Calibration Laboratory of
 Schmid \& Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

$s W I S_{S}$
0
2
$1 B R A<$

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Sporton (Auden)

Certificate No: D2450V2-736_Jul11

CALIBRATION CERTIFICATE

Object
D2450V2 - SN: 736

Calibration procedure(s)
QA CAL-05.v8
Calibration procedure for dipole validation kits above 700 MHz

Calibration date:
July 25, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Centificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	29-Apr-11 (No. ES3-3205_Apr11)	Apr-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jus-12
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R \& S SMT-06	100005	04-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: July 25, 2011
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) Federal Communications Commission Office of Engineering \& Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.2	$1.80 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.9 \pm 6 \%$	$1.85 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	---

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$13.9 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 4 . 8} \mathbf{~ m W} / \mathbf{g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	250 mW input power	$6.44 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 6} \mathbf{~ m W} / \mathbf{g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.7	$1.95 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$\langle 22.0 \pm 0.2)^{\circ} \mathrm{C}$	$51.7 \pm 6 \%$	$2.00 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	----

SAR result with Body TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Body TSL }}$	Condition	
SAR measured	250 mW input power	$13.3 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{5 2 . 3} \mathrm{~mW} / \mathrm{g} \pm \mathbf{1 7 . 0} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{\mathbf{3}} \mathbf{(1 0 ~ g)}$ of Body TSL	condition	
SAR measured	250 mW input power	$6.18 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Body TSL parameters	normalized to $\mathbf{1 W}$	$\mathbf{2 4 . 5} \mathbf{~ m W} / \mathbf{g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.4 \Omega+1.5 \mathrm{j} \Omega$
Return Loss	-27.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.8 \Omega+2.8 \mathrm{j} \Omega$
Return Loss	-30.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.159 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 26, 2003

DASY5 Validation Report for Head TSL

Date: 25.07.2011
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN: 736
Communication System: CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.85 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.9 ; \mathrm{p}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Head Tissue/Pin= $\mathbf{2 5 0} \mathbf{m W}$, $\mathbf{d = 1 0 m m} /$ Zoom Scan ($7 \times 7 \times 7$)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=98.095 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.09 \mathrm{~dB}$
Peak SAR (extrapolated) $=28.615 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(\mathbf{1} \mathrm{g})=\mathbf{1 3 . 9} \mathbf{m W} / \mathrm{g} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{6 . 4 4} \mathbf{~ m W} / \mathrm{g}$
Maximum value of SAR (measured) $=18.121 \mathrm{~mW} / \mathrm{g}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN: 736
Communication System: CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=2 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011
- Sensor-Surface: 3 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.6.2(482); SEMCAD X 14.4.5(3634)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=96.550 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.02 \mathrm{~dB}$
Peak SAR (extrapolated) $=27.432 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.3 \mathrm{~mW} / \mathrm{g} ; \operatorname{SAR}(10 \mathrm{~g})=6.18 \mathrm{~mW} / \mathrm{g}$
Maximum value of SAR $($ measured $)=17.294 \mathrm{~mW} / \mathrm{g}$

Impedance Measurement Plot for Body TSL

D2450V2, serial no. 736 Extended Dipole Calibrations

Referring to KDB 865664 D01v01r01, if dipoles are verified in return loss (<-20dB, within 20\% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

<Justification Procedure of Extended Dipole Calibration>

1. Setup a Network Analyzer (Agilent N5230A) and set the start frequency and stop frequency to Network Analyzer according to the dipole frequency, at least $+/-200 \mathrm{MHz}$ around the calibration point.
2. Using calibration kit to perform Network Analyzer Open, Short and Load calibration.
3. Connect the dipole with the calibrated Network Analyzer.
4. Place the dipole underneath the phantom which is filled with head-simulating or body-simulating liquid.
5. Set the Network Analyzer frequency by the dipole calibration frequency. Monitor the return-loss and impedance results with Log Magnitude format and Smith Chart, respectively.
6. Record the result and compare with the prior calibration. Please check the Appendix C for detail records.
<Justification of the extended calibration>

D2450V2 - serial no. 736												
	2450 Head						2450 Body					
Date of Measurement	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (\%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
7.25.2011	-27.042		54.398		1.4805		-30.696		50.812		2.8262	
7.25.2012	-27.950	-3.365	52.541	1.857	0.77343	0.707	-31.781	-3.535	50.572	0.24	1.5953	1.2309

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.
<Dipole Verification Data> - D2450 V2, serial no. 736 (Date of Measurement : 7.25.2012)

2450 MHz - Head

SPORTON INTERNATIONAL INC.

TEL : 886-3-327-3456
FAX : 886-3-328-4978

2450 MHz - Body

TEL : 886-3-327-3456
FAX : 886-3-328-4978

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client Amphenol-TW (Auden)
Certificate No: DAE3-495_May13
CALIBRATION CERTIFICATE

Object

$$
\text { DAE3 - SD } 000 \text { D03 AA - SN: } 495
$$

Calibration procedure(s)
QA CAL-06.v26
Calibration procedure for the data acquisition electronics (DAE)

Calibration date:
May 08, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID\#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	02-Oct-12 (No:12728)	Oct-13
Secondary Standards		Check Date (in house)	
Auto DAE Calibration Unit Calibrator Box V2.1	SE UWS 053 AA 1001	07-Jan-13 (in house check)	Scheduled Check

	Name	Function	Signature
Calibrated by:	R.Mayoraz	Technician	Reugery
Approved by:	Fin Bomholt	Deputy Technical Manager	

Issued: May 8, 2013
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics
Connector angle
information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at $+10 \%$ and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- $A D$ Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: $\quad 1 \mathrm{LSB}=\quad 6.1 \mu \mathrm{~V}, \quad$ full range $=-100 \ldots+300 \mathrm{mV}$
Low Range: $\quad 1 \mathrm{LSB}=\quad 61 \mathrm{nV}, \quad$ full range $=-1 \ldots \ldots .+3 \mathrm{mV}$
DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

Calibration Factors	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
High Range	$404.352 \pm 0.02 \%(\mathrm{k}=2)$	$405.328 \pm 0.02 \%(\mathrm{k}=2)$	$405.665 \pm 0.02 \%(\mathrm{k}=2)$
Low Range	$3.95207 \pm 1.50 \%(\mathrm{k}=2)$	$3.99043 \pm 1.50 \%(\mathrm{k}=2)$	$3.96554 \pm 1.50 \%(\mathrm{k}=2)$

Connector Angle

Connector Angle to be used in DASY system $78.0^{\circ} \pm 1^{\circ}$

Appendix

1. DC Voltage Linearity

High Range	Reading ($\mu \mathbf{V}$)	Difference $(\mu \mathbf{V})$	Error (\%)	
Channel X	+ Input	199989.76	-4.83	-0.00
Channel X	+ Input	20001.54	1.31	0.01
Channel X	- Input	-19995.66	4.92	-0.02
Channel Y	+ Input	199995.02	0.52	0.00
Channel Y	+ Input	19999.41	-0.85	-0.00
Channel Y	- Input	-19999.04	1.61	-0.01
Channel Z	+ Input	199994.06	-0.35	-0.00
Channel Z	+ Input	20002.32	2.10	0.01
Channel Z	- Input	-19998.30	2.51	-0.01

Low Range		Reading $(\mu \mathbf{V})$	Difference $(\mu \mathbf{V})$	Error (\%)
Channel \mathbf{X}	+ Input	2001.20	0.48	0.02
Channel \mathbf{X}	+ Input	201.11	0.01	0.00
Channel \mathbf{X}	- Input	-198.46	0.25	-0.12
Channel \mathbf{Y}	+ Input	2000.81	0.07	0.00
Channel \mathbf{Y}	+ Input	200.89	-0.19	-0.09
Channel \mathbf{Y}	- Input	-198.51	0.20	-0.10
Channel Z	+ Input	2000.56	-0.12	-0.01
Channel Z	+ Input	199.55	-1.51	-0.75
Channel Z	- Input	-199.07	-0.42	0.21

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading $(\mu \mathrm{V})$	Low Range Average Reading $(\mu \mathrm{V})$
Channel X	200	3.21	2.06
	-200	-1.80	-2.79
Channel \mathbf{Y}	200	0.11	-0.16
	-200	-1.32	-1.56
Channel Z	200	3.11	2.75
	-200	-4.96	-4.85

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

	Input Voltage (mV)	Channel $\mathbf{X}(\mu \mathrm{V})$	Channel $\mathrm{Y}(\mu \mathrm{V})$	Channel $\mathbf{Z}(\mu \mathrm{V})$
Channel \mathbf{X}	200	-	-1.15	-2.03
Channel \mathbf{Y}	200	7.90	-	-0.39
Channel \mathbf{Z}	200	5.07	5.33	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15807	16438
Channel Y	15756	16559
Channel Z	15893	15989

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec
input 10M Ω

	Average ($\mu \mathbf{V}$)	min. Offset $(\mu \mathbf{V})$	max. Offset $(\mu \mathbf{V})$	Std. Deviation $(\mu \mathbf{V})$
Channel \mathbf{X}	-3.55	-4.78	-2.32	0.53
Channel \mathbf{Y}	0.18	-1.48	1.84	0.63
Channel \mathbf{Z}	-0.04	-1.63	1.85	0.71

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA
7. Input Resistance (Typicai values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	
Supply (-Vcc)	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (-Vcc)	-0.01	-8	-9

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
Sporton -TW (Auden)
Accreditation No: : SCS 108

CALIBRATION CERTIFICATE

EX3DV4-SN:3925

Calibration procedure(s)
QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:
June 12, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature ($22 \pm 3)^{\circ} \mathrm{C}$ and hurnidity $<70 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID	Cal Date (Cerificate No.)	Scheduled Calibration
Power meter E4419B	GB.41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 30 B Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Labction
Approved by:	Latja Pokovic	Technical Manager Technician
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.		

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL
NORM x, y, z
ConvF
DCP tissue simulating liquid
sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor ($1 /$ duty_cycle) of the RF signal
A, B, C, D
Polarization φ modulation dependent linearization parameters φ rotation around probe axis
Polarization ϑ I rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta=0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMX,y;z: Assessed for E-field polarization $\vartheta=0$ ($f \leq 900 \mathrm{MHz}$ in TEM-cell; $\mathrm{f}>1800 \mathrm{MHz}$: R22 waveguide). NORM x, y, z are only intermediate values, i.e., the uncertainties of NORM x, y, z does not affect the E^{2}-field uncertainty inside TSL (see below ConvF).
- NORM(f) $x, y, z=\operatorname{NORMx,y,z*}$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $D C P x, y, z$: DCP are numerical linearization parameters assessed based on the data of power sweep with $C W$ signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; $B x, y, z ; C x, y, z ; D x, y, z ; V R x, y, z: A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. $V R$ is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800 \mathrm{MHz}$) and inside waveguide using analytical field distributions based on power measurements for $\mathrm{f}>800 \mathrm{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \mathrm{MHz}$ to ± 100 MHz .
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3925

Manufactured: March 8, 2013
Calibrated: June 12, 2013

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

Basic Calibration Parameters

	Sensor X	Sensor \mathbf{Y}	Sensor \mathbf{Z}	Unc $(\mathbf{k}=\mathbf{2})$
Norm $\left(\mu \mathrm{V} /(\mathrm{V} / \mathrm{m})^{2}\right)^{\mathrm{A}}$	0.59	0.52	0.50	$\pm 10.1 \%$
DCP $(\mathrm{mV})^{\mathrm{B}}$	98.2	98.5	98.1	

Modulation Calibration Parameters

UID	Communication System Name		$\begin{gathered} \mathrm{A} \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~dB} \sqrt{\mu} \mathrm{~V} \end{gathered}$	C	$\begin{gathered} \mathrm{D} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \hline \mathrm{VR} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { Unc }^{E} \\ & (\mathrm{k}=2) \end{aligned}$
0	CW	X	0.0	0.0	1.0	0.00	134.8	$\pm 3.5 \%$
		Y	0.0	0.0	1.0		175.7	
		Z	0.0	0.0	1.0		169.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^0]
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

Calibration Parameter Determined in Head Tissue Simulating Media

$\mathbf{f (M H z) ^ { c }}$	Relative Permittivity F	Conductivity $(\mathbf{S} / \mathrm{m})^{F}$	ConvF X	ConvF Y	ConvF Z	Alpha	Depth $(\mathbf{m m})$	Unct. $(\mathbf{k}=\mathbf{2})$
750	41.9	0.89	10.34	10.34	10.34	0.44	0.80	$\pm 12.0 \%$
835	41.5	0.90	9.87	9.87	9.87	0.29	0.99	$\pm 12.0 \%$
1750	40.1	1.37	8.36	8.36	8.36	0.56	0.72	$\pm 12.0 \%$
1900	40.0	1.40	8.13	8.13	8.13	0.37	0.91	$\pm 12.0 \%$
2150	39.7	1.53	7.89	7.89	7.89	0.54	0.74	$\pm 12.0 \%$
2450	39.2	1.80	7.25	7.25	7.25	0.59	0.72	$\pm 12.0 \%$
5200	36.0	4.66	5.25	5.25	5.25	0.30	1.80	$\pm 13.1 \%$
5300	35.9	4.76	5.01	5.01	5.01	0.30	1.80	$\pm 13.1 \%$
5500	35.6	4.96	4.89	4.89	4.89	0.30	1.80	$\pm 13.1 \%$
5600	35.5	5.07	4.73	4.73	4.73	0.30	1.80	$\pm 13.1 \%$
5800	35.3	5.27	4.48	4.48	4.48	0.40	1.80	$\pm 13.1 \%$

${ }^{c}$ Frequency validity of $\pm 100 \mathrm{MHz}$ only appies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
F At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and σ) is restricted to $\pm 5 \%$. The uncertainty is the $R S S$ of the ConvF uncertainty for indicaled target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

Calibration Parameter Determined in Body Tissue Simulating Media

$\mathrm{f}(\mathrm{MHz})^{\mathrm{C}}$	Relative Permittivity	Conductivity $(\mathrm{S} / \mathrm{m})^{\mathrm{F}}$	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. $(k=2)$
750	55.5	0.96	10.24	10.24	10.24	0.34	0.99	$\pm 12.0 \%$
835	55.2	0.97	10.02	10.02	10.02	0.47	0.84	$\pm 12.0 \%$
1750	53.4	1.49	8.31	8.31	8.31	0.79	0.61	$\pm 12.0 \%$
1900	53.3	1.52	7.91	7.91	7.91	0.36	0.91	$\pm 12.0 \%$
2150	53.1	1.66	7.80	7.80	7.80	0.64	0.66	$\pm 12.0 \%$
2450	52.7	1.95	7.44	7.44	7.44	0.80	0.57	$\pm 12.0 \%$
5200	49.0	5.30	4.41	4.41	4.41	0.40	1.90	$\pm 13.1 \%$
5300	48.9	5.42	4.26	4.26	4.26	0.40	1.90	$\pm 13.1 \%$
5500	48.6	5.65	3.98	3.98	3.98	0.45	1.90	$\pm 13.1 \%$
5600	48.5	5.77	3.78	3.78	3.78	0.50	1.90	$\pm 13.1 \%$
5800	48.2	6.00	4.00	4.00	4.00	0.50	1.90	$\pm 13.1 \%$

[^1]
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3 \%$ ($k=2$)

Receiving Pattern (ϕ), $\vartheta=0^{\circ}$

Dynamic Range $f\left(S_{\text {SAR }}^{\text {head }}\right.$) (TEM cell , $\mathbf{f}=900 \mathrm{MHz}$)

Uncertainty of Linearity Assessment: $\pm 0.6 \%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, ϑ), $f=900 \mathrm{MHz}$

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3925

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle ${ }^{\circ}$)	-93.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

[^0]: The uncertainties of NormX,Y,Z do not affect the E^{2}-field uncertainty inside TSL (see Pages 5 and 6)
 ${ }^{3}$ Numerical linearization parameter: uncertainty not required.
 E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

[^1]: ${ }^{c}$ Frequency validity of $\pm 100 \mathrm{MHz}$ only applies for DASY v4.4 and higher (see Page 2), else it is restricted to $\pm 50 \mathrm{MHz}$. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
 ${ }^{F}$ At frequencies below 3 GHz , the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10 \%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz , the validity of tissue parameters (ε and c) is restricted to $\pm 5 \%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

