00	58.78	Peak	V	27.05		43.10	45.87	74.00	28.13	
2 400.00	48.78	Average	V				35.87	54.00	-18.13	
			Tes	t Data for	r High Cha	nnel				
2 483.50	64.64	Peak	Н				52.02	74.00	21.98	
2 483.50	53.33	Average	Н			43.10	40.71	54.00	13.29	
2 483.50	62.02	Peak	V	27.31	3.17		49.40	74.00	24.60	
2 483.50	50.55	Average	V		 -		37.93	54.00	16.07	

Remark. Margin (dB) = Limit (dBuV/m) – Total (dBuV/m)

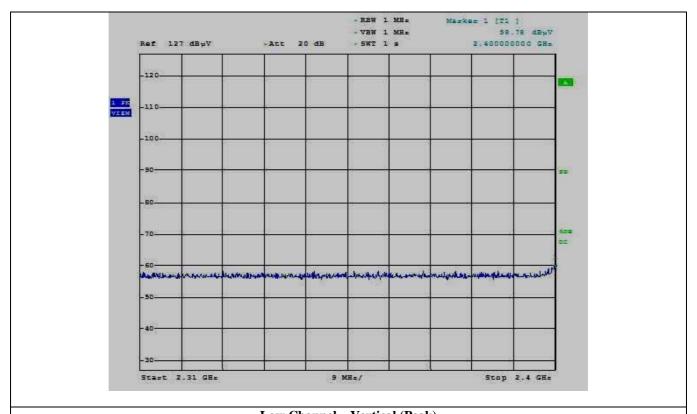
Total = Reading + Antenna Factor + Cable Loss - Pre-amplifier gain.

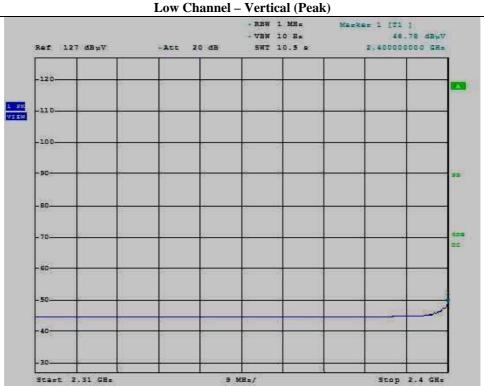
Tested by: Ki-Hong, Nam / Senior Engineer


It should not be reproduced except in full, without the written approval of ONETECH.


EMC-003 (Rev.2)

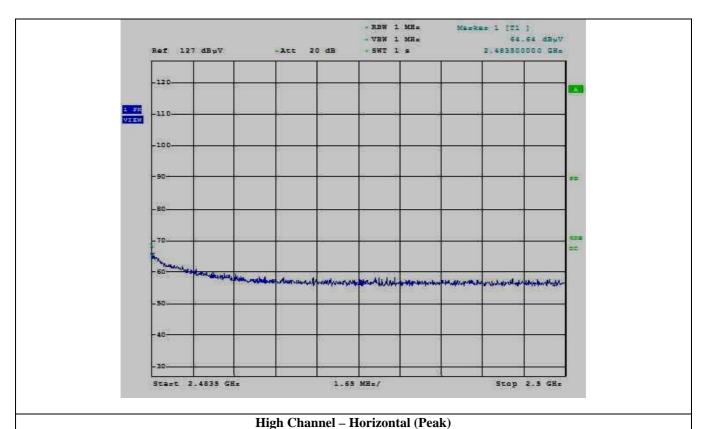
Plotted Data for band edge

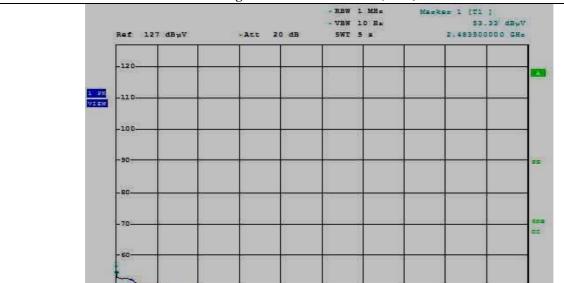




Low Channel - Horizontal (Average)

Report No.: E12NR-027

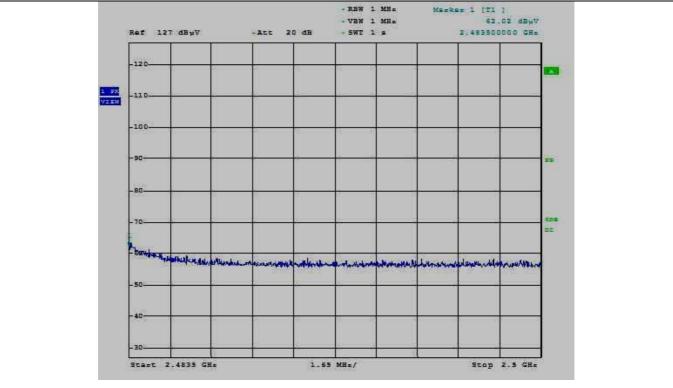



Report No.: E12NR-027

9 MHz/

Low Channel - Vertical (Average)

High Channel - Horizontal (Average)


1.65 MHz/

Start 2.4835 GHz

Stop 2.5 GHz

Report No.: E12NR-027

Report No.: E12NR-027

High Channel – Vertical (Average)

Page 23 of 25 Report No.: E12NR-027

8. 20 dB BANDWIDTH

8.1 Operating environment

Temperature : $25 \, ^{\circ}\text{C}$

Relative humidity : 54 % R.H.

8.2 Test set-up

The output signal of EUT was received by the spectrum analyzer. The resolution bandwidth is set to 10 kHz, and peak detection was used. The 20 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 20 dB.

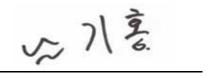
EUT

Spectrum analyzer

8.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
-	FSV30	R/S	Spectrum Analyzer	101372	May 31, 2012 (1Y)

8.4 Test data for Bandwidth

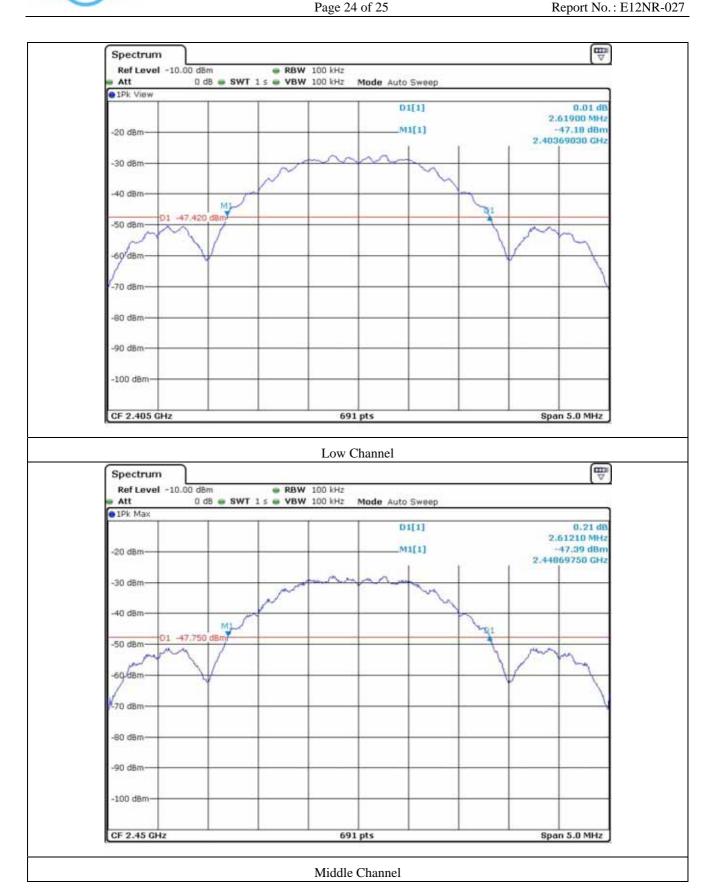

-. Test Date : November 09, 2012

-. Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.215(c)

Channel	Operating Freq. (MHz)	20 dB Bandwidth (kHz)	Result
Low	2 405.00	2 619.0	
Middle	2 450.00	2 612.1	Met the requirement / PASS
High	2 480.00	2 626.0	

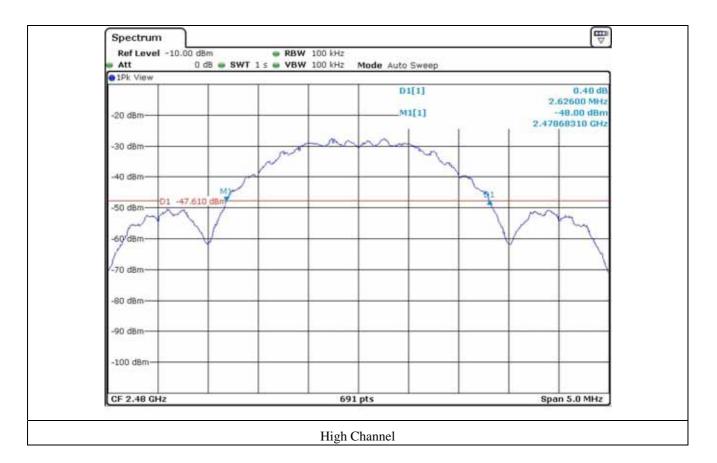
Remark: See next page for 20 dB Bandwidth test data.

The 20 dB bandwidth is within the assigned frequency band from 2 400 MHz to 2 483.5 MHz.



Tested by: Ki-Hong, Nam / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.


EMC-003 (Rev.2)

Report No.: E12NR-027