

Appendix B. Maximum Permissible Exposure

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz UNII Band:

Antenna Type : PIFA Antenna

Conducted Power for IEEE 802.11ac VHT20 : 20.77dBm

Distance (m)	Directional Gain (dBi)	Antenna Gain (numeric)	The maximum combined Average Output Power		Density (S)	Limit of Power Density (S)	Test Result
(iii)			(dBm)	(mW)	(mW/cm²)	(mW/cm ²)	
0.2	8.01	6.3246	20.7715	119.4387	0.150358	1	Complies
Note:		[~	[~~ l"]	1			

 $DirectionalGain = 10 \cdot \log \left| \frac{\sum_{j=1}^{2} \sum_{k=1}^{N} \frac{g_{j,k}}{N_{ANT}}}{N_{ANT}} \right|$

For 5GHz ISM Band:

Antenna Type : PIFA Antenna

Conducted Power for IEEE 802.11ac VHT40: 20.97dBm

Distance	Directional	Antenna Gain		The maximum combined Average Output Power		Limit of Power	Test Result
(m)	Gain	(numeric)	(dBm)	(mW)	Density (S) (mW/cm²)	Density (S) (mW/cm²)	iesi kesuii
0.2	8.01	6.3246	20.9653	124.8908	0.157221	1	Complies
Note:	ctionalGain =	= $10 \cdot \log \left[\frac{\sum_{j=1}^{N_{max}}}{\sum_{j=1}^{N_{max}}} \right]$	$\frac{\left\{\sum_{k=1}^{N} g_{j,k}\right\}^{2}}{N_{ANT}}$				

For 2.4GHz Band:

For WLAN

Antenna Type : PIFA Antenna

Conducted Power for IEEE 802.11n 20: 20.95 dBm

Distance Directiona (m) Gain (dBi	Directional	Antenna Gain The maximum co Average Outpu			Power Density (S)	Limit of Power	Test Result
	Gain (dBi)	Gain (dBi) (numeric)	(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)	
0.2	6.51	4.4774	20.9504	124.4630	0.110923	1	Complies

Note:

$$alGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{\infty} \left\{ \sum_{k=1}^{\infty} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

For Bluetooth

Antenna Type : PIFA Antenna

Max Conducted Power for Bluetooth ER (GFSK) 1Mbps : 3.32 dBm

	Antenna	Antenna Gain (dBi) Antenna Gain (numeric)	Average Output Power		Power Density (S)	Limit of Power	Test Result
	Gain (dBi)		(dBm)	(mW)		Density (S) (mW/cm²)	
0.2	3.50	2.2387	3.3200	2.1478	0.000957	1	Complies

Max Conducted Power for Bluetooth 4.0: 3.24 dBm

	Antenna		Anienna Gain	Average O	Average Output Power		Limit of Power Density (S) (mW/cm ²)	Test Result
	Gain (dBi)	Gain (dBi) (numeric)	(dBm)	(mW)	Density (S) (mW/cm²)			
0.2	3.50	2.2387	3.2400	2.1086	0.000940	1	Complies	

CONCULSION:

Both of the WLAN 2.4GHz Band and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.110923 / 1 + 0.000957 / 1 = 0.11188, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

Both of the WLAN 5GHz Band and Bluetooth can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.157221 / 1 + 0.000957 / 1 = 0.158178, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.