RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C CLASS II PERMISSIVE CHANGE

Test Standard	FCC Part 15.247
FCC ID	TX2-RTL8821AU
Product name	802.11a/b/g/n/ac RTL8821AU Combo module
Brand Name	Realtek
Model	RTL8821AU
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

sem Cleary

Sam Chuang Manager Reviewed by:

my Ching

Jerry Chuang Engineer

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	November 13, 2017	Initial Issue	ALL	Allison Chen
01	December 1, 2017	Rev.(01)	P.8, P.20, P.34, P.35, P.39, P.40	Allison Chen
02	December 4, 2017	Rev.(02)	P. 20, 30, 31, 44, 45	Angel Cheng

Rev. (01):

1. Remove Applied standards DA 00 705.

2. Remove RADIATION BANDEDGE AND SPURIOUS EMISSIO Test Setup: 9kHz ~ 30MHz.

3. Update Power table.

4. Modify 2nd Harmonic in mid channel.

5. Other information, please refer to the T171012L01 and this test report.

Rev. (02):

1. Added radiation bandedge and spurious emission test setup: 9kHz ~ 30MHz.

2. Added note in below 1GHz test data.

3. Modify test setup photo.

Table of contents

1.	GEN	ERAL INFORMATION
	1.1	EUT INFORMATION4
	1.2	EUT CHANNEL INFORMATION5
	1.3	ANTENNA INFORMATION
	1.4	MEASUREMENT UNCERTAINTY6
	1.5	FACILITIES AND TEST LOCATION7
	1.6	INSTRUMENT CALIBRATION7
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT
	1.8	TEST METHODOLOGY AND APPLIED STANDARDS
2.	TES	SUMMERY 9
3.	DES	CRIPTION OF TEST MODES 10
	3.1	THE WORST MODE OF OPERATING CONDITION 10
	3.2	THE WORST MODE OF MEASUREMENT 11
	3.3	EUT DUTY CYCLE 12
4.	TES	۲ RESULT 13
	4.1	AC POWER LINE CONDUCTED EMISSION 13
	4.2	OUTPUT POWER MEASUREMENT 16
	4.3	RADIATION BANDEDGE AND SPURIOUS EMISSION
AF	PEN	DIX I - PHOTOGRAPHS OF EUT

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu, 300 Taiwan
Manufacturer	Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu, 300 Taiwan
Equipment	802.11a/b/g/n/ac RTL8821AU Combo module
Model No.	RTL8821AU
Model Discrepancy	N/A
Trade Name	Realtek
Received Date	October 12, 2017
Date of Test	November 6 ~ November 10, 2017
Output Power(W)	GFSK : 0.0011 8DPSK : 0.0011
Power Operation	 Power from host device. (DC 5V, 1.5A) Power from Li-ion Polymer Battery. Model: PR-464059G (1ICP5/40/59) Nominal Voltage: 3.8V Rated Capacity: 1630mAh / 6.2Wh Limited Charge voltage: 4.35V
Class II Permissive Change	Applicants add a new appearance of EUT and change the circuit and layout, but the antenna type and module are identical with original.

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested						
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation						
1 MHz or less	1	Middle				
1 MHz to 10 MHz	2	1 near top and 1 near bottom				
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom				

1.3 ANTENNA INFORMATION

Antenna Type	 PIFA PCB Dipole Coils
Antenna Gain	1.97 dBi

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982
Down owler	

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Jerry Chuang	
Radiation	Jerry Chuang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

AC Conduction Room						
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration Due						
DC LISN	SCHWARZBECK	NNBM 8124	505	03/20/2017	03/19/2018	
DC LISN	SCHWARZBECK	NNBM 8124	504	03/20/2017	03/19/2018	
EMI Test Receiver	R&S	ESCI	W3010659	07/13/2017	07/12/2018	

Wugu 966 Chamber A						
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration						
Bilog Antenna	Sunol Sciences	JB3	A030105	06/20/2017	06/19/2018	
Horn Antenna	EMCO	3117	00055165	02/20/2017	02/19/2018	
Pre-Amplifier	EMCI	EMC 012635	980151	08/01/2017	07/31/2018	
Pre-Amplifier	EMEC	EM330	060609	06/07/2017	06/06/2018	
Spectrum Analyzer	Agilent	E4446A	US42510252	12/05/2016	12/04/2017	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	

Conducted Test Site						
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration Du						
Power Meter	Anritsu	ML2495A	1012009	07/03/2017	07/02/2018	
Power Sensor	Anritsu	MA2411B	917072	07/03/2017	07/02/2018	
Spectrum Analyzer	R&S	FSV 40	101073	10/05/2017	10/04/2018	
Thermostatic/Hrgrosati c Chamber	GWINSTEK	GTC-288MH- CC	TH160402	05/23/2017	05/22/2018	
Wideband Radio communication Tester	R&S	CMW500	116875	04/25/2017	04/24/2018	

Remark:

1. Each piece of equipment is scheduled for calibration once a year and Precision Dipole is scheduled for calibration once three years.

2. N.C.R. = No Calibration Request.

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

No	Equipment	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1	NB(A)	Dell	PP19L	N/A	CXSMM01BR D02D110	N/A	N/A

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247.

Page 8 / 45 Rev.02 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

2. TEST SUMMERY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.2	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	Pass
15.247(b)(1)	4.3	Output Power Measurement	Pass
15.247(d)	4.8	Radiation Band Edge	Pass
15.247(d)	4.8	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BR-1Mbps (DH5) 8DPSK for EDR-3Mbps (DH5)
Test Channel Frequencies	GFSK for BR-1Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2441MHz 3.Highest Channel : 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2441MHz 3.Highest Channel : 2480MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

Compliance Certification Services Inc. FCC ID: TX2-RTL8821AU

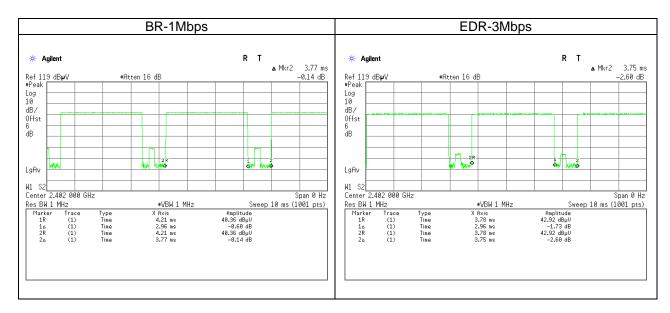
3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission					
Test ConditionAC Power line conducted emission for line and neutral					
Voltage/Hz DC 5V					
Test Mode	Mode 1:EUT power by host system				
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				

Radiated Emission Measurement Above 1G						
Test Condition Band edge, Emission for Unwanted and Fundamental						
Voltage/Hz DC 5V						
Test Mode Mode 1:EUT power by host system.						
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4					
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 					
Worst Polarity	Horizontal 🗌 Vertical					

Radiated Emission Measurement Below 1G							
Test Condition Radiated Emission Below 1G							
Voltage/Hz	Voltage/Hz DC 5V						
Test Mode	Test Mode Mode 1:EUT power by host system.						
Worst Mode	Worst Mode Mode 1 Mode 2 Mode 3 Mode 4						

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Y-Plane and Horizontal) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

Duty Cycle								
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)				
BR-1Mbps	2.9600	3.7700	78.51%	1.051				
EDR-3Mbps	2.9600	3.7500	78.93%	1.028				

Page 12 / 45 Rev.02 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

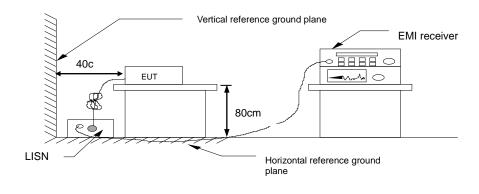
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a)

Frequency Range	Limits(dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

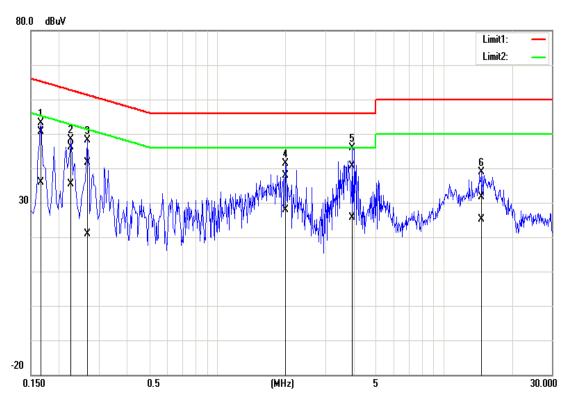

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

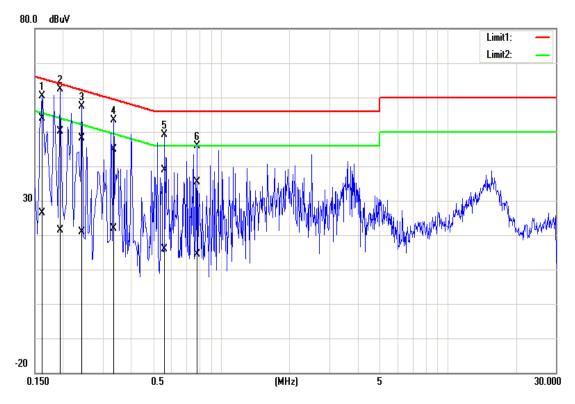
- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup



4.1.4 Test Result

PASS


<u>Test Data</u>

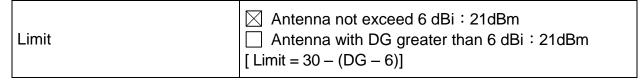
Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	November 10, 2017
Phase:	Line	Test Engineer	Jerry Chuang

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average
INO.	Frequency	reading	reading	factor	result	result	limit	limit	margin	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1	0.1660	50.46	35.88	0.05	50.51	35.93	65.16	55.16	-14.65	-19.23
2	0.2260	45.99	35.33	0.05	46.04	35.38	62.60	52.60	-16.56	-17.22
3	0.2660	41.61	20.90	0.05	41.66	20.95	61.24	51.24	-19.58	-30.29
4	2.0100	37.89	27.70	0.09	37.98	27.79	56.00	46.00	-18.02	-18.21
5	3.9580	40.56	25.47	0.13	40.69	25.60	56.00	46.00	-15.31	-20.40
6	14.6580	31.55	24.84	0.18	31.73	25.02	60.00	50.00	-28.27	-24.98

Test Mode:	Mode 1	Temp/Hum	24(°∁)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	November 10, 2017
Phase:	Neutral	Test Engineer	Jerry Chuang

No.	Froquency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average
NO.	Frequency	reading	reading	factor	result	result	limit	limit	margin	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1	0.1620	53.87	26.17	0.12	53.99	26.29	65.36	55.36	-11.37	-29.07
2	0.1940	50.04	21.15	0.12	50.16	21.27	63.86	53.86	-13.70	-32.59
3	0.2420	48.12	20.79	0.12	48.24	20.91	62.03	52.03	-13.79	-31.12
4	0.3340	44.83	21.69	0.13	44.96	21.82	59.35	49.35	-14.39	-27.53
5	0.5620	38.74	15.84	0.14	38.88	15.98	56.00	46.00	-17.12	-30.02
6	0.7820	35.17	14.23	0.14	35.31	14.37	56.00	46.00	-20.69	-31.63

4.2 OUTPUT POWER MEASUREMENT

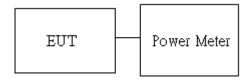

4.2.1 Test Limit

According to §15.247(a)(1)

Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.



Average output power : For reporting purposes only.

4.2.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.2.3 Test Setup

4.2.4 Test Result

Peak output power :

BT								
Config.	сн	Freq. (MHz)	PK Power (dBm)	PK Power (W)	FCC Limit (d Bm)			
GFSK	0	2402	0.56	0.0011				
BR-1Mbps	39	2441	0.41	0.0011				
(DH5)	78	2480	0.14	0.0010	21			
8DPSK	0	2402	0.42	0.0011	21			
EDR- 3Mbps	39	2441	0.49	0.0011				
(DH5)	78	2480	0.27	0.0011				

Average output power :

BT							
Config.	сн	Freq. (MHz)	AV Power (dBm)				
GFSK	0	2402	-0.91				
BR-1Mbps	39	2441	-1.13				
(DH5)	78	2480	-1.45				
8DPSK EDR-	0	2402	-2.22				
3Mbps	39	2441	-2.20				
(DH5)	78	2480	-2.54				

4.3 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.3.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

4.3.2 Test Procedure

Test method Refer as ANSI C63.10.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

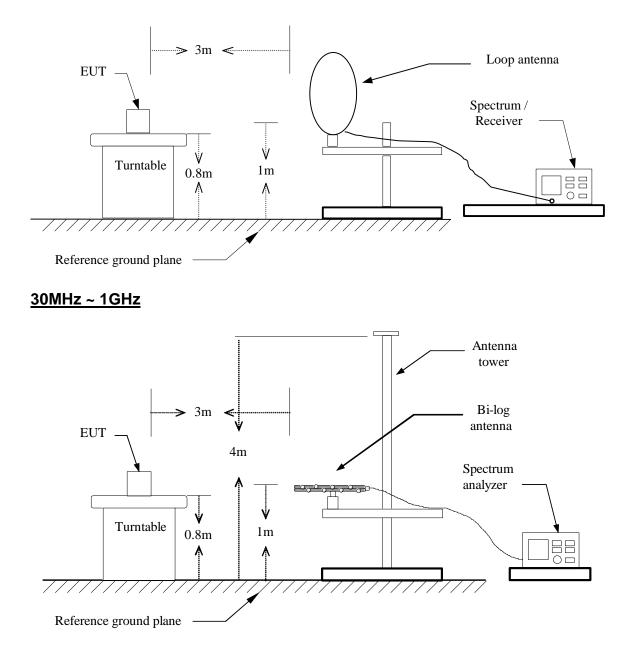
3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

4. For harmonic, the worst case of output power was BR-1Mbps. Therefore only BR-1Mbps record in the report.

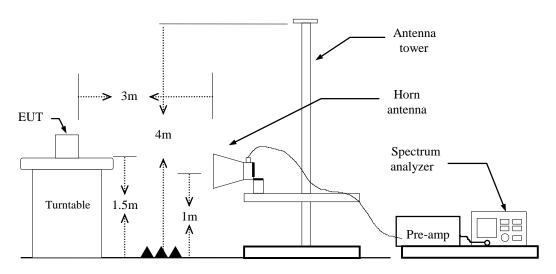
5. The SA setting following :

- (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
- (2) Above 1G :
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle \geq 98%, VBW=10Hz.


[·]If Duty Cycle < 98%, VBW≥1/T.

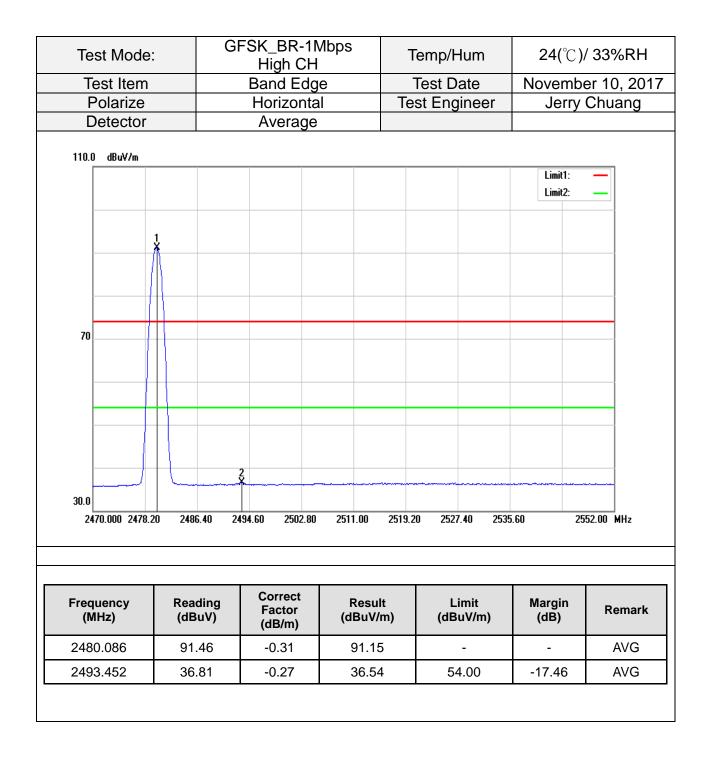
Configuration	Duty Cycle (%)	T(ms)	1/T (kHz)	VBW setting
GFSK_BR-1Mbps	79%	2.9600	0.338	360Hz
8DPSK_EDR-3Mbps	79%	2.9600	0.338	360Hz



4.3.3 Test Setup

<u>9kHz ~ 30MHz</u>

Above 1 GHz


4.3.4 Test Result

Band Edge Test Data

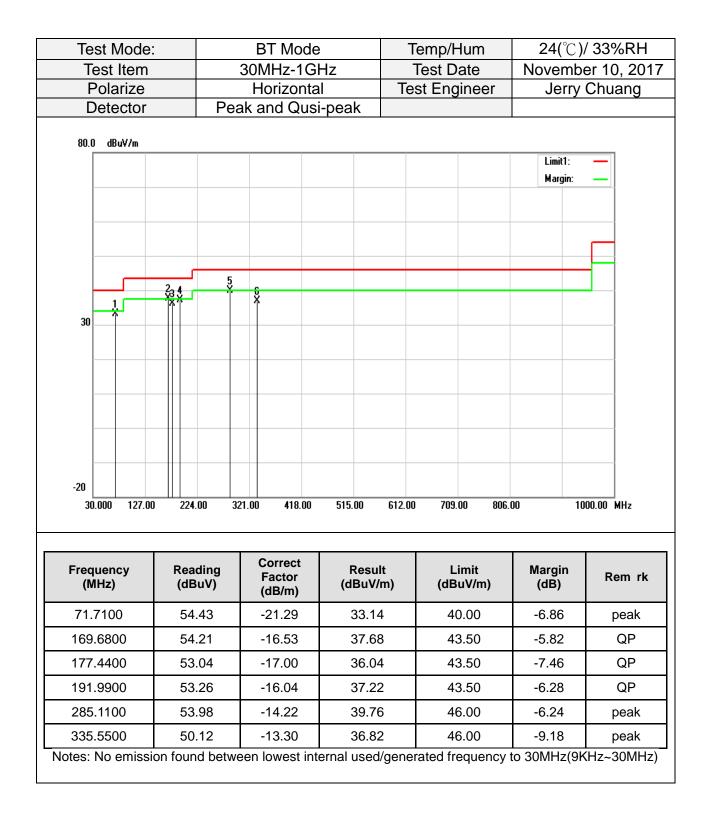
Test Mod	e:	GF	SK_BR-1M Low CH	bps	Temp/Hum		24(°C)/ 33%RH
Test Iter			Band Edge	<u>}</u>		est Date	Novemb	er 10, 201
Polarize	;		Horizontal Test Engineer		Jerry	Chuang		
Detecto	r		Peak					
120.0 dBuV/n	1							
							Limit1: Limit2:	
							2	
80								
- Allowshipergraph	hannananara	homen	dennisionalus Aprilion schunde	under dieter and the later	1 X	-touten manipheneter	undur nahrhy .	mundel
40.0								
2310.000 23	20.20 2	330.40 23	40.60 2350.80	2361.00	2371.20	2381.40 239	91.60 2	2412.00 MHz
Frequency (MHz)		eading d uV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
2367.324	4	9.70	-0.67	49.0)3	74.00	-24.97	peak
	1	0.99	-0.57	90.4		_	-	peak

Test M			SK_BR-1N Low CH	-		mp/Hum	. ,	/ 33%RH
Test It			Band Edge			est Date	November 10, 2017	
Polar			Horizontal		Test	Engineer	Jerry	Chuang
Detec	ctor		Average					
110.0 dB	u¥/m							
70							Limit1: Limit2:	
30.0						1 	/ \	~
	0 2320.20 2	330.40 23	40.60 2350.80	2361.00	2371.20	2381.40 23	91.60 24	112.00 MHz
Frequenc (MHz)		eading IBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
2376.40)2 3	6.42	-0.64	35.7	'8	54.00	-18.22	AVG
2402.00		0.76	-0.57	90.1	0	-	-	AVG

Test Item Polarize Detector		Band Edg					
					est Date	November 10, 201	
Detector		Horizonta		Tes	t Engineer	Jerry	Chuang
		Peak					
120.0 dBuV/m							
						Limit1: Limit2:	_
1							
80							
NUM WINDOW	Hanglidronynkinskerins	and the second	whenever	ndutunati	ternungen hilleren der der der beiteten.	anternation of the state of the	Manhaddar
40.0							
2470.000 2478.20	2486.40 249	94.60 2502.80	2511.00	2519.20	2527.40 2535.	.60 255	52.00 MHz
	eading dBuV)	Correct Factor (dB/m)	Result (dBuV/r		Limit (dBuV/m)	Margin (dB)	Remark
2479.840	92.21	-0.31	91.90	1	-	-	peak
2483.500	52.69	-0.30	52.39	1	74.00	-21.61	peak

Test Mo		8DP	SK_EDR- Low CH			p/Hum	. ,	/ 33%RH
Test Ite			Band Edg			t Date		er 10, 2017
Polariz			Horizonta	al	Test E	ngineer	Jerry	Chuang
Detect	or		Peak					
120.0 dBuV/	m							
80							Limit1: Limit2:	
40.0						uterradius and a state of the		rmudykyk
2310.000 2	320.20 233	0.40 234	0.60 2350.80	2361.00	2371.20	2381.40 2391	1.60 24	12.00 MHz
Frequency (MHz)		ding BuV)	Correct Factor (dB/m)	Resul (dBuV/i	-	Limit (dBuV/m)	Margin (dB)	Remark
2355.186	49	.83	-0.71	49.12	2	74.00	-24.88	peak
2402.004	01	.39	-0.57	90.82	,		-	peak

Test Mode:	8DF	PSK_EDR-3 Low CH			emp/Hum	24(°C),	/ 33%RH
Test Item		Band Edge			est Date		er 10, 2017
Polarize		Horizonta		Tes	t Engineer	Jerry	Chuang
Detector		Average					
110.0 dBuV/m							
70						Limit1: Limit2:	
30.0 2310.000 2320.20	2330.40 23	340.60 2350.80	2361.00	2371.20		.60 24	12.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
2390.000	36.06	-0.60	35.46	6	54.00	-18.54	AVG
2402.004	86.88	-0.57	86.31		-	-	AVG


Test Mode:	8	CPSK_EDR-≎ High CH		Temp/Hum		24(°∁)/ 33%RH	
Test Item		Band Edg		Test Da			er 10, 2017
Polarize		Horizonta	1	Test Eng	ineer	Jerry	Chuang
Detector		Peak					
120.0 dBuV/m							
						Limit1: Limit2:	_
80							
Annalart	Muhanah	ust Mandesurverse the opping of the opping of the	erathaparaterated braster	a Maria and a suited re	nendetsenangense	bern the feature of the second se	hariyanyad
40.0							
2470.000 2478.2	0 2486.40	2494.60 2502.80	2511.00	2519.20 2527	.40 2535	.60 25	52.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m		mit uV/m)	Margin (dB)	Remark
2479.922	93.78	-0.31	93.47		-	-	peak
2483.500	52.58	-0.30	52.28	7/	.00	-21.72	peak

Test Mode:	8DPSK_EDR-3 High CH	3Mbps	「emp/Hum	24(°C)/	33%RH
Test Item	Band Edg		Test Date		er 10, 2017
Polarize	Horizonta	I Te	st Engineer	Jerry	Chuang
Detector	Average				
110.0 dBu∀/m					
				Limit1: Limit2:	_
70					
30.0				<u> </u>	
2470.000 2478.20 248	36.40 2494.60 2502.80	2511.00 2519.2	20 2527.40 2535	.60 255	52.00 MHz
Frequency Rea (MHz) (dB	ading Correct BuV) (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2480.004 89	9.31 -0.31	89.00	-	-	AVG
2520.266 36	6.60 -0.20	36.40	54.00	-17.60	AVG

Below 1G Test Data

Test Mode		BT Mode		Temp/Hum	24(°C)/	33%RH
Test Item		30MHz-1GH		Test Date	Novembe	
Polarize		Vertical		est Engineer	Jerry (Chuang
Detector	P	eak and Qusi-	peak			
80.0 dBuV/m						
					Limit1:	
					Margin:	_
	2	34 5		C		
30		3 4 5 X X X		6 X		
-20						
30.000 127.00) 224.00	321.00 418.00	515.00 612	00 709.00 806.	00 100	
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
66.8600	54.41	-21.42	32.99	40.00	-7.01	peak
166.7700	53.06	-16.36	36.70	43.50	-6.80	peak
335.5500	45.58	-13.30	32.28	46.00	-13.72	peak
366.5900	45.46	-12.45	33.01	46.00	-12.99	peak
431.5800	42.38	-10.25	32.13	46.00	-13.87	peak
799.2100	35.22	-3.39	31.83	46.00	-14.17	peak
		veen lowest inte				

Above 1G Test Data

Test Mode	:	GF	SK_BR- Low C	1Mbps H	Т	emp/H	lum	24(°C))/ 33%RH
Test Item			Harmo		•	Test D	ate	Novemb	oer 10, 201
Polarize			Vertic			st Eng		Jerry Chuang	
Detector		Pea	ak and A	verage					
110.0 dBuV/m									
								Limit1: Limit2:	
70									
	1								
30.0 1000.000 3550.	00 6100.	00 865	0.00 1120	0.00 13750.00	16300.	.00 1885	50.00 2140	0.00 2	6500.00 MHz
Frequency (MHz)	Read (dBu		Correct Factor (dB/m)	Res (dBu\			imit uV/m)	Margin (dB)	Remark
4804.000	32.8	30	6.78	39.5	58	74	4.00	-34.42	peak
N/A									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	1	GF	SK_BR Low (-1Mbps CH	5	Т	emp/l	lum	24(°C)/ 33	%RH
Test Item			Harmo				Test D		Nover	nber 1	0, 201
Polarize			Horizo			Te	st Eng	gineer	Jei	rry Chi	Jang
Detector		Pea	ik and A	verage	;						
110.0 dBuV/m											_
									Limit Limit		
70											
	1										
30.0	Å										
1000.000 3550.	.00 6100.	00 8650).00 112	00.00 137	50.00 16	300.1	00 188	50.00 2140)0.00	26500.0	MHz
_		. [Correct		-						
Frequency (MHz)	Read (dBu		Factor (dB/m)		Result IBuV/m)			imit uV/m)	Margir (dB)	ר _ו	Remark
4804.000	32.5	52	6.78		39.30		74	4.00	-34.70)	peak
N/A	<u> </u>										
	<u> </u>			_							
	+			+							
	1										
	1						L		1	1	

- Measuring frequencies from 1 GHz to the 10th harmonic of highest 1. fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	:	GFSK_BR-1Mbps Mid CH Harmonic			np/Hum		/ 33%RH
Test Item		Harmonio			st Date		per 6, 201
Polarize		Vertical		lest b	Engineer	Jerry	Chuang
Detector	P	eak and Ave	erage				
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
30.0							
1000.000 3550.0	00 6100.00	8650.00 11200.00	0 13750.00	16300.00	18850.00 2140	0.00 26	6500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r		Limit (dBuV/m)	Margin (dB)	Remark
		Factor		m)			Remark peak
(MHz)	(dBuV)	Factor (dB/m)	(dBuV/r	m)	(dBuV/m)	(dB)	
(MHz) 4882.000	(dBuV)	Factor (dB/m)	(dBuV/r	m)	(dBuV/m)	(dB)	
(MHz) 4882.000	(dBuV)	Factor (dB/m)	(dBuV/r	m)	(dBuV/m)	(dB)	Remark peak
(MHz) 4882.000	(dBuV)	Factor (dB/m)	(dBuV/r	m)	(dBuV/m)	(dB)	
(MHz) 4882.000	(dBuV)	Factor (dB/m)	(dBuV/r	m)	(dBuV/m)	(dB)	
(MHz) 4882.000	(dBuV)	Factor (dB/m)	(dBuV/r	m)	(dBuV/m)	(dB)	
(MHz) 4882.000	(dBuV)	Factor (dB/m)	(dBuV/r	m)	(dBuV/m)	(dB)	

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:	G	FSK_BR-1M Mid CH		Temp/Hum		/ 33%RH
Test Item		Harmonio		Test Date		per 6,201
Polarize		Horizonta		Test Engineer	Jerry	Chuang
Detector	P	eak and Ave	rage			
110.0 dBuV/m						
					Limit1: Limit2:	_
70						
	1 X					
30.0						
1000.000 3550.0	0 6100.00 8	3650.00 11200.00	0 13750.00 16	300.00 18850.00 214	00.00 26	500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	32.11	6.99	39.10	74.00	-34.90	peak
N/A						
N/A						
N/A						
N/A						
N/A						
N/A						

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	:	GFS	SK_BR∙ High (-1Mbps CH	-	Temp/ł	Hum)/ 33%RH
Test Item			Harmo			Test D		November 10, 20	
Polarize			Vertic		Te	est Eng	gineer	Jerry	/ Chuang
Detector		Pea	k and A	verage					
110.0 dBuV/m									
								Limit1: Limit2:	
70									
	1 X								
30.0									
1000.000 3550.	00 6100.	00 8650	.00 1120)0.00 13750.0	0 16300).00 188	50.00 2140	0.00	26500.00 MHz
Frequency (MHz)	Read (dBu		Correct Factor (dB/m)	Ке	sult V/m)		.imit 3u /)	Margin (dB)	Remark
4960.000	31.5	53	7.18	38	.71	7	4.00	-35.29	peak
N/A									
	1					1		1	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Compliance Certification Services Inc. FCC ID: TX2-RTL8821AU

Test Mode	:	GF	SK_BR- High C		Т	emp/l	lum	24(℃)	/ 33%RH
Test Item			Harmo			Test D		November 10, 2	
Polarize			Horizor		Te	st Eng	jineer	Jerry Chuan	
Detector		Pea	ak and A	verage					
110.0 dBu¥/m									
								Limit1:	-
								Limit2:	_
70									
	1								
30.0 1000.000 3550.0	00 6100.	00 865	0.00 1120	0.00 13750.00	16300.	00 199	50.00 2140	0.00 26	6500.00 MHz
1000.000 3330.0	00 0100.	00 003	0.00 1120	0.00 13730.00	10500.	.00 100.	50.00 2140	0.00 20	JJ00.00 M112
Frequency (MHz)	Read (dBu		Correct Factor (dB/m)	Resu (dBuV/			imit uV/m)	Margin (dB)	Remark
4960.000	31.4	14	7.18	38.6	2	74	4.00	-35.38	peak
N/A									
emark:	I								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mod	le		(_EDR-3 _ow CH	Mbps	Те	mp/Hum	24(℃) / 33%RH
Test Iten	n	Н	larmonic	;	Te	est Date	Nove	mber 10, 20 ⁻
Polarize	;	1	Vertical		Test	t Enginee	er Je	rry Chuang
Detecto	r	Peak	and Ave	rage				·
110.0 dBuV/m							·	
							Limit	1: —
							Limit	2:
70								
30.0 1000.000 355	1 X i0.00 6100	.00 8650.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MHz
			rrect	13750.00 Resul		Limit		26500.00 MHz
Frequency (MHz)	Reading (dBuV)		r(dB/m)	(BuV/		(dBuV/m)	Margin (dB)	Remark

Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Result (BuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	32.36	6.78	39.14	74.00	-34.86	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	8DPSK_EDR-3Mbps Low CH	Temp/Hum	24(℃)/ 33%RF
Test Item	Harmonic	Test Date	November 10, 20
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Peak and Average		
110.0dBuV/m			
			Limit1: — Limit2: —
70			
1 *			
30.0			
1000.000 3550.00 610	0.00 8650.00 11200.00 13750.00	16300.00 18850.00 2140	0.00 26500.00 MHz

Frequency (MHz)	Reading (dBuV)	Correct Fa tor(B/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.000	33.50	6.78	40.28	74.00	-33.72	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test M	ode	8DF	SK_EDF Mid C		S	Temp/Hun	n	24(°C)/ 33%RH
Test It	em		Harmo	nic		Test Date	;	Noverr	nber 6 2017
Polar	ize		Vertica	al	Т	est Engine	er	Jerry	/ Chuang
Detec	tor	Pe	ak and A	verage	9				
110.0 dBu\	//m								
								Limit1: Limit2:	_
70									
	1								
30.0									
1000.000	3550.00 61	00.00 86	50.00 1120	0.00 137	50.00 1630	0.00 18850.00	2140	0.00	26500.00 MHz
Frequency (MHz)	Readi (dBu)		Correct ctor(dB/m		lesult BuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	31.3	7	6.99		38.36	74.00		-35.64	peak

(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
4882.000	31.37	6.99	38.36	74.00	-35.64	peak
N/A						
D /						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mo	de	8DP	SK_EDF Mid C	R-3Mbps H	; 7	ſemp/Hur	n	24(° ℃)/ ∶	33%RH
Test Ite	m		Harmo	nic		Test Date		November 6017	
Polariz	е		Horizor	ntal	Te	st Engine	er	Jerry C	huang
Detecto	or	Pea	ak and A	verage					
110.0 dBu¥/n	n								
								Limit1:	-
								Limit2:	_
70									
									_
	1								
	X								
30.0									
1000.000 3	50.00 610)0.00 865	0.00 1120	0.00 13750	.00 16300	.00 18850.00	21400.00	2650	10.00 MHz
Frequency	Readin	a	Correct	R	esult	Limit	Ν	largin	Demerk

Frequency (MHz)	Reading (dB V)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.000	31.34	6.99	38.33	74.00	-35.67	peak
N/A						
L	1	1	1	1		J

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mo	de	8DPSK_EDR-3Mbps High CH		Temp/Hum	24(℃)	24(℃)/ 33%RH	
Test Ite		Harmonic Test Date			er 10, 2017		
Polariz		Vertical		est Engineer	Jerry	Chuang	
Detecto	or	Peak and Ave	erage				
110.0 dBu¥/n	n						
					Limit1: Limit2:	_	
70							
	1						
30.0	550.00 6100.00	8650.00 11200.0) 13750.00 1630	0.00 18850.00 2	1400.00 21	6500.00 MHz	
Frequency	Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
MHz)	(ubuv)						
MHz) 4960.000	31.61	7.18	38.79	74.00	-35.21	peak	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Item Polarize	Harmonic		
Polarize	. Iainionio	Test Date	November 10, 20
	Horizontal	Test Engineer	Jerry Chuang
Detector	Peak and Average		
110.0 dBuV/m			
			Limit1: —
			Limit2: —
70			
30.0			
1000.000 3550.00	6100.00 8650.00 11200.00 13750.0) 16300.00 18850.00 214	00.00 26500.00 MHz

Reading (dBuV)	Correct Factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
31.54	7.18	38.72	74.00	-35.28	peak
	(dBuV)	(dBuV) Factor(dB/m)	(dBuV) Factor(dB/m) (dBuV/m)	(dBuV) Factor(dB/m) (dBuV/m) (dBuV/m)	(dBuV) Factor(dB/m) (dBuV/m) (dBuV/m) (dB)

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit