RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART E CLASS II PERMISSIVE CHANGE

FCC Part 15.407
TX2-RTL8821AU
802.11a/b/g/n/ac RTL8821AU Combo module
Realtek
RTL8821AU
Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Reviewed by:

Hem Cleang

Sam Chuang Manager

Approved by:

my Chiang

Jerry Chuang Engineer

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	November 14, 2017	Initial Issue	ALL	Allison Chen
01	December 1, 2017	Rev.(01)	P.5, P.9, P.11, P.18, P.24, P.25	Allison Chen
02	December 4, 2017	Rev.(02)	P.11, 25, 75, 76, 143, 144	Angel Cheng

Rev. (01):

1 Remove IEEE 802.11ac VHT 20MHz and IEEE 802.11ac VHT 40MHz

2. Remove Applied standards KDB 662911 D01 v02r01.

3. Modify Applied standards KDB 789033 D02 v01r04, to KDB 789033 D02 v01r04.

4. Remove radiation bandedge and spurious emission Test Setup: 9kHz ~ 30MHz.

5. Other information, please refer to the T171012L01 and this test report.

Rev. (02):

1. Added radiation bandedge and spurious emission Test Setup: 9kHz ~ 30MHz.

2. Added notes in below 1 GHz test data.

3. Modify number of channels.

4. Modify test setup photo.

Compliance Certification Services Inc. FCC ID: TX2-RTL8821AU

Table of contents

1.	GEN	ERAL INFORMATION	4
	1.1	EUT INFORMATION	4
	1.2	EUT CHANNEL INFORMATION	5
	1.3	ANTENNA INFORMATION	6
	1.4	MEASUREMENT UNCERTAINTY	7
	1.5	FACILITIES AND TEST LOCATION	8
	1.6	INSTRUMENT CALIBRATION	8
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	9
	1.8	TEST METHODOLOGY AND APPLIED STANDARDS	9
2.	TEST	SUMMERY	0
3.	DESC	CRIPTION OF TEST MODES 1	1
	3.1	THE WORST MODE OF OPERATING CONDITION 1	1
	3.2	THE WORST MODE OF MEASUREMENT1	2
	3.3	EUT DUTY CYCLE1	3
4.	TEST	RESULT	4
	4.1	AC POWER LINE CONDUCTED EMISSION	4
	4.2	OUTPUT POWER MEASUREMENT 1	7
	4.3	RADIATION BANDEDGE AND SPURIOUS EMISSION	3
A	-YENI	DIX 1 - PHOTOGRAPHS OF EUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant		Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu, 300 Taiwan						
Applicant Adress		Realtek Semiconductor Corp. No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu, 300 Taiwan						
Equipment	802.11a/b/g	y/n/ac RTL8821AU Com	bo module					
Model No.	RTL8821AU	J						
Model Discrepancy	N/A							
Trade Name	Realtek							
Received Date	October 12	2, 2017						
Date of Test	November	10, 2017						
	Band	Mode	Frequency Range (MHz)	Output Power (dBm)	Output Power (w)			
	U-NII-1	IEEE 802.11a IEEE 802.11n HT 20 MHz	5180 ~ 5240 5180 ~ 5240	11.99 11.97	0.0158			
		IEEE 802.11n HT 40 MHz	5190 ~ 5230	11.67	0.0147			
		IEEE 802.11a	5260 ~ 5320	11.98	0.0158			
Output Power	U-NII-2a	IEEE 802.11n HT 20 MHz	5260 ~ 5320	12.01	0.0159			
·		IEEE 802.11n HT 40 MHz	5270 ~ 5310	12.30	0.0170			
		IEEE 802.11a	5500 ~ 5725	12.03	0.0160			
	U-NII-2c	IEEE 802.11n HT 20 MHz	5500 ~ 5725	11.89	0.0155			
		IEEE 802.11n HT 40 MHz	5510 ~ 5670	12.50	0.0178			
		IEEE 802.11a IEEE 802.11n HT 20 MHz	5745 ~ 5825 5745 ~ 5825	11.98	0.0158			
	U-NII-3	IEEE 802.11n HT 20 MHz	5755 ~ 5795	11.76 12.40	0.0150 0.0174			
			5755 ~ 5795	12.40	0.0174			
Power Operation	 Power from host device. (DC 5V, 1.5A) Power from Li-ion Polymer Battery. Model: PR-464059G (1ICP5/40/59) Nominal Voltage: 3.8V Rated Capacity: 1630mAh / 6.2Wh Limited Charge voltage: 4.35V 							
Class II Permissive Change	Applicants add a new appearance of EUT and change the circuit and layout, but the antenna type and module are identical with original.							

1.2 EUT CHANNEL INFORMATION

	UNII-1				
	IEEE 802.11a	5180 ~ 5240 MHz			
	IEEE 802.11n HT 20 MHz	5180 ~ 5240 MHz			
	IEEE 802.11n HT 40 MHz	5190 ~ 5230 MHz			
	UNII-2a	·			
	IEEE 802.11a	5260 ~ 5320 MHz			
	IEEE 802.11n HT 20 MHz	5260 ~ 5320 MHz			
	IEEE 802.11n HT 40 MHz	5270 ~ 5310 MHz			
Frequency Range	UNII-2c				
	IEEE 802.11a	5500 ~ 5700 MHz			
	IEEE 802.11n HT 20 MHz	5500 ~ 5700 MHz			
	IEEE 802.11n HT 40 MHz	5510 ~ 5670 MHz			
	UNII-3				
	IEEE 802.11a	5745 ~ 5825 MHz			
	IEEE 802.11n HT 20 MHz	5745 ~ 5825 MHz			
	IEEE 802.11n HT 40 MHz	5755 ~ 5795 MHz			
	1. IEEE 802.11a mode: OFDM				
Madulation Turna	2. IEEE 802.11n HT 20 MHz mode: OFDM				
Modulation Type	3. IEEE 802.11n HT 40 MHz mode: OFDM				

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested						
Frequency range in which device operates	Number of frequencies	Location in frequency range of operation				
1 MHz or less	1	Middle				
1 MHz to 10 MHz	2	1 near top and 1 near bottom				
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom				

ANTENNA INFORMATION 1.3

Antenna Type	 PIFA PCB for Dipole Printed Coils
Antenna Gain	1.5dBi

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_B) /	+/- 3.97
Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_B) /	+/- 3.58
Radiated Emission, 1 to 18GHz	+/- 3.36
Semi Anechoic Chamber (966 Chamber_B) /	+/- 3.59
Radiated Emission, 18 to 26 GHz	+7- 5.55
Semi Anechoic Chamber (966 Chamber_B) /	+/- 3.81
Radiated Emission, 26 to 40 GHz	+7- 5.01
Conducted Emission (Mains Terminals),	+/- 2.48
9kHz to 30MHz	., 2.40

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Jerry Chuang	
Radiation	Jerry Chuang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

AC Conduction Test Room							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
DC LISN	SCHWARZBECK	NNBM 8124	505	03/20/2017	03/19/2018		
DC LISN	SCHWARZBECK	NNBM 8124	504	03/20/2017	03/19/2018		
EMI Test Receiver	R&S	ESCI	W3010659	07/13/2017	07/12/2018		

Wugu 966 Chamber A								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Bilog Antenna	Sunol Sciences	JB3	A030105	06/20/2017	06/19/2018			
Horn Antenna	EMCO	3117	00055165	02/20/2017	02/19/2018			
Pre-Amplifier	EMCI	EMC 012635	980151	08/01/2017	07/31/2018			
Pre-Amplifier	EMEC	EM330	060609	06/07/2017	06/06/2018			
Spectrum Analyzer	Agilent	E4446A	US42510252	12/05/2016	12/04/2017			
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R			
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R			
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R			

Conducted Test Site								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due			
Power Meter	Anritsu	ML2495A	1012009	07/03/2017	07/02/2018			
Power Sensor	Anritsu	MA2411B	917072	07/03/2017	07/02/2018			
Spectrum Analyzer	R&S	FSV 40	101073	10/05/2017	10/04/2018			
Thermostatic/Hrgrosati c Chamber	GWINSTEK	GTC-288MH- CC	TH160402	05/23/2017	05/22/2018			
Wideband Radio communication Tester	R&S	CMW500	116875	04/25/2017	04/24/2018			

Remark:

1. Each piece of equipment is scheduled for calibration once a year and Precision Dipole is scheduled for calibration once three years.

2. N.C.R. = No Calibration Request.

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

No	Equipment	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1	NB(A)	Dell	PP19L	N/A	CXSMM01BR D02D110	N/A	N/A

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.407, KDB 789033 D02 v01r04, KDB 644545 D03 v01.

2. TEST SUMMERY

FCC Standard Sec.	Chapter	Test Item	Result
15.203	1.2	Antenna Requirement	Pass
15.207	4.1	AC Conducted Emission	Pass
15.407(a)	4.3	Output Power Measurement	Pass
15.407(b)	4.5	Radiation Band Edge	Pass
15.407(b)	4.5	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	1. IEEE 802.11a mode: 6Mbps 2. IEEE 802.11n HT 20 MHz mode: MCS0 3. IEEE 802.11n HT 40 MHz mode: MCS0								
		Mode	Frequency Range (MHz)	Number of Channels					
		IEEE 802.11a	5180 ~ 5240	4 Channels					
	U-NII-1	IEEE 802.11n HT 20 MHz	5180 ~ 5240	4 Channels					
		IEEE 802.11n HT 40 MHz	5190 ~ 5230	2 Channels					
Operating Frequency		IEEE 802.11a	5260 ~ 5320	4 Channels					
Operating Frequency	U-NII-2a	IEEE 802.11n HT 20 MHz	5260 ~ 5320	4 Channels					
Range &		IEEE 802.11n HT 40 MHz	5270 ~ 5310	2 Channels					
Number of Channels		IEEE 802.11a	5500 ~ 5700	8 Channels					
	U-NII-2c	IEEE 802.11n HT 20 MHz	5500 ~ 5700	8 Channels					
		IEEE 802.11n HT 40 MHz	5510 ~ 5670	3 Channels					
		IEEE 802.11a	5745 ~ 5825	5 Channels					
	U-NII-3	IEEE 802.11n HT 20 MHz	5745 ~ 5825	5 Channels					
		IEEE 802.11n HT 40 MHz	5755 ~ 5795	2 Channels					

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

2. Covered modes are test reduction modes. The output powers on the covered modes are equal to or less than the mode referenced and use the same module

3. The mode IEEE 802.11ac VHT20 and VHT40 are only different in control messages with IEEE 802.11n HT20 and HT40, and have same power setting. Therefore, the highest power(IEEE 802.11n HT20 and HT40) were test conducted and radiated measurement and recorded in this report.

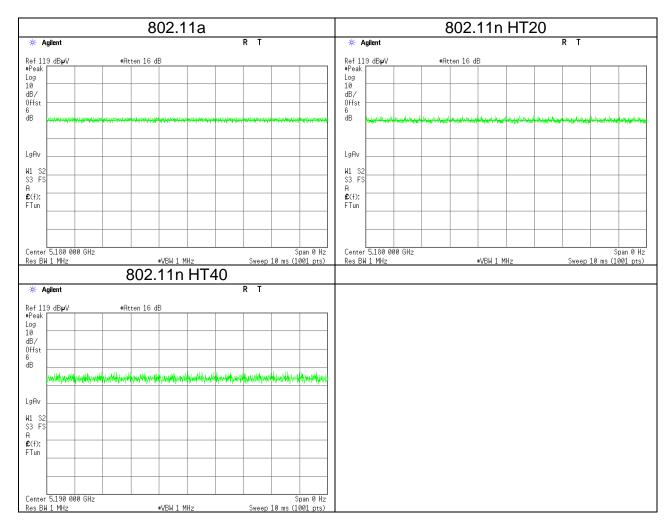
3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission					
Test Condition AC Power line conducted emission for line and neutral					
Voltage/Hz	DC 5V				
Test Mode	Mode 1:EUT power by host system.				
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4				

Radiated Emission Measurement Above 1G						
Test Condition	Band edge, Emission for Unwanted and Fundamental					
Voltage/Hz	DC 5V					
Test Mode Mode 1:EUT power by host system.						
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4					
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 					
Worst Polarity	Horizontal 🗌 Vertical					

Radiated Emission Measurement Below 1G					
Test Condition Radiated Emission Below 1G					
Voltage/Hz	DC 5V				
Test Mode	Mode 1:EUT power by host system.				
Worst Mode	☑ Mode 1 ☐ Mode 2 ☐ Mode 3 ☐ Mode 4				

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(X-Plane and Horizontal) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

Duty Cycle								
Configuration TX ON (ms) TX ALL (ms) Duty Cycle (%) Duty Factor(
802.11a	1.000	1.000	100.00%	0.00				
802.11n HT20	1.000	1.000	100.00%	0.00				
802.11n HT40	1.000	1.000	100.00%	0.00				

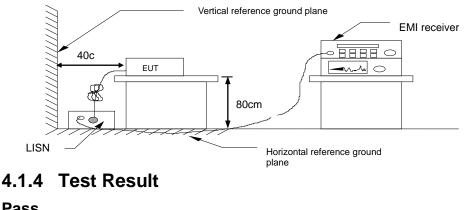
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

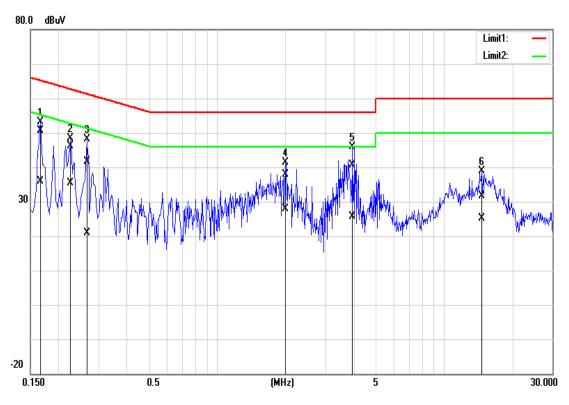
According to §15.207(a)

Frequency Range	Limits(dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

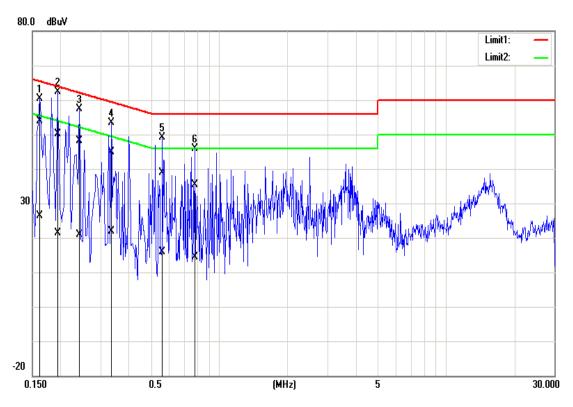

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,


- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup


<u>Test Data</u>

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	November 10, 2017
Phase:	Line	Test Engineer	Jerry Chuang

No.	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average
INO.	Frequency	reading	reading	factor	result	result	limit	limit	margin	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1	0.1660	50.46	35.88	0.05	50.51	35.93	65.16	55.16	-14.65	-19.23
2	0.2260	45.99	35.33	0.05	46.04	35.38	62.60	52.60	-16.56	-17.22
3	0.2660	41.61	20.90	0.05	41.66	20.95	61.24	51.24	-19.58	-30.29
4	2.0100	37.89	27.70	0.09	37.98	27.79	56.00	46.00	-18.02	-18.21
5	3.9580	40.56	25.47	0.13	40.69	25.60	56.00	46.00	-15.31	-20.40
6	14.6580	31.55	24.84	0.18	31.73	25.02	60.00	50.00	-28.27	-24.98

Test Mode:	Mode 1	Temp/Hum	24(°C)/ 50%RH
Test Voltage:	120Vac / 60Hz	Test Date	November 10, 2017
Phase:	Neutral	Test Engineer	Jerry Chuang

No	No. Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average
NO.	Frequency	reading	reading	factor	result	result	limit	limit	margin	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1	0.1620	53.87	26.17	0.12	53.99	26.29	65.36	55.36	-11.37	-29.07
2	0.1940	50.04	21.15	0.12	50.16	21.27	63.86	53.86	-13.70	-32.59
3	0.2420	48.12	20.79	0.12	48.24	20.91	62.03	52.03	-13.79	-31.12
4	0.3340	44.83	21.69	0.13	44.96	21.82	59.35	49.35	-14.39	-27.53
5	0.5620	38.74	15.84	0.14	38.88	15.98	56.00	46.00	-17.12	-30.02
6	0.7820	35.17	14.23	0.14	35.31	14.37	56.00	46.00	-20.69	-31.63

4.2 OUTPUT POWER MEASUREMENT

4.2.1 Test Limit

According to §15.407 (a)(1), 15.407(a)(2) and 15.407(a)(3)

<u>UNII-1 :</u>

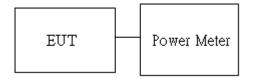
For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

UNII-2a and 2c:

the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

<u>UNII-3:</u>

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


UNII-1 Limit	Antenna not exceed 6 dBi : 24dBm Antenna with DG greater than 6 dBi : [Limit = $30 - (DG - 6)$]
UNII-2a/2c Limit	 Antenna not exceed 6 dBi : 24dBm Antenna with DG greater than 6 dBi : [Limit = 30 - (DG - 6)]
UNII-3 Limit	 Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dBi : [Limit = 30 - (DG - 6)]

4.2.2 Test Procedure

Test method Refer as KDB 789033 D02 v01r04, Section E.3.b.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Average output power. in the test report.

4.2.3 Test Setup

4.2.4 Test Result

Conducted output power :

					UNII-1					
Config	СН	Freq.	Powe	er Set	AV Power	(dBm)	AV Total Power	AV Total Power	DG	Limit
Coning	Сг	(MHz)	chain0	chain1	chain0				(dBi)	(dBm)
	36	5180	53	-	11.70	-	11.70	0.0148		
IEEE 802.11a	44	5220	50	-	11.60	-	11.60	0.0145		
	48	5240	50	-	11.99	-	11.99	0.0158		
	36	5180	53	-	11.74	-	11.74	0.0149		
IEEE 802.11n HT20	44	5220	53	-	11.85	-	11.85	0.0153	1.5	24
	48	5240	52	-	11.97	-	11.97	0.0157		
IEEE 802.11n	38	5190	52	-	11.43	-	11.43	0.0139		
802.11h HT40	46	5230	52	-	11.67	-	11.67	0.0147		

				ι	JNII-2a					
Config	СН	Freq.	Powe	er Set	AV Power	(dBm)	AV Total Power	AV Total Power	DG	Limit
Config	Сг	(MHz)	chain0	chain1	chain0	chain1	(dBm)	(W)	(dBi)	(dBm)
	52	5260	48	-	11.76	-	11.76	0.0150		
IEEE 802.11a	56	5280	47	-	11.98	-	11.98	0.0158		
	64	5320	46	-	11.92	-	11.92	0.0156		
	52	5260	48	-	11.91	-	11.91	0.0155		
IEEE 802.11n HT20	56	5280	47	-	11.87	-	11.87	0.0154	1.5	24
11120	64	5320	46	-	12.01	-	12.01	0.0159		
IEEE 802.11n	54	5270	48	-	12.02	-	12.02	0.0159		
HT40	62	5310	47	-	12.30	-	12.30	0.0170		

				ι	JNII-2c					
Config	СН	Freq.	Powe	er Set	AV Power	(dBm)	AV Total Power	AV Total Power	DG	Limit
Conng	Сп	(MHz)	chain0	chain1	chain0	chain1	(dBm)	(W)	(dBi)	(dBm)
	100	5500	51	-	11.24	-	11.24	0.0133		
IEEE 802.11a	116	5580	51	-	11.73	-	11.73	0.0149		
	140	5700	48	-	12.03	-	12.03	0.0160		
	100	5500	54	-	11.89	-	11.89	0.0155		
IEEE 802.11n HT20	116	5580	51	-	11.51	-	11.51	0.0142		
11120	140	5700	49	-	11.87	-	11.87	0.0154	1.5	24
	102	5510	54	-	12.15	-	12.15	0.0164		
IEEE 802.11n HT40	110	5550	53	-	12.13	-	12.13	0.0163		
	134	5670	51	-	12.50		12.50	0.0178		

					UNII-3					
Config	Config CH		Powe	er Set	AV Power	(dBm)	AV Total Power	AV Total Power	DG	Limit
comig	5	(MHz)	chain0	chain1	chain0	chain1	(dBm)	(W)	(dBi)	(dBm)
	149	5745	48	-	11.83	-	11.83	0.0152		
IEEE 802.11a	157	5785	48	-	11.98	-	11.98	0.0158		
	165	5825	48	-	11.96	-	11.96	0.0157		
	149	5475	49	-	11.63	-	11.63	0.0146		
IEEE 802.11n HT20	7	5785	49	-	11.76	-	11.76	0.0150	1.5	30
	165	5825	48	-	11.72	-	11.72	0.0149		
IEEE 802.11n	151	5755	51	-	12.40	-	12.40	0.0174		
802.11m НТ40	159	5795	50	-	12.11	-	12.11	0.0163		

4.3 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.3.1 Test Limit

According to §15.407, §15.209 and §15.205,

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)						
(MHz)	Transmitters	Receivers					
30-88	100 (3 nW)	100 (3 nW)					
88-216	150 (6.8 nW)	150 (6.8 nW)					
216-960	200 (12 nW)	200 (12 nW)					
Above 960	500 (75 nW)	500 (75 nW)					

4.3.2 Test Procedure

Test method Refer as KDB 789033 D02 v01r04, Section G.3, G.4, G.5, and G.6,.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

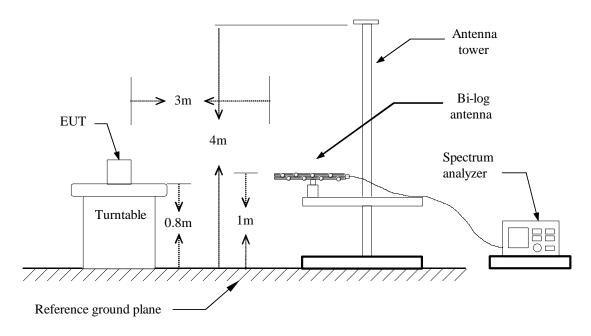
3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3*RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

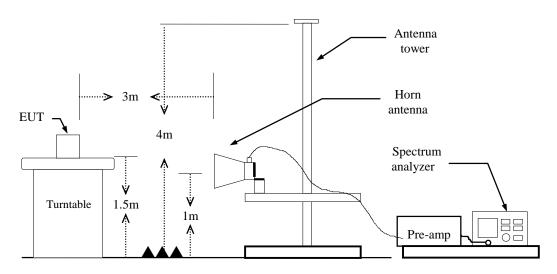
If Duty Cycle \geq 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW=1/T.

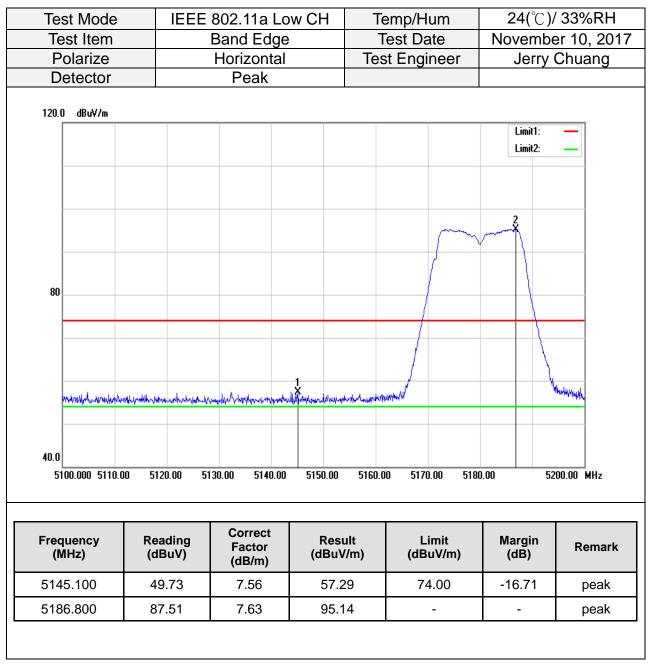
Configuration	Duty Cycle (%)	VBW
802.11a	100.00%	10Hz
802.11n HT20	100.00%	10Hz
802.11n HT40	100.00%	10Hz



4.3.3 Test Setup


<u>9kHz ~ 30MHz</u>

<u>30MHz ~ 1GHz</u>


Above 1 GHz

4.3.4 Test Result

Test Data

Band Edge Test Data for UNII-1

Test Mode		IEEE 8	302.11a L	ow CH	Ter	nperati	ure	24(°C)	/ 33%RH	
Test Item		Band Edge				est Dat	e	November 10, 201		
Polarize			Horizonta	al	Tes	t Engin	eer	Jerry	Chuang	
Detector			Average							
120.0 dBuV/m										
								Limit1: Limit2:	_	
							2	\sim		
80										
40.0										
5100.000 5110.0	00 5120).00 513	0.00 5140.0	0 5150.00	5160.00) 5170.0)0 5180).00 5	200.00 MHz	
				_						
Frequency (MHz)	Read (dB		Correct Factor (dB/m)	Res (dBu)		Lin (dBu'		Margin (dB)	Remark	
5100.200	36.	.36	7.47	43.8	33	54.	00	-10.17	AVG	
5173.900	78.	.08	7.60	85.6	68	-		-	AVG	

Tes	st Mode	IEEE	802.11a Hig	gh CH	Temp/H	lum	24(℃)	/ 33%RH
	st Item		Band Edge		Test Date		November 10, 2	
	olarize		Horizontal		Test Engi	ineer	Jerry	Chuang
De	etector		Peak					
120.0	dBuV/m							
							Limit1: Limit2:	_
-								
-				2				
80								
00								
-								
<u>-</u>	w. f. warmen with the	national and the second second	murantulphoneudd	Minum	Антина (раковальностор)	Laternericant	a. mar all home and	hanheitt
40.0								
510	00.000 5130.00	5160.00 5	190.00 5220.00	5250.00	5280.00 5310	0.00 5340	.00 5	400.00 MHz
	uency IHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		imit suV/m)	Margin (dB)	Remark
5133	3.600	49.16	7.53	56.69) 74	4.00	-17.31	peak
5247	7.000	87.17	7.75	94.92	2	-	-	peak
	0.400	48.61	7.96	56.57		4.00	-17.43	peak

Test Mo	de	IEEE	802.11a Hi	gh CH	Ter	nperature	24(°C)/	′ 33%RH		
Test Ite	m		Ū			est Date	November 10, 201			
Polariz			Horizontal		Test Engineer		Jerry Chuang			
Detecto	or		Average							
120.0 dBuV/	/m									
							Limit1: Limit2:	_		
				2						
80				\sim						
1	,						3			
40.0	• • • • • •				·····		••••••••••••••••••••••••••••••••••••••			
5100.000 \$	5130.00 5	160.00 51	90.00 5220.00	5250.00	5280.00) 5310.00 5340).00 54	00.00 MHz		
F	- D	a alia a	Correct	Deer	-14	1 : :4	Manaia			
Frequency (MHz)		eading dBuV)	Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark		
5121.000	3	36.18	7.51	43.6	69	54.00	-10.31	AVG		
5246.400		77.72	7.75	85.4		-	-	AVG		
5375.700	3	35.71	7.99	43.7	70	54.00	-10.30	AVG		

Test Mode)	IEEE	802.1	11n HT20 I	Low CH	Te	emp/H	um	24	(°C)/ 33	%RH	
Test Item		Band Edge				Т	Test Date			November 10, 20		
Polarize			Н	orizontal		Tes	st Engi	neer	Je	erry Chu	Jang	
Detector				Peak								
120.0 dBuV/	m											
										iit1: — iit2: —	•	
									2			
80												
	_										-	
Mund Analysia	white the	hudnorthy	nahrahlari	untersectional mathematical and	understad en service and	abit she have been a she	white			huhun	<u>hr</u>	
40.0												
5100.000 5	110.00	5120	.00 51	30.00 5140.00	0 5150.00	5160.0	0 517().00 518	0.00	5200.00	MHz	
Frequency (MHz)		Read (dB		Correct Factor (dB/m)	Res (dBu)			imit uV/m)	Marg (dB		Remark	
5109.300		49.	91	7.50	57.	41	74	4.00	-16.5	59	peak	
5186.500		87.	48	7.63	95.	11		-	-		peak	
5186.500		87.	48	7.63	95.	11		-	-		peak	

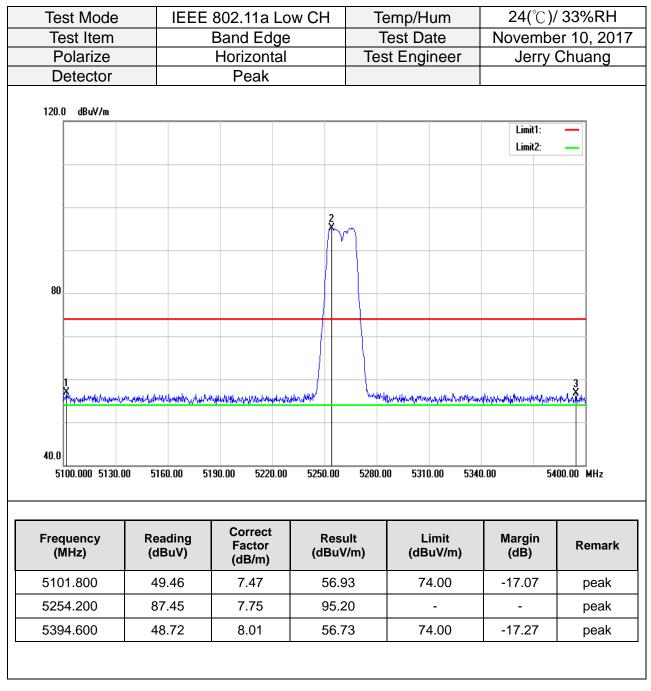
Test Mode	IEEE 802.	11n HT20 L	ow CH	Tempera	ature	24(°	C)/ 33%RH	
Test Item		and Edge		Test D			November 10, 201	
Polarize		lorizontal		Test Eng	ineer	Jer	ry Chuang	
Detector		Average						
120.0 dBuV/m								
						Limit1 Limit2		
					-	2		
80						\sim		
1					-			
40.0 5100.000 5110.	00 5120.00 51	30.00 5140.00	5150.00	5160.00 517	/0.00	0.00	5200.00 MHz	
5100.000 5110.	00 3120.00 31	130.00 3140.00	5150.00	5100.00 517	0.00 510	0.00	J200.00 M112	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/r		₋imit BuV/m)	Margin (dB)	Remark	
5106.500	36.28	7.49	43.77	5	4.00	-10.23	AVG	
5185.400	77.62	7.63	85.25		-	-	AVG	

Test Mode	IEEE	802.11n	HT20 Hi	gh CH	Te	mp/Hu	n	24(°C	;)/ 33%RH
Test Item		Band Edge		Te	est Date	e	Novem	ber 10, 2017	
Polarize		Hori	zontal		Tes	t Engin	eer	Jerr	y Chuang
Detector		P	eak						
120.0 dBuV/	n								
								Limit1: Limit2:	
80									
	_								
were and here and	ternen and the second second	nadhfret mei aithe	umphinistrat	hun	hansaahandar	ulmanna	pophiliponal	yanan marina dara dara dara dara dara dara dara da	MANNA MANN
40.0									
5100.000 5	130.00 5160).00 5190.1	00 5220.00	5250.00	5280.00) 5310.0	0 5340). 00	5400.00 MHz
Frequency (MHz)	Read (dB	ding uV)	Correct Factor (dB/m)	Resı (dBuV		Lim (dBu\		Margin (dB)	Remark
5149.200	49.	80	7.57	57.3	37	74.(00	-16.63	peak
5246.400	88.	95	7.75	96.7	0	-		-	peak
5392.800	49.	38	8.01	57.3	9	74.0	00	-16.61	peak

Test Mode	IEEE 802.11	In HT20 Hig	gh CH	Ter	nperature	24(°C)/ 33%RH
Test Item	Band Edge			Т	est Date		oer 10, 2017
Polarize	Ho	orizontal		Tes	t Engineer	Jerry	Chuang
Detector	A	verage					
120.0 dBuV/m	1						
						Limit1: Limit2:	_
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
80							
1							
40.0 ×				~ <u></u>			×
5100.000 51	30.00 5160.00 5	190.00 5220.00	5250.00	5280.00	0 5310.00 5	5340.00 !	5400.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5107.800	36.15	7.49	43.6	64	54.00	-10.36	AVG
5245.800	79.10	7.75	86.8	35	-	-	AVG
5400.000	35.61	8.03	43.6	64	54.00	-10.36	AVG

Test Item         Band Edge         Test Date         November 10, 20°           Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Peak         Imit:	Test Mode	IEEE 802.1	1n HT40 Lo	w CH	Te	mp/H	um	<b>24(</b> °(	C)/ 33%RH
Detector         Peak           120.0         dBuV/m           Image: Second									
120.0         dBwV/m         Limit :         Limit : <thlimit :<="" th=""> <thlimit :<="" th=""> <thlimi< td=""><td></td><td></td><td></td><td></td><td>Tes</td><td>t Engi</td><td>neer</td><td>Jerr</td><td>y Chuang</td></thlimi<></thlimit></thlimit>					Tes	t Engi	neer	Jerr	y Chuang
Image: Second	Detector		Peak						
Image: State in the second s	120.0 dBuV/m								
B0         General Correct         Result         Limit         Margin         Remark           5143.890         49.44         7.55         56.99         74.00         -17.01         peak									
Image: August and Aug								Limit2:	
Image: August and Aug									
Image: State in the second sector in the s									
Image: Addition of the second secon									
Image: Addition of the second secon							2		
Image: August and Aug						$\bigcap$		$\sqrt{2}$	
Image: August and Aug									
40.0       A0.0       5100.000 5111.00       5122.00       5133.00       5144.00       5155.00       5166.00       5177.00       5188.00       5210.00 MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5143.890       49.44       7.55       56.99       74.00       -17.01       peak	80					1			\
40.0       A0.0       5100.000 5111.00       5122.00       5133.00       5144.00       5155.00       5166.00       5177.00       5188.00       5210.00 MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5143.890       49.44       7.55       56.99       74.00       -17.01       peak									
40.0       A0.0       5100.000 5111.00       5122.00       5133.00       5144.00       5155.00       5166.00       5177.00       5188.00       5210.00 MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5143.890       49.44       7.55       56.99       74.00       -17.01       peak					/	(			
40.0       A0.0       5100.000 5111.00       5122.00       5133.00       5144.00       5155.00       5166.00       5177.00       5188.00       5210.00 MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5143.890       49.44       7.55       56.99       74.00       -17.01       peak					, A				
40.0       A0.0       5100.000 5111.00       5122.00       5133.00       5144.00       5155.00       5166.00       5177.00       5188.00       5210.00 MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5143.890       49.44       7.55       56.99       74.00       -17.01       peak									
5100.000         5111.00         5122.00         5133.00         5144.00         5155.00         5166.00         5177.00         5188.00         5210.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5143.890         49.44         7.55         56.99         74.00         -17.01         peak	A MARINA MARINA	and the work was a second dear	and supplication of a detail	mahanyahandha	unun V				
5100.000         5111.00         5122.00         5133.00         5144.00         5155.00         5166.00         5177.00         5188.00         5210.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5143.890         49.44         7.55         56.99         74.00         -17.01         peak									
5100.000         5111.00         5122.00         5133.00         5144.00         5155.00         5166.00         5177.00         5188.00         5210.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5143.890         49.44         7.55         56.99         74.00         -17.01         peak									
Frequency (MHz)Reading (dBuV)Correct Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5143.89049.447.5556.9974.00-17.01peak	40.0								
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark Remark5143.89049.447.5556.9974.00-17.01peak	5100.000 5111.	.00 5122.00 51	33.00 5144.00	5155.00	5166.00	) 5177	.00 5188	.00	5210.00 MHz
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark Remark5143.89049.447.5556.9974.00-17.01peak									
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5143.89049.447.5556.9974.00-17.01peak									
(MH2)         (dBuv)         (dB/m)         (dBuv/m)         (dBuv/m)         (dBuv/m)         (dB)           5143.890         49.44         7.55         56.99         74.00         -17.01         peak		Reading							Remark
	(MHz)	(dBuV)		(dBuV/	m)	(dB	uV/m)	(dB)	
5187 560 84 19 7 64 91 83	5143.890	49.44	7.55	56.99	9	74	1.00	-17.01	peak
	5187.560	84.19	7.64	91.83	3		-	-	peak




Test Mode	IEEE 802.12	In HT40 Lo	w CH Te	emperature	<b>24(°</b> C)/	/ 33%RH
Test Item	Bai	nd Edge		Test Date	Novembe	er 10, 2017
Polarize	Ho	orizontal	Te	st Engineer	Jerry	Chuang
Detector	A	verage				
120.0 dBuV/m						
					Limit1: Limit2:	_
80					V	2
		1				
40.0 5100.000 51	11.00 5122.00 5 ⁻	33.00 5144.00	5155.00 5166	.00 5177.00 518	8.00 52	10.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5146.420	36.30	7.57	43.87	54.00	-10.13	AVG
5205.380	74.47	7.67	82.14	-	-	AVG

Test Item         Band Edge         Test Date         November 10, 2017           Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Peak         Image: Construct of the second of the se	Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Те	mp/Hum		24(°	C)/ 33%RH	
Detector         Peak           120.0         dBuV/m           120.0         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00           5100.000         5180.00										17
120.0         dBwl/m           120.0         dBwl/m <td>Polarize</td> <td>Ho</td> <td></td> <td></td> <td colspan="2">Test Engineer</td> <td>Jer</td> <td>ry Chuang</td> <td></td>	Polarize	Ho			Test Engineer		Jer	ry Chuang		
Image: state of the s	Detector		Peak							
Imit         Imit         Imit           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	120.0 dBuV/m									
B0         Image: Contract frequency         Reading         Correct fractor (dB/m)         Result (dBuV/m)         Margin (dB)         Remark           5101.000         5130.00         5160.00         5130.00         5130.00         5130.00         5400.00         MHz										
B0         Image: Contract frequency         Reading         Correct fractor (dB/m)         Result (dBuV/m)         Margin (dB)         Remark           5101.000         5130.00         5160.00         5130.00         5130.00         5130.00         5400.00         MHz										
Image: Correct Factor (MHz)         Reading (BuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5101.000         5130.00         5160.00         5130.00         5130.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5400.00         MHz			2							
Image: Correct Factor (MHz)         Reading (BuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5101.000         5130.00         5160.00         5130.00         5130.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5100.00         5400.00         MHz				$\square$						
40.0       Image: Constraint of the second sec	80									
40.0       Image: Constraint of the second sec										
5100.000       5130.00       5160.00       5190.00       5220.00       5280.00       5310.00       5340.00       5400.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5141.700       49.69       7.55       57.24       74.00       -16.76       peak         5227.800       84.46       7.71       92.17       -       -       peak	wintherest the welf with	with which	munerpher	hall have been a second s	~MMumumuhv	n Marina and	mound	Ant the second second	er week aan de beek	
5100.000       5130.00       5160.00       5190.00       5220.00       5280.00       5310.00       5340.00       5400.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5141.700       49.69       7.55       57.24       74.00       -16.76       peak         5227.800       84.46       7.71       92.17       -       -       peak	40.0									
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5141.70049.697.5557.2474.00-16.76peak5227.80084.467.7192.17peak		.00 5160.00 51	90.00 5220.00	5250.00	5280.00	D 5310.00	5340	.00	5400.00 MHz	
(MHz)         (dBuV)         Pactor (dB/m)         (dBuV/m)         (dBuV/m)         (dB)         Remark           5141.700         49.69         7.55         57.24         74.00         -16.76         peak           5227.800         84.46         7.71         92.17         -         -         peak	Froquency	Pooding	Correct	Pos	.14	Limit		Morgin		
5227.800         84.46         7.71         92.17         -         -         peak									Remark	C
	5141.700	49.69	7.55	57.2	24	74.00	)	-16.76	6 peak	
5367.600 48.68 7.97 56.65 74.00 -17.35 peak	5227.800	84.46	7.71	92.1	7	-		-	peak	
	5367.600	48.68	7.97	56.6	65	74.00	)	-17.35	5 peak	

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Temperature	<b>24(°</b> ℃)/	33%RH
Test Item	Ba	and Edge		Test Date	November 10, 20	
Polarize	H	orizontal	Т	est Engineer	Jerry	Chuang
Detector	A	Average				
120.0_dBuV/m						
					Limit1: Limit2:	_
80		2	$\sim$			
	1				ŝ	<u>}</u>
40.0						
5100.000 513	0.00 5160.00 5	190.00 5220.00	5250.00 52	80.00 5310.00 534	0.00 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5150.000	36.17	7.57	43.74	54.00	-10.26	AVG
5226.600	74.51	7.71	82.22	-	-	AVG
5383.200	35.70	7.99	43.69	54.00	-10.31	AVG

# Test Data

### **Band Edge Test Data for UNII-2a**



Test Mode	IEE	E 802.11a Lo	ow CH	Temperature		24(°C)/ 33%RH		
Test Item		Band Edge			est Date		er 10, 201	
Polarize		Horizontal		Tes	t Engineer	Jerry	Chuang	
Detector		Average						
120.0 dBu∀/m								
						Limit1: Limit2:	_	
			2					
80								
			/					
40.0				L		3		
40.0 5100.000 5130.0	00 5160.00	5190.00 5220.00	) 5250.00	5280.00	) 5310.00 534	ł0.00 54	00.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark	
5105.700	36.28	7.49	43.7	7	54.00	-10.23	AVG	
5253.000	77.89	7.75	85.6	64	-	-	AVG	
5105.700	36.28	7.49	43.7	77	54.00	-10.23	AVG	

Test Mode		IEEE 8	302.11a Hig	gh CH	Te	mp/Hum	<b>24(</b> °C)	/ 33%RH
Test Item		E	Band Edge		Te	est Date	Novemb	er 10, 201
Polarize			Horizontal		Test	Engineer	Jerry	Chuang
Detector			Peak					
120.0 dBuV/m								
							Limit1: Limit2:	_
	$\sim$							
80								
			Mannahrunder	monthly working the	homeral	adunta da ana ana ana ana ana ana ana ana ana	le halmadana di	whomener
40.0								
5310.000 5317.0	0 5324	.00 533	31.00 5338.00	5345.00	5352.00	5359.00 53	66.00 5	380.00 MHz
_	_		Correct	_				
Frequency (MHz)	Read (dB		Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
5326.940	87.	83	7.90	95.73	3	-	-	peak
5074 050	48.	94	7.97	56.9	1	74.00	-17.09	peak
5371.250								

Test Mode	IEEE	802.11a Hig	gh CH	Temperature	<b>24(°</b> ℃)/	′ 33%RH
Test Item		Band Edge		Test Date		er 10, 2017
Polarize		Horizontal	Т	est Engineer	Jerry	Chuang
Detector		Average				
120.0 dBuV/m						
					Limit1: Limit2:	_
	-					
80						
40.0					2 X	
5310.000 5317.0	0 5324.00 5	331.00 5338.00	5345.00 535	52.00 5359.00 53 <b>6</b>	6.00 53	80.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5326.730	78.06	7.90	85.96	-	-	AVG
5370.340	35.73	7.97	43.70	54.00	-10.30	AVG
N/A			1			

Test Mode	3	IEEE	802.1	1n HT20 L	ow CH	Te	emp/Hum	<b>24(</b> °C	c)/ 33%RH
Test Item			Ba	nd Edge			Test Date		ber 10, 2017
Polarize			Ho	orizontal		Tes	t Engineer	Jerr	y Chuang
Detector				Peak					
120.0 dBuV/	/m								
								Limit1: Limit2:	_
80					2				
40.0				na na harana ang kala				n))aniatarran inseria anna	
5100.000 \$	5130.00	) 5160	0.00 519	90.00 5220.00	5250.00	5280.0	0 5310.00	5340.00	5400.00 MHz
		Rea	ding	Correct Factor	Res		Limit (dBuV/m)	Margin (dB)	Remark
Frequency (MHz)		(dB	uV)	(dB/m)	(dBu\	//11)	(abav/iii)	(42)	
					(dBu) 57.	-	74.00	-16.83	peak
(MHz)		(dB	68	(dB/m)		17			peak peak

Test Mode	IEEE 802.2	11n HT20 L	ow CH	Ter	nperature	<b>24(°</b> ℃)/	33%RH
Test Item	Ba	and Edge		Te	est Date	November 10, 20	
Polarize	Н	orizontal		Tes	t Engineer	Jerry	Chuang
Detector		Average					
120.0 dBuV/m							
						Limit1: Limit2:	_
			2	~			
80							
1							3
40.0		······		han		·····	
5100.000 5130.0	0 5160.00 51	90.00 5220.00	5250.00	5280.00	) 5310.00 534	0.00 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5105.400	36.21	7.49	43.7	<b>'</b> 0	54.00	-10.30	AVG
5254.200	77.74	7.75	85.4	9	-	-	AVG
5394.300	35.77	8.01	43.7	70	54.00	-10.22	AVG

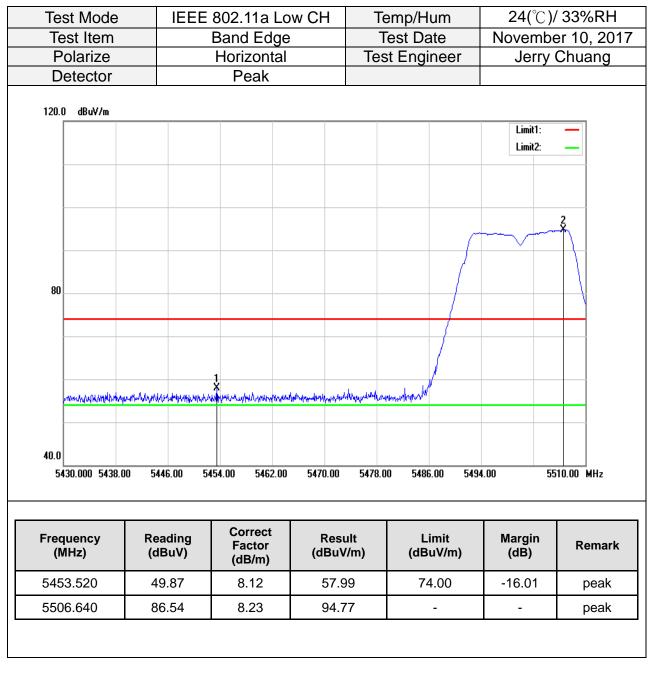
Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Te	mp/Hum	<b>24(°</b> ℃)/	′ 33%RH
Test Item	Ba	nd Edge		Te	est Date	Novembe	er 10, 2017
Polarize	Ho	orizontal		Test	t Engineer	Jerry	Chuang
Detector		Peak				-	
120.0 dBu∀/m							
						Limit1: Limit2:	_
	~						
80							
				2	;		
		Municipal Andrewsky and Andrewsky a	the one of the second	eller afren station i frage	Alustation and a state of the second	hand the second and the second s	Adapta
40.0							
5310.000 5317	.00 5324.00 53	31.00 5338.00	5345.00	5352.00	) 5359.00 536	6.00 53	80.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5325.890	87.42	7.90	95.3	32	-	-	peak
5353.680	49.11	7.93	57.0	)4	74.00	-16.96	peak
N/A							



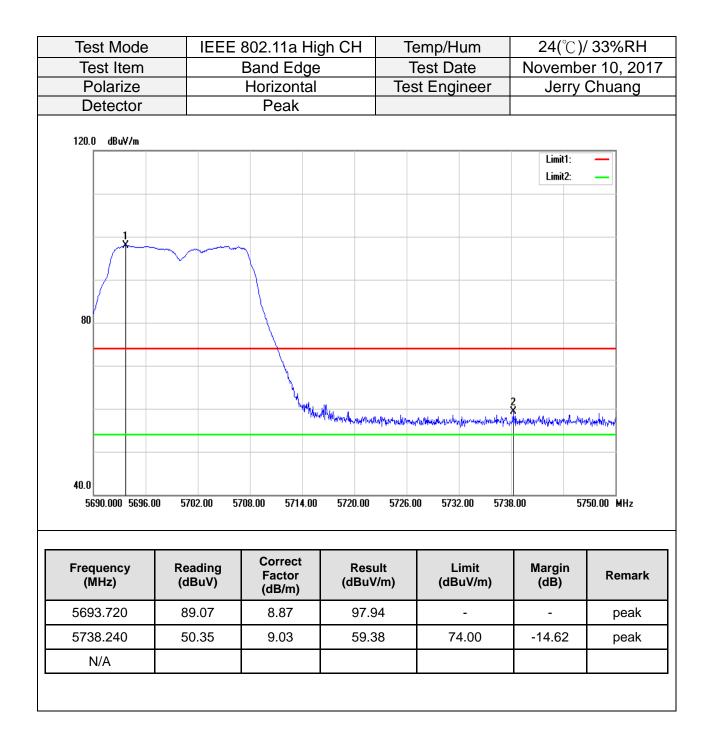
Test Item     Band Edge       Polarize     Horizontal       Detector     Average       120.0     dBuV/m		st Date Engineer		er 10, 2017 Chuang
Detector Average	Test E	Engineer	Jerry (	Chuang
120.0 dBu¥/m				
			Limit1: Limit2:	_
80				
40.0	2			
	\$5.00 5352.00	5359.00 5366.	.00 538	BO.OO MHz
Frequency Reading Correct	Result	Limit	Margin	
	dBuV/m)	(dBuV/m)	(dB)	Remark
5325.400 77.64 7.90	85.54	-	-	AVG
5352.000 35.72 7.93	43.65	54.00	-10.35	AVG
N/A				

Test Mode	IEEE 802.1	1n HT40 Lo	w CH	Tem	np/Hum	<b>24(</b> °C)/	′ 33%RH
Test Item	Ba	nd Edge		Test Date		November 10, 20	
Polarize	Ho	orizontal		Test E	Engineer	Jerry	Chuang
Detector		Peak					
120.0 dBuV/m							
						Limit1: Limit2:	_
80							
40.0 5100.000 5130.	00 5160.00 51	<del>เท็กสมสูปสูงส่งไม่เก็บและ</del> 90.00 5220.00	1 ₄₀₀ 41400 5250.00	5280.00	5310.00 534(		<u>سمرین پریمی</u> 00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/n		Limit (dBuV/m)	Margin (dB)	Remark
5124.600	49.74	7.51	57.25	5	74.00	-16.75	peak
5273.100	84.23	7.79	92.02	2	-	-	peak
5356.500	48.44	7.95	56.39		74.00	-17.61	peak




Test Mode	IEEE 802.12	1n HT40 Lo	w CH	Tei	mperature	<b>24(°</b> ℃)/	′ 33%RH
Test Item	Bai	nd Edge		Т	est Date		er 10, 2017
Polarize	Horizontal		Tes	t Engineer	Jerry	Chuang	
Detector	A	verage					
120.0 dBuV/m							
						Limit1: Limit2:	_
				ę			
80			-				
	1					3	
40.0					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>Ă</b> ~~	
5100.000 51	30.00 5160.00 51	190.00 5220.00	5250.00	5280.0	0 5310.00 53	40.00 54	00.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5135.100	36.20	7.54	43.7	<b>'</b> 4	54.00	-10.26	AVG
5272.200	74.59	7.79	82.3		-	-	AVG
5375.700	35.84	7.99	43.8	-	54.00	-10.17	AVG

Test Item         Band Edge         Test Date         November 10, 2017           Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Peak         Imit         Imit         Imit           120.0         dBW/m         Imit         Imit         Imit         Imit           0         January         January         January         January         January         January           10.0         dBW/m         January         January <th>Test Mode</th> <th>IEEE 802.1</th> <th>1n HT40 Hi</th> <th>gh CH</th> <th>Te</th> <th>mp/Hum</th> <th>24(°C)/</th> <th>/ 33%RH</th>	Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Te	mp/Hum	24(°C)/	/ 33%RH
Detector         Peak           120.0         dBwV/m           Imil:         Imil:           Imil:	Test Item	Ba			Te	est Date	Novembe	er 10, 2017
120.0         dBuV/m           120.0         5300.00           5300.00         5300.00           5300.00         5300.00           5300.00         5300.00           120.00         5300.00           120.00         5300.00           120.00         5300.00           120.00         5300.00           120.00         5300.00           120.00         5300.00           120.00         5300.00           120.00         5300.00           120.00         5300.00           120.00	Polarize	Ho	orizontal		Tes	t Engineer	Jerry	Chuang
Image: state of the s	Detector		Peak					
Imit         Imit         Imit           Imit	120.0 dBuV/m							
Image: August of the second								_
Image: state								
Image: state		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
40.0	80							
40.0								
40.0							2	
S290.000         S299.00         S308.00         S317.00         S326.00         S335.00         S344.00         S353.00         S362.00         S380.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5307.550         84.04         7.85         91.89         -         -         peak           5374.150         49.32         7.97         57.29         74.00         -16.71         peak				Yunya	whenter	with the second states and a second	North Manhart Man	Hadring to get a state of the second s
Frequency (MHz)Reading (dBuV)Correct Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5307.55084.047.8591.89peak5374.15049.327.9757.2974.00-16.71peak	40.0							
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5307.55084.047.8591.89peak5374.15049.327.9757.2974.00-16.71peak	5290.000 5299	.00 5308.00 53	17.00 5326.00	5335.00	5344.00	D 5353.00 53	62.00 53	180.00 MHz
5374.150         49.32         7.97         57.29         74.00         -16.71         peak			Factor					Remark
	5307.550	84.04	7.85	91.8	9	-	-	peak
	5374.150	49.32	7.97	57.2	29	74.00	-16.71	peak
N/A	N/A							


Test Item         Band Edge         Test Date         November 10, 2017           Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Average         Imma         Jerry Chuang           128.0         dbuV/m         Imma         Imma         Imma           128.0         dbuV/m         Imma         Imma         Imma         Imma           128.0         dbuV/m         Imma         Imma         Imma         Imma         Imma           129.0         5308.00         5317.00         5326.00         5353.00         5353.00         5362.00         5380.00         Margin           5312.	Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Ten	nperature	<b>24(</b> °C)/	33%RH
Detector         Average           120.0         dbuV/m           Image         Image           120.0         dbuV/m           Image         Image           120.0         dbuV/m           Image         Image           120.0         dbuV/m           Image         Image           120.0         dbuV/m           120.0         5300.00           5310.0         5317.00           5326.00         5353.00         5362.00           5380.00         5317.00         5326.00         5353.00           5320.00         5380.00         Margin         Remark           120.00         5329.00         5380.00         Margin         Remark           120.00         7.93         44.05         54.00         -9.95         AVG	Test Item	Ba	and Edge		Te	est Date	Novembe	er 10, 2017
120.0         dBwl/m         Limit:         Imit:         <	Polarize	H	orizontal		Test	Engineer	Jerry	Chuang
Imit:         Imit: <th< td=""><td>Detector</td><td>A</td><td>verage</td><td></td><td></td><td></td><td></td><td></td></th<>	Detector	A	verage					
Image: State of the s	120.0 dBuV/m							
B0         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V								_
B0         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V								
B0         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V								
40.0       5290.000 5299.00       5308.00       5317.00       5326.00       5335.00       5344.00       5353.00       5362.00       5380.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5312.140       74.26       7.86       82.12       -       -       AVG         5351.110       36.12       7.93       44.05       54.00       -9.95       AVG	80							
40.0       5290.000 5299.00       5308.00       5317.00       5326.00       5335.00       5344.00       5353.00       5362.00       5380.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5312.140       74.26       7.86       82.12       -       -       AVG         5351.110       36.12       7.93       44.05       54.00       -9.95       AVG		v						
40.0       5290.000 5299.00       5308.00       5317.00       5326.00       5335.00       5344.00       5353.00       5362.00       5380.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5312.140       74.26       7.86       82.12       -       -       AVG         5351.110       36.12       7.93       44.05       54.00       -9.95       AVG								
40.0       5290.000 5299.00       5308.00       5317.00       5326.00       5335.00       5344.00       5353.00       5362.00       5380.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5312.140       74.26       7.86       82.12       -       -       AVG         5351.110       36.12       7.93       44.05       54.00       -9.95       AVG								
5290.000         5299.00         5308.00         5317.00         5326.00         5335.00         5344.00         5353.00         5362.00         5380.00         MHz           Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5312.140         74.26         7.86         82.12         -         -         AVG           5351.110         36.12         7.93         44.05         54.00         -9.95         AVG	40.0					2 X		
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5312.14074.267.8682.12AVG5351.11036.127.9344.0554.00-9.95AVG		.00 5308.00 53	317.00 5326.00	5335.00	5344.00	5353.00 536	2.00 53	80.00 MHz
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5312.14074.267.8682.12AVG5351.11036.127.9344.0554.00-9.95AVG	_		Correct	_				
5351.110 36.12 7.93 44.05 54.00 -9.95 AVG	Frequency (MHz)	Reading (dBuV)	Factor				Margin (dB)	Remark
						-		
		36.12	7.93	44.0	5	54.00	-9.95	AVG
	IN/A							

# Test Data

### **Band Edge Test Data for UNII-2c**



Test Mode		IEEE 8	302.11a l	_ow CH	Ten	nperature		<b>24(</b> °C)	/ 33%RH
Test Item			Band Edg			est Date			er 10, 201
Polarize			Horizonta		Test	Enginee	r	Jerry	Chuang
Detector			Average	;					
120.0 dBuV/m									
								Limit1: Limit2:	
									2
80							$\square$	~~~~	- <b>*</b>
40.0				1 ¥					
40.0 5430.000 5438.0	00 5446	00 545	4.00 5462.	00 5470.00	5478.00	5486.00	5494.	00 54	510.00 MHz
3430.000 3430.1	00 3440	.00 343	4.00 5402.	00 3470.00	5470.00	3400.00	J4J4.		510.00 MII2
			Correct						
Frequency (MHz)	Read (dB		Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	)	Margin (dB)	Remark
5463.280	35.	94	8.14	44.0	)8	54.00		-9.92	AVG
5506.560	76.	87	8.23	85.1		_		-	AVG



Test Item     Band Edge     Test Date     November 1       Polarize     Horizontal     Test Engineer     Jerry Ch       Detector     Average     Image: Comparison of the second	
Detector         Average           120.0         dBuV/m           Imit:         Imit:           Im	
1       1       1       1         80       1       1       1       1         1       1       1       1       1         1       1       1       1       1         1       1       1       1       1         1       1       1       1       1         1       1       1       1       1         1       1       1       1       1       1         1       1       1       1       1       1       1         1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td></td>	
	_
3	
40.0 40.0 5690.000 5696.00 5702.00 5708.00 5714.00 5720.00 5726.00 5732.00 5738.00 5750.00	
3630.000 3636.00 3702.00 3706.00 3714.00 3720.00 3726.00 3732.00 3736.00 3730.00	J MNZ
Frequency (MHz)Reading (dBuV)Correct Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dBuV/m)	Remark
5706.320 79.33 8.92 88.25	AVG
5739.080 36.55 9.03 45.58 54.00 -8.42	AVG
N/A	

Test Mode	IEEE 802.2	11n HT20 L	ow CH	Te	mp/Hum	<b>24(</b> °C	)/ 33%RH
Test Item	Ba	and Edge		Te	est Date	Novemb	per 10, 2017
Polarize	Н	orizontal		Test	Engineer	Jerry	[,] Chuang
Detector		Peak					
120.0 dBuV/m							
						Limit1: Limit2:	
							2
80							
whither how have been been been been been been been be	udhaanda and partition of the	hothonyteenteenteenteeteen	lleten ar on what the left	nateriorate	ajithuuthamar 		
40.0 5430.000 5438.0	0 5446.00 54	54.00 5462.00	E470.00	E470.00	E400.00 E4	404.00	5510.00 MHz
5430.000 5438.0	JU 3446.UU 34	54.00 5462.00	5470.00	5478.00	5486.00 54	<b>194.00</b>	DSTU.UU MHZ
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
5445.120	49.21	8.12	57.3	3	74.00	-16.67	peak
5506.480	89.57	8.23	97.8	0	-	-	peak

Test Mode	IEEE 802.	11n HT20 L	ow CH	Temperature	24(°C)/	/ 33%RH
Test Item	B	and Edge		Test Date	Novembe	er 10, 2017
Polarize	F	lorizontal		Test Engineer	Jerry	Chuang
Detector		Average				
120.0 dBuV/m						
					Limit1: Limit2:	_
80						
			1 X			
40.0 5430.000 5438.	00 5446.00 54	154.00 5462.00	5470.00 5	478.00 5486.00	5494.00 55	i10.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5468.000	35.86	8.15	44.01	54.00	-9.99	AVG
5505.280	79.80	8.23	88.03	-	-	AVG

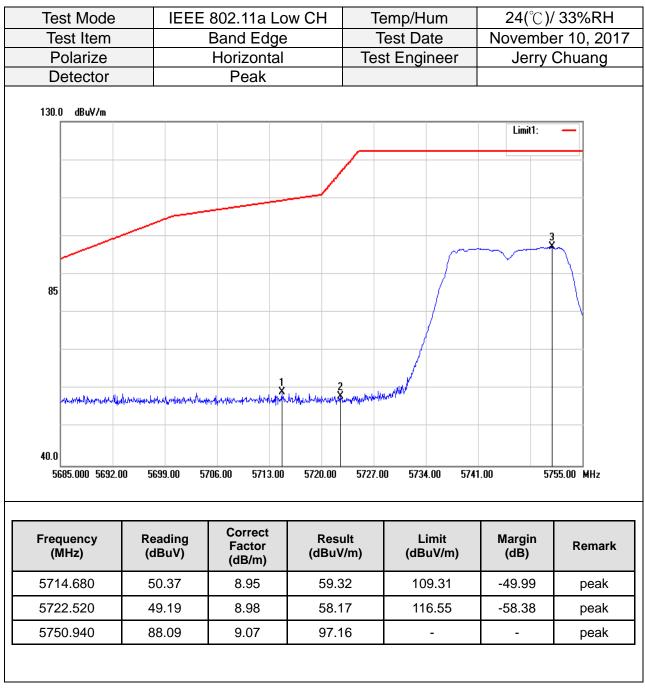
Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Те	mp/Hum	<b>24(°</b> ℃)/	′ 33%RH
Test Item	Ba	nd Edge		Te	est Date	Novembe	er 10, 2017
Polarize	Ho	orizontal		Test	t Engineer	Jerry	Chuang
Detector		Peak					
120.0 dBuV/m							
						Limit1: Limit2:	_
	1						
	×						
80							
		1 Lynn	Nutility of		welow and a construction of the second	2	
			"WY WARKAN	with which have been a second s	undannamperiorational demonstration	under der Miller andere ander andere der ande	ministrum
40.0							
5690.000 5696	.00 5702.00 57	08.00 5714.00	5720.00	5726.00	) 5732.00 573	8.00 57	50.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5696.720	89.08	8.88	97.9	6	-	-	peak
5740.100	49.67	9.03	58.7	0	74.00	-15.30	peak
N/A							



Test Mode	IEEE 802.11	n HT20 Hig	gh CH Te	mperature	<b>24(°</b> ℃)/	′ 33%RH
Test Item	Bar	nd Edge	-	Test Date	Novembe	er 10, 2017
Polarize	Но	rizontal	Te	st Engineer	Jerry	Chuang
Detector	Av	/erage				
120.0 dBuV/m						
					Limit1: Limit2:	_
1						
80						
					2	
40.0					×	
5690.000 565	96.00 5702.00 57	08.00 5714.00	5720.00 5726.	00 5732.00 5738	3.00 57	50.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5694.560	79.32	8.87	88.19	-	-	AVG
5744.540	36.48	9.04	45.52	54.00	-8.48	AVG
N/A						

Test Mode	IEEE 802.1	1n HT40 Lo	ow CH	Te	emp/Hu	um	<b>24(</b> °C)	)/ 33%RH
Test Item	Ba	nd Edge		Т	est Da	te	Novemb	oer 10, 2017
Polarize	H	orizontal		Tes	t Engir	neer	Jerry	Chuang
Detector		Peak						-
120.0 dBu¥/m								
80							Limit1: Limit2:	
where the end betw	1 4.4.19.2.44.4.19.2.44.4.19.2.44.14.14.14.14.14.14.14.14.14.14.14.14.	pshakety/namesketerethe	W. J. m. W. Tarondon for					
40.0								
5430.000 5440	1.00 5450.00 54	160.00 5470.00	5480.00	5490.0	0 5500.	00 5510	).00 !	5530.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV			mit ıV/m)	Margin (dB)	Remark
5454.300	49.62	8.12	57.7	<i>'</i> 4	74	.00	-16.26	peak
5513.000	84.92	8.26	93.1	8		-	-	peak




Test Item       Band Edge       Test Date       November 10, 2/         Polarize       Horizontal       Test Engineer       Jerry Chuang         Detector       Average       Imit:       Imit:       Imit:         120.0       dBuV/m       Imit:       Imit:       Imit:       Imit:         40.0       5430.000       5450.00       5460.00       5490.00       5500.00       5510.00       5530.00       Mitz         Frequency       Reading       Correct (dBuV)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Rema	Test Mode	IEEE 802.12	1n HT40 Lo	w CH	Temperat	ure	<b>24(</b> °C)/	′ 33%RH
Detector         Average           120.0         dBuV/m           Imit:         Imit:           Im	Test Item	Bai	nd Edge		Test Da	te	Novembe	er 10, 2017
120.0         dBwV/m           120.0         dBwV/m <td>Polarize</td> <td>Ho</td> <td>orizontal</td> <td></td> <td>Test Engir</td> <td>neer</td> <td>Jerry</td> <td>Chuang</td>	Polarize	Ho	orizontal		Test Engir	neer	Jerry	Chuang
Limit:         Limit:         Limit:           80         3         3         3         3           40.0         3         3         3         3         3         3           5430.000 5440.00         5450.00         5460.00         5470.00         5480.00         5500.00         5510.00         5530.00         MHz           Frequency         Reading         Correct Factor         Result (BU/Mz)         Limit (BU/Mz)         Margin (dB)         Rema	Detector	A	verage					
Limit2:         Limit2:           80	120.0 dBu∀/m						l imit1	
80								_
80								
80						2		
5430.000         5440.00         5450.00         5460.00         5470.00         5480.00         5490.00         5500.00         5510.00         5530.00         MHz           Frequency (MHz)           Correct Factor         Result (dBu)/(m)         Limit (dBu)         Margin (dB)         Rema	80					Ň		
5430.000         5440.00         5450.00         5460.00         5470.00         5480.00         5490.00         5500.00         5510.00         5530.00         MHz           Frequency (MHz)           Correct Factor         Result (dPu)/(m)         Limit (dPu)/(m)         Margin (dP)								
5430.000         5440.00         5450.00         5460.00         5470.00         5480.00         5490.00         5500.00         5510.00         5530.00         MHz           Frequency (MHz)           Correct Factor         Result (dPu)/(m)         Limit (dPu)/(m)         Margin (dP)								
Frequency Reading Correct Result Limit Margin (MHz) (dBu)(m) (dBu)(m) (dB) Rema	40.0	· · · · · · · · · · · · · · · · · · ·	1					
(MUT) (dBu)() Factor (dBu)(m) (dBu)(m) (dBu)	5430.000 54	40.00	460.00 5470.00	5480.00	5490.00 5500.	00 5510	).00 55	30.00 MHz
			Factor				Margin (dB)	Remark
5469.700 36.18 8.15 44.33 54.00 -9.67 AVG	5469.700	36.18	8.15	44.33	54	.00	-9.67	AVG
5508.500 74.83 8.24 83.07 AVG	5508.500	74.83	8.24	83.07		-	-	AVG

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Te	mp/Hum	24(°C)	/ 33%RH
Test Item	Ba	nd Edge		Te	est Date	Novemb	er 10, 2017
Polarize	Ho	orizontal		Test	t Engineer	Jerry	Chuang
Detector		Peak				-	-
120.0 dBuV/m							
						Limit1: Limit2:	_
80							
			Witherson	silidadoren etxe	ushterkovethyddianythebor	an way show that we have a start of the star	hudroodhidd
40.0							
5650.000 5660	).00 5670.00 56	80.00 5690.00	5700.00	5710.00	) 5720.00 57	30.00 57	750.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5667.600	85.65	8.79	94.4	4	-	-	peak
5743.200	49.70	9.04	58.7	<b>'</b> 4	74.00	-15.26	peak
N/A							



Test Item         Band Edge         Test Date         November 10, 2017           Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Average         Image         Image         Image           120.0         dBuV/m         Image         Image         Image         Image           120.0         dBuV/m         Image         Image         Image         Image         Image           120.0         dBuV/m         Image         Image	Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Ten	nperature	24(°C)	/ 33%RH
Detector         Average           120.0         dBuV/m           Imit:         Imit:           Im	Test Item	Ba	ind Edge		Te	est Date	Novemb	er 10, 2017
120.0         dBuV/m         Limit 1:	Polarize	H	orizontal		Test	t Engineer	Jerry	Chuang
Frequency (MHz)         Reading (BBuV)         Correct Factor (dBuV)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dBuV/m)         Remark Margin (dBuV/m)	Detector	A	verage					
Imit         Imit         Imit           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	120.0 dBuV/m							
80         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60<								
40.0       5650.000 5660.00       5670.00       5680.00       5690.00       5700.00       5710.00       5720.00       5730.00       5750.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5672.900       75.69       8.81       84.50       -       -       AVG	80							
Frequency (MHz)Reading (dBuV)Correct Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dBuV/m)Remark5672.90075.698.8184.50AVG				<u> </u>		·····	2	
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5672.90075.698.8184.50AVG	5650.000 5660	1.00 5670.00 56	580.00 5690.00	5700.00	5710.00	) 5720.00 573	30.00 57	750.00 MHz
			Factor					Remark
5728.800         36.59         8.99         45.58         54.00         -8.42         AVG	5672.900	75.69	8.81	84.5	0	-	-	AVG
	5728.800	36.59	8.99	45.5	8	54.00	-8.42	AVG
N/A	N/A							

#### Band Edge Test Data for UNII-3



Test Mode		IEEE	802.11a Lo	w CH	Ter	mperat	ure	24(	°C)/ 33%RH
Test Item			Band Edge	•	Т	est Dat	te		mber 10, 2017
Polarize			Horizontal		Tes	t Engir	neer	Je	rry Chuang
Detector			Average						
130.0 dBuV/m								Limi	1]
					_				
				/					
	/								
85								~~~~	
				1	Ş		,		
40.0				•••••					
5685.000 5692.0	)0 569	9.00 57	06.00 5713.00	5720.00	5727.0	0 5734.0	DO 574 ⁻	1.00	5755.00 MHz
			Correct					I	
Frequency (MHz)	Rea (dB	iding BuV)	Factor (dB/m)	Resı (dBuV		Lir (dBu		Margi (dB)	n Remark
5718.740	36	5.53	8.96	45.4	9	110	.45	-64.9	6 AVG
5724.410		6.63	8.98	45.6		120	.85	-75.24	
5751.360		.55	9.07	87.6	2	-		-	AVG

Test Mode	IEEE	802.11a Hi	gh CH T	emp/Hum	· · ·	′ 33%RH
Test Item		Band Edge		Test Date		er 10, 2017
Polarize		Horizontal	Те	st Engineer	Jerry	Chuang
Detector		Peak				
130.0 dBu∀/m						
					Limit1:	-
				$\overline{\}$		
		1				
85						
		J. J	unpon			
			warman where we have	2 2 Martinether Martinet	manyAnna	www.hom
40.0						
5815.000 5820.5	0 5826.00 5	831.50 5837.00	5842.50 5848.	00 5853.50 5859	9.00 58	70.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5830.565	89.66	9.34	99.00	-	-	peak
5853.060	49.83	9.42	59.25	115.22	-55.97	peak
5856.745	50.24	9.43	59.67	110.31	-50.64	peak

Test Item         Band Edge         Test Date         November 10, 2017           Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Average         Imit:         Imit:         Imit:           138.0         db//m         Imit:         Imit:         Imit:         Imit:           40.0         Jacobia         Jacobia         Jacobia         Jacobia         Jacobia           80.0         Jacobia         Jacobia         Jacobia         Jacobia         Jacobia         Jacobia           90.0         Jacobia         Jaco	Test Mode	IEEE 802.11a Hi	gh CH Te	emperature	<b>24(</b> °C)/	33%RH
Detector         Average           130.0         d6uV/m           Image         Image           130.0         d6uV/m           Image         Image           I						
130.0         dBuV/m           140.0         dBuV/m           110.0         Margin           110.0         Margin           110.0         Margin           110.0         Margin           110.0         dBuV/m <td></td> <td></td> <td>Te</td> <td>st Engineer</td> <td>Jerry (</td> <td>Chuang</td>			Te	st Engineer	Jerry (	Chuang
Frequency         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dBuV/m)         Remark (dBuV/m)           5831.555         80.07         9.34         89.41         -         -         AVG	Detector	Average				
Frequency         Reading         Correct Factor (dB/W)         Result (dB/W/m)         Limit (dB/W/m)         Margin (dB/W/m)         Remark (dB/W/m)           5831.555         80.07         9.34         89.41         -         -         AVG	130.0 dBuV/m					
Image: Heating (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5831.555         80.07         9.34         89.41         -         -         AVG           5830.750         36.55         9.41         45.96         120.49         -74.53         AVG					Limit1:	-
Image: Heating (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5831.555         80.07         9.34         89.41         -         -         AVG           5830.750         36.55         9.41         45.96         120.49         -74.53         AVG				$\overline{\}$		
Image: Heating (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5831.555         80.07         9.34         89.41         -         -         AVG           5830.750         36.55         9.41         45.96         120.49         -74.53         AVG						
Image: Heating (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5831.555         80.07         9.34         89.41         -         -         AVG           5830.750         36.55         9.41         45.96         120.49         -74.53         AVG						
Image: Heating (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5831.555         80.07         9.34         89.41         -         -         AVG           5830.750         36.55         9.41         45.96         120.49         -74.53         AVG						
40.0       5815.000       5820.50       5831.50       5837.00       5842.50       5848.00       5853.50       5859.00       5870.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5831.555       80.07       9.34       89.41       -       -       AVG         5850.750       36.55       9.41       45.96       120.49       -74.53       AVG	85	¥				
40.0       5815.000       5826.00       5831.50       5837.00       5842.50       5848.00       5853.50       5859.00       5870.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5831.555       80.07       9.34       89.41       -       -       AVG         5850.750       36.55       9.41       45.96       120.49       -74.53       AVG						
40.0       5815.000       5820.50       5831.50       5837.00       5842.50       5848.00       5853.50       5859.00       5870.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5831.555       80.07       9.34       89.41       -       -       AVG         5850.750       36.55       9.41       45.96       120.49       -74.53       AVG						
40.0       5815.000       5820.50       5831.50       5837.00       5842.50       5848.00       5853.50       5859.00       5870.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5831.555       80.07       9.34       89.41       -       -       AVG         5850.750       36.55       9.41       45.96       120.49       -74.53       AVG						
40.0       5815.000       5820.50       5831.50       5837.00       5842.50       5848.00       5853.50       5859.00       5870.00       MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         5831.555       80.07       9.34       89.41       -       -       AVG         5850.750       36.55       9.41       45.96       120.49       -74.53       AVG						
Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dBuV/m)         Remark           5831.555         80.07         9.34         89.41         -         -         AVG           5850.750         36.55         9.41         45.96         120.49         -74.53         AVG				ç	3	
Frequency (MHz)         Reading (dBuV)         Correct Factor (dB/m)         Result (dBuV/m)         Limit (dBuV/m)         Margin (dB)         Remark           5831.555         80.07         9.34         89.41         -         -         AVG           5850.750         36.55         9.41         45.96         120.49         -74.53         AVG	40.0					
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5831.55580.079.3489.41AVG5850.75036.559.4145.96120.49-74.53AVG	5815.000 5820.50 58	826.00 5831.50 5837.00	5842.50 5848.	00 5853.50 5859	0.00 58	70.00 MHz
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark5831.55580.079.3489.41AVG5850.75036.559.4145.96120.49-74.53AVG						
5850.750 36.55 9.41 45.96 120.49 -74.53 AVG	Frequency Re (MHz) (c	Factor			Margin (dB)	Remark
	5831.555 8	9.34	89.41	-	-	AVG
5861.530 36.49 9.44 45.93 108.97 -63.04 AVG	5850.750 3	9.41	45.96	120.49	-74.53	AVG
	5861.530 3	9.44 9.44	45.93	108.97	-63.04	AVG

	IEEE 802.	11n HT20 L	ow CH	Temp/Hu	ım	<b>24(°</b> ℃).	/ 33%RH
Test Item	Ba	and Edge		Test Dat		Novemb	er 10, 201
Polarize	H	lorizontal		Test Engin	neer	Jerry	Chuang
Detector		Peak					
130.0 dBu∀/m						Limit1:	
					×		$\neg$
85							
				/	/		
	1 X	denering with the hole of the state	2				
auturo manana da	ogollathaoachtalaraideallachachachta	denotion of a grander live by the second states	Kakeluntunatultututunatuttitt	WHICH WARRAND			
40.0							
5685.000 5692.00	) 5699.00 57	706.00 5713.00	5720.00	5727.00 5734.0	00 5741.0	00 57	755.00 MHz
							_
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m	) (dBu		Margin (dB)	Remark
5700.750	49.88	8.89	58.77	105	.41	-46.64	peak
	50.35	8.98	59.33	119	.26	-59.93	peak
5723.710			96.84				peak

Test Mode	IEEE 802.2	11n HT20 L	ow CH	Temperature	<b>24(°</b> ℃)/	′ 33%RH
Test Item	Ba	and Edge		Test Date	Novembe	er 10, 2017
Polarize	Н	orizontal	-	Fest Engineer	Jerry	Chuang
Detector		Average				
130.0 dBuV/m					Limit1:	_
					3	
85						
			1 2 X X			
40.0						
5685.000 5692.00	5699.00 57	06.00 5713.00	5720.00 57	27.00 5734.00 57	41.00 57	55.00 MHz
_		Correct	_			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5718.600	36.54	8.96	45.50	110.41	-64.91	AVG
5723.990	36.72	8.98	45.70	119.90	-74.20	AVG
	78.04	9.07	87.11	-	-	AVG

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Te	mp/Hum	<b>24(°</b> ℃)/	33%RH
Test Item	Ba	nd Edge		Te	est Date	Novembe	er 10, 2017
Polarize		orizontal		Tes	t Engineer	Jerry	Chuang
Detector		Peak				-	-
130.0 dBu∀/m						Limit1:	-
							]
		*					
85							
				Winn Webs Webby	2 Handley barren and the second	net staal to with a different and	3 Nahrada A
40.0 5815.000 5820	.50 5826.00 58	31.50 5837.00	5842.50	5848.00	) 5853.50 5853	.00 58	70.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark
5831.335	89.93	9.34	99.2	7	-	-	peak
5852.070	51.02	9.41	60.4	3	117.48	-57.05	peak
5869.175	49.74	9.47	59.2	1	106.83	-47.62	peak

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH 🛛 Te	emperature	<b>24(°</b> ℃)/	33%RH
Test Item	Ba	nd Edge		Test Date	Novembe	er 10, 2017
Polarize	Ho	orizontal	Te	st Engineer	Jerry	Chuang
Detector	A	verage				
130.0 dBuV/m			i i		Limit1:	
				_	Limiti	_
	1					
85						
				2	3	
40.0						
5815.000 5820.	.50 5826.00 58	31.50 5837.00	5842.50 5848	.00 5853.50 585	9.00 58	70.00 MHz
		•				
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5830.400	80.44	9.34	89.78	-	-	AVG
5850.035	36.84	9.41	46.25	122.12	-75.87	AVG
5862.465	36.53	9.44	45.97	108.71	-62.74	AVG

Test Mode	IEEE 802.1	1n HT40 Lo	ow CH	Temp/Hum	<b>24(</b> °C)/	33%RH
Test Item	Ba	and Edge		Test Date November 10		
Polarize	H	orizontal	Te	est Engineer	Jerry	Chuang
Detector		Peak				
130.0 dBuV/m					Limit1:	
					LIMICI:	_
		1				
				3		
			$ \int$			
85						
			/			$\Delta$
			1			$\lambda$
معارفه المعروب والمعار	umbalasan district for the second	where he was property and the	profe-Maryush			
AUX CLASSES PORT	Name and the second					
40.0	00 5700.00 5	710.00 5700.00	F700 00 F7.0		0.00 57	
5680.000 5690	0.00 5700.00 5	710.00 5720.00	5730.00 5740	).00 5750.00 576	0.00 57	80.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5718.100	51.34	8.96	60.30	110.27	-49.97	peak
5722.300	51.94	8.97	60.91	116.04	-55.13	peak
	00.55	9.08	95.63	-	-	peak
5752.600	86.55	9.00	55.00			pour

Test Mode	IEEE 802.1	1n HT40 Lo	ow CH	Temperature	24(°C)/ 33%RH	
Test Item	Ba	ind Edge		Test Date	Novembe	er 10, 2017
Polarize		orizontal	Т	est Engineer	Jerry	Chuang
Detector	A	verage				
130.0 dBuV/m						
					Limit1:	_
		/				
85			r	3		
		1	3			
40.0		¥	\$			
5680.000 5690.	.00 5700.00 57	710.00 5720.00	5730.00 574	0.00 5750.00 576	60.00 57	'80.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
5719.800	37.30	8.96	46.26	110.74	-64.48	AVG
5724.700	37.70	8.98	46.68	121.52	-74.84	AVG
0.2.1.00		9.07	85.65	-	-	AVG

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Te	mp/Hum		<b>24(</b> °C)/	/ 33%RH
Test Item	Ba	nd Edge		Te	est Date		Novembe	er 10, 2017
Polarize	Ho	orizontal		Tes	t Enginee	er	Jerry	Chuang
Detector		Peak						
130.0 dBuV/m							Limit1:	
85			WAM	MAN MAN	Mur Mun Handhala	and the part	2 3 minimuskalam, sovia	Martin
40.0 5770.000 5780	0.00 5790.00 58	00.00 5810.00	5820.00	5830.00	) 5840.00	5850	00 58	370.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/r		Margin (dB)	Remark
5792.600	86.23 9.21		95.4	4	-		-	peak
5853.800	48.72	9.42	58.1	4	113.54	ŀ	-55.40	peak
5859.000	49.39	9.44	58.8	3	109.68	3	-50.85	peak

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Tei	mperature	<b>24(</b> °C)	24(℃)/ 33%RH November 10, 2017 Jerry Chuang			
Test Item	Ba	nd Edge		Т	est Date	Novemb	er 10, 2017			
Polarize	Ho	orizontal		Tes	t Engineer	Jerry	Chuang			
Detector	A	verage								
130.0 dBuV/m										
						Limit1:	_			
						$\mathbb{N}$				
85										
	V									
						2	3			
40.0	00 5700 00 50	00.00 5010.00	F020.00	5020.0	0 5040.00 5					
5770.000 5780.	00 5790.00 58	00.00 5810.00	5820.00	5830.0	0 5840.00 58	350.00 5	870.00 MHz			
		•								
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Limit (dBuV/m)	Margin (dB)	Remark			
5796.600	76.39	9.23	85.6	2	-	-	AVG			
5850.100	36.45	9.41	45.8	6	121.97	-76.11	AVG			
5864.300	36.49	9.46	45.9	5	108.20	-62.25	AVG			
L										



# Below 1G Test Data

Test Mode		Mode 1								
Test Item	;	30MHz-1GH	z		st Date	Novembe				
Polarize	_	Vertical		Test	Engineer	Jerry	Chuang			
Detector	Pea	k and Qusi-	peak							
80.0 dBuV/m										
						Limit1: Margin:	_			
;		3	b	6						
30		2 2 2	4 X	Î						
-20										
30.000 127.00	224.00	321.00 418.00	515.00	612.00	709.00 806.	00 10	00.00 MHz			
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark			
152.2200	54.79	-15.80	38.9	9	43.50	-4.51	QP			
296.7500	46.85	-14.10	32.7	5	46.00	-13.25	peak			
369.5000	48.93	-12.36	36.5	7	46.00	-9.43	peak			
452.9200	42.47	-9.53	32.9	4	46.00	-13.06	peak			
527.6100	43.76	-7.97	35.7	9	46.00	-10.21	peak			
		-6.27	37.92		46.00 -8.08 peak					

Test Mode		Mode 1			mp/Hum		24(°C)/ 33%R		
Test Item	3	30MHz-1GH	z		est Date		ber 10, 20		
Polarize Detector	Boo	Horizontal k and Qusi-	nook	lest	Enginee	Jerr	y Chuang		
80.0 dBuV/m		5 3 3 4 4				Limit1 Margir			
-20			515.00	612.00		806.00	1000.00 MHz		
30.000 127.00	224.00 32	21.00 418.00	515.00	012.00	709.00	000.00	1000.00 MHz		
	224.00 32 Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/r	It	709.00 Limit (dBuV/m)	Margin (dB)			
30.000 127.00 Frequency	Reading	Correct Factor	Resul	lt m)	Limit	Margin			
30.000 127.00 Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/ı	lt m) 4	Limit (dBuV/m)	Margin (dB)	Remark		
30.000 127.00 Frequency (MHz) 49.4000	Reading (dBuV) 53.80	Correct Factor (dB/m) -20.86	Resul (dBuV/r 32.94	lt m) 4 5	Limit (dBuV/m) 40.00	Margin (dB) -7.06	Remark		
30.000 127.00 Frequency (MHz) 49.4000 68.8000	Reading (dBuV) 53.80 52.75	Correct Factor (dB/m) -20.86 -21.30	<b>Resul</b> (dBuV/r 32.94 31.45	lt m) 4 5 3	Limit (dBuV/m) 40.00 40.00	Margin (dB) -7.06 -8.55	Remark peak peak		
30.000 127.00 Frequency (MHz) 49.4000 68.8000 335.5500	Reading (dBuV)           53.80           52.75           49.03	Correct Factor (dB/m) -20.86 -21.30 -13.30	Resul (dBuV/r 32.94 31.45 35.73	1 <b>t</b> m) 4 5 3 6	Limit (dBuV/m) 40.00 40.00 46.00	Margin (dB) -7.06 -8.55 -10.27	Remark peak peak peak		

# Above 1G Test Data for UNII-1

Test Item Polarize Detector 110.0 dBuV/m		Harmonic Vertical and Aver	age	Te	mp/Hum est Date t Engineer		er 10, 201 [°] Chuang		
Detector	Peak		age	Test	t Engineer				
	Peak	and Aver	age				Limit1:		
110.0 dBu∀/m									
							_		
70									
	1								
30.0									
1000.000 4900.00 88	300.00 1270	00.00 16600.00	) 20500.00	24400.0	00 28300.00 322	200.00 40	000.00 MHz		
	ading BuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark		
10360.000 3	0.33	18.61	48.9	4	74.00	-25.06	peak		
N/A									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEE	E 802.11a L	ow CH	Te	mp/Hu	m	<b>24(</b> °C)				
Test Item		Harmonic			est Dat			er 10, 2017			
Polarize		Horizonta		Tes	t Engin	eer	Jerry	Chuang			
Detector	P	eak and Ave	rage								
110.0 dBuV/m											
							Limit1: Limit2:	_			
70											
	1										
30.0											
1000.000 4900.0	00 8800.00	12700.00 16600.0	)0 20500.00	24400.0	JO 28300.	00 3220	00.00 4	0000.00 MHz			
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Lin (dBu)		Margin (dB)	Remark			
10360.000	31.04	18.61	49.6	65	74.	00	-24.35	peak			
N/A											

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IE	EE 8	302.11a	Mid Ch	4	Т	ēmp/H	um	<b>24(</b> °(	24(°∁)/ 33%RH November 10, 2017 Jerry Chuang			
Test Item				Harmon				Test Da						
Polarize				Vertica			Те	st Engi	neer	Jer	ry Chuang			
Detector		F	Peak	k and Av	rage									
110.0 dBuV/m														
										Limit1 Limit2				
70														
		1 >	{											
30.0														
1000.000 4900.0	00 88	:00.00	127	00.00 1660	0.00 205	00.00	2440	0.00 283	00.00 322	00.00	40000.00 MHz			
				Corroct										
Frequency (MHz)		ading BuV)	ading Correct BuV) Factor (dB/m)			Resu IBuV/			imit uV/m)	Margin (dB)	Remark			
10440.000	2	9.39 18.80			48.19	9	74	4.00	-25.81	peak				
N/A														
										1				

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11a Mi	d CH Temp/H	lum 24(℃)/ 33%RH
Test Item	Harmonic	Test D	ate November 10, 202
Polarize	Horizontal	Test Eng	ineer Jerry Chuang
Detector	Peak and Avera	age	
110.0 dBuV/m			
			Limit1: — Limit2: —
70			
	1 X		
30.0			
	800.00 12700.00 16600.00	20500.00 24400.00 283	300.00 32200.00 40000.00 MHz
30.0 1000.000 4900.00 88	800.00 12700.00 16600.00	20500.00 24400.00 283	300.00 32200.00 40000.00 MHz
Frequency	Correct	Posult	imit Margin

Frequency (MHz)	Reading (dBuV)Correct Factor (dB/m)Result 			Margin (dB)	Remark	
10440.000	29.51	18.80	48.31	74.00	-25.69	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEE			High CH		emp/H		24(℃)/ 33%RH			
Test Item				larmon			Test Da			er 10, 201		
Polarize				Vertica		Tes	st Engi	neer	Jerry	Chuang		
Detector		P	eak	and Av	erage							
110.0 dBuV/m												
									Limit1: Limit2:	_		
70												
10												
		1 X										
		Î										
30.0 1000.000 <b>4</b> 90	0 00 8	300.00	12700	).00 1660	0.00 20500.	)0 24400	1 00 2830	)0.00 3220	)0.00 40	0000.00 MHz		
1000.000 400	0.00 0.	100.00	12100					50.00 SEC		5000.00 MILE		
	-			-			-					
Frequency (MHz)	requency Reading (MHz) (dBuV)			Correct Factor (dB/m)	Re	sult ıV/m)			Margin (dB)	Remark		
10480.000	2	9.33		18.90	48	.23	74	4.00	-25.77	peak		
N/A												

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	juenc 1Hz)	сy			ding uV)			rrect ctor			Resul BuV/				imit uV/m			largin (dB)	n	Re	emark
30.0 10	00.000	4900	).00	880	).00	127	00.00	1660	0.00	205	)0.00	2440	0.00	2830	0.00	3220	0.00		400	00.00	MHz
					×																
					1																
70																					
																		Limit2	2:	_	
110.0	J dBu	i¥∕m																Limit1		-	
	etec				Peak and Average																
	olar						Horiz					Te	st E	Engi	nee	r	Jerry Chuang				
Te	est It	em					Harr							t Da			No	oven	nbe	r 10	, 20 ⁻
Tes	st M	ode	;		IEEE 802.11a High CH								Tem	p/H	um			24(°C)/ 33%RH November 10, 2017			

Remark:	

10480.000

N/A

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

18.90

29.80

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

48.70

74.00

-25.30

peak

Test Mode	IEEE 802.1	1n HT20 Lo	ow CH	Temp/Hum			24(°C)/ 33%RH	
Test Item		armonic		Test Date			November 10, 201	
Polarize		/ertical		Test Engineer Jerry			y Chuang	
Detector	Peak a	and Average	е					
110.0 dBu¥/m								
							Limit1: Limit2:	
70								
	1							
	×							
30.0								
1000.000 4900	0.00 8800.00 12	2700.00 16600.00	0 20500.00	24400.	00 2830	10.00 3220	DO. OO	40000.00 MHz
	1							
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV			imit uV/m)	Margin (dB)	Remark
10360.000	30.36	18.61	48.9	)7	74	4.00	-25.03	peak
N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Item         Harmonic         Test Date         November 10, 2017           Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Peak and Average         Image: Construct of the second secon	Test Mode	IEEE 802.	11n HT20 L	ow CH	Te	emp/Hu	ım	24(°C)/ 33%RH	
Detector         Peak and Average           110.0         dBuV/m								November 10, 20	
110.0       dBuV/m         Imit:       Imit:         Imit:       Imit:       Imit:					Tes	st Engir	neer	Jerry	Chuang
Image: Second	Detector	Peak	and Averag	je					
Image: second	110.0 dBuV/m								
30.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1									_
30.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1									
30.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1									
30.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1									
30.0       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	70								
30.0       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I									
Index       Reading (MHz)       Correct Factor (dBuV)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         10360.000       30.48       18.61       49.09       74.00       -24.91       peak		1							
Index       Reading (MHz)       Correct Factor (dBuV)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         10360.000       30.48       18.61       49.09       74.00       -24.91       peak									
Frequency (MHz)Reading (dBuV)Correct Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark10360.00030.4818.6149.0974.00-24.91peak	30.0								
Frequency (MHz)Reading (dBuV)Factor (dB/m)Result (dBuV/m)Limit (dBuV/m)Margin (dB)Remark10360.00030.4818.6149.0974.00-24.91peak	1000.000 4900.0	00 8800.00 12	2700.00 16600.00	0 20500.00	24400.	00 28300	).00 3220	00.00 4	0000.00 MHz
(MHz)         (dBuV)         Pactor (dB/m)         (dBuV/m)         (dBuV/m)         (dB)         Remark           10360.000         30.48         18.61         49.09         74.00         -24.91         peak	Fraguanay	Pooding		Pos	114	1.5	mit	Margin	
									Remark
N/A	10360.000	30.48	18.61	49.0	)9	74	.00	-24.91	peak
	N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		11n HT20 N	/lid CH		emp/Hu		24(°∁)/ 33%RH		
Test Item		larmonic		Test Date				nber 10, 201	
Polarize		Vertical		Tes	t Engin	eer	Jeri	ry Chuang	
Detector	Peak	and Averag	je						
110.0 dBuV/m									
							Limit1 Limit2		
70									
	1 X								
30.0									
1000.000 4900.0	00 8800.00 12	2700.00 16600.00	) 20500.00	24400.	00 28300.	00 3220	)0.00	40000.00 MHz	
							•		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Lim (dBu\		Margin (dB)	Remark	
10440.000	29.97	18.80	48.7	7	74.0	00	-25.23	peak	
N/A									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11n HT2	20 Mid CH	Temp/Hum	24(°∁)/ 33%RH
Test Item	Harmoni	C	Test Date	November 10, 2017
Polarize	Horizonta	al	Test Engineer	Jerry Chuang
Detector	Peak and Ave	erage		
110.0 dBuV/m				
				Limit1: — Limit2: —
70				
	1.			
	X			
30.0	0 0000 00 10700 00 10	000.00 00500.00	04400.00 00000.00 0000	10000 00 W
1000.000 4900.0	0 8800.00 12700.00 16	600.00 20500.00	24400.00 28300.00 3220	00.00 40000.00 MHz
Frequency (MHz)	Reading (dBuV) Correc Facto (dB/m	r (dBuV/m		Margin (dB) Remark

	(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
1	10440.000	30.18	18.80	48.98	74.00	-25.02	peak
	N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 80	2.11n HT	20 High Cł		emp/Hum	24(°C)/ 33%RH	
Test Item		Harmon			est Date	November 10, 20	
Polarize		Vertica		Tes	st Engineer	Jerry	Chuang
Detector	Pe	ak and Av	reage				
110.0 dBuV/m							
						Limit1: Limit2:	
70							
		1 X					
30.0							
1000.000 49	00.00 8800.00	12700.00	16600.00 2050	.00 24400.	00 28300.00 32	200.00 40	000.00 MHz
Frequency (MHz)	Readin (dBuV)	g Corr ) Fac (dB/	tor de	esult uV/m)	Limit (dBuV/m)	Margin (dB)	Remark
10480.000	29.62	18.9	90 4	3.52	74.00	-25.48	peak
N/A							
	_						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Test Mode	IEEE 802.11n HT20	High CH	Temp/Hum	24(°C)/ 33%RH
Test Item	Harmonic		Test Date	November 10, 2017
Polarize	Horizontal		Test Engineer	Jerry Chuang
Detector	Peak and Avera	age		
110.0 dBuV/m				
				Limit1: — Limit2: —
70				
	1			
	X			
30.0				
1000.000 4900	0.00 8800.00 12700.00 1660	0.00 20500.00	24400.00 28300.00 322	200.00 40000.00 MHz
Frequency	Reading Correct Factor	Resu	ılt Limit	Margin (ID) Remark

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
10480.000	29.73	18.90	48.63	74.00	-25.37	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.	11n HT40 L	ow CH	Ter	mp/Hu	m	24(	24(°C)/ 33%RH	
Test Item		larmonic		Test Date			November 10, 201		
Polarize		Vertical		Test Engineer			Je	rry Chua	ang
Detector	Peak	and Averag	je						
110.0 dBuV/m									
							Limil Limil		
70									
10									
	1								
30.0									
30.0 1000.000 4900.0	0 8800.00 12	2700.00 16600.00	) 20500.00	24400.00	) 28300.	00 322	00.00	40000.00	MHz
1000.000 1000.0		10000	2000.00	21100.00	. 20000.	00 022	00.00	10000.00	
		Correct							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Resu (dBuV/		Lin (dBu)		Margi (dB)	n Re	emark
10380.000	30.08	18.65	48.73	3	74.	00	-25.2	7 p	beak
N/A									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.2	11n HT40 L	ow CH	Temp/Hum			24(°C)/ 33%RH	
Test Item	F	larmonic		Test Date			November 10, 20	
Polarize		orizontal		Tes	st Engi	neer	Jerry	Chuang
Detector	Peak	and Averag	je					
110.0 dBu¥/m								
							Limit1: Limit2:	_
70								
	1 X							
30.0								
1000.000 4900.	00 8800.00 12	700.00 16600.00	0 20500.00	24400.	00 2830	)0.00 3220	00.00 4	10000.00 MHz
Frequency	Reading	Correct	Resi	114		imit	Margin	
(MHz)	(dBuV)	Factor (dB/m)	(dBuV			uV/m)	(dB)	Remark
10380.000	30.33	18.65	48.9	98	74	4.00	-25.02	peak
N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.1	1n HT40 Hi	gh CH	Te	mp/Hum	24(°C)/ 33%RH	
Test Item		armonic			est Date	Novembe	er 10, 2017
Polarize		/ertical		Test	t Engineer	Jerry	Chuang
Detector	Peak	and Average	е				
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
	×						
30.0 1000.000 490	D.00 8800.00 12	2700.00 16600.00	) 20500.00	24400.0	0 28300.00 322	00.00 40	000.00 MHz
1000.000 4300	0.00 0000.00 17	2700.00 10000.00	J 20 <u>500</u> .00	24400.0	0 20300.00 322		000.00 MTI2
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
10460.000	29.63	18.86	48.4	9	74.00	-25.51	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Test Mode	IEEE 80	02.11n HT40	High CH	Temp/Hum	<b>24(</b> °C)/	33%RH
Test Item		Harmonic		Test Date		er 10, 2017
Polarize		Horizontal		Test Enginee	er Jerry (	Chuang
Detector	Pe	eak and Avera	age			
110.0 dBuV/	1					
					Limit1: Limit2:	_
70						
		1 X				
20.0						
30.0 1000.000 4	00.00 8800.00	) 12700.00 1660	0.00 20500.00	24400.00 28300.00	32200.00 40	000.00 MHz
1000.000 4		, 12100.00 1000	0.00 20000.00	21100.00 20000.00	52200.00 40	555.50 MIL
<b>F</b> actor <b>a</b>	Decilia	Correct	Derry		Manain	
Frequency (MHz)	Readin (dBuV		Resu (dBuV/		Margin (dB)	Remark

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
10460.000	30.08	18.86	48.94	74.00	-25.06	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

# Above 1G Test Data for UNII-2a

Test Item Polarize Detector		F	larmoni						
						est Da		Novemb	er 10, 201
Detector			Vertica		Tes	st Engil	neer	Jerry	Chuang
		Peak	and Av	erage					
110.0 dBuV/m									
								Limit1: Limit2:	
70									
		1 X							
30.0									
1000.000 4900.0			0.00 1660 Correct	0.00 20500.00					0000.00 MHz
Frequency (MHz)	Readi (dBu\		Factor (dB/m)	(dBu			mit uV/m)	Margin (dB)	Remark
10520.000	29.4	3	18.99	48.	42	74	l.00	-25.58	peak
N/A									
				<b>I</b>		ļ		L	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	;	IEE	E 802	2.11a	Lov	v CH			emp/H			<u>, ,</u>	33%RH
Test Item				armor					est Da				r 10, 20′
Polarize				rizon			-	Tes	t Engi	neer	Je	erry C	Chuang
Detector		P	eak a	Ind Av	vera	ige							
110.0 dBuV/m													
											Lim	iit1:	_
											Lim	it2:	_
70													
		1											
		×											
30.0													
1000.000 4900	).00 88	300.00	12700.0	166 166	00.00	2050	.00 2	4400.0	00 2830	0.00 322	00.00	400	00.00 MHz
				Correct	.								
Frequency (MHz)	Re	ading BuV)		Factor			esult suV/m)			imit uV/m)	Marg (dB	in \	Remark
	(0	Buvy	-	(dB/m)		(ur	, a <b>v</b> /my					,	
10520.000	2	8.93		18.99		4	7.92		74	4.00	-26.0	)8	peak
N/A												T	
			+								1	-+	
											1		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Tes	st Mode		IEI	EE 8	302.11	a M	id CF	1	-	Temp,	/Hum		24	(°C)/	33%	RH
	st Item				Harmo					Test					er 10,	
	olarize				Vertic				Te	est En	gine	er	J	erry (	Chuai	ng
De	etector		F	Peak	k and A	ver	age									
110.0	dBuV/m															
														nit1: nit2:	_	
70																
				<												
30.0																
10	00.000 4900.0	0 880	DO.OO	127	00.00 16	600.0	0 205	00.00	244(	10.00 2	28300.00	322	00.00	400	00.00 Mł	łz
Frea	uency	Rea	ading		Correc			Resu	lt		Limit		Marg	nin	_	
	IHz)	(dl	BuV)		Facto (dB/m			BuV		(	dBuV/r		(dE		Rer	nark
1056	60.000	30	0.03		19.02	<u> </u>		49.0	5		74.00		-24.	95	pe	eak
N	I/A															
				+												

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test M	lode		IEE	E 8	302.´	11a	Mic	I CF	1		ſem	p/H	um			24(°(	C)/	339	%RH
Test It	tem			ł	Harn	non	ic					t Da			Nc				), 20
Polar	ize				Horiz					Te	st E	Engi	nee	r		Jer	ry (	Chu	ang
Detec	ctor		Р	eak	and	d Av	rera	ge											
110.0 dBu	.₩/m																		_
																Limit1 Limit2		_	
70																			
			1																
			Ť																ĺ
30.0																			
1000.000	) 4900.00	) 88	DO.OO	1270	)0.00	1660	0.00	2050	0.00	2440	0.00	2830	)0.00	3220	0.00		400	00.00	MHz
		_			Cor	rect		_											
Frequence			ading			ctor			Resul				imit			argin	)	R	emark

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
10560.000	30.46	19.02	49.48	74.00	-24.52	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEE	E 802.11a Hi	gh CH		mp/Hur			)/ 33%RH
Test Item		Harmonic			est Date			per 10, 201
Polarize		Vertical		Tes	t Engine	eer	Jerry	' Chuang
Detector	P	eak and Ave	age					
110.0 dBuV/m								
							Limit1:	-
							Limit2:	_
70								
	1							
	X							
30.0								
1000.000 4900.0	00 8800.00	12700.00 16600.0	0 20500.00	24400.0	00 28300.0	)0 3220	0.00	40000.00 MHz
		_	r —					
Frequency	Reading	Correct Factor	Resu		Lim		Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV	//m)	(dBuV	//m)	(dB)	Kennark
10640.000	29.43	19.11	48.5	64	74.0	00	-25.46	peak
N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Polarize         Horizontal         Test Engineer         Jerry Chuang           Detector         Peak and Average		IEEE 802.11a High CH	Temp/Hum	24(℃)/ 33%RH
Detector         Peak and Average           110.0         dBuV/m           Image: Second se				November 10, 202
110.0 dBuV/m	Polarize		Test Engineer	Jerry Chuang
70       1       1       1       1         1       1       1       1       1         1       1       1       1       1         1       1       1       1       1         1       1       1       1       1         1       1       1       1       1         1       1       1       1       1	Detector	Peak and Average		
70       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	110.0 dBuV/m			
	/0			
	30.0			
1000.000 4900.00 8800.00 12700.00 16600.00 20500.00 24400.00 28300.00 32200.00 40000.00 MHz		8800.00 12700.00 16600.00 20500.00	24400.00 28300.00 322	00.00 40000.00 MHz

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
10640.000	29.14	19.11	48.25	74.00	-25.75	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 8	02.11n HT	20 Low CH	Temp	o/Hum	· · ·	33%RH
Test Item		Harmon			Date		er 10, 201
Polarize		Vertica		Test E	ngineer	Jerry	Chuang
Detector	Pe	eak and Av	/erage				
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
		1					
		X					
30.0							
1000.000 4900	0.00 8800.00	12700.00 1	6600.00 20500.00	24400.00	28300.00 322	00.00 40	000.00 MHz
		_ Corre	act				
Frequency (MHz)	Reading (dBuV)	9 500	or (dBu)		Limit (dBuV/m)	Margin (dB)	Remark
10520.000	30.26	18.9	9 49.3	25	74.00	-24.75	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.	11n HT20 L	ow CH	Te	emp/H	um	<b>24(°</b> ℃)	/ 33%RH
Test Item		larmonic			est Da			er 10, 2017
Polarize		orizontal		Tes	st Engil	neer	Jerry	Chuang
Detector	Peak	and Averag	je					
110.0 dBuV/m								
							Limit1: Limit2:	
70								
	1							
	×							
30.0								
1000.000 4900.	00 8800.00 12	2700.00 16600.00	0 20500.00	24400.	00 2830	0.00 3220	00.00 40	0000.00 MHz
Frequency	Reading	Correct	Resu	ult	Li	mit	Margin	
(MHz)	(dBuV)	Factor (dB/m)	(dBuV			uV/m)	(dB)	Remark
10520.000	29.84	18.99	48.8	33	74	.00	-25.17	peak
N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		11n HT20 N	/lid CH		np/Hum	. ,	33%RH
Test Item	F	larmonic			st Date		er 10, 201
Polarize	_	Vertical		Test E	Engineer	Jerry	Chuang
Detector	Peak	and Average	e				
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
70							
	1						
	×						
30.0	00 0000 00 1	2700.00 1000.00	20500.00	24400.00	20200.00 2220	10.00 40	000.00 MU-
1000.000 4900	00 8800.00 1	2700.00 16600.00	0 20500.00	24400.00	28300.00 3220	10.00 40	000.00 MHz
F	Deedline	Correct	Resul		Limit		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	(dBuV/r		(dBuV/m)	Margin (dB)	Remark
10560.000	29.21	19.02	48.23	;	74.00	-25.77	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11	1n HT20 M	1id CH	Te	emp/Hum	<b>24(</b> °C)/	′ 33%RH
Test Item	Ha	armonic		Test Date		November 10, 201	
Polarize	Ho	orizontal		Tes	t Engineer	Jerry	Chuang
Detector	Peak a	ind Averag	е			-	
110.0 dBu¥/m							
						Limit1: Limit2:	_
70							
	1 X						
30.0							
1000.000 4900.00	) 8800.00 1270	DO.OO 16600.00	20500.00	24400.0	00 28300.00 3220	0.00 40	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/n		Limit (dBuV/m)	Margin (dB)	Remark
10560.000	29.26	19.02	48.28		74.00	-25.72	peak

N/A

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802	2.11n HT2	0 High CH	Te	mp/Hum	24(°C)/ 33%RH	
Test Item		Harmonie	C		est Date	November 10, 201	
Polarize		Vertical			t Engineer	Jerry	Chuang
Detector	Pea	ak and Ave	erage				
110.0 dBuV/m							
						Limit1: Limit2:	
70							
	Š	K					
30.0							
1000.000 490	0.00 8800.00	12700.00 1	6600.00 20500.00	) 24400.0	00 28300.00 3220	00.00 40	000.00 MHz
	_					_	
Frequency (MHz)	Reading (dBuV)	Corre Facto (dB/n	or (dBu)		Limit (dBuV/m)	Margin (dB)	Remark
10640.000	29.65	19.1	1 48.	76	74.00	-25.24	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Test Mode	IEEE 802.	11n HT20 High	CH Te	emp/Hum	24(°∁)/ 33%RH	
Test Item		Harmonic	Т	est Date	November 10, 201	
Polarize	ŀ	Horizontal	Tes	t Engineer	Jerry Chuang	
Detector	Peak	and Average				
110.0 dBuV/m						
					Limit1: — Limit2: —	
70						
	1 X					
30.0						
1000.000 49	00.00 8800.00	12700.00 16600.00	20500.00 24400.	00 28300.00 3220	00.00 40000.00 MHz	
		Correct				
Frequency	Reading	Factor	Result	Limit	Margin Remark	

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
10640.000	29.12	19.11	48.23	74.00	-25.77	peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.	IEEE 802.11n HT40 Low CH			Temp/Hum			24(°C)/ 33%RH		
Test Item		larmonic		Test Date			November 10, 2017			
Polarize		Vertical		Test Engineer			Jeri	y Chuang		
Detector	Peak	and Averag	je							
110.0 dBuV/m										
							Limit1 Limit2			
70										
70										
	1									
	ľ									
30.0										
1000.000 4900.0	10 8800.00 12	2700.00 16600.00	) 20500.00	24400.0	DO 2830	10.00 322	00.00	40000.00 MHz		
_		Correct	_	_						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Resı (dBuV			imit uV/m)	Margin (dB)	Remark		
10540.000	29.61	19.01	48.6	62	74	4.00	-25.38	peak		
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Test Mode	IEEE 802.1	ow CH	Temp/Hum			24(°C)/ 33%RH		
Test Item	H			Test Date		November 10, 201		
Polarize		orizontal		Tes	t Engin	eer	Jerry	Chuang
Detector	Peak a	and Average	е					
110.0 dBuV/m								
							Limit1: Limit2:	_
70								
	1 X							
30.0								
1000.000 4900	.00 8800.00 12	2700.00 16600.00	) 20500.00	24400.	00 28300.	00 3220	0.00 4	10000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resı (dBuV		Lim (dBu\		Margin (dB)	Remark
10540.000	30.26	19.01	49.2	27	74.(	00	-24.73	peak
N/A								

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		802.11n HT4 ligh CH	10	Temp/Hum	<b>24(°</b> ℃)/	33%RH
Test Item		armonic		Test Date	Novembe	er 10, 2017
Polarize		Vertical		Fest Engineer	Jerry	Chuang
Detector	Peak	and Average	e			
110.0 dBuV/m						
					Limit1: Limit2:	_
70						
70						
	1					
20.0						
30.0 1000.000 4900.	00 8800.00 1	2700.00 16600.00	0 20500.00 24	1400.00 28300.00 32	2200.00 40	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
10620.000	29.60	19.10	48.70	74.00	-25.30	peak
N/A						
				I		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	F	02.11n HT4 ligh CH	Ŭ	Temp/Hum		24(°∁)/ 33%RH	
Test Item		armonic		Test Date			er 10, 201
Polarize		orizontal		Test	Engineer	Jerry	Chuang
Detector	Peak a	and Average	e				
110.0 dBuV/m							
						Limit1: Limit2:	_
70							
	1						
30.0							
1000.000 4900.	00 8800.00 12	2700.00 16600.00	20500.00	24400.0	0 28300.00 322	200.00 40	000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark
10620.000	29.61	19.10	48.7	1	74.00	-25.29	peak
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

# Above 1G Test Data for UNII-2c

Test Mode		IEEE	802.11a	Low CH		emp/H		24(℃)/ 33%RH		
Test Item			Harmor			Test Da		November 10, 20		
Polarize			Vertica		Test Engineer			Jerry	Chuang	
Detector		Pea	ak and Av	/erage						
110.0 dBu¥/m										
								Limit1:	_	
								Limit2:		
70										
		1 X								
30.0										
1000.000 4900.	00 88	00.00 1	2700.00 166	0.00 20500.00	) 24400	00 2830	)0.00 3220	)0.00 4	0000.00 MHz	
1000.000 1000.			2100.00 100	20000.00					0000.00 Mile	
Frequency	Re	ading	Correct	Res	ult	L	imit	Margin	_	
(MHz)	(d	BuV)	Factor (dB/m)	(dBu			uV/m)	(dB)	Remark	
11000.000	2	9.04	19.50	48.	54	74	4.00	-25.46	peak	
N/A									P	
IN/A										

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEE	E 8	02.11a	L٥١	v CH		Temp/Hum			24(°C)/ 33%RH		
Test Item				Harmon				Test D		November 10, 20			
Polarize				Iorizont			Te	Test Engineer			erry C	huang	
Detector		P	eak	and Av	/era	ige							
110.0 dBuV/m													
										Lim Lim			
70												_	
		1										_	
30.0													
1000.000 4900	.00 88	300.00	1270	0.00 1660	)0.00	20500.	00 244	00.00 28	300.00 322	00.00	4000	D.00 MHz	
Frequency (MHz)		ading BuV)		Correct Factor (dB/m)			sult ıV/m)		Limit BuV/m)	Marg (dB)	in )	Remark	
11000.000	2	9.39		19.50		48	.89	-	74.00	-25.1	1	peak	
N/A													
					Τ								

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEE	Εð	302.11a	Mid CH		Гemp/H	lum	24(°C)/ 33%RH		
Test Item				Harmon			Test Da		November 10, 201		
Polarize				Vertica		Te	est Eng	ineer	Jerry Chuang		
Detector		P	eak	c and Av	erage						
110.0 dBuV/m											
									Limit1: Limit2:	_	
70											
		,	I X								
30.0											
1000.000 4900.0	0 88	00.00	1270	00.00 1660	0.00 20500	.00 2440	0.00 283	00.00 322	00.00 4	0000.00 MHz	
<b>F</b>	<b>D</b> -			Correct					Manula		
Frequency (MHz)		ading BuV)		Factor (dB/m)	R	esult uV/m)		imit uV/m)	Margin (dB)	Remark	
11160.000	2	9.40		19.54	48	3.94	7.	4.00	-25.06	peak	
N/A			+								
			+				-				
							1		1	1	

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11a Mid	CH Temp/Hum	24(°C)/ 33%RH
Test Item	Harmonic	Test Date	November 10, 20
Polarize	Horizontal	Test Engineer	Jerry Chuang
Detector	Peak and Average	je	
110.0 dBuV/m			
			Limit1: — Limit2: —
70			
	1		
30.0			
	800.00 12700.00 16600.00	20500.00 24400.00 28300.00 322	00.00 40000.00 MHz
Frequency Re	ading Correct	Result Limit	Margin

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
11160.000	30.40	19.54	49.94	74.00	-24.06	peak
N/A						

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEEE	80	)2.11a l	High CH		Temp/H		24(°C)/ 33%RH		
Test Item				larmon			Test Da		November 10, 20		
Polarize		_		Vertica		Te	est Eng	ineer	Jerry	/ Chuang	
Detector		Pe	ak	and Av	erage						
110.0 dBuV/m											
									Limit1: Limit2:	_	
70											
		X	<								
30.0											
1000.000 4900.0	0 88	00.00	12700	0.00 1660	0.00 20500.0	)0 2440	0.00 283	00.00 322	00.00	40000.00 MHz	
Frequency (MHz)		ading BuV)		Correct Factor (dB/m)		sult IV/m)		.imit BuV/m)	Margin (dB)	Remark	
11400.000	3	1.28		19.60	50	.88	7	4.00	-23.12	peak	
N/A											

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE	802.11a Hi	gh CH	Temp/Hum	<b>24(°</b> C)/ <b>33%</b>	RH
Test Item		Harmonic		Test Date	November 10,	
Polarize		Horizontal	Т	est Engineer	Jerry Chuai	ng
Detector	Pea	ak and Aver	age			
110.0 dBuV/m						
					Limit1: — Limit2: —	
70						
10						
	1 *					
30.0						
1000.000 4900.00	) 8800.00 12	2700.00 16600.00	0 20500.00 24	100.00 28300.00 322	00.00 40000.00 Mł	łz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB) Ren	nark
44.400.000		10.00	40.00	74.00	04.04	- 1

	(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
	11400.000	30.36	19.60	49.96	74.00	-24.04	peak
	N/A						
L							

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	st Mode IEEE 802.11n HT20 Low C					Jm	24(°C)/ 33%RH		
Test Item	ŀ	larmonic			est Da		November 10, 201		
Polarize		Vertical		Test Engineer			Jeri	y Chuang	
Detector	Peak	and Averag	je						
110.0 dBuV/m									
							Limit1 Limit2		
70									
10									
	1								
30.0 1000.000 <b>4</b> 900.	00 8800.00 1/	2700.00 16600.00	) 20500.00	24400.0	)0 2830	n nn 222	00.00	40000.00 MHz	
1000.000 4300.	00 0000.00 1	2700.00 10000.00	5 20500.00	24400.0	JU 2030	J.UU J22	00.00	40000.00 MTI2	
_		Correct	_			•.			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Resı (dBuV			mit ıV/m)	Margin (dB)	Remark	
11000.000	29.76	19.50	49.2	6	74	.00	-24.74	peak	
N/A									

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.	.11n HT20 L	ow CH	Te	emp/Hu	Jm	<b>24(</b> °C	)/ 33%RH	
Test Item	ŀ	Harmonic			est Da		November 10, 20		
Polarize		Horizontal		Test Engineer			Jerry Chuang		
Detector	Peak	and Averag	ge						
110.0 dBuV/m									
							Limit1:		
							Limit2:		
70									
	1								
30.0		10000							
1000.000 4900.	00 8800.00 1	2700.00 16600.00	0 20500.00	24400.	00 28300	J.UU 322U	0.00	40000.00 MHz	
Frequency	Reading	Correct	Resu	ult	Lii	mit	Margin		
(MHz)	(dBuV)	Factor (dB/m)	(dBuV			ıV/m)	(dB)	Remark	
11000.000	29.02	19.50	48.5	52	74	.00	-25.48	peak	
N/A									
								1	

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

			IEEE 802.11n HT20 Mid CH					Н	Temp/Hum			24(°C)/ 33%RH			SRH	
	Item				rmonic						t Da		November 10, 201			
	arize				ertical				Test Engineer			J	erry	Chua	ing	
Det	ector		Peal	ка	nd Ave	rag	е									
110.0	) dBuV/m															
													imit1: imit2:	_		
70																
			1 X													
30.0																
10	00.000 4900.0	D 880(	D.00	1270	0.00 1660	DO.OO	205	00.00	2440	)0.00	2830	)0.00 322	00.00	40	000.00 N	lHz
Freq	uency	Rea	ding		Correct	:	1	Resu	lt		L	imit	Mar	ain	_	
	MHz)	(dB	suV)		Factor (dB/m)			BuV				uV/m)	(d		Re	mark
1116	60.000	30	.14		19.54			49.6	8		74	4.00	-24	.32	р	eak
١	N/A									_						
										_						

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11n HT20 M	1id CH Te	emp/Hum	<b>24(</b> °C)/ 3	33%RH	
Test Item	Harmonic	Т	fest Date	November 10, 20		
Polarize	Horizontal	Tes	st Engineer	Jerry C	huang	
Detector	Peak and Averag	е				
110.0 dBuV/m						
				Limit1:	-	
70						
	1.					
	X					
30.0						
1000.000 4900.0	0 8800.00 12700.00 16600.00	20500.00 24400.	.00 28300.00 3220	0.00 4000	0.00 MHz	
Frequency (MHz)	Reading (dBuV) Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
11160.000	30.20 19.54	49.74	74.00	-24.26	peak	

Remark	
--------	--

N/A

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Terr	np/Hum	24(°C)/ 33%RH		
Test Item		armonic			st Date	Novembe	er 10, 2017	
Polarize		Vertical		Test	Engineer	Jerry	Chuang	
Detector	Peaka	and Average	e					
110.0 dBuV/m								
						Limit1: Limit2:	_	
70								
	1							
30.0 1000.000 <b>4</b> 90	0.00 8800.00 12	2700.00 16600.00	20500.00	24400.00	28300.00 3220	)0.00 40	000.00 MHz	
1000.000 430	0.00 000.00 12	2700.00 10000.00	20300.00	24400.00	20300.00 3220	JU.UU 40	000.00 MHZ	
<b>F</b>	Deedlar	Correct	Descu		1			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Resul (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark	
11400.000	30.81	19.60	50.41	1	74.00	-23.59	peak	
N/A								
				1		<u> </u>		

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Te	emp/Hum	24(°C)/ 33%RH		
Test Item	Н	armonic		Т	est Date	November 10, 2017		
Polarize		orizontal		Tes	t Engineer	Jerry Chuang		
Detector	Peaka	and Average	е					
110.0 dBuV/m								
						Limit1: Limit2:	_	
70								
	1							
30.0								
1000.000 4900.	00 8800.00 12	2700.00 16600.00	) 20500.00	24400.	00 28300.00 3220	00.00 40	000.00 MHz	
		Correct						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m)	Margin (dB)	Remark	
11400.000	29.70	19.60	49.3	0	74.00	-24.70	peak	

N/A

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.	11n HT40 L	ow CH	Temp	/Hum	24(°C)/ 33%RH		
Test Item		larmonic			Date	November 10, 201		
Polarize		Vertical			ngineer	Jerry	Chuang	
Detector	Peak	and Averag	e					
110.0 dBuV/m								
						Limit1: Limit2:	_	
70								
	1							
30.0								
1000.000 4900.0	0 8800.00 12	2700.00 16600.00	20500.00	24400.00	28300.00 322	00.00 40	0000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul [:] (dBuV/r		Limit dBuV/m)	Margin (dB)	Remark	
11020.000	29.46	19.50	48.96		74.00	-25.04	peak	
N/A								

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Test Mode	IEEE 802.1	1n HT40 Lo	ow CH	Te	mp/Hum	24(°C)/ 33%RH		
Test Item		armonic			est Date	November 10, 201		
Polarize		orizontal		Test	t Engineer	Jerry	Chuang	
Detector	Peak	and Average	е					
110.0 dBuV/m								
						Limit1: Limit2:	_	
70								
30.0								
1000.000 4900	0.00 8800.00 1	2700.00 16600.00	) 20500.00	24400.0	0 28300.00 3	2200.00 40	000.00 MHz	
	-	•				•		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)	Margin (dB)	Remark	
11020.000	29.72	19.50	49.2	22	74.00	-24.78	peak	
N/A								

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE	802.11n HT Mid CH	40 т	ēmp/Hum	24(°C)/ 33%RH		
Test Item		Harmonic		Test Date		er 10, 2017	
Polarize		Vertical		st Engineer	Jerry	Chuang	
Detector	Pea	k and Averag	е				
110.0 dBuV/m							
					Limit1: Limit2:	_	
70							
		1					
30.0							
1000.000 4900	.00 8800.00	12700.00 16600.0	0 20500.00 2440	0.00 28300.00 322	00.00 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
11100.000	29.86	19.53	49.39	74.00	-24.61	peak	
N/A			<u> </u>				

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		802.11n HT₄ ∕lid CH	10	Temp/Hum	24(°∁)/ 33%RH	
Test Item		armonic		Test Date		er 10, 2017
Polarize		orizontal		lest Engineer	Jerry	Chuang
Detector	Peak	and Averag	e			
110.0 dBuV/m						
					Limit1: Limit2:	_
70						
	1					
30.0						
1000.000 4900.	00 8800.00 12	?700.00 16600.00	) 20500.00 24	400.00 28300.00 32	200.00 40	1000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
11100.000	29.67	19.53	49.20	74.00	-24.80	peak
N/A						

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		02.11n HT4 ligh CH	10	Temp/	Hum	24(°∁)/ 33%RH		
Test Item		armonic		Test [		Novembe	er 10, 201 ⁻	
Polarize		/ertical		Test En	gineer	Jerry	Chuang	
Detector	Peaka	and Average	e					
110.0 dBuV/m								
						Limit1: Limit2:		
70							_	
10								
	1 *							
30.0								
1000.000 4900	).00 8800.00 12	2700.00 16600.00	) 20500.00	24400.00 2	8300.00 322	00.00 40	0000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/n		Limit IBuV/m)	Margin (dB)	Remark	
11340.000	28.97	19.59	48.56		74.00	-25.44	peak	
N/A								
				<u> </u>				

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode			02.11n ⊦ ligh CH	IT40	Te	emp/Hur	n	24(°C)/ 33%RH		
Test Item			armonic		Г	est Date	Э	November 10, 201		
Polarize			Horizontal			st Engine	er	Jerry	Chuang	
Detector		Peak a	and Aver	age						
110.0 dBuV/m										
								Limit1: Limit2:		
70										
		1								
30.0										
1000.000 490	)0.00 880	0.00 12	2700.00 166	00.00 20500.	00 24400	.00 28300.0	0 322	00.00 40	0000.00 MHz	
Frequency	Rea	ding	Correct Factor	Re	sult	Lim		Margin	Remark	
(MHz)	(dE	BuV)	(dB/m)	(dBi	uV/m)	(dBuV	//m)	(dB)	Remark	
11340.000	29	0.00	19.59	48	5.59	74.0	00	-25.41	peak	
N/A										

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

# Above 1G Test Data for UNII-3

Test Mode			802.11a Lo			mp/Hu			24(°∁)/ 33%RH		
Test Item			Harmonic		Test Date			November 10, 20			
Polarize			Vertical		Test	t Engin	eer	Jerr	y Chuar	ng	
Detector		Pea	k and Ave	rage							
110.0 dBuV/m											
								Limit1: Limit2:			
70											
30.0											
1000.000 4900.0	0 8800	).00 127	700.00 16600.0	0 20500.00	24400.0	0 28300	.00 3220	00.00	40000.00 MH	lz	
Frequency (MHz)	Read (dB		Correct Factor (dB/m)	Resı (dBuV		Lin (dBu		Margin (dB)	Ren	nark	
11490.000	30.	.38	19.63	50.0	)1	74.	00	-23.99	ре	ak	
N/A											
								1	1		

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEEE	802.11a	_ow CH	Te	emp/Hu	m	24(°C)/ 33%RH		
Test Item			Harmoni			est Dat		November 10, 20 ²		
Polarize			Horizont		Tes	st Engin	eer	Jerry Chuang		
Detector		Pea	ak and Av	erage						
110.0 dBuV/m										
								Limit1:		
								Limit2:		
70										
		1								
30.0										
1000.000 4900.	00 88	300.00 12	2700.00 1660	).00 20500.00	24400.	00 28300.	00 3220	10.00 4	0000.00 MHz	
Frequency	Re	ading	Correct	Res	ult	Lim	nit	Margin		
(MHz)	(d	BuV)	Factor (dB/m)	(dBu\		(dBu)		(dB)	Remark	
11490.000	3	0.16	19.63	49.7	79	74.0	00	-24.21	peak	
N/A	1									
									<u> </u>	

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEEE	802.11a N	/lid CH	Te	emp/Hu	ım	<b>24(</b> °C	)/ 33%RH
Test Item			Harmonic	;		est Da			per 10, 201
Polarize			Vertical		Tes	st Engir	neer	Jerry	[,] Chuang
Detector		Pea	Peak and Average						
110.0 dBuV/m								15-34	
								Limit1: Limit2:	_
70									
30.0									
1000.000 4900.0	10 88	00.00 123	700.00 16600.	00 20500.00	24400.	.00 28300	).00 3220	)0.00	40000.00 MHz
<b>F</b> actor <b>a</b>	De	e din a	Correct	Res	.14		nit	Monsin	
Frequency (MHz)	(d	ading BuV)	Factor (dB/m)	(dBuV			iV/m)	Margin (dB)	Remark
11570.000	3	1.06	19.60	50.6	6	74	.00	-23.34	peak
N/A									

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11a Mi	id CH T	emp/Hum	24(°∁)/ 33%RH
Test Item	Harmonic	1	Test Date	November 10, 2017
Polarize	Horizontal		st Engineer	Jerry Chuang
Detector	Peak and Avera	age		
110.0 dBuV/m				
				Limit1: — Limit2: —
70				
	1			
	×			
30.0				
1000.000 4900.00	8800.00 12700.00 16600.00	0 20500.00 24400	.00 28300.00 3220	00.00 40000.00 MHz
	Reading Correct	Result	Limit	Margin Remark
(MHz)	(dBuV) Factor (dBuV) (dB/m)	(dBuV/m)	(dBuV/m)	(dB) Remark

(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Remark
11570.000	29.43	19.60	49.03	74.00	-24.97	peak
N/A						

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		IEEE	IEEE 802.11a High CH			1	Temp/H		( -	)/ 33%RH
Test Item				armon			Test D		Novem	ber 10, 20 <i>°</i>
Polarize				/ertica		Т	est Eng	ineer	Jerry	y Chuang
Detector		Pe	ak a	and Av	erage					
110.0 dBuV/m										
									Limit1: Limit2:	_
70										
		1								
		>	<							
20.0										
30.0 1000.000 <b>4</b> 900.0	00 88	300.00 1	2700.	00 1660	0.00 2050	0.00 244	00.00 283	00.00 322	00.00	40000.00 MHz
Frequency (MHz)		ading BuV)		Correct Factor (dB/m)		esult BuV/m)		₋imit BuV/m)	Margin (dB)	Remark
11650.000	2	9.99		19.57	4	9.56	7	4.00	-24.44	peak
N/A										
			_							
	1								1	1

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.11a Hig		mp/Hum	24(°C)/ 33%RH
Test Item	Harmonic		est Date	November 10, 201
Polarize	Horizontal		t Engineer	Jerry Chuang
Detector	Peak and Avera	age		
110.0 dBuV/m				
				Limit1: — Limit2: —
70				
	X			
30.0				
1000.000 4900.00	8800.00 12700.00 16600.00	20500.00 24400.0	0 28300.00 3220	00.00 40000.00 MHz
Frequency (MHz)	Reading Correct (dBuV) (dBuv)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB) Remark

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
11650.000	31.08	19.57	50.65	74.00	-23.35	peak
N/A						

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.	11n HT20 L	ow CH	Temp/Hum			24(°C)/ 33%RH		
Test Item		larmonic		Test Date				er 10, 2017	
Polarize		Vertical		Tes	t Enginee	er	Jerry	Chuang	
Detector	Peak	and Averag	e						
110.0 dBuV/m									
							Limit1: Limit2:	_	
70									
	1								
	*								
30.0									
1000.000 4900.00	) 8800.00 12	2700.00 16600.00	20500.00	24400.	00 28300.00	32200.0	0 40	0000.00 MHz	
Frequency	Deading	Correct	Deer	.14	Limit		Margin		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Resı (dBuV		dBuV/r	n)	Margin (dB)	Remark	
11490.000	29.74	19.63	49.3	57	74.00		-24.63	peak	
N/A									

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.	11n HT20 L	ow CH	Temp/Hum			24(°C)/ 33%RH	
Test Item		larmonic		Test Date			November 10, 20 ²	
Polarize		Horizontal			t Engi	neer	Jerry	[,] Chuang
Detector	Peak	and Averag	ge					
110.0 dBu¥/m								
							Limit1: Limit2:	_
70								
	1							
	×							
30.0								
1000.000 4900.	00 8800.00 12	2700.00 16600.00	) 20500.00	24400.0	00 2830	0.00 322	00.00	40000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV			imit uV/m)	Margin (dB)	Remark
11490.000	29.72	19.63	49.3	5	74	4.00	-24.65	peak
N/A								

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.	11n HT20 M	/lid CH	Temp/Hum	24(°C)/ 33%RH		
Test Item	ŀ	larmonic		Test Date	Novembe	er 10, 201	
Polarize		Vertical		est Engineer	Jerry (	Chuang	
Detector	Peak	and Averag	e				
110.0 dBu¥/m							
					Limit1: Limit2:	_	
70							
	1 X						
30.0							
1000.000 4900.	00 8800.00 1	2700.00 16600.00	0 20500.00 244	00.00 28300.00 322	00.00 40	000.00 MHz	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
11570.000	30.78	19.60	50.38	74.00	-23.62	peak	
N/A							

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.1	1n HT20 M	lid CH	Te	mp/Hum		24(°C)	/ 33%RH
Test Item	Ha	armonic		Т	est Date	Ν	lovemb	er 10, 2017
Polarize	Ho	orizontal		Tes	t Enginee	r	Jerry	Chuang
Detector	Peak a	and Averag	e					
110.0 dBuV/m								
							Limit1: Limit2:	_
70								
	1							
30.0	0 000 0 127	00.00 10000.00	20500.00	24400	00 20200 00	22200.00		
1000.000 4900.0	)0 8800.00 127(	00.00 16600.00	20500.00	24400.0	00 28300.00	32200.00	J 4	0000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/		Limit (dBuV/m	1)	Margin (dB)	Remark
11570.000	29.69	19.60	49.2	9	74.00		-24.71	peak
N/A								

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode	IEEE 802.1	1n HT20 Hi	gh CH	Temp/Hum			24(°∁)/ 33%RH		
Test Item		armonic		Test Date			November 10, 201		
Polarize		Vertical				neer	Jerr	y Chuang	
Detector	Peak a	Peak and Average							
110.0 dBuV/m									
							Limit1: Limit2:		
70									
	1 *								
30.0									
1000.000 4900	0.00 8800.00 12	2700.00 16600.00	0 20500.00	24400.	00 2830	10.00 3220	00.00	40000.00 MHz	
		Correct							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Resı (dBuV			imit uV/m)	Margin (dB)	Remark	
11650.000	30.36	19.57	49.9	3	74	1.00	-24.07	peak	
N/A									

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Test Mode	IEEE 802.1	1n HT20 Hi	gh CH 1	emp/Hum	24(°∁)/ 33%RH
Test Item		armonic		Test Date	November 10, 2017
Polarize		orizontal		st Engineer	Jerry Chuang
Detector	Peaka	and Average	e		
110.0 dBuV/m					
					Limit1: — Limit2: —
70					
	1				
30.0					
1000.000 4900	.00 8800.00 12	2700.00 16600.00	20500.00 2440	0.00 28300.00 3220	00.00 40000.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB) Remark

Remark:
---------

11650.000

N/A

30.46

19.57

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

50.03

74.00

-23.97

peak

Test Mode	IEEE 802.11n HT40 L	ow CH Te	emp/Hum	24(℃)/ 33%RH			
Test Item	Harmonic	Г	Test Date	November 10, 2017			
Polarize	Vertical	Tes	st Engineer	Jerry Chuang			
Detector	Peak and Averag	e					
110.0 dBuV/m							
				Limit1: — Limit2: —			
70							
30.0	0 8800.00 12700.00 16600.00	20500.00 24400	.00 28300.00 3220	0.00 40000.00 MHz			
1000.000 4300.00	0 000.00 12700.00 10000.00	20300.00 24400	.00 20300.00 3220	40000.00 MHz			
Frequency (MHz)	Reading (dBuV) Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB) Remark			
11510.000	31.11 19.63	50.74	74.00	-23.26 peak			
N/A							

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Test Mod	е	IEEE 802.11n HT40 Low CH						Temp/Hum			24(℃)/ 33%RH					
Test Item		Harmonic						Test Date			November 10, 2017					
Polarize		Horizontal							Test Engineer				Jerry	Chua	ang	
Detector			Peak	and	Aver	rage	Э									
110.0 dBu	W/m															
													Limit1: Limit2:	_		
70																
			1 X	,												
			Î													
30.0																
1000.000	4900.00	0 8800	).00 1	2700.0	0 166	500.00	205	00.00	24400	).00 28	300.00 322	00.00	4(	)000.00 I	Hz	
Frequenc	y	Read	ding		Correct Factor			Resu			Limit	м	argin	Ré	emark	
(MHz)		(dB	uV)	(dB/m)			(dBuV		/m)	(dBuV/m)		(dB)				
11510.00	0	29.	69	<u> </u>	19.63			49.3	2		74.00	-2	24.68	þ	eak	
N/A																

- 5. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 6. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

		ligh CH		Ie	emp/Hi		24(°∁)/ 33%RH			
Test Item		armonic		Test Date			November 10, 201			
Polarize	\		Tes	t Engii	neer	Jerry	/ Chuang			
Detector	Peak a	and Average	e							
110.0 dBuV/m										
							Limit1: Limit2:	_		
70										
	1 X									
30.0										
1000.000 4900.	.00 8800.00 12	2700.00 16600.00	20500.00	24400.0	0 2830	0.00 3220	0.00	40000.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/r			mit ıV/m)	Margin (dB)	Remark		
11590.000	30.66	19.60	50.26	6	74.00		-23.74	peak		
N/A										
	+									
		1					1	1		

- 7. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 8. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Item Polarize Detector		armonic					24(℃)/ 33%RH			
Detector	Ho				est Da t Engi			per 10, 2017		
		Horizontal					Jerry	[,] Chuang		
	Peak a	and Average	e							
110.0 dBuV/m										
							Limit1: Limit2:	_		
70										
	1									
30.0 1000.000 4900.00	8800.00 12	700.00 16600.00	) 20500.00	24400.	00 2830	0.00 3220	00.00	40000.00 MHz		
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV		Limit (dBuV/m)		Margin (dB)	Remark		
11590.000	31.00	19.60	50.6	0	74.00		-23.40	peak		
N/A							<u> </u>			

- 7. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 8. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit