#### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Sporton Client

Certificate No: D2450V2-929\_Nov19

## **CALIBRATION CERTIFICATE**

| Object                                 | D2450V2 - SN:92                    | 29                                                                                               |                           |
|----------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|
| Calibration procedure(s)               | QA CAL-05.v11<br>Calibration Proce | dure for SAR Validation Sources                                                                  | between 0.7-3 GHz         |
| Calibration date:                      | November 21, 20                    | 019                                                                                              |                           |
|                                        |                                    | onal standards, which realize the physical uni<br>robability are given on the following pages an |                           |
| All calibrations have been conducte    | d in the closed laborato           | ry facility: environment temperature (22 $\pm$ 3)°C                                              | C and humidity < 70%.     |
| Calibration Equipment used (M&TE       | critical for calibration)          |                                                                                                  |                           |
| Primary Standards                      | ID #                               | Cal Date (Certificate No.)                                                                       | Scheduled Calibration     |
| Power meter NRP                        | SN: 104778                         | 03-Apr-19 (No. 217-02892/02893)                                                                  | Apr-20                    |
| Power sensor NRP-Z91                   | SN: 103244                         | 03-Apr-19 (No. 217-02892)                                                                        | Apr-20                    |
| Power sensor NRP-Z91                   | SN: 103245                         | 03-Apr-19 (No. 217-02893)                                                                        | Apr-20                    |
| Reference 20 dB Attenuator             | SN: 5058 (20k)                     | 04-Apr-19 (No. 217-02894)                                                                        | Apr-20                    |
| Type-N mismatch combination            | SN: 5047.2 / 06327                 | 04-Apr-19 (No. 217-02895)                                                                        | Apr-20                    |
| Reference Probe EX3DV4                 | SN: 7349                           | 29-May-19 (No. EX3-7349_May19)                                                                   | May-20                    |
| DAE4                                   | SN: 601                            | 30-Apr-19 (No. DAE4-601_Apr19)                                                                   | Apr-20                    |
| Secondary Standards                    | 1D #                               | Check Date (in house)                                                                            | Scheduled Check           |
| Power meter E4419B                     | SN: GB39512475                     | 30-Oct-14 (in house check Feb-19)                                                                | In house check: Oct-20    |
| Power sensor HP 8481A                  | SN: US37292783                     | 07-Oct-15 (in house check Oct-18)                                                                | In house check: Oct-20    |
| Power sensor HP 8481A                  | SN: MY41092317                     | 07-Oct-15 (in house check Oct-18)                                                                | In house check: Oct-20    |
| RF generator R&S SMT-06                | SN: 100972                         | 15-Jun-15 (in house check Oct-18)                                                                | In house check: Oct-20    |
| Network Analyzer Agilent E8358A        | SN: US41080477                     | 31-Mar-14 (in house check Oct-19)                                                                | In house check: Oct-20    |
|                                        | Name                               | Function                                                                                         | Signature                 |
| Calibrated by:                         | Claudio Leubler                    | Laboratory Technician                                                                            |                           |
| Approved by:                           | Katja Pokovic                      | Technical Manager                                                                                | Jes 145                   |
| This calibration certificate shall not | be reproduced except in            | full without written approval of the laboratory.                                                 | Issued: November 25, 2019 |

### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossarv:

| TO       | ticque cimulating liquid        |
|----------|---------------------------------|
| TSL      | tissue simulating liquid        |
| ConvF    | sensitivity in TSL / NORM x,y,z |
| N/A      | not applicable or not measured  |
| 1 N/ 7 N | not applicable of not medealed  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## **Additional Documentation:**

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.3    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.2 ± 6 %   | 1.84 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 13.5 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 53.1 W/kg ± 17.0 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|                                                         |                    |                          |
| SAR measured                                            | 250 mW input power | 6.24 W/kg                |

### Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 52.6 Ω + 5.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.9 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.161 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

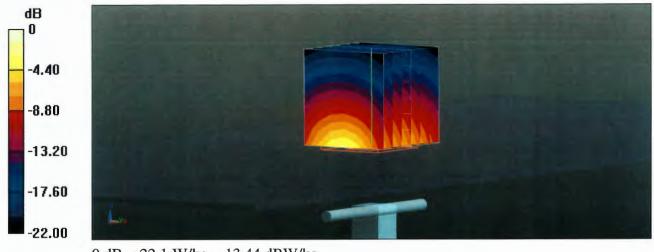
| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

### **DASY5 Validation Report for Head TSL**

Date: 21.11.2019

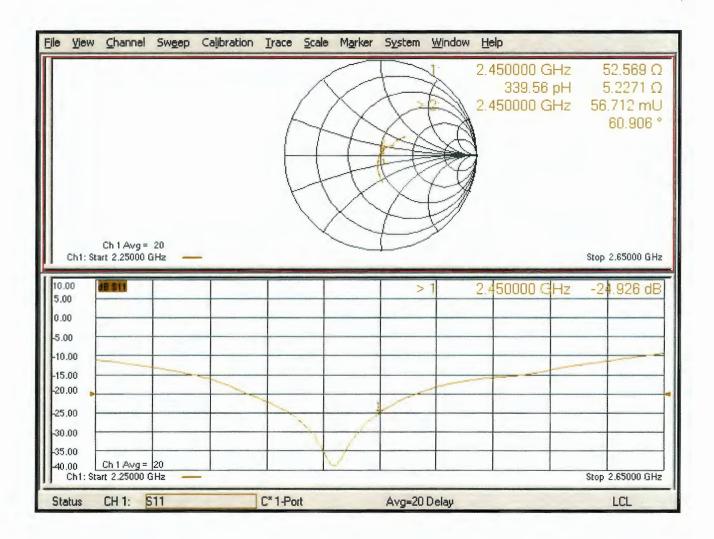
Test Laboratory: SPEAG, Zurich, Switzerland

### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:929


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz;  $\sigma$  = 1.84 S/m;  $\epsilon_r$  = 38.2;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)


### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 117.5 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.8 W/kg **SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.9% Maximum value of SAR (measured) = 22.1 W/kg



0 dB = 22.1 W/kg = 13.44 dBW/kg

## Impedance Measurement Plot for Head TSL



## Appendix: Transfer Calibration at Four Validation Locations on SAM Head<sup>1</sup>

### **Evaluation Condition**

| Phantom | SAM Head Phantom    | For usage with cSAR3DV2-R/L   |
|---------|---------------------|-------------------------------|
| Fnantom | SAIVI Flead Fliamon | TOT USage WILL COALOD V2-11/L |

## SAR result with SAM Head (Top $\cong$ C0)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition        |                          |
|---------------------------------------------------------|------------------|--------------------------|
| SAR for nominal Head TSL parameters                     | normalized to 1W | 56.6 W/kg ± 17.5 % (k=2) |
|                                                         |                  |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition        |                          |

### SAR result with SAM Head (Mouth $\cong$ F90)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition        |                          |
|---------------------------------------------------------|------------------|--------------------------|
| SAR for nominal Head TSL parameters                     | normalized to 1W | 57.7 W/kg ± 17.5 % (k=2) |
|                                                         |                  |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition        |                          |
| CAN averaged over 10 cm (10 g) of field TOE             | Contaition       |                          |

#### SAR result with SAM Head (Neck $\cong$ H0)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition        |                          |
|---------------------------------------------------------|------------------|--------------------------|
| SAR for nominal Head TSL parameters                     | normalized to 1W | 54.4 W/kg ± 17.5 % (k=2) |
|                                                         |                  |                          |
|                                                         |                  |                          |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition        |                          |

#### SAR result with SAM Head (Ear $\cong$ D90)

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition        |                          |  |
|---------------------------------------------------------|------------------|--------------------------|--|
| SAR for nominal Head TSL parameters                     | normalized to 1W | 34.8 W/kg ± 17.5 % (k=2) |  |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition        |                          |  |
|                                                         |                  |                          |  |

<sup>1</sup> Additional assessments outside the current scope of SCS 0108



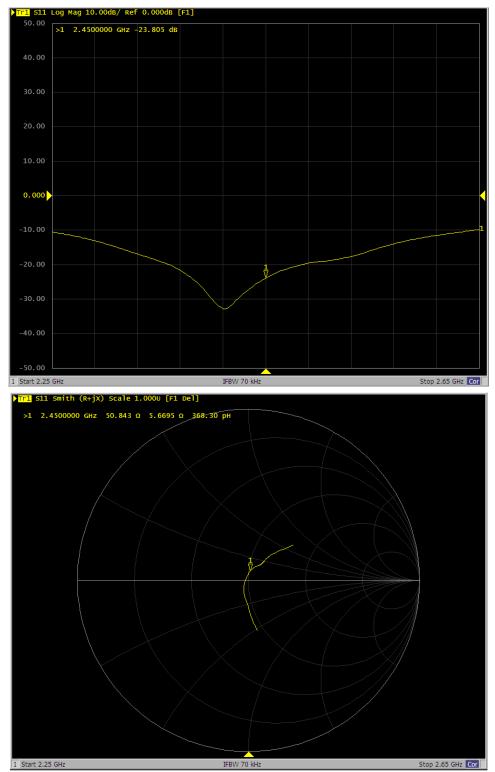
## D2450V2, serial no. 929 Extended Dipole Calibrations

Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

#### <Justification of the extended calibration>

| D <b>2450</b> V2 – serial no. <b>929</b> |                  |           |                      |             |                           |             |
|------------------------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------|
|                                          |                  | 2450MHZ   |                      |             |                           |             |
| Date of Measurement                      | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) |
| 11.21.2019<br>(Cal. Report)              | -24.926          |           | 52.569               |             | 5.2271                    |             |
| 11.20.2020<br>(extended)                 | -26.971          | 8.20      | 50.932               | -1.637      | 4.4757                    | -0.7514     |
| 11.19.2021<br>(extended)                 | -23.805          | -4.50     | 50.843               | -1.726      | 5.6695                    | 0.4424      |

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.




L 511 Log Mag 10.00dB/ Ref 0.000dB [F1] >1 2.4500000 GHz -26.971 dB 20.00 0.000 -30.00 -40.00 1 Start 2.25 GHz IFBW 70 kHz Stop 2.65 GHz Cor Tr1 S11 Smith (R+jX) Scale 1.000U [F1 Del] >1 2.4500000 GHz 50.932 Ω 4.4757 Ω 290.75 pH 1 Start 2.25 GHz IFBW 70 kHz Stop 2.65 GHz Cor

<Dipole Verification Data> - D2450 V2, serial no. 929 (Data of Measurement : 11.20.2020) 2450 MHz - Head



<Dipole Verification Data> - D2450 V2, serial no. 929 (Data of Measurement : 11.19.2021) 2450 MHz - Head



#### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Sporton

Client



Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1128\_Dec19

## **CALIBRATION CERTIFICATE**

| Object                           | D5GHzV2 - SN:1                    | 128                                                                                              |                           |
|----------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|
| Calibration procedure(s)         | QA CAL-22.v4<br>Calibration Proce | edure for SAR Validation Sources                                                                 | s between 3-6 GHz         |
| Calibration date:                | December 16, 20                   | 019                                                                                              |                           |
|                                  |                                   | ional standards, which realize the physical ur<br>robability are given on the following pages ar |                           |
|                                  |                                   | ry facility: environment temperature (22 $\pm$ 3)°                                               | C and humidity < 70%.     |
| Calibration Equipment used (M&TE | critical for calibration)         |                                                                                                  |                           |
| Primary Standards                | ID #                              | Cal Date (Certificate No.)                                                                       | Scheduled Calibration     |
| Power meter NRP                  | SN: 104778                        | 03-Apr-19 (No. 217-02892/02893)                                                                  | Apr-20                    |
| Power sensor NRP-Z91             | SN: 103244                        | 03-Apr-19 (No. 217-02892)                                                                        | Apr-20                    |
| Power sensor NRP-Z91             | SN: 103245                        | 03-Apr-19 (No. 217-02893)                                                                        | Apr-20                    |
| Reference 20 dB Attenuator       | SN: 5058 (20k)                    | 04-Apr-19 (No. 217-02894)                                                                        | Apr-20                    |
| Type-N mismatch combination      | SN: 5047.2 / 06327                | 04-Apr-19 (No. 217-02895)                                                                        | Apr-20                    |
| Reference Probe EX3DV4           | SN: 3503                          | 25-Mar-19 (No. EX3-3503_Mar19)                                                                   | Mar-20                    |
| DAE4                             | SN: 601                           | 30-Apr-19 (No. DAE4-601_Apr19)                                                                   | Apr-20                    |
| Secondary Standards              | ID #                              | Check Date (in house)                                                                            | Scheduled Check           |
| Power meter E4419B               | SN: GB39512475                    | 30-Oct-14 (in house check Feb-19)                                                                | In house check: Oct-20    |
| Power sensor HP 8481A            | SN: US37292783                    | 07-Oct-15 (in house check Oct-18)                                                                | In house check: Oct-20    |
| Power sensor HP 8481A            | SN: MY41092317                    | 07-Oct-15 (in house check Oct-18)                                                                | In house check: Oct-20    |
| RF generator R&S SMT-06          | SN: 100972                        | 15-Jun-15 (in house check Oct-18)                                                                | In house check: Oct-20    |
| Network Analyzer Agilent E8358A  | SN: US41080477                    | 31-Mar-14 (in house check Oct-19)                                                                | In house check: Oct-20    |
|                                  | Name                              | Function                                                                                         | Signature                 |
| Calibrated by:                   | Jeton Kastrati                    | Laboratory Technician                                                                            | +02                       |
| Approved by:                     | Katja Pokovic                     | Technical Manager                                                                                | ally                      |
|                                  |                                   | full without written approval of the laboratory                                                  | Issued: December 17, 2019 |

### **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

S

- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary:

| TSL   | tissue simulating liquid        |
|-------|---------------------------------|
| ConvF | sensitivity in TSL / NORM x,y,z |
| N/A   | not applicable or not measured  |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V52.10.3                         |
|------------------------------|----------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                   |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                |                                  |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                             | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz |                                  |

### Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.71 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.8 ± 6 %   | 4.48 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5250 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.06 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 80.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.32 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.9 W/kg ± 19.5 % (k=2) |

#### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.3 ± 6 %   | 4.83 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.32 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 82.4 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.39 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.6 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.4         | 5.22 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.1 ± 6 %   | 4.98 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL at 5750 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.99 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 79.1 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.29 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.6 W/kg ± 19.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL at 5250 MHz

| Impedance, transformed to feed point | 47.7 Ω - 6.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.1 dB       |

#### Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 53.6 Ω - 3.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.3 dB       |

#### Antenna Parameters with Head TSL at 5750 MHz

| Impedance, transformed to feed point | 51.3 Ω - 3.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.6 dB       |

### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.208 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|

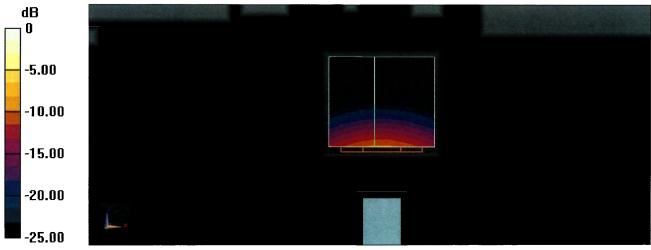
## **DASY5 Validation Report for Head TSL**

Date: 16.12.2019

Test Laboratory: SPEAG, Zurich, Switzerland

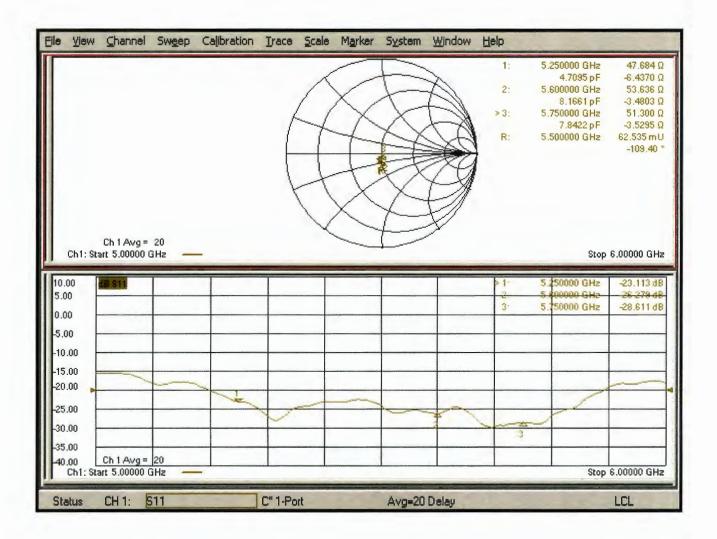
### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1128

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz;  $\sigma$  = 4.48 S/m;  $\epsilon_r$  = 34.8;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5600 MHz;  $\sigma$  = 4.83 S/m;  $\epsilon_r$  = 34.3;  $\rho$  = 1000 kg/m<sup>3</sup>, Medium parameters used: f = 5750 MHz;  $\sigma$  = 4.98 S/m;  $\epsilon_r$  = 34.1;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.60 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.9% Maximum value of SAR (measured) = 18.2 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.23 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.23 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 18.9 W/kg



0 dB = 18.9 W/kg = 12.77 dBW/kg

## Impedance Measurement Plot for Head TSL





## D5000V2, serial no. 1128 Extended Dipole Calibrations

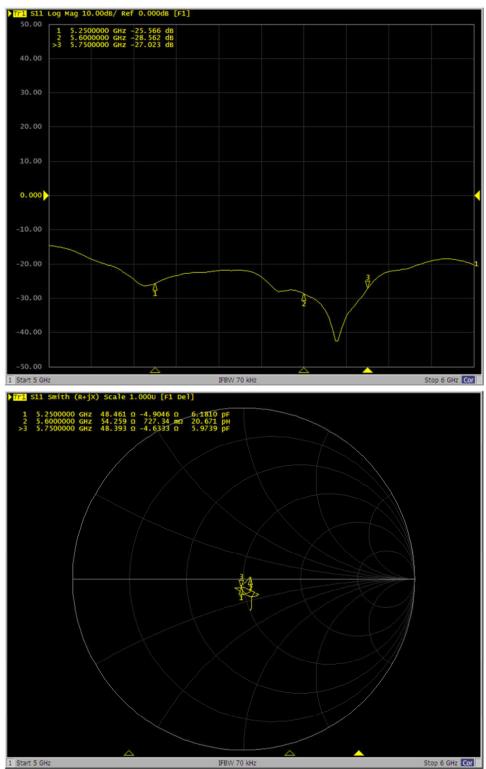
Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

#### <Justification of the extended calibration>

| D <b>5000</b> V2 – serial no. <b>1128</b> |                  |           |                      |             |                           |             |
|-------------------------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------|
|                                           |                  | 5250MHZ   |                      |             |                           |             |
| Date of Measurement                       | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) |
| 12.16.2019<br>(Cal. Report)               | -23.113          |           | 47.684               |             | -6.437                    |             |
| 12.15.2020<br>(extended)                  | -26.397          | 14.2      | 49.293               | 1.609       | -5.405                    | 1.032       |
| 12.14.2021<br>(extended)                  | -25.566          | 10.61     | 48.461               | 0.777       | -4.9046                   | 1.5324      |
|                                           |                  |           | 560                  | омна        |                           |             |
| Date of Measurement                       | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) |
| 12.16.2019<br>(Cal. Report)               | -26.278          |           | 53.636               |             | -3.4803                   |             |
| 12.15.2020<br>(extended)                  | -27.417          | 4.33      | 54.448               | 0.812       | -2.3368                   | 1.1435      |
| 12.14.2021<br>(extended)                  | -28.562          | 8.69      | 54.259               | 0.623       | 0.72734                   | 4.20764     |
|                                           |                  |           | 575                  | 0MHZ        |                           |             |
| Date of Measurement                       | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) |
| 12.16.2019<br>(Cal. Report)               | -28.611          |           | 51.3                 |             | -3.5295                   |             |
| 12.15.2020<br>(extended)                  | -25.773          | -9.91     | 50.091               | -1.209      | -3.7769                   | -0.2474     |
| 12.14.2021<br>(extended)                  | -27.023          | -5.55     | 48.393               | -2.907      | -4.6333                   | -1.1038     |

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

**SPORTON INTERNATIONAL INC.** TEL : 886-3-327-3456 FAX : 886-3-328-4978




S11 Log Mag 10.00dB/ Ref 0.000dB [F1] 50.00 500000 GHZ -26.397 dB 0000000 GHZ -27.417 dB 500000 GHZ -25.773 dB 127 5. 0.000 1 V IFBW 70 kHz Stop 6 GHz Cor 1 Start 5 GHz 1 511 Smith (R+jX) Scale 1.000U [F1 Del] 1 5.2500000 2 5.6000000 >3 5.7500000 GHZ GHZ GHZ 49.293 Ω -5.4050 Ω 5.6088 pF 54.448 Ω -2.3368 Ω 12.162 pF 50.091 Ω -3.7769 Ω 7.3284 pF 1 Start 5 GHz Stop 6 GHz Cor IFBW 70 kHz

<Dipole Verification Data> - D5000 V2, serial no. 1128 (Data of Measurement : 12.15.2020) 5000 MHz - Head



<Dipole Verification Data> - D5000 V2, serial no. 1128 (Data of Measurement : 12.14.2021) 5000 MHz - Head



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: DAE4-656\_Jan22

Accreditation No.: SCS 0108

## CALIBRATION CERTIFICATE

| Object                                           | DAE4 - SD 000 D                                            | 004 BM - SN: 656                                                                                                                               |                                                  |
|--------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Calibration procedure(s)                         | QA CAL-06.v30<br>Calibration proces                        | dure for the data acquisition elec                                                                                                             | ctronics (DAE)                                   |
| Calibration date:                                | January 19, 2022                                           |                                                                                                                                                |                                                  |
| The measurements and the unce                    | rtainties with confidence protection the closed laboratory | nal standards, which realize the physical un<br>obability are given on the following pages ar<br>r facility: environment temperature (22 ± 3)% | nd are part of the certificate.                  |
| Primary Standards                                | ID #                                                       | Cal Date (Certificate No.)                                                                                                                     | Scheduled Calibration                            |
| Keithley Multimeter Type 2001                    | SN: 0810278                                                | 31-Aug-21 (No:31368)                                                                                                                           | Aug-22                                           |
| Secondary Standards                              | ID #                                                       | Check Date (in house)                                                                                                                          | Scheduled Check                                  |
| Auto DAE Calibration Unit<br>Calibrator Box V2.1 | SE UWS 053 AA 1001<br>SE UMS 006 AA 1002                   | 07-Jan-21 (in house check)<br>07-Jan-21 (in house check)                                                                                       | In house check: Jan-22<br>In house check: Jan-22 |
|                                                  | Name                                                       | Function                                                                                                                                       | Signature                                        |
| Calibrated by:                                   | Dominique Steffen                                          | Laboratory Technician                                                                                                                          |                                                  |
| approved by:                                     | o                                                          | 124 - N. 7.N                                                                                                                                   | I.V. Bluw                                        |
| Approved by:                                     | Sven Kühn                                                  | Deputy Manager                                                                                                                                 | I.V. BALLUN                                      |
| This calibration certificate shall no            | t be reproduced except in fi                               | ull without written approval of the laboratory.                                                                                                | Issued: January 19, 2022                         |

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

## Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
  result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

# DC Voltage Measurement A/D - Converter Resolution nominal

| High Range:      | 1LSB =          | 6.1µV.          | full range -   | 100 000 14  |
|------------------|-----------------|-----------------|----------------|-------------|
| Low Range:       | 1LSB =          |                 | full range =   | -100+300 mV |
|                  |                 | 61nV ,          | full range =   | -1+3mV      |
| DASY measurement | parameters: Aut | to Zero Time: 3 | sec: Measuring | time: 3 sec |

| <b>Calibration Factors</b> | x                          | v                     | -                     |
|----------------------------|----------------------------|-----------------------|-----------------------|
| High Range                 | $404.146 \pm 0.02\% (k-2)$ | 404.648 ± 0.02% (k=2) | 4                     |
|                            |                            |                       |                       |
| Len mange                  | 3.96369 ± 1.50% (k=2)      | 3.97896 ± 1.50% (k=2) | 3.96657 ± 1.50% (k=2) |

## **Connector Angle**

| Compactant                                |               |
|-------------------------------------------|---------------|
| Connector Angle to be used in DASY system | 314.0 ° ± 1 ° |
|                                           | 514.0 ±1      |

## Appendix (Additional assessments outside the scope of SCS0108)

| High Range        | Reading (µV) | Difference (µV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 200022.45    | -13.82          | -0.01     |
| Channel X + Input | 20007.00     | 1.41            |           |
| Channel X - Input | -20001.54    | 4.11            | -0.02     |
| Channel Y + Input | 200026,91    | -4.48           | 70.00     |
| Channel Y + Input | 20005.28     | -0.27           | -0.00     |
| Channel Y - Input | -20003.83    | 1.96            | 201002    |
| Channel Z + Input | 200029.93    | -1.35           | -0.01     |
| Channel Z + Input | 20003.01     | -2.42           | -0.00     |
| Channel Z - Input | -20004.79    | 1.11            | -0.01     |

## 1. DC Voltage Linearity

| Low Range         | Reading (µV) | Difference (µV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 2000.48      | -0.94           | -0.05     |
| Channel X + Input | 200.75       | -0.51           | -0.26     |
| Channel X - Input | -199.52      | -0.92           | 0.26      |
| Channel Y + Input | 2000.84      | -0.41           | -0.02     |
| Channel Y + Input | 200.34       | -0.82           | -0.41     |
| Channel Y - Input | -199.90      | -1.20           | 0.60      |
| Channel Z + Input | 2000.73      | -0.47           | -0.02     |
| Channel Z + Input | 200.88       | -0.22           | -0.02     |
| Channel Z - Input | -199.73      | -0.97           | 0.49      |

## 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (µV) | Low Range            |  |
|-----------|-----------------------------------|------------------------------------|----------------------|--|
| Channel X | 200                               |                                    | Average Reading (µV) |  |
|           | 1.40×200                          | 0.76                               | -0.98                |  |
|           | - 200                             | 1.20                               | -0.19                |  |
| Channel Y | 200                               | -1.51                              | -1.27                |  |
|           | - 200                             | -1.02                              | -0.82                |  |
| Channel Z | 200                               | 5.72                               | 5.16                 |  |
|           | - 200                             | -6.32                              | -6.81                |  |

## 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Input Voltage (mV) | Channel X (µV) | Channel Y (uV)    | Channel Z (µV)                                                   |
|--------------------|----------------|-------------------|------------------------------------------------------------------|
| 200                |                |                   |                                                                  |
| 200                | 6.74           | 2.00              | -1.49                                                            |
| 200                |                | 2.02              | -0.64                                                            |
|                    | 200            | 200 -<br>200 6.74 | 200         -         -2.59           200         6.74         - |

Certificate No: DAE4-656\_Jan22

## 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15632            | 16011           |
| Channel Y | 15859            | 16203           |
| Channel Z | 15660            | 15027           |

## 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M $\Omega$ 

|           | Average (μV) | min. Offset (μV) | max. Offset (µV) | Std. Deviation<br>(µV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | 0.59         | -0.72            | 2.07             | 0.58                   |
| Channel Y | -0.12        | -1.56            | 1.69             | 0.60                   |
| Channel Z | -0.13        | -1.55            | 1.01             | 0.51                   |

## 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

## 7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

## 8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

## 9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

peag S

## **IMPORTANT NOTICE**

## USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

## Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

#### Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

#### Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

TN\_EH190306AE DAE4.docx

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: DAE4-853 Jul22

Accreditation No.: SCS 0108

s

#### CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 853 QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: July 20, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 31-Aug-21 (No:31368) Aug-22 Secondary Standards ID # Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 24-Jan-22 (in house check) In house check: Jan-23 Calibrator Box V2.1 SE UMS 006 AA 1002 24-Jan-22 (in house check) In house check: Jan-23 Name Function Signature Calibrated by: Adrian Gehring Laboratory Technician Approved by: Sven Kühn **Technical Manager** Issued: July 20, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

## Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
  result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

## **DC Voltage Measurement**

A/D - Converter Resolution nominal

 $\begin{array}{cccc} High \mbox{ Range:} & 1LSB = & 6.1 \mu V \ , & full \mbox{ range = } -100...+300 \ mV \\ Low \mbox{ Range:} & 1LSB = & 61nV \ , & full \mbox{ range = } -1.....+3mV \\ DASY \mbox{ measurement parameters:} \ Auto \ Zero \ Time: 3 \ sec; \ Measuring \ time: 3 \ sec \\ \end{array}$ 

| Calibration Factors | x                     | Y                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 402.642 ± 0.02% (k=2) | 403.305 ± 0.02% (k=2) | 403.461 ± 0.02% (k=2) |
| Low Range           | 3.95597 ± 1.50% (k=2) | 3.96656 ± 1.50% (k=2) | 3.96633 ± 1.50% (k=2) |

## **Connector Angle**

| Connector Angle to be used in DASY system | 135.0 ° ± 1 ° |
|-------------------------------------------|---------------|
|-------------------------------------------|---------------|

## Appendix (Additional assessments outside the scope of SCS0108)

| High Range        | Reading (µV) | Difference (µV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 200041.38    | 5.91            | 0.00      |
| Channel X + Input | 20008.06     | 1.95            | 0.01      |
| Channel X - Input | -20005.24    | 0.73            | -0.00     |
| Channel Y + Input | 200041.69    | 6.21            | 0.00      |
| Channel Y + Input | 20007.16     | 1.13            | 0.01      |
| Channel Y - Input | -20008.06    | -1.97           | 0.01      |
| Channel Z + Input | 200040.61    | 5.27            | 0.00      |
| Channel Z + Input | 20006.00     | 0.07            | 0.00      |
| Channel Z - Input | -20008.11    | -1.98           | 0.01      |

### 1. DC Voltage Linearity

| Low Range         | Reading (µV) | Difference (µV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 2001.48      | 0.21            | 0.01      |
| Channel X + Input | 201.23       | -0.05           | -0.02     |
| Channel X - Input | -198.56      | 0.02            | -0.01     |
| Channel Y + Input | 2001.15      | -0.04           | -0.00     |
| Channel Y + Input | 200.23       | -0.95           | -0.47     |
| Channel Y - Input | -199.52      | -0.89           | 0.45      |
| Channel Z + Input | 2001.22      | 0.05            | 0.00      |
| Channel Z + Input | 200.74       | -0.45           | -0.22     |
| Channel Z - Input | -199.21      | -0.42           | 0.21      |

## 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | -6.38                              | -8.34                             |
|           | - 200                             | 9.96                               | 7.92                              |
| Channel Y | 200                               | 4.99                               | 4.36                              |
|           | - 200                             | -6.22                              | -6.37                             |
| Channel Z | 200                               | 1.22                               | 0.97                              |
|           | - 200                             | -2.03                              | -2.20                             |

## 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (µV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                |                | 2.70           | -0.37          |
| Channel Y | 200                | 8.94           |                | 4.86           |
| Channel Z | 200                | 12.67          | 6.46           | *              |

### 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 16238            | 16329           |
| Channel Y | 16084            | 16376           |
| Channel Z | 16228            | 15371           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input  $10 M \Omega$ 

|           | Average (µV) | min. Offset (µV) | max. Offset (μV) | Std. Deviation<br>(μV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | 0.28         | -1.00            | 1.44             | 0.43                   |
| Channel Y | -0.20        | -1.37            | 0.87             | 0.40                   |
| Channel Z | 1.55         | -0.63            | 3.30             | 0.67                   |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

## 7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

## 8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

## 9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

## **IMPORTANT NOTICE**

## **USAGE OF THE DAE4**

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

#### Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

#### Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

#### Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
  - Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton

Certificate No: DAE4-1696\_Nov21

Accreditation No.: SCS 0108

s

## CALIBRATION CERTIFICATE

| This calibration certificate documents the traceability to national standards, which realize the physical units of meas         The measurements and the uncertainties with confidence probability are given on the following pages and are part         All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and hum         Calibration Equipment used (M&TE critical for calibration)         Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In in Calibrator Box V2.1         Secondary Standards       ID #       Check Date (in house)       Sc         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In in the claibrator Box V2.1         Name       Function       Si         Calibrated by:       Name       Function       Si                                                        |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Calibration procedure for the data acquisition electronics         Calibration date:       November 03, 2021         This calibration certificate documents the traceability to national standards, which realize the physical units of meas         The measurements and the uncertainties with confidence probability are given on the following pages and are part         All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and hum         Calibration Equipment used (M&TE critical for calibration)         Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrated by:       Name       Function       Si |                      |
| This calibration certificate documents the traceability to national standards, which realize the physical units of meas         The measurements and the uncertainties with confidence probability are given on the following pages and are part         All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and hum         Calibration Equipment used (M&TE critical for calibration)         Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I                                                                                                                                                                                                                                                                                 | (DAE)                |
| This calibration certificate documents the traceability to national standards, which realize the physical units of meas         The measurements and the uncertainties with confidence probability are given on the following pages and are part         All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and hum         Calibration Equipment used (M&TE critical for calibration)         Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I                                                                                                                                                                                                                                                                                 |                      |
| The measurements and the uncertainties with confidence probability are given on the following pages and are part         All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and hum         Calibration Equipment used (M&TE critical for calibration)         Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrated by:       Name       Function       Sig                                                                                                                                                                                                                                                                                                                                                      |                      |
| The measurements and the uncertainties with confidence probability are given on the following pages and are part         All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and hum         Calibration Equipment used (M&TE critical for calibration)         Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrated by:       Name       Function       Sig         Calibrated by:       Name       Function       Sig                                                                                                                                                                                                                                                                                           |                      |
| All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and hum         Calibration Equipment used (M&TE critical for calibration)         Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrated by:       Name       Function       Site         Calibrated by:       Adrian Gehring       Laboratory Technician       Area                                                                                                                                                                                                                                                                                                                                                                                           | surements (SI).      |
| Calibration Equipment used (M&TE critical for calibration)         Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrated by:       Name       Function       Sig         Calibrated by:       Name       Function       Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
| Primary Standards       ID #       Cal Date (Certificate No.)       Sc         Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrated by:       Name       Function       Sig         Calibrated by:       Name       Function       Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | idity < 70%.         |
| Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrated by:       Name       Function       Site         Calibrated by:       Adrian Gehring       Laboratory Technician       Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
| Keithley Multimeter Type 2001       SN: 0810278       31-Aug-21 (No:31368)       Au         Secondary Standards       ID #       Check Date (in house)       Sc         Auto DAE Calibration Unit       SE UWS 053 AA 1001       07-Jan-21 (in house check)       In I         Calibrator Box V2.1       SE UMS 006 AA 1002       07-Jan-21 (in house check)       In I         Calibrated by:       Name       Function       Signature         Calibrated by:       Adrian Gehring       Laboratory Technician       Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cheduled Calibration |
| Auto DAE Calibration Unit     SE UWS 053 AA 1001     07-Jan-21 (in house check)     In       Calibrator Box V2.1     SE UMS 006 AA 1002     07-Jan-21 (in house check)     In       Name     Function     Sig       Calibrated by:     Adrian Gehring     Laboratory Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ıg-22                |
| Auto DAE Calibration Unit     SE UWS 053 AA 1001     07-Jan-21 (in house check)     In I       Calibrator Box V2.1     SE UMS 006 AA 1002     07-Jan-21 (in house check)     In I       Name     Function     Signature       Calibrated by:     Adrian Gehring     Laboratory Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | heduled Check        |
| Calibrated by: Adrian Gehring Laboratory Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | house check: Jan-22  |
| Calibrated by: Adrian Gehring Laboratory Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | house check: Jan-22  |
| Calibrated by: Adrian Gehring Laboratory Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| Calibrated by: Adrian Gehring Laboratory Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gnature              |
| Approved by: Sven Kühn Deputy Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Sec                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rame (               |
| 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sued: November 3, 20 |

## Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



S Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

C

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

## Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

## Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

# DC Voltage Measurement A/D - Converter Resolution nominal

| High Range:      | 1LSB =         | 6.1µV,          | full range =   | -100+300 mV |
|------------------|----------------|-----------------|----------------|-------------|
| Low Range:       | 1LSB =         | 61nV .          | full range =   | -1 +3mV     |
| DASY measurement | parameters: Au | to Zero Time: 3 | sec; Measuring | time: 3 sec |

| <b>Calibration Factors</b> | x                     | Y                     | Z                     |
|----------------------------|-----------------------|-----------------------|-----------------------|
| High Range                 | 404.285 ± 0.02% (k=2) | 404.614 ± 0.02% (k=2) | 404.720 ± 0.02% (k=2) |
| Low Range                  | 3.99034 ± 1.50% (k=2) | 3.98517 ± 1.50% (k=2) |                       |

## **Connector Angle**

| Connector Angle to be used in DASY system | 25.0 ° ± 1 ° |
|-------------------------------------------|--------------|
|                                           | 20.0 1       |

## Appendix (Additional assessments outside the scope of SCS0108)

## 1. DC Voltage Linearity

| High Range        | Reading (µV) | Difference (µV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 199996.99    | 1.05            | 0.00      |
| Channel X + Input | 20001.56     | -0.70           | -0.00     |
| Channel X - Input | -20000.14    | 1.57            | -0.01     |
| Channel Y + Input | 199995.88    | -0.31           | -0.00     |
| Channel Y + Input | 19999.28     | -3.02           | -0.02     |
| Channel Y - Input | -20003.67    | -1.91           | 0.01      |
| Channel Z + Input | 199996.31    | 0.41            | 0.00      |
| Channel Z + Input | 19999.66     | -2.56           | -0.01     |
| Channel Z - Input | -20001.96    | -0.01           | 0.00      |

| Low Range         | Reading (µV) | Difference (µV) | Error (%) |
|-------------------|--------------|-----------------|-----------|
| Channel X + Input | 2001.28      | 0.07            | 0.00      |
| Channel X + Input | 201.76       | 0.39            | 0.20      |
| Channel X - Input | -197.84      | 0.53            | -0.27     |
| Channel Y + Input | 2001.06      | -0.14           | -0.01     |
| Channel Y + Input | 200.54       | -0.80           | -0.40     |
| Channel Y - Input | -199.46      | -1.05           | 0.53      |
| Channel Z + Input | 2001.24      | 0.15            | 0.01      |
| Channel Z + Input | 200.85       | -0.40           | -0.20     |
| Channel Z - Input | -198.95      | -0.50           | 0.25      |

## 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (µV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | 9.85                               | 7.74                              |
|           | - 200                             | -6.69                              | -8.05                             |
| Channel Y | 200                               | 11.27                              | 10.69                             |
|           | - 200                             | -13.18                             | -13.86                            |
| Channel Z | 200                               | -26.80                             | -26.62                            |
|           | - 200                             | 26.07                              | 26.45                             |

## 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (µV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                |                | 2.60           | -3.54          |
| Channel Y | 200                | 8.12           |                | 5.58           |
| Channel Z | 200                | 8.61           | 4.75           |                |

## 4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 16335            | 15819           |
| Channel Y | 15854            | 16004           |
| Channel Z | 16232            | 15094           |

## 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M $\Omega$ 

|           | Average (µV) | min. Offset (µV) | max. Offset (μV) | Std. Deviation<br>(µV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | 0.57         | -1.23            | 2.20             | 0.52                   |
| Channel Y | -0.54        | -1.43            | 1.11             | 0.40                   |
| Channel Z | 0.02         | -0.90            | 1.43             | 0.35                   |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

## 7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

## 8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

## 9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

S

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Certificate No

EX-3801\_Jul22

## CALIBRATION CERTIFICATE

| Object                   | EX3DV4 - SN:3801                                                                                                               |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s) | QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5,<br>QA CAL-25.v7<br>Calibration procedure for dosimetric E-field probes |
| Calibration date         | July 21, 2022                                                                                                                  |

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration |
|----------------------------|------------------|-----------------------------------|-----------------------|
| Power meter NRP            | SN: 104778       | 04-Apr-22 (No. 217-03525/03524)   | Apr-23                |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-22 (No. 217-03524)         | Apr-23                |
| OCP DAK-3.5 (weighted)     | SN: 1249         | 20-Oct-21 (OCP-DAK3.5-1249_Oct21) | Oct-22                |
| OCP DAK-12                 | SN: 1016         | 20-Oct-21 (OCP-DAK12-1016_Oct21)  | Oct-22                |
| Reference 20 dB Attenuator | SN: CC2552 (20x) | 04-Apr-22 (No. 217-03527)         | Apr-23                |
| DAE4                       | SN: 660          | 13-Oct-21 (No. DAE4-660 Oct21)    | Oct-22                |
| Reference Probe ES3DV2     | SN: 3013         | 27-Dec-21 (No. ES3-3013 Dec21)    | Dec-22                |

| Secondary Standards     | ID               | Check Date (in house)             | Scheduled Check        |
|-------------------------|------------------|-----------------------------------|------------------------|
| Power meter E4419B      | SN: GB41293874   | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 |
| Power sensor E4412A     | SN: MY41498087   | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 |
| Power sensor E4412A     | SN: 000110210    | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 |
| RF generator HP 8648C   | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 |
| Network Analyzer E8358A | SN: US41080477   | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 |

|                            | Name                              | Function                                    | Signature                         |
|----------------------------|-----------------------------------|---------------------------------------------|-----------------------------------|
| Calibrated by              | Leif Klysner                      | Laboratory Technician                       | See gly                           |
| Approved by                | Sven Kühn                         | Technical Manager                           | 5.6                               |
| This calibration certifica | te shall not be reproduced except | in full without written approval of the lab | Issued: July 21, 2022<br>oratory. |

#### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossarv

| TSL                      | tissue simulating liquid                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| NORMx,y,z                | sensitivity in free space                                                                                                       |
| ConvF                    | sensitivity in TSL / NORMx,y,z                                                                                                  |
| DCP                      | diode compression point                                                                                                         |
| CF                       | crest factor (1/duty_cycle) of the RF signal                                                                                    |
| A, B, C, D               | modulation dependent linearization parameters                                                                                   |
| Polarization $\varphi$   | arphi rotation around probe axis                                                                                                |
| Polarization $\vartheta$ | $\vartheta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is |
| Connector Angle          | normal to probe axis<br>information used in DASY system to align probe sensor X to the robot coordinate system                  |

#### Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models. Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization  $\vartheta = 0$  ( $f \le 900$  MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y,z; Bx, y,z; Cx, y,z; Dx, y,z; VRx, y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for  $f \le 800 \text{ MHz}$ ) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from  $\pm 50$  MHz to  $\pm 100$  MHz.
- · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) |
|--------------------------|----------|----------|----------|-------------|
| Norm $(\mu V/(V/m)^2)^A$ | 0.51     | 0.58     | 0.42     | ±10.1%      |
| DCP (mV) <sup>B</sup>    | 103.3    | 101.7    | 104.5    | ±4.7%       |

#### **Calibration Results for Modulation Response**

| UID   | Communication System Name   |   | A<br>dB | $^{B}_{dB\sqrt{\mu V}}$ | С     | D<br>dB | VR<br>mV | Max<br>dev. | Max<br>Unc <sup>E</sup><br>k = 2        |
|-------|-----------------------------|---|---------|-------------------------|-------|---------|----------|-------------|-----------------------------------------|
| 0     | CW                          | X | 0.00    | 0.00                    | 1.00  | 0.00    | 164.0    | ±2.7%       | ±4.7%                                   |
|       |                             | Y | 0.00    | 0.00                    | 1.00  |         | 151.2    |             |                                         |
|       |                             | Z | 0.00    | 0.00                    | 1.00  | 1       | 148.3    |             |                                         |
| 10352 | Pulse Waveform (200Hz, 10%) | Х | 20.00   | 92.92                   | 21.87 | 10.00   | 60.0     | ±3.2%       | ±9.6%                                   |
|       |                             | Y | 20.00   | 90.09                   | 20.72 |         | 60.0     |             |                                         |
|       |                             | Z | 20.00   | 91.31                   | 21.16 |         | 60.0     |             |                                         |
| 10353 | Pulse Waveform (200Hz, 20%) | X | 20.00   | 93.82                   | 21.23 | 6.99    | 80.0     | ±1.5%       | ±9.6%                                   |
|       |                             | Y | 20.00   | 90.01                   | 19.81 |         | 80.0     |             |                                         |
|       |                             | Z | 20.00   | 91.35                   | 19.94 |         | 80.0     |             |                                         |
| 10354 | Pulse Waveform (200Hz, 40%) | X | 20.00   | 95.96                   | 20.85 | 3.98    | 95.0     | ±0.9%       | ±9.6%                                   |
|       |                             | Y | 20.00   | 90.46                   | 18.80 |         | 95.0     |             |                                         |
|       |                             | Z | 20.00   | 91.92                   | 18.73 |         | 95.0     |             |                                         |
| 10355 | Pulse Waveform (200Hz, 60%) | Х | 20.00   | 97.20                   | 20.05 | 2.22    | 120.0    | ±0.8%       | ±9.6%                                   |
|       |                             | Y | 20.00   | 92.08                   | 18.39 |         | 120.0    |             | 1. 1999 of 1999 of 1999 of 1999 of 1999 |
|       |                             | Z | 20.00   | 91.59                   | 17.22 |         | 120.0    |             |                                         |
| 10387 | QPSK Waveform, 1 MHz        | X | 1.46    | 64.02                   | 13.43 | 1.00    | 150.0    | ±2.7%       | ±9.6%                                   |
|       |                             | Y | 1.65    | 65.26                   | 14.37 |         | 150.0    |             |                                         |
|       |                             | Z | 1.53    | 64.49                   | 13.82 |         | 150.0    |             |                                         |
| 10388 | QPSK Waveform, 10 MHz       | Х | 1.93    | 65.61                   | 14.21 | 0.00    | 150.0    | ±1.1%       | ±9.6%                                   |
|       |                             | Y | 2.18    | 67.29                   | 15.10 |         | 150.0    |             |                                         |
|       |                             | Z | 2.02    | 66.39                   | 14.56 |         | 150.0    |             |                                         |
| 10396 | 64-QAM Waveform, 100 kHz    | X | 2.88    | 69.69                   | 18.23 | 3.01    | 150.0    | ±0.7%       | ±9.6%                                   |
|       |                             | Y | 2.97    | 69.95                   | 18.46 |         | 150.0    |             |                                         |
|       |                             | Z | 3.07    | 70.90                   | 18.68 |         | 150.0    |             |                                         |
| 10399 | 64-QAM Waveform, 40 MHz     | X | 3.30    | 65.98                   | 14.98 | 0.00    | 150.0    | ±2.4%       | ±9.6%                                   |
|       |                             | Y | 3.51    | 66.96                   | 15.53 |         | 150.0    |             |                                         |
|       |                             | Z | 3.36    | 66.41                   | 15.18 |         | 150.0    |             |                                         |
| 10414 | WLAN CCDF, 64-QAM, 40 MHz   | X | 4.69    | 65.03                   | 15.07 | 0.00    | 150.0    | ±4.1%       | ±9.6%                                   |
|       |                             | Y | 4.73    | 64.99                   | 15.09 |         | 150.0    |             |                                         |
|       |                             | Z | 4.79    | 65.32                   | 15.20 |         | 150.0    |             |                                         |

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

- <sup>B</sup> Linearization parameter uncertainty for maximum specified field strength.
- E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

A The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

## Sensor Model Parameters

|   | C1<br>fF | C2<br>fF | α<br>V <sup>-1</sup> | T1<br>ms V <sup>-2</sup> | T2<br>ms V <sup>-1</sup> | T3<br>ms | T4<br>V <sup>-2</sup> | T5<br>V <sup>-1</sup> | <b>T</b> 6 |
|---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------------|
| Х | 43.6     | 325.39   | 35.33                | 16.32                    | 0.27                     | 5.10     | 1.20                  | 0.29                  | 1.01       |
| у | 49.4     | 368.60   | 35.36                | 29.11                    | 0.18                     | 5.10     | 0.57                  | 0.40                  | 1.01       |
| Z | 48.5     | 359.68   | 34.97                | 15.13                    | 0.50                     | 5.08     | 1.28                  | 0.29                  | 1.01       |

### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle                               | 152.5°     |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity <sup>F</sup><br>(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>( <i>k</i> = 2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|------------------------|
| 150                  | 52.3                                  | 0.76                               | 11.26   | 11.26   | 11.26   | 0.00               | 1.00                       | ±13.3%                 |
| 450                  | 43.5                                  | 0.87                               | 10.04   | 10.04   | 10.04   | 0.16               | 1.30                       | ±13.3%                 |
| 750                  | 41.9                                  | 0.89                               | 9.37    | 9.37    | 9.37    | 0.46               | 1.00                       | ±12.0%                 |
| 835                  | 41.5                                  | 0.90                               | 9.22    | 9.22    | 9.22    | 0.54               | 0.80                       | ±12.0%                 |
| 900                  | 41.5                                  | 0.97                               | 9.13    | 9.13    | 9.13    | 0.49               | 0.87                       | ±12.0%                 |
| 1450                 | 40.5                                  | 1.20                               | 8.26    | 8.26    | 8.26    | 0.50               | 0.80                       | ±12.0%                 |
| 1750                 | 40.1                                  | 1.37                               | 8.16    | 8.16    | 8.16    | 0.33               | 0.86                       | ±12.0%                 |
| 1900                 | 40.0                                  | 1.40                               | 7.89    | 7.89    | 7.89    | 0.36               | 0.86                       | ±12.0%                 |
| 2100                 | 39.8                                  | 1.49                               | 7.84    | 7.84    | 7.84    | 0.33               | 0.86                       | ±12.0%                 |
| 2300                 | 39.5                                  | 1.67                               | 7.47    | 7.47    | 7.47    | 0.41               | 0.90                       | ±12.0%                 |
| 2450                 | 39.2                                  | 1.80                               | 7.34    | 7.34    | 7.34    | 0.41               | 0.90                       | ±12.0%                 |
| 2600                 | 39.0                                  | 1.96                               | 7.11    | 7.11    | 7.11    | 0.45               | 0.90                       | ±12.0%                 |
| 3300                 | 38.2                                  | 2.71                               | 6.55    | 6.55    | 6.55    | 0.30               | 1.30                       | ±13.1%                 |
| 3500                 | 37.9                                  | 2.91                               | 6.49    | 6.49    | 6.49    | 0.35               | 1.30                       | ±13.1%                 |
| 3700                 | 37.7                                  | 3.12                               | 6.40    | 6.40    | 6.40    | 0.35               | 1.30                       | ±13.1%                 |
| 3900                 | 37.5                                  | 3.32                               | 6.34    | 6.34    | 6.34    | 0.40               | 1.60                       | ±13.1%                 |
| 4100                 | 37.2                                  | 3.53                               | 6.00    | 6.00    | 6.00    | 0.40               | 1.60                       | ±13.1%                 |
| 4200                 | 37.1                                  | 3.63                               | 5.97    | 5.97    | 5.97    | 0.40               | 1.60                       | ±13.1%                 |
| 4400                 | 36.9                                  | 3.84                               | 5.76    | 5.76    | 5.76    | 0.40               | 1.70                       | ±13.1%                 |
| 4600                 | 36.7                                  | 4.04                               | 5.70    | 5.70    | 5.70    | 0.40               | 1.70                       | ±13.1%                 |
| 4800                 | 36.4                                  | 4.25                               | 5.67    | 5.67    | 5.67    | 0.40               | 1.80                       | ±13.1%                 |
| 4950                 | 36.3                                  | 4.40                               | 5.33    | 5.33    | 5.33    | 0.40               | 1.80                       | ±13.1%                 |
| 5250                 | 35.9                                  | 4.71                               | 5.17    | 5.17    | 5.17    | 0.40               | 1.80                       | ±13.1%                 |
| 5600                 | 35.5                                  | 5.07                               | 4.58    | 4.58    | 4.58    | 0.40               | 1.80                       | ±13.1%                 |
| 5750                 | 35.4                                  | 5.22                               | 4.88    | 4.88    | 4.88    | 0.40               | 1.80                       | ±13.1%                 |

<sup>C</sup> Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

<sup>F</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to  $\pm 10\%$  if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to  $\pm 5\%$ . The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm 1\%$  for frequencies below 3 GHz and below  $\pm 2\%$  for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity <sup>F</sup><br>(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>( <i>k</i> = 2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|------------------------|
| 6500                 | 34.5                                  | 6.07                               | 5.20    | 5.20    | 5.20    | 0.20               | 2.50                       | ±18.6%                 |

<sup>C</sup> Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

<sup>F</sup> At frequencies 6–10 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm 1\%$  for frequencies below 3 GHz; below  $\pm 2\%$  for frequencies between 3–6 GHz; and below  $\pm 4\%$  for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.