

FCC RADIO TEST REPORT

FCC ID	:	TX2-RTL8822C
Equipment	:	Module
Brand Name	:	Realtek
Model Name	:	RTL8822C
Marketing Name	:	11a/b/g/n/ac RTL8822C Combo module
Applicant	:	Realtek Semiconductor Corp.
		No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan
Standard	:	FCC Part 15 Subpart E §15.407

The product was received on Aug. 12, 2021 and testing was started from Aug. 18, 2021 and completed on Aug. 31, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Win

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Page Number: 1 of 20Issued Date: Sep. 17, 2021Report Version: 02

Table of Contents

His	tory o	f this test report	3
Su	mmary	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Maximum Conducted Output Power Measurement	10
	3.2	Unwanted Emissions Measurement	11
	3.3	AC Conducted Emission Measurement	15
	3.4	Antenna Requirements	17
4	List o	of Measuring Equipment	
5	Unce	rtainty of Evaluation	20
Ар	pendix	x A. Conducted Test Results	
Ар	pendix	x B. AC Conducted Emission Test Result	
Ар	pendix	x C. Radiated Spurious Emission	
Ар	pendix	x D. Radiated Spurious Emission Plots	
Ар	pendix	x E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR180221E	01	Initial issue of report	Sep. 10, 2021
FR180221E	02	 Revise antenna information Revise Support Unit used in test configuration and system 	Sep. 17, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.403(i)	6dB & 26dB Bandwidth	-	See Note
-	2.1049	99% Occupied Bandwidth	-	See Note
3.1	15.407(a)	Maximum Conducted Output Power	Pass	-
-	15.407(a)	Power Spectral Density	-	See Note
3.2	15.407(b)	Unwanted Emissions	Pass	Under limit 10.46 dB at 71.710 MHz
3.3	15.207	AC Conducted Emission	Pass	Under limit 8.98 dB at 0.499 MHz
3.4	15.203 15.407(a)	Antenna Requirement	Pass	-

Note: The module (Model: RTL8822C) makes no difference after verifying output power, this report reuses test data from the module report.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Keven Cheng

Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac, and Wi-Fi 5GHz 802.11a/n/ac.

Product Specification subjective to this standard				
Installed into host	Equipment Name: Steam Deck Brand Name: Valve			
	Model Name: 1010			
Sample 1	Host with INPAQ	Antenna		
Sample 2	Host with AWAN	Antenna		
Sample 3	Host with High-Te	ek Antenna		
Antenna Type	WLAN <main>: PIFA Antenna <aux.>: PIFA Antenna Bluetooth: PIFA Antenna</aux.></main>			
Antenna information (INPAQ Technology Co., Ltd.)				
Antenna ir	formation (INPAQ	Technology Co., Ltd.)		
Antenna ir 5725 MHz ~ 5850 MHz	Peak Gain (dBi)	Technology Co., Ltd.) <main>: 2.45 <aux.>: 3.34</aux.></main>		
5725 MHz ~ 5850 MHz	Peak Gain (dBi)	<main>: 2.45</main>		
5725 MHz ~ 5850 MHz	Peak Gain (dBi)	<main>: 2.45 <aux.>: 3.34</aux.></main>		
5725 MHz ~ 5850 MHz Antenna informatio 5725 MHz ~ 5850 MHz	Peak Gain (dBi) on (AWAN Advance Peak Gain (dBi)	<main>: 2.45 <aux.>: 3.34 ed Wireless and Antenna INC.) <main>: 2.33</main></aux.></main>		

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No. TH02-HY, CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
Test Sile NO.	03CH13-HY (TAF Code: 3786)		
Demerk	The Radiated Spurious Emission test item subcontracted to Sporton		
Remark	International Inc. Wensan Laboratory.		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). The measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X plane as worst plane.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5850 MHz	151*	5755	159*	5795
Band 4 (U-NII-3)	153	5765	161	5805
(0.111.0)	155 [#]	5775	165	5825

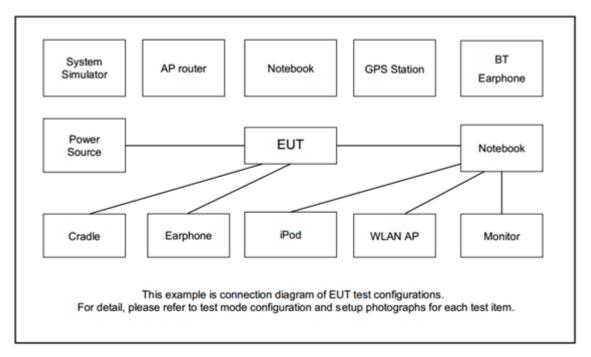
Note:

1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.

2. The above Frequency and Channel in "#" were 802.11ac VHT80.

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.


Modulation		Data Rate			
802.11a		6 Mbps			
	802.11ac VHT20	MCS0			
802.11ac VHT40		MCS0			
802.11ac VHT80		MCS0			
	Test Cases				
AC	AC				
Conducted	5GHz) Link + AC Adapter for Sample 1				
Emission	Emission				
Remark: For	Radiated Test Cases, the tests were	e performed with Sample 1			

Ch. #		Band IV:5725-5850 MHz				
		802.11a	802.11ac VHT20	802.11ac VHT80		
L	Low	-	-	-		
М	Middle	157	157	155		
Н	High	-	-	-		

Remark: For radiation spurious emission, the final modulation and the worst data rate was reference the max RF conducted power.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Earphone	Sony	MH750	N/A	Shielded, 1.2m	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "Terminal V3.36.2" was installed in Host which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Maximum Conducted Output Power Measurement

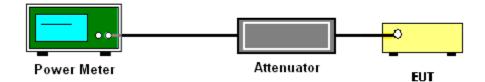
3.1.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.


3.1.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using a gated RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter.
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.1.4 Test Setup

3.1.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

3.2 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.2.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5.725-5.85 GHz band:

15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3} \mu V$$

μV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

(3) KDB789033 D02 v02r01 G)2)c)

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.

(ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

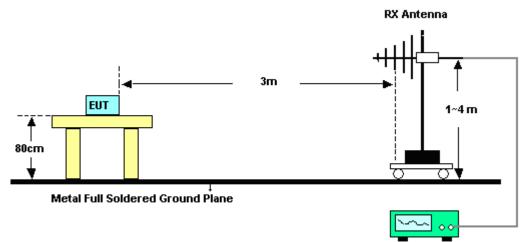
1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Section G) Unwanted emissions measurement.

- (1) Procedure for Unwanted Emissions Measurements Below 1000 \mbox{MHz}
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
- (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold

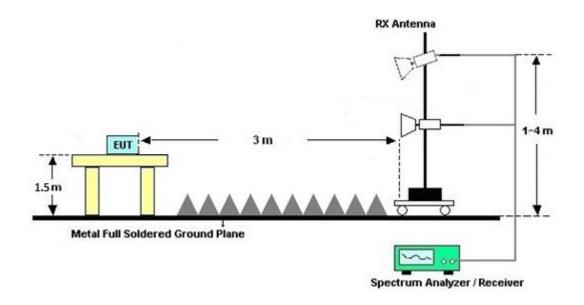
(3) Procedures for Average Unwanted Emissions Measurements Above 1000 MHz


- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1 GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.


7. For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.2.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated test above 1GHz

3.2.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Radiated Band Edges

Please refer to Appendix C and D.

3.2.7 Duty Cycle

Please refer to Appendix E.

3.2.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.3 AC Conducted Emission Measurement

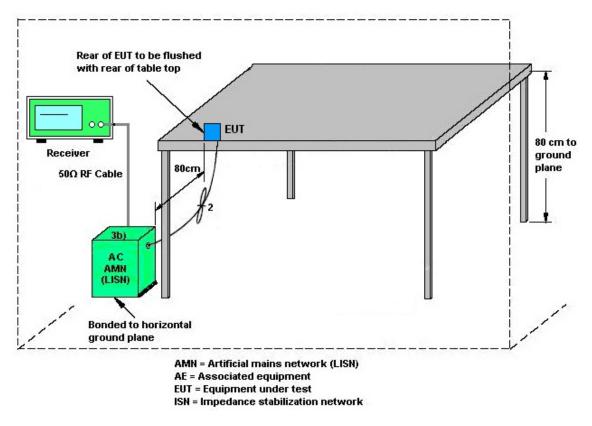
3.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.3.2 Measuring Instruments


See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.3.4 Test Setup

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.4 Antenna Requirements

3.4.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.4.3 Antenna Gain

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

 G_{ANT} set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

<cdd modes=""></cdd>							
			DG	DG	Power	PSD	
			for	for	Limit	Limit	
	Ant. 1	Ant. 2	Power	PSD	Reduction	Reduction	
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)	
Band IV	2.45	3.34	3.34	5.92	0.00	0.00	

Power Limit Reduction = DG(Power) - 6dBi, (min = 0)

PSD Limit Reduction = DG(PSD) - 6dBi, (min = 0)

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Aug. 27, 2021~ Aug. 31, 2021	Jan. 03, 2022	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz ~ 18GHz	Jul. 13, 2021	Aug. 27, 2021~ Aug. 31, 2021	Jul. 12, 2022	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02294	1GHz ~ 18GHz	Jun. 23, 2021	Aug. 27, 2021~ Aug. 31, 2021	Jun. 22, 2022	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Dec. 11, 2020	Aug. 27, 2021~ Aug. 31, 2021	Dec. 10, 2021	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Dec. 16, 2020	Aug. 27, 2021~ Aug. 31, 2021	Dec. 15, 2021	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 18, 2021	Aug. 27, 2021~ Aug. 31, 2021	May 17, 2022	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Oct. 28, 2020	Aug. 27, 2021~ Aug. 31, 2021	Oct. 27, 2021	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 11, 2020	Aug. 27, 2021~ Aug. 31, 2021	Dec. 10, 2021	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 18, 2021	Aug. 27, 2021~ Aug. 31, 2021	Mar. 17, 2022	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Aug. 27, 2021~ Aug. 31, 2021	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Aug. 27, 2021~ Aug. 31, 2021	N/A	Radiation (03CH13-HY)
Software	Audix	E3 6.2009-8-24	RK-000992	N/A	N/A	Aug. 27, 2021~ Aug. 31, 2021	N/A	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M-18G	Feb. 10, 2021	Aug. 27, 2021~ Aug. 31, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30M-18G	Feb. 10, 2021	Aug. 27, 2021~ Aug. 31, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Feb. 22, 2021	Aug. 27, 2021~ Aug. 31, 2021	Feb. 21, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz~40GHz	Mar. 11, 2021	Aug. 27, 2021~ Aug. 31, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30M-18G	Feb. 10, 2021	Aug. 27, 2021~ Aug. 31, 2021	Feb. 09, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 11, 2021	Aug. 27, 2021~ Aug. 31, 2021	Mar. 10, 2022	Radiation (03CH13-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN12	1.53GHz Low Pass Filter	Sep. 15, 2020	Aug. 27, 2021~ Aug. 31, 2021	Sep. 14, 2021	Radiation (03CH13-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN5	6.75GHz High Pass Filter	Mar. 11, 2021	Aug. 27, 2021~ Aug. 31, 2021	Mar. 10, 2022	Radiation (03CH13-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 01, 2021	Aug. 18, 2021~ Aug. 26, 2021	Feb. 28, 2022	Conducted (TH02-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12	10MHz~6GHz	Dec. 16, 2020	Aug. 18, 2021~ Aug. 26, 2021	Dec. 15, 2021	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz ~ 40GHz	Nov. 13, 2020	Aug. 18, 2021~ Aug. 26, 2021	Nov. 12, 2021	Conducted (TH02-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2021	Aug. 18, 2021~ Aug. 26, 2021	Mar. 16, 2022	Conducted (TH02-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Aug. 20, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 30, 2020	Aug. 20, 2021	Nov. 29, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 18, 2020	Aug. 20, 2021	Nov. 17, 2021	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2020	Aug. 20, 2021	Nov. 30, 2021	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Aug. 20, 2021	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Jul. 28, 2021	Aug. 20, 2021	Jul. 27, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	Aug. 20, 2021	Dec. 30, 2021	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.3 dB
of 95% (U = 2Uc(y))	2.3 dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	5.5 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.8 dB
of 95% (U = 2Uc(y))	5.0 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	3.9 dB
--	--------

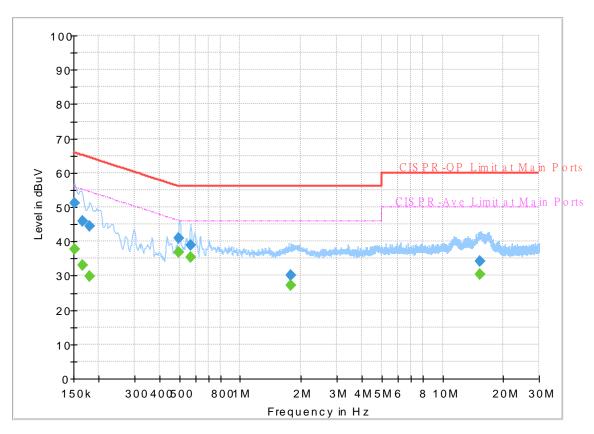
Appendix A. Test Result of Conducted Test Items

Test Engineer:	Junyu Jhou	Temperature:	24.6~25.1	°C					
Test Date:	2021/8/18~2021/8/26	Relative Humidity:	49.2~50.7	%					
Remark: For Conducted Test Items, Ant. 1 means Chain 0 and Ant. 2 means Chain 1.									

TEST RESULTS DATA Average Power Table

	Band IV single antenna											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		Average conducte Power (dBm)		Cond Powe	CC lucted r Limit Bm)	_	G Bi)	Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	149	5745	15.80	15.90		30.00	30.00	2.45	3.34	Pass
11a	6Mbps	1	157	5785	15.80	15.90		30.00	30.00	2.45	3.34	Pass
11a	6Mbps	1	165	5825	15.80	15.90		30.00	30.00	2.45	3.34	Pass
VHT20	MCS0	1	149	5745	15.80	15.80		30.00	30.00	2.45	3.34	Pass
VHT20	MCS0	1	157	5785	15.90	15.80		30.00	30.00	2.45	3.34	Pass
VHT20	MCS0	1	165	5825	15.90	15.80		30.00	30.00	2.45	3.34	Pass
VHT40	MCS0	1	151	5755	15.40	15.20		30.00	30.00	2.45	3.34	Pass
VHT40	MCS0	1	159	5795	15.20	15.20		30.00	30.00	2.45	3.34	Pass
VHT80	MCS0	1	155	5775	15.30	15.40		30.00	30.00	2.45	3.34	Pass

						Band	IV MIM	0				
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)			FC Cond Power (dB	ucted r Limit	D (dl	-	Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	149	5745	15.80	15.80	18.81	30.	00	3.3	34	Pass
11a	6Mbps	2	157	5785	15.80	15.70	18.76	30.	00	3.3	34	Pass
11a	6Mbps	2	165	5825	15.70	15.80	18.76	30.	00	3.3	34	Pass
VHT20	MCS0	2	149	5745	15.80	15.80	18.81	30.	00	3.3	34	Pass
VHT20	MCS0	2	157	5785	15.90	15.90	18.91	30.	00	3.3	34	Pass
VHT20	MCS0	2	165	5825	15.80	15.80	18.81	30.	30.00		34	Pass
VHT40	MCS0	2	151	5755	15.30	15.40	18.36	30.	30.00		34	Pass
VHT40	MCS0	2	159	5795	15.30	15.40	18.36	30.	30.00		34	Pass
VHT80	MCS0	2	155	5775	15.40	15.40	18.41	30.	00	3.3	34	Pass

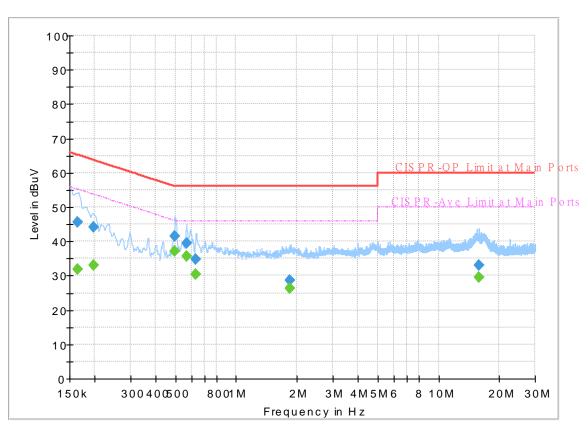


Appendix B. AC Conducted Emission Test Results

Test Engineer :		•	Temperature :	23~26 ℃
Test Engineer.	Calvin Wang	I	Relative Humidity :	40~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 180221 Mode 1 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		37.72	55.88	18.16	L1	OFF	19.6
0.152250	51.18		65.88	14.70	L1	OFF	19.6
0.165750		33.05	55.17	22.12	L1	OFF	19.6
0.165750	45.85		65.17	19.32	L1	OFF	19.6
0.179250		29.84	54.52	24.68	L1	OFF	19.6
0.179250	44.35		64.52	20.17	L1	OFF	19.6
0.498750		36.80	46.02	9.22	L1	OFF	19.8
0.498750	40.82		56.02	15.20	L1	OFF	19.8
0.568500		35.31	46.00	10.69	L1	OFF	19.9
0.568500	39.00		56.00	17.00	L1	OFF	19.9
1.783500		27.10	46.00	18.90	L1	OFF	20.2
1.783500	30.25		56.00	25.75	L1	OFF	20.2
15.310500		30.50	50.00	19.50	L1	OFF	20.3
15.310500	34.26		60.00	25.74	L1	OFF	20.3

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 180221 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.163500		31.86	55.28	23.42	Ν	OFF	19.7
0.163500	45.74		65.28	19.54	Ν	OFF	19.7
0.197250		33.01	53.73	20.72	Ν	OFF	19.7
0.197250	44.18		63.73	19.55	Ν	OFF	19.7
0.498750		37.04	46.02	8.98	Ν	OFF	19.8
0.498750	41.40		56.02	14.62	Ν	OFF	19.8
0.568500		35.69	46.00	10.31	Ν	OFF	19.9
0.568500	39.40		56.00	16.60	Ν	OFF	19.9
0.631500		30.41	46.00	15.59	Ν	OFF	19.9
0.631500	34.75		56.00	21.25	Ν	OFF	19.9
1.833000		26.19	46.00	19.81	Ν	OFF	20.2
1.833000	28.71		56.00	27.29	Ν	OFF	20.2
15.767250		29.52	50.00	20.48	Ν	OFF	20.4
15.767250	33.07		60.00	26.93	Ν	OFF	20.4

Appendix C. Radiated Spurious Emission

Test Engineer :	Yuan Lee, Jacky Hong and Wilson Wu	Temperature :	20~25°C
lest Engineer .		Relative Humidity :	50~60%

Remark: For Radiated Spurious Emission Test Items, Ant. 1 means Chain 0 and Ant. 2 means Chain 1.

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		11570	49.05	-24.95	74	54.04	40.06	10.08	55.77	100	0	Ρ	Н
		17355	48.81	-19.39	68.2	51.49	41.03	12.01	56.42	100	0	Ρ	Н
													н
													Н
902 11 -													н
802.11a CH 157													н
5785MHz		11570	49.16	-24.84	74	54.15	40.06	10.08	55.77	100	0	Р	V
57 0514112		17355	49.65	-18.55	68.2	52.33	41.03	12.01	56.42	100	0	Р	V
													V
													V
													V
													V
Remark	1. No	o other spurious	s found.										
	2. All	results are PA	SS against F	Peak and	Average lim	iit line.							

Band 4 5725~5850MHz WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		11570	49.15	-24.85	74	54.14	40.06	10.08	55.77	100	0	Ρ	Н
		17355	48.71	-19.49	68.2	51.39	41.03	12.01	56.42	100	0	Р	Н
													Н
													Н
802.11ac													Н
VHT20													н
CH 157		11570	49.85	-24.15	74	54.84	40.06	10.08	55.77	100	0	Р	V
5785MHz		17355	50.04	-18.16	68.2	52.72	41.03	12.01	56.42	100	0	Р	V
													V
													V
													V
													V
Remark		o other spurious results are PA		eak and	Average lim	it line.							

Band 4 5725~5850MHz

WIFI 802.11ac VHT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5628.2	53.07	-15.13	68.2	42.1	31.94	6.44	27.41	268	162	Р	Н
		5694.8	63.19	-38.18	101.37	52.06	32.17	6.42	27.46	268	162	Р	Н
		5717.8	67.73	-42.45	110.18	56.53	32.27	6.41	27.48	268	162	Р	Н
		5721.2	68.83	-44.71	113.54	57.62	32.28	6.41	27.48	268	162	Р	Н
	*	5775	105.42	-	-	94.14	32.4	6.4	27.52	268	162	Р	Н
	*	5775	95.85	-	-	84.57	32.4	6.4	27.52	268	162	Α	н
		5851.6	62.05	-56.5	118.55	50.68	32.51	6.43	27.57	268	162	Р	Н
		5855	59.84	-50.96	110.8	48.46	32.52	6.44	27.58	268	162	Р	Н
		5877.6	53.24	-50.03	103.27	41.76	32.61	6.46	27.59	268	162	Р	Н
		5943	51.71	-16.49	68.2	40.05	32.79	6.51	27.64	268	162	Р	Н
802.11ac													Н
VHT80													Н
CH 155		5637.4	52.16	-16.04	68.2	41.21	31.93	6.44	27.42	288	15	Р	V
5775MHz		5699.6	62.99	-41.92	104.91	51.83	32.2	6.42	27.46	288	15	Р	V
		5716.6	65.93	-43.92	109.85	54.72	32.27	6.42	27.48	288	15	Р	V
		5721.8	67.36	-47.54	114.9	56.14	32.29	6.41	27.48	288	15	Р	V
	*	5775	104.25	-	-	92.97	32.4	6.4	27.52	288	15	Р	V
	*	5775	94.12	-	-	82.84	32.4	6.4	27.52	288	15	А	V
		5852.2	58.6	-58.58	117.18	47.23	32.51	6.43	27.57	288	15	Р	V
		5855.8	58.38	-52.2	110.58	47	32.52	6.44	27.58	288	15	Р	V
		5875	52.87	-52.33	105.2	41.41	32.6	6.45	27.59	288	15	Р	V
		5948.2	51.93	-16.27	68.2	40.25	32.8	6.52	27.64	288	15	Р	V
													V
													V
Remark		o other spurious		eak and	Average lim	it line.							

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

TEL : 886-3-327-3456	
FAX : 886-3-328-4978	

Emission below 1GHz

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		30	24	-16	40	29.03	24.57	0.5	32.22	-	-	Р	Н
		131.85	26.06	-17.44	43.5	39.33	17.54	1	32.24	-	-	Ρ	Н
		303.54	33.03	-12.97	46	43.61	19.29	1.5	31.85	-	-	Ρ	Н
		547.98	33.67	-12.33	46	38.98	24.49	2	32.25	100	0	Р	Н
		800.18	30.86	-15.14	46	31.55	27.74	2.4	31.32	-	-	Ρ	Н
		954.41	33.26	-12.74	46	30.63	30.51	2.6	30.77	-	-	Р	н
													н
													н
													н
													н
5GHz													н
802.11ac													Н
VHT80		30	25.11	-14.89	40	30.14	24.57	0.5	32.22	-	-	Р	V
LF		71.71	29.54	-10.46	40	48.27	12.3	0.76	32.26	100	0	Р	V
		84.32	29.37	-10.63	40	46.55	13.85	0.81	32.25	-	-	Ρ	V
		559.62	26.21	-19.79	46	30.21	25.85	2.02	32.33	-	-	Р	V
		849.65	32.19	-13.81	46	31.85	28.64	2.48	31.19	-	-	Ρ	V
		952.47	33.47	-12.53	46	30.93	30.43	2.59	30.78	-	-	Ρ	V
													V
													V
													V
													V
													V
													V

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- 3. Over $Limit(dB) = Level(dB\mu V/m) Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

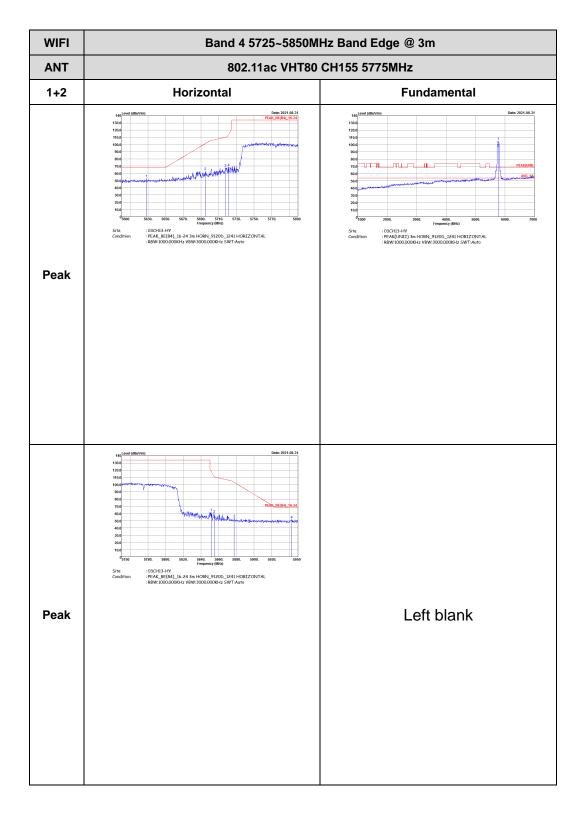
- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

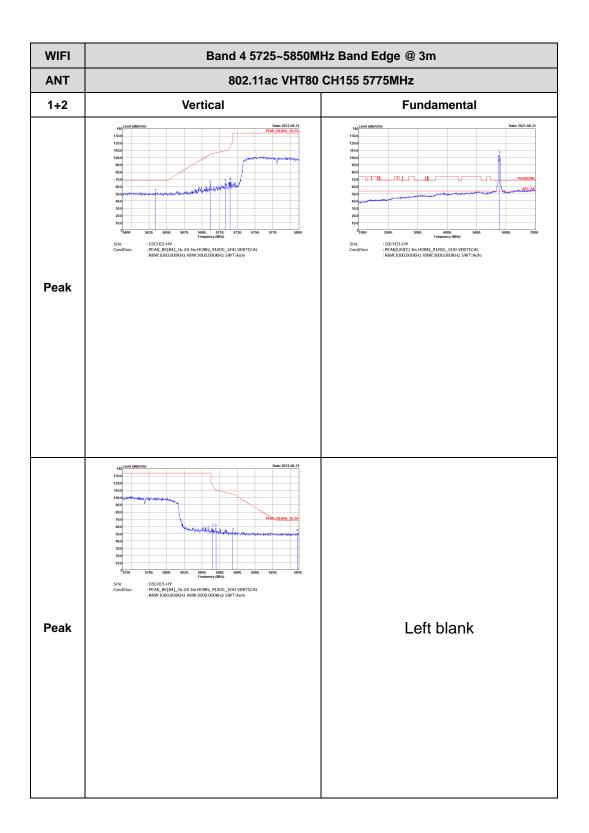
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

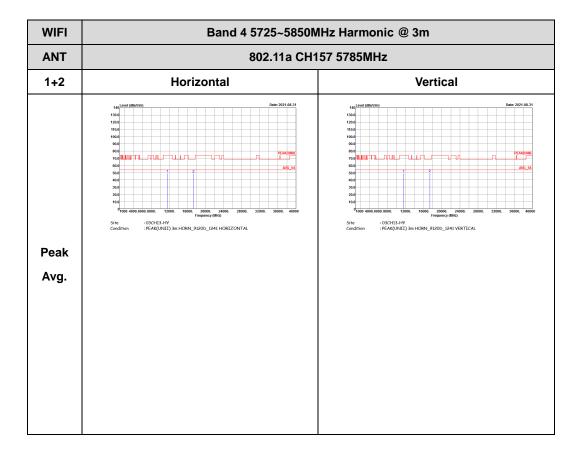

Test Engineer :	Yuan Lee, Jacky Hong and Wilson Wu	Temperature :	20~25°C
lest Engineer .		Relative Humidity :	50~60%

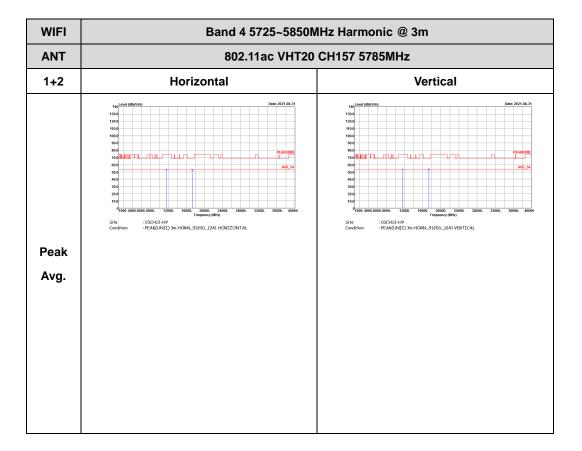
Remark: For Radiated Spurious Emission Test Items, Ant. 1 means Chain 0 and Ant. 2 means Chain 1.



Band 4 - 5725~5850MHz

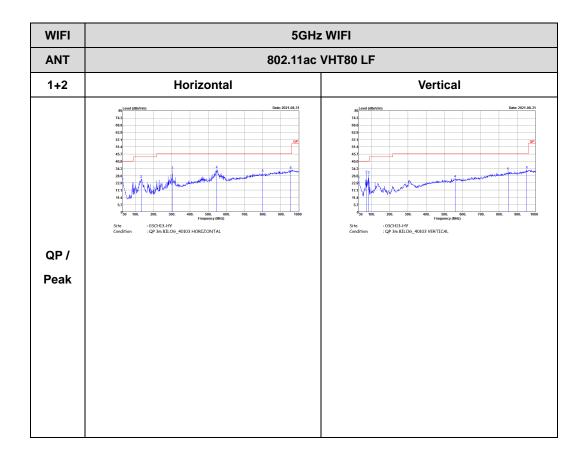
WIFI 802.11ac VHT80 (Band Edge @ 3m)

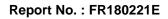




Band 4 - 5725~5850MHz

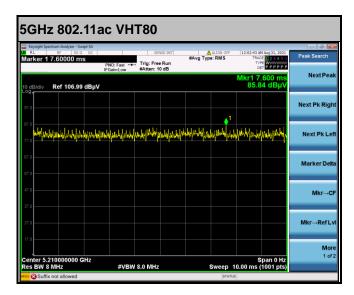
WIFI 802.11a (Harmonic @ 3m)




Band 4 5725~5850MHz WIFI 802.11ac VHT20 (Harmonic @ 3m)

Emission below 1GHz

5GHz WIFI 802.11ac VHT80 (LF @ 3m)



Appendix E. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	
1+2	802.11a	100.00	-	-	10Hz	
1+2	5GHz 802.11ac VHT20	100.00	-	-	10Hz	
1+2	5GHz 802.11ac VHT80	100.00	-	-	10Hz	

MIMO <Ant. 1+2>

802.11a		5GHz 802.11ac VHT20
Keysight Spectrum Analyzer Swept SA Strote Dir Au Lion OFF (#158/02 PH/4ug 30, 202) R RL RF S0 0 C B Au Lion OFF (#158/02 PH/4ug 30, 202) Marker 1 2.500000 ms PNC: Fast Trig: Free Run Trig: Free Run Trig: Free Run IF GelinLow Attent: 20 dB Mkrt 2.500 ms Mkrt 1.2,500 ms	Marker Select Marker	Knybigk Spectrum Analyzer - Swegt SA Knybigk Spectrum Analyzer - Sweg
10 dB(W) Ref 116.99 dB)V 104.37 dB)V 100 100 100 100 100 100 100 10	Normal	10.981019 Ref 116.99 dByV 111.88 dByV 100 100 100 111.88 dByV 111.88 dByV Clear Write 100 100 100 100 100 100 100 10
70	Delta	ST 0 Trace Average
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fixed⊳	77.0 Max Hold
Center 5.500000000 GHz Span 0 Hz Res BW 8 MHz #VBW 8.0 MHz Sweep 5.000 ms (1001 pts) we woot mc So_i x y Function Function worm Function worm	Off	50 Min Hold
1 N 1 2.500 ms 104.37 dBJV 2 -	Properties►	20 View Blank Trace On
	More 1 of 2	20 More Center 5.18000000 GHz Span 0 Hz
Status		Res BW 8 MHz #VBW 8.0 MHz Sweep 10.00 ms (1001 pts) Image 23 Suffix not allowed [status]

