# **RADIO TEST REPORT** FCC 47 CFR PART 15 SUBPART C CLASS II PERMISSIVE CHANGE

| 321AU Combo module |
|--------------------|
|                    |
|                    |
|                    |
|                    |

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)





Approved by:

Hern Clearing

Sam Chuang Manager

Tested by:

ny Chiang

Jerry Chuang Engineer



# **Revision History**

| Rev. | Issue Date        | Revisions     | Effect Page              | Revised By   |
|------|-------------------|---------------|--------------------------|--------------|
| 00   | November 13, 2017 | Initial Issue | ALL                      | Allison Chen |
| 01   | December 1, 2017  | Rev(01)       | P.8, P.16,<br>P20, P.21  | Allison Chen |
| 02   | December 4, 2017  | Rev.(02)      | P. 21, 39, 40,<br>65, 66 | Angel Cheng  |

Rev. (01):

1. Modify Applied standards KDB 558074 D01 v03R05 to KDB 558074 D01 v04.

2. Remove radiation bandedge and spurious emission test setup: 9kHz ~ 30MHz.

3. Other information, please refer to the T171012L01 and this test report.

Rev. (02):

1. Added radiation bandedge and spurious emission test setup: 9kHz ~ 30MHz.

2. Added note in below 1GHz test data.

3. Modify test setup photo.

**Compliance Certification Services Inc.** FCC ID: TX2-RTL8821AU

# **Table of contents**

| 1. | GENER    |                                          | 4 |
|----|----------|------------------------------------------|---|
|    | 1.1      | EUT INFORMATION                          | 4 |
|    | 1.2      | EUT CHANNEL INFORMATION                  | 5 |
|    | 1.3      | ANTENNA INFORMATION                      | 5 |
|    | 1.4      | MEASUREMENT UNCERTAINTY                  | 6 |
|    | 1.5      | FACILITIES AND TEST LOCATION             | 7 |
|    | 1.6      | INSTRUMENT CALIBRATION                   | 7 |
|    | 1.7      | SUPPORT AND EUT ACCESSORIES EQUIPMENT    | 8 |
|    | 1.8      | TEST METHODOLOGY AND APPLIED STANDARDS   | 8 |
| 2. | TEST S   | UMMERY                                   | 9 |
| 3. | DESCR    | IPTION OF TEST MODES1                    | 0 |
|    | 3.1      | THE WORST MODE OF OPERATING CONDITION1   | 0 |
|    | 3.2      | THE WORST MODE OF MEASUREMENT1           | 1 |
|    | 3.3      | EUT DUTY CYCLE 1                         | 2 |
| 4. | TEST R   | ESULT1                                   | 3 |
|    | 4.1      | AC POWER LINE CONDUCTED EMISSION 1       | 3 |
|    | 4.2      | OUTPUT POWER MEASUREMENT1                | 6 |
|    | 4.3      | RADIATION BANDEDGE AND SPURIOUS EMISSION | 9 |
| AP | PENDIX 1 | - PHOTOGRAPHS OF EUT                     |   |

### 1. GENERAL INFORMATION

## **1.1 EUT INFORMATION**

| Applicant                     | Realtek Semiconductor Corp.<br>No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu, 300 Taiwan                                                                                                                                       |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer                  | Realtek Semiconductor Corp.<br>No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu, 300 Taiwan                                                                                                                                       |
| Equipment                     | 802.11a/b/g/n/ac RTL8821AU Combo module                                                                                                                                                                                                   |
| Model No.                     | RTL8821AU                                                                                                                                                                                                                                 |
| Model Discrepancy             | N/A                                                                                                                                                                                                                                       |
| Trade Name                    | Realtek                                                                                                                                                                                                                                   |
| Received Date                 | October 12, 2017                                                                                                                                                                                                                          |
| Date of Test                  | November 10, 2017                                                                                                                                                                                                                         |
| Output Power(W)               | IEEE 802.11b mode: 0.0215 (EIRP : 0.0338)<br>IEEE 802.11g mode: 0.1247(EIRP : 0.1963)<br>IEEE 802.11n HT 20 MHz mode: 0.1054 (EIRP : 0.1660)<br>IEEE 802.11n HT 40 MHz mode: 0.1030 (EIRP: 0.1622)                                        |
| Power Operation               | <ol> <li>Power from host device. (DC 5V, 1.5A)</li> <li>Power from Li-ion Polymer Battery.<br/>Model: PR-464059G (1ICP5/40/59)<br/>Nominal Voltage: 3.8V<br/>Rated Capacity: 1630mAh / 6.2Wh<br/>Limited Charge voltage: 4.35V</li> </ol> |
| Class II Permissive<br>Change | Applicants add a new appearance of EUT and change the circuit<br>and layout, but the antenna type and module are identical with<br>original.                                                                                              |

## **1.2 EUT CHANNEL INFORMATION**

| Frequency Range | 2412MHz-2462MHz                                                                                                                                                                               |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modulation Type | <ol> <li>IEEE 802.11b mode: CCK</li> <li>IEEE 802.11g mode: OFDM</li> <li>IEEE 802.11n HT 20 MHz mode: OFDM</li> <li>IEEE 802.11n HT40 MHz mode: OFDM</li> </ol>                              |
| Bandwidth       | <ol> <li>IEEE 802.11b mode: 11 Channels</li> <li>IEEE 802.11g mode: 11 Channels</li> <li>IEEE 802.11n HT 20 MHz mode: 11 Channels</li> <li>IEEE 802.11n HT 20 MHz mode: 9 Channels</li> </ol> |

#### **Remark:**

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

| Number of frequencies to be tested                                                                 |   |                                              |  |  |  |  |
|----------------------------------------------------------------------------------------------------|---|----------------------------------------------|--|--|--|--|
| Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation |   |                                              |  |  |  |  |
| 1 MHz or less                                                                                      | 1 | Middle                                       |  |  |  |  |
| 1 MHz to 10 MHz     2     1 near top and 1 near bottom                                             |   |                                              |  |  |  |  |
| 🛛 More than 10 MHz                                                                                 | 3 | 1 near top, 1 near middle, and 1 near bottom |  |  |  |  |

### **1.3 ANTENNA INFORMATION**

| Antenna Type | ☑ PIFA □ PCB □ Dipole □ Coils |
|--------------|-------------------------------|
| Antenna Gain | Gain: 1.97dBi                 |

### **1.4 MEASUREMENT UNCERTAINTY**

| PARAMETER                                                                    | UNCERTAINTY |
|------------------------------------------------------------------------------|-------------|
| Semi Anechoic Chamber (966 Chamber_B) /<br>Radiated Emission, 30 to 1000 MHz | +/- 3.97    |
| Semi Anechoic Chamber (966 Chamber_B) /<br>Radiated Emission, 1 to 18GHz     | +/- 3.58    |
| Semi Anechoic Chamber (966 Chamber_B) /<br>Radiated Emission, 18 to 26 GHz   | +/- 3.59    |
| Semi Anechoic Chamber (966 Chamber_B) /<br>Radiated Emission, 26 to 40 GHz   | +/- 3.81    |
| Conducted Emission (Mains Terminals),<br>9kHz to 30MHz                       | +/- 2.48    |

#### Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

## **1.5 FACILITIES AND TEST LOCATION**

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

| Test site          | Test Engineer | Remark |
|--------------------|---------------|--------|
| AC Conduction Room | Jerry Chuang  |        |
| Radiation          | Jerry Chuang  |        |
| RF Conducted       | Eric Lee      |        |

**Remark:** The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

### **1.6 INSTRUMENT CALIBRATION**

| AC Conduction Test Room                                                                                               |             |           |          |            |            |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------|-----------|----------|------------|------------|--|--|
| Name of Equipment         Manufacturer         Model         Serial<br>Number         Calibration         Calibration |             |           |          |            |            |  |  |
| DC LISN                                                                                                               | SCHWARZBECK | NNBM 8124 | 505      | 03/20/2017 | 03/19/2018 |  |  |
| DC LISN                                                                                                               | SCHWARZBECK | NNBM 8124 | 504      | 03/20/2017 | 03/19/2018 |  |  |
| EMI Test Receiver                                                                                                     | R&S         | ESCI      | W3010659 | 07/13/2017 | 07/12/2018 |  |  |

| Wugu 966 Chamber A |                   |               |                  |                        |            |  |  |
|--------------------|-------------------|---------------|------------------|------------------------|------------|--|--|
| Name of Equipment  | Manufacturer      | Serial Number | Calibration Date | <b>Calibration Due</b> |            |  |  |
| Bilog Antenna      | Sunol<br>Sciences | JB3           | A030105          | 06/20/2017             | 06/19/2018 |  |  |
| Horn Antenna       | EMCO              | 3117          | 00055165         | 02/20/2017             | 02/19/2018 |  |  |
| Pre-Amplifier      | EMCI              | EMC 012635    | 980151           | 08/01/2017             | 07/31/2018 |  |  |
| Pre-Amplifier      | EMEC              | EM330         | 060609           | 06/07/2017             | 06/06/2018 |  |  |
| Spectrum Analyzer  | Agilent           | E4446A        | US42510252       | 12/05/2016             | 12/04/2017 |  |  |
| Antenna Tower      | CCS               | CC-A-1F       | N/A              | N.C.R                  | N.C.R      |  |  |
| Controller         | CCS               | CC-C-1F       | N/A              | N.C.R                  | N.C.R      |  |  |
| Turn Table         | CCS               | CC-T-1F       | N/A              | N.C.R                  | N.C.R      |  |  |

| Conducted Test Site                    |              |                  |               |                  |                 |  |  |
|----------------------------------------|--------------|------------------|---------------|------------------|-----------------|--|--|
| Name of Equipment                      | Manufacturer | Model            | Serial Number | Calibration Date | Calibration Due |  |  |
| Power Meter                            | Anritsu      | ML2495A          | 1012009       | 07/03/2017       | 07/02/2018      |  |  |
| Power Sensor                           | Anritsu      | MA2411B          | 917072        | 07/03/2017       | 07/02/2018      |  |  |
| Spectrum Analyzer                      | R&S          | FSV 40           | 101073        | 10/05/2017       | 10/04/2018      |  |  |
| Thermostatic/Hrgrosati<br>c Chamber    | GWINSTEK     | GTC-288MH-<br>CC | TH160402      | 05/23/2017       | 05/22/2018      |  |  |
| Wideband Radio<br>communication Tester | R&S          | CMW500           | 116875        | 04/25/2017       | 04/24/2018      |  |  |

#### Remark:

1. Each piece of equipment is scheduled for calibration once a year and Precision Dipole is scheduled for calibration once three years.

2. N.C.R. = No Calibration Request.

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

### **1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT**

| No | Equipment | Brand | Model | Series No. | FCC ID               | Data Cable | Power Cord |
|----|-----------|-------|-------|------------|----------------------|------------|------------|
| 1  | NB(A)     | Dell  | PP19L | N/A        | CXSMM01BR<br>D02D110 | N/A        | N/A        |

## **1.8 TEST METHODOLOGY AND APPLIED STANDARDS**

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v04.

Page 8 / 66 Rev.02 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

### 2. TEST SUMMERY

| FCC<br>Standard<br>Section | Report<br>Section | Test Item                   | Result |
|----------------------------|-------------------|-----------------------------|--------|
| 15.203                     | 1.2               | Antenna Requirement         | Pass   |
| 15.207(a)                  | 4.1               | AC Conducted Emission       | Pass   |
| 15.247(b)                  | 4.3               | Output Power Measurement    | Pass   |
| 15.247(d)                  | 4.6               | Radiation Band Edge         | Pass   |
| 15.247(d)                  | 4.6               | Radiation Spurious Emission | Pass   |

### 3. DESCRIPTION OF TEST MODES

#### **3.1 THE WORST MODE OF OPERATING CONDITION**

| Operation mode           | IEEE 802.11b mode :1Mbps<br>IEEE 802.11g mode :6Mbps<br>IEEE 802.11n HT20 mode :MCS0<br>IEEE 802.11n HT40 mode: MCS0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Channel Frequencies | IEEE 802.11b mode :<br>1. Lowest Channel : 2412MHz<br>2. Middle Channel : 2437MHz<br>3. Highest Channel : 2462MHz<br>IEEE 802.11g mode :<br>1. Lowest Channel : 2412MHz<br>2. Middle Channel : 2437MHz<br>3. Highest Channel : 2462MHz<br>IEEE 802.11n HT20 mode :<br>1. Lowest Channel : 2412MHz<br>2. Middle Channel : 2437MHz<br>3. Highest Channel : 2462MHz<br>IEEE 802.11n HT40 mode :<br>1. Lowest Channel : 2422MHz<br>2. Middle Channel : 2437MHz<br>3. Highest Channel : 2437MHz<br>3. Highest Channel : 2437MHz<br>4. Middle Channel : 2437MHz<br>4. M |
| Operation Transmitter    | IEEE 802.11b mode :1T1R<br>IEEE 802.11g mode :1T1R<br>IEEE 802.11n HT20 mode :1T1R<br>IEEE 802.11n HT40 mode :1T1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.



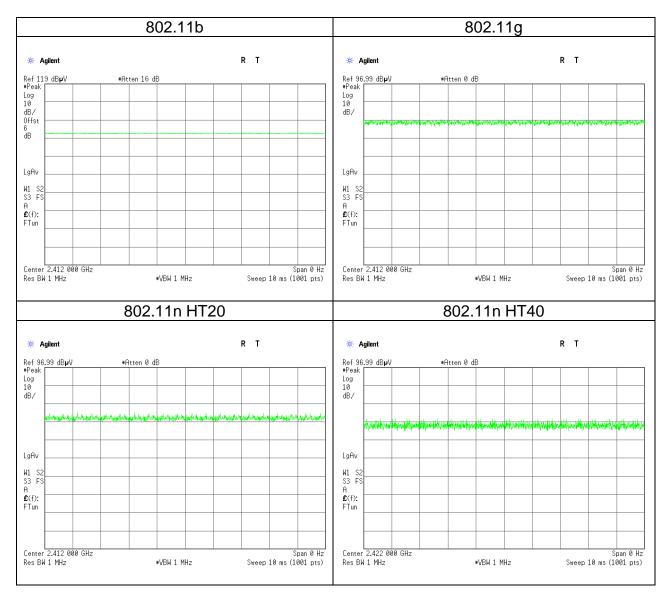
### **3.2 THE WORST MODE OF MEASUREMENT**

|                                                                              | AC Power Line Conducted Emission    |  |  |  |  |  |
|------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|
| Test Condition         AC Power line conducted emission for line and neutral |                                     |  |  |  |  |  |
| Voltage/Hz DC 5V                                                             |                                     |  |  |  |  |  |
| Test Mode                                                                    | Mode 1:EUT power by host system.    |  |  |  |  |  |
| Worst Mode                                                                   | 🖂 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4 |  |  |  |  |  |

| Radiated Emission Measurement Above 1G     |                                                                                                                                                                                                                      |  |  |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Condition                             | Test Condition Band edge, Emission for Unwanted and Fundamental                                                                                                                                                      |  |  |  |  |  |  |
| Voltage/Hz                                 | Voltage/Hz DC 5V                                                                                                                                                                                                     |  |  |  |  |  |  |
| Test Mode Mode 1:EUT power by host system. |                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Worst Mode                                 | 🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4                                                                                                                                                                                  |  |  |  |  |  |  |
| Worst Position                             | <ul> <li>Placed in fixed position.</li> <li>Placed in fixed position at X-Plane (E2-Plane)</li> <li>Placed in fixed position at Y-Plane (E1-Plane)</li> <li>Placed in fixed position at Z-Plane (H-Plane)</li> </ul> |  |  |  |  |  |  |
| Worst Polarity                             | Horizontal 🗌 Vertical                                                                                                                                                                                                |  |  |  |  |  |  |

| Radiated Emission Measurement Below 1G    |                                     |  |  |  |  |  |
|-------------------------------------------|-------------------------------------|--|--|--|--|--|
| Test Condition Radiated Emission Below 1G |                                     |  |  |  |  |  |
| Voltage/Hz                                | Voltage/Hz DC 5V                    |  |  |  |  |  |
| Test Mode                                 | Mode 1:EUT power by host system.    |  |  |  |  |  |
| Worst Mode                                | ☑ Mode 1 ☐ Mode 2 ☐ Mode 3 ☐ Mode 4 |  |  |  |  |  |

#### Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Y-Plane and Horizontal) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

## 3.3 EUT DUTY CYCLE

| Duty Cycle    |            |             |                |                 |  |  |  |  |  |
|---------------|------------|-------------|----------------|-----------------|--|--|--|--|--|
| Configuration | TX ON (ms) | TX ALL (ms) | Duty Cycle (%) | Duty Factor(dB) |  |  |  |  |  |
| 802.11b       | 1.0000     | 1.0000      | 100.00%        | 0.00            |  |  |  |  |  |
| 802.11g       | 1.0000     | 1.0000      | 100.00%        | 0.00            |  |  |  |  |  |
| 802.11n HT20  | 1.0000     | 1.0000      | 100.00%        | 0.00            |  |  |  |  |  |
| 802.11n HT40  | 1.0000     | 1.0000      | 100.00%        | 0.00            |  |  |  |  |  |



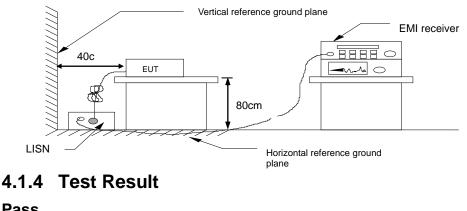
## 4. TEST RESULT

### **4.1 AC POWER LINE CONDUCTED EMISSION**

### 4.1.1 Test Limit

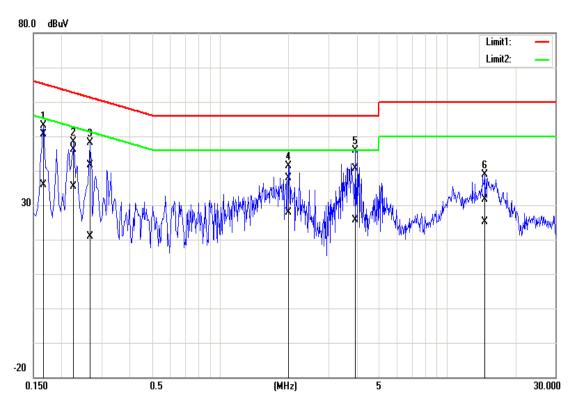
According to \$15.207(a)(2)

| Frequency Range | Limits(dBµV) |           |  |  |  |
|-----------------|--------------|-----------|--|--|--|
| (MHz)           | Quasi-peak   | Average   |  |  |  |
| 0.15 to 0.50    | 66 to 56*    | 56 to 46* |  |  |  |
| 0.50 to 5       | 56           | 46        |  |  |  |
| 5 to 30         | 60           | 50        |  |  |  |


\* Decreases with the logarithm of the frequency.

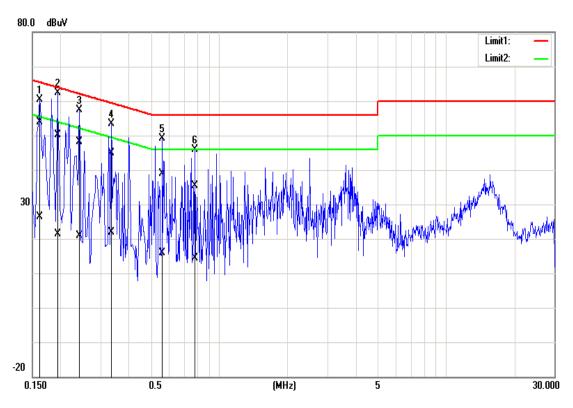
#### 4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,


- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

### 4.1.3 Test Setup




### <u>Test Data</u>

| Test Mode:    | Mode 1        | Temp/Hum      | 24(°C)/ 50%RH     |
|---------------|---------------|---------------|-------------------|
| Test Voltage: | 120Vac / 60Hz | Test Date     | November 10, 2017 |
| Phase:        | Line          | Test Engineer | Jerry Chuang      |



| No. | Froquency | QuasiPeak | Average | Correction | QuasiPeak | Average | QuasiPeak | Average | QuasiPeak | Average |
|-----|-----------|-----------|---------|------------|-----------|---------|-----------|---------|-----------|---------|
| NO. | Frequency | reading   | reading | factor     | result    | result  | limit     | limit   | margin    | margin  |
|     | (MHz)     | (dBuV)    | (dBuV)  | (dB)       | (dBuV)    | (dBuV)  | (dBuV)    | (dBuV)  | (dB)      | (dB)    |
| 1   | 0.1660    | 50.46     | 35.88   | 0.05       | 50.51     | 35.93   | 65.16     | 55.16   | -14.65    | -19.23  |
| 2   | 0.2260    | 45.99     | 35.33   | 0.05       | 46.04     | 35.38   | 62.60     | 52.60   | -16.56    | -17.22  |
| 3   | 0.2660    | 41.61     | 20.90   | 0.05       | 41.66     | 20.95   | 61.24     | 51.24   | -19.58    | -30.29  |
| 4   | 2.0100    | 37.89     | 27.70   | 0.09       | 37.98     | 27.79   | 56.00     | 46.00   | -18.02    | -18.21  |
| 5   | 3.9580    | 40.56     | 25.47   | 0.13       | 40.69     | 25.60   | 56.00     | 46.00   | -15.31    | -20.40  |
| 6   | 14.6580   | 31.55     | 24.84   | 0.18       | 31.73     | 25.02   | 60.00     | 50.00   | -28.27    | -24.98  |

| Test Mode:    | Mode 1        | Temp/Hum      | 24(°C)/ 50%RH     |
|---------------|---------------|---------------|-------------------|
| Test Voltage: | 120Vac / 60Hz | Test Date     | November 10, 2017 |
| Phase:        | Neutral       | Test Engineer | Jerry Chuang      |



| No.  | Frequency | QuasiPeak | Average | Correction | QuasiPeak | Average | QuasiPeak | Average | QuasiPeak | Average |
|------|-----------|-----------|---------|------------|-----------|---------|-----------|---------|-----------|---------|
| INO. | Frequency | reading   | reading | factor     | result    | result  | limit     | limit   | margin    | margin  |
|      | (MHz)     | (dBuV)    | (dBuV)  | (dB)       | (dBuV)    | (dBuV)  | (dBuV)    | (dBuV)  | (dB)      | (dB)    |
| 1    | 0.1620    | 53.87     | 26.17   | 0.12       | 53.99     | 26.29   | 65.36     | 55.36   | -11.37    | -29.07  |
| 2    | 0.1940    | 50.04     | 21.15   | 0.12       | 50.16     | 21.27   | 63.86     | 53.86   | -13.70    | -32.59  |
| 3    | 0.2420    | 48.12     | 20.79   | 0.12       | 48.24     | 20.91   | 62.03     | 52.03   | -13.79    | -31.12  |
| 4    | 0.3340    | 44.83     | 21.69   | 0.13       | 44.96     | 21.82   | 59.35     | 49.35   | -14.39    | -27.53  |
| 5    | 0.5620    | 38.74     | 15.84   | 0.14       | 38.88     | 15.98   | 56.00     | 46.00   | -17.12    | -30.02  |
| 6    | 0.7820    | 35.17     | 14.23   | 0.14       | 35.31     | 14.37   | 56.00     | 46.00   | -20.69    | -31.63  |

### **4.2 OUTPUT POWER MEASUREMENT**

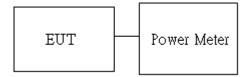
### 4.2.1 Test Limit

According to §15.247(b)

#### Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm) and the e.i.r.p. shall not exceed 4Watt(36 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

|       | Antenna not exceed 6 dBi : 30dBm     |
|-------|--------------------------------------|
| Limit | Antenna with DG greater than 6 dBi : |
|       | [Limit = 30 - (DG - 6)]              |
|       | Point-to-point operation :           |


Average output power : For reporting purposes only.

#### 4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

#### 4.2.3 Test Setup



### 4.2.4 Test Result

#### Peak output power :

|                       |      |       |        |        | V      | Vifi 2. | 4G                |                   |                  |                 |       |       |               |
|-----------------------|------|-------|--------|--------|--------|---------|-------------------|-------------------|------------------|-----------------|-------|-------|---------------|
| Config                | СН   | Freq. |        | er set | PK Pow | er(dBm) | PK Total<br>Power | PK Total<br>Power | EIRP PK<br>Total | ERP PK<br>Total | DG    | Limit | EIRP<br>Limit |
| comig                 | 0.1  | (MHz) | chain0 | chain1 | chain0 | chain1  | (dBm)             | (W)               | Power<br>(dBm)   | Power<br>(W)    | (dBi) | (dBm) | (dBm)         |
| IEEE                  | Low  | 2412  | 22     | -      | 11.02  | -       | 11.02             | 0.0126            | 12.99            | 0.0199          |       |       |               |
| 802.11b<br>Data rate: | Mid  | 2437  | 29     | -      | 13.32  | -       | 13.32             | 0.0215            | 15.29            | 0.0338          |       |       |               |
| 1Mbps                 | High | 2462  | 29     | -      | 13.28  | -       | 13.28             | 0.0213            | 15.25            | 0.0335          |       |       |               |
| IEEE                  | Low  | 2412  | 46     | -      | 20.30  | -       | 20.30             | 0.1072            | 22.27            | 0.1687          |       |       |               |
| 802.11g<br>Data rate: | Mid  | 2437  | 47     | -      | 20.96  | -       | 20.96             | 0.1247            | 22.93            | 0.1963          |       |       |               |
| 6Mbps                 | High | 2462  | 47     | -      | 20.45  | -       | 20.45             | 0.1109            | 22.42            | 0.1746          | 1.97  | 30    | 36            |
| IEEE<br>802.11n       | Low  | 2412  | 47     | -      | 20.12  | -       | 20.12             | 0.1028            | 22.09            | 0.1618          | 1.97  | 30    | 30            |
| HT20                  | Mid  | 2437  | 47     | -      | 20.23  | -       | 20.23             | 0.1054            | 22.20            | 0.1660          |       |       |               |
| Data rate:<br>MCS0    | High | 2462  | 47     | -      | 20.18  | -       | 20.18             | 0.1042            | 22.15            | 0.1641          |       |       |               |
| IEEE<br>802.11n       | Low  | 2422  | 48     | -      | 19.84  | -       | 19.84             | 0.0964            | 21.81            | 0.1517          |       |       |               |
| HT40                  | Mid  | 2437  | 48     | -      | 20.13  | -       | 20.13             | 0.1030            | 22.10            | 0.1622          |       |       |               |
| Data rate:<br>MCS0    | High | 2452  | 48     | -      | 20.13  | -       | 20.13             | 0.1030            | 22.10            | 0.1622          |       |       |               |

#### Average output power :

| Wifi 2.4G                              |      |       |        |         |                   |  |  |  |  |
|----------------------------------------|------|-------|--------|---------|-------------------|--|--|--|--|
| Config                                 | СН   | Freq. | AV Pow | er(dBm) | AV Total<br>Power |  |  |  |  |
| comg                                   | СП   | (MHz) | chain0 | chain1  | (dBm)             |  |  |  |  |
| IEEE<br>802.11b<br>Data rate:<br>1Mbps | Low  | 2412  | 9.68   | -       | 9.68              |  |  |  |  |
|                                        | Mid  | 2437  | 10.24  | -       | 10.24             |  |  |  |  |
|                                        | High | 2462  | 10.21  | -       | 10.21             |  |  |  |  |
| IEEE<br>802.11g<br>Data rate:          | Low  | 2412  | 11.97  | -       | 11.97             |  |  |  |  |
|                                        | Mid  | 2437  | 12.75  | -       | 12.75             |  |  |  |  |
| 6Mbps                                  | High | 2462  | 12.43  | -       | 12.43             |  |  |  |  |
| IEEE<br>802.11n                        | Low  | 2412  | 12.35  | -       | 12.35             |  |  |  |  |
| HT20                                   | Mid  | 2437  | 12.47  | -       | 12.47             |  |  |  |  |
| Data rate:<br>MCS0                     | High | 2462  | 12.23  | -       | 12.23             |  |  |  |  |
| IEEE<br>802.11n                        | Low  | 2422  | 12.03  | -       | 12.03             |  |  |  |  |
| HT40                                   | Mid  | 2437  | 12.11  | -       | 12.11             |  |  |  |  |
| Data rate:<br>MCS0                     | High | 2452  | 12.06  | -       | 12.06             |  |  |  |  |

### 4.3 RADIATION BANDEDGE AND SPURIOUS EMISSION

### 4.3.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

#### Below 30 MHz

| Frequency     | Field Strength<br>(microvolts/m) | Magnetic<br>H-Field<br>(microamperes/m) | Measurement<br>Distance<br>(metres) |
|---------------|----------------------------------|-----------------------------------------|-------------------------------------|
| 9-490 kHz     | 2,400/F (F in kHz)               | 2,400/F (F in kHz)                      | 300                                 |
| 490-1,705 kHz | 24,000/F (F in kHz)              | 24,000/F (F in kHz)                     | 30                                  |
| 1.705-30 MHz  | 30                               | N/A                                     | 30                                  |

#### Above 30 MHz

| Frequency | Field Strength<br>(microvolts/m) | Measurement<br>Distance<br>(metres) |
|-----------|----------------------------------|-------------------------------------|
| 30-88     | 100                              | 3                                   |
| 88-216    | 150                              | 3                                   |
| 216-960   | 200                              | 3                                   |
| Above 960 | 500                              | 3                                   |

#### 4.3.2 Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

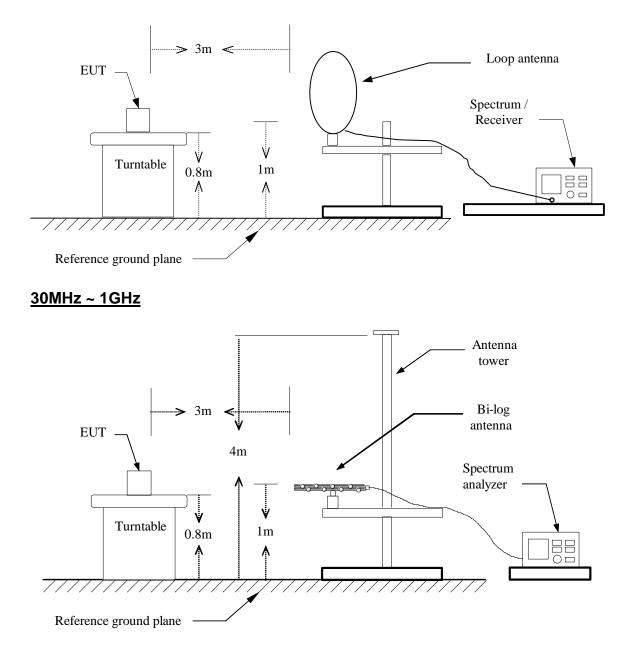
Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

4. The SA setting following :

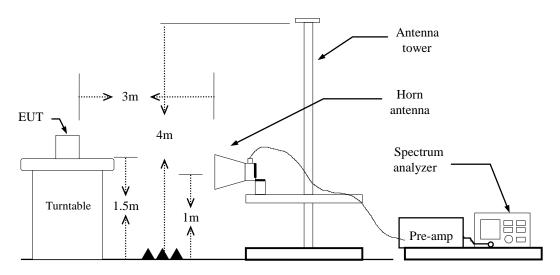
- (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
- (2) Above 1G:
  - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
  - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle  $\geq$  98%, VBW=10Hz.


If Duty Cycle < 98%, VBW=1/T.

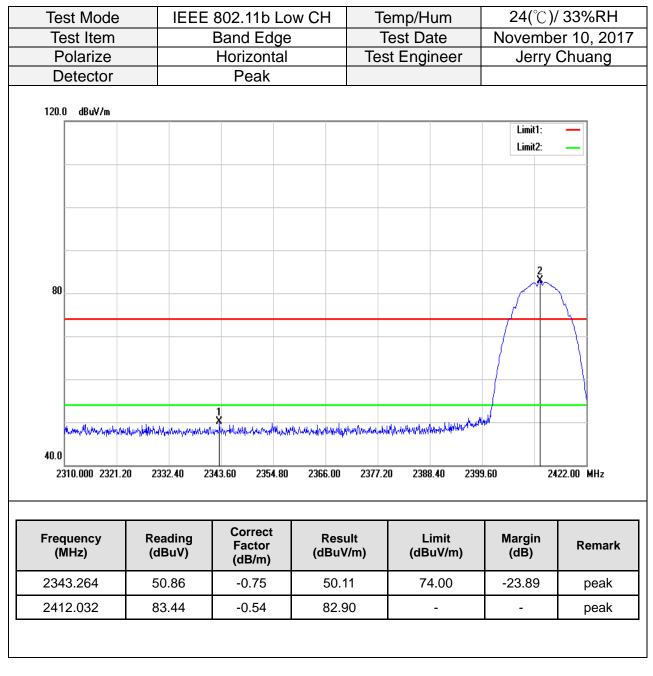
| Configuration | Duty Cycle (%) | T(ms)  | 1/T (kHz) | VBW Setting |
|---------------|----------------|--------|-----------|-------------|
| 802.11b       | 100%           | 1.0000 | -         | 300Hz       |
| 802.11g       | 100%           | 1.0000 | -         | 300Hz       |
| 802.11n HT20  | 100%           | 1.0000 | -         | 300Hz       |
| 802.11n HT40  | 100%           | 1.0000 | -         | 300Hz       |



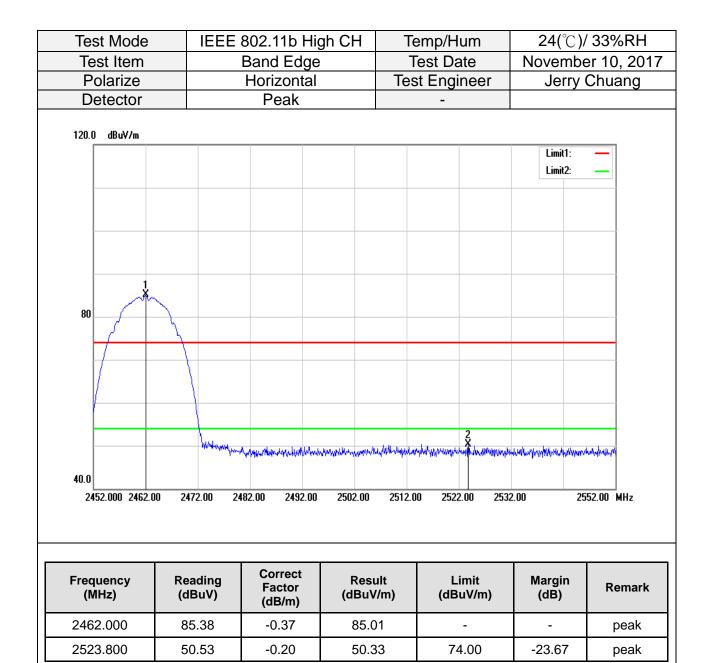

# 4.3.3 Test Setup

#### <u>9kHz ~ 30MHz</u>




**Compliance Certification Services Inc.** FCC ID: TX2-RTL8821AU

#### Above 1 GHz




### 4.3.4 Test Result

#### Band Edge Test Data



| Test Mode          | IE              | EE 802.11b I  | _ow CH         | Temperat     | ure:        | 24(°C)/ 33%            | 6RH         |  |
|--------------------|-----------------|---------------|----------------|--------------|-------------|------------------------|-------------|--|
| Test Item          |                 | Band Edg      | ge             | Test Da      |             | November 10, 201       |             |  |
| Polarize           |                 | Horizonta     | al             | Test Engi    | neer        | Jerry Chua             | ang         |  |
| Detector           |                 | Average       | )              |              |             |                        |             |  |
| 110.0 dBuV/m       |                 |               |                |              |             |                        |             |  |
|                    |                 |               |                |              |             | Limit1: —<br>Limit2: — |             |  |
|                    |                 |               |                |              |             |                        |             |  |
|                    |                 |               |                |              |             |                        |             |  |
|                    |                 |               |                |              |             | 2                      |             |  |
| 70                 |                 |               |                |              | ,           |                        |             |  |
|                    |                 |               |                |              |             | $  \rangle$            |             |  |
|                    |                 |               |                |              |             |                        |             |  |
|                    |                 |               |                |              |             |                        |             |  |
|                    |                 |               |                | 1            |             |                        |             |  |
| 30.0               |                 |               |                |              |             |                        |             |  |
| 2310.000 2321.2    | 20 2332.40      | 2343.60 2354. | 80 2366.00     | 2377.20 2388 | .40 2399.60 | 2422.00                | <b>4</b> Hz |  |
|                    |                 |               |                |              |             |                        |             |  |
| Frequency<br>(MHz) | Readin<br>(dBuV |               | Resu<br>(dBuV/ |              |             | largin<br>(dB) Re      | emark       |  |
| 2386.944           | 37.26           | -0.61         | 36.6           | 5 54         | - 00        | 17.35 A                | ٨VG         |  |
|                    | 79.66           | -0.54         | 79.1           | <u></u>      | -           | - 4                    | ٨VG         |  |



| Test Mode        | IEEE          | 802.11b Hig      | gh CH   | Tempera    | ature:     | <b>24(</b> °C),    | / 33%RH     |
|------------------|---------------|------------------|---------|------------|------------|--------------------|-------------|
| Test Item        |               | Band Edge        |         | Test D     |            | Novembe            | er 10, 2017 |
| Polarize         |               | Horizontal       |         | Test Eng   | gineer     | Jerry              | Chuang      |
| Detector         |               | Average          |         |            |            |                    |             |
| 110.0 dBu¥/m     |               |                  |         |            |            |                    |             |
|                  |               |                  |         |            |            | Limit1:<br>Limit2: |             |
|                  |               |                  |         |            |            |                    |             |
|                  |               |                  |         |            |            |                    |             |
|                  |               |                  |         |            |            |                    |             |
| 1                |               |                  |         |            |            |                    |             |
|                  |               |                  |         |            |            |                    |             |
| 70               | $\rightarrow$ |                  |         |            |            |                    |             |
| 70               | _'\           |                  |         |            |            |                    |             |
|                  |               |                  |         |            |            |                    |             |
|                  |               |                  |         |            |            |                    |             |
|                  |               |                  |         |            |            |                    |             |
|                  |               |                  |         |            |            |                    |             |
|                  |               |                  |         |            | 2          |                    |             |
|                  | ~~~~          |                  | <u></u> |            | ¥          |                    | ·           |
| 30.0             |               |                  |         |            |            |                    |             |
| 2452.000 2462.00 | D 2472.00 24  | 482.00 2492.00   | 2502.00 | 2512.00 25 | 22.00 2532 | 2.00 25            | 52.00 MHz   |
|                  |               |                  |         |            |            |                    |             |
| Frequency        | Reading       | Correct          | Result  | t          | Limit      | Margin             | Dement      |
| (MHz)            | (dBuV)        | Factor<br>(dB/m) | (dBuV/r | n) (dl     | BuV/m)     | (dB)               | Remark      |
| 2461.200         | 81.55         | -0.37            | 81.18   |            | -          | -                  | AVG         |
|                  | 37.46         | -0.20            | 37.26   |            | 54.00      | -16.74             | AVG         |

| Test Mode                   | IEE                                          | E 802.11g Lo                                             | W CH 1                              | ſemp/Hum                         | 24(℃)/ 33%RH |            |  |
|-----------------------------|----------------------------------------------|----------------------------------------------------------|-------------------------------------|----------------------------------|--------------|------------|--|
| Test Item                   |                                              | Band Edge                                                |                                     | Test Date                        | Novembe      |            |  |
| Polarize                    |                                              | Horizontal                                               | Те                                  | st Engineer                      | Jerry        | Chuang     |  |
| Detector                    |                                              | Peak                                                     |                                     |                                  |              |            |  |
| 120.0 dBuV/m                |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  | Limit1:      |            |  |
|                             |                                              |                                                          |                                     |                                  | Limit2:      |            |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  |              | 2          |  |
|                             |                                              |                                                          |                                     |                                  | m            | ~1         |  |
| 80                          |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |
|                             |                                              |                                                          |                                     | u but                            |              |            |  |
| and a shift between a       | hand the second with the state of the second | When a market have been been been been been been been be | Mar. M. & a Marce mar and a martine | hadeler a realization of the man |              |            |  |
| LA Londer HL and defense in | an a     | an ann Mhaine An an Inn Mhaile Ann an Mh                 | Marinaaltanumaatatataka             | and Mar Ne. of Mar.              |              |            |  |
| 40.0<br>2310.000 2321.2     |                                              | 2343.60 2354.80                                          |                                     |                                  | 9.60 24      | 22.00 MHz  |  |
| 2310.000 2321.2             | 20 2332.40                                   | 2343.00 2334.00                                          | 2300.00 2377                        | .20 2300.40 233                  | J.UU 24      | 22.00 MI12 |  |
|                             |                                              |                                                          | _                                   |                                  |              |            |  |
| Frequency                   | Reading                                      | Correct                                                  | Result                              | Limit                            | Margin       |            |  |
| (MHz)                       | (dBuV)                                       | Factor<br>(dB/m)                                         | (dBuV/m)                            | (dBuV/m)                         | (dB)         | Remark     |  |
| 2387.616                    | 51.42                                        | -0.60                                                    | 50.82                               | 74.00                            | -23.18       | peak       |  |
| 2419.088                    | 85.62                                        | -0.51                                                    | 85.11                               | -                                | -            | peak       |  |
|                             |                                              |                                                          |                                     |                                  |              |            |  |

| Test Mode          | IEEE                                  | 802.11g Lo                  | W CH Te            | emperature:       | 24(°C)/ 33%RH                          |           |  |
|--------------------|---------------------------------------|-----------------------------|--------------------|-------------------|----------------------------------------|-----------|--|
| Test Item          |                                       | Band Edge                   | •                  | Test Date         | November 10, 2                         |           |  |
| Polarize           |                                       | Horizontal                  |                    | est Engineer      | Jerry                                  | Chuang    |  |
| Detector           |                                       | Average                     |                    |                   |                                        |           |  |
| 110.0 dBuV/m       |                                       |                             |                    |                   |                                        |           |  |
|                    |                                       |                             |                    |                   | Limit1:<br>Limit2:                     | _         |  |
|                    |                                       |                             |                    |                   |                                        |           |  |
|                    |                                       |                             |                    |                   |                                        |           |  |
|                    |                                       |                             |                    |                   |                                        |           |  |
|                    |                                       |                             |                    |                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2         |  |
| 70                 |                                       |                             |                    |                   |                                        |           |  |
|                    |                                       |                             |                    |                   |                                        |           |  |
|                    |                                       |                             |                    |                   |                                        |           |  |
|                    |                                       |                             |                    |                   |                                        |           |  |
|                    | · · · · · · · · · · · · · · · · · · · |                             |                    | ¥                 |                                        |           |  |
| 30.0               |                                       |                             |                    |                   |                                        |           |  |
| 2310.000 2321.2    | 20 2332.40 2                          | 343.60 2354.80              | 2366.00 2377       | .20 2388.40 239   | 9.60 24                                | 22.00 MHz |  |
| Frequency<br>(MHz) | Reading<br>(dBuV)                     | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)                         | Remark    |  |
| 2390.000           | 37.66                                 | -0.60                       | 37.06              | 54.00             | -16.94                                 | AVG       |  |
|                    | 76.49                                 | -0.51                       | 75.98              | _                 | _                                      | AVG       |  |

| Test Mode               | IEEE          | 802.11g Hig               | gh CH                                                                                                             | Temp/Hu       | ım                    | <b>24(</b> °C)/                 | / 33%RH       |
|-------------------------|---------------|---------------------------|-------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|---------------------------------|---------------|
| Test Item               |               | Band Edge                 |                                                                                                                   | Test Dat      |                       |                                 | er 10, 201    |
| Polarize                |               | Horizontal                |                                                                                                                   | Test Engir    | neer                  | Jerry                           | Chuang        |
| Detector                |               | Peak                      |                                                                                                                   |               |                       |                                 |               |
| 120.0 dBuV/m            |               |                           |                                                                                                                   |               |                       |                                 |               |
|                         |               |                           |                                                                                                                   |               |                       | Limit1:                         | -             |
|                         |               |                           |                                                                                                                   |               |                       | Limit2:                         |               |
|                         |               |                           |                                                                                                                   |               |                       |                                 |               |
|                         |               |                           |                                                                                                                   |               |                       |                                 |               |
|                         |               |                           |                                                                                                                   |               |                       |                                 |               |
|                         |               |                           |                                                                                                                   |               |                       |                                 |               |
| 1,                      |               |                           |                                                                                                                   |               |                       |                                 |               |
|                         | ~~~           |                           |                                                                                                                   |               |                       |                                 |               |
| 80                      |               |                           |                                                                                                                   |               |                       |                                 |               |
|                         |               |                           |                                                                                                                   |               |                       |                                 |               |
|                         | \             |                           |                                                                                                                   |               |                       |                                 |               |
|                         | λ             |                           |                                                                                                                   |               |                       |                                 |               |
|                         |               |                           |                                                                                                                   |               |                       |                                 |               |
|                         | Whendermont   | 1a                        |                                                                                                                   |               | 2                     |                                 |               |
|                         |               | W. Copy Harris Makely and | handerstallanderstellerstellerstellerstellerstellerstellerstellerstellerstellerstellerstellerstellerstellerstelle | hundermanne   | ullinfruller alwayers | whether where the second second | remakeshickut |
| 40.0                    |               |                           |                                                                                                                   |               |                       |                                 |               |
| 40.0<br>2452.000 2462.0 | )0 2472.00 24 | 482.00 2492.00            | 2502.00                                                                                                           | 2512.00 2522. | 00 2532               | 0.00 25                         | i52.00 MHz    |
| 2432.000 2402.0         | 10 2472.00 24 | 402.00 2432.00            | 2302.00                                                                                                           | 2312.00 2322. | 00 2332               |                                 | JZ.00 MIIZ    |
|                         |               | -                         |                                                                                                                   |               |                       | -                               |               |
| Frequency               | Reading       | Correct                   | Result                                                                                                            | Lir           | nit                   | Margin                          | Dennel        |
| (MHz)                   | (dBuV)        | Factor<br>(dB/m)          | (dBuV/n                                                                                                           |               | V/m)                  | (dB)                            | Remark        |
| 2455.000                | 86.28         | -0.39                     | 85.89                                                                                                             |               | -                     | -                               | peak          |
| 2400.000                |               |                           |                                                                                                                   |               |                       |                                 |               |

| Test Mode          | IEEE              | 802.11g Hig      | gh CH             | Tempe     | rature:          | <b>24(</b> °C)/    | 33%RH     |
|--------------------|-------------------|------------------|-------------------|-----------|------------------|--------------------|-----------|
| Test Item          |                   | Band Edge        |                   | Test      | Date             | November 10, 2     |           |
| Polarize           |                   | Horizontal       |                   | Test Er   | ngineer          | Jerry              | Chuang    |
| Detector           |                   | Average          |                   |           |                  |                    |           |
| 110.0 dBuV/m       |                   |                  |                   |           |                  |                    |           |
|                    |                   |                  |                   |           |                  | Limit1:<br>Limit2: | _         |
|                    |                   |                  |                   |           |                  |                    |           |
|                    |                   |                  |                   |           |                  |                    |           |
|                    |                   |                  |                   |           |                  |                    |           |
| 1                  |                   |                  |                   |           |                  |                    |           |
| 70                 |                   |                  |                   |           |                  |                    |           |
|                    |                   |                  |                   |           |                  |                    |           |
|                    |                   |                  |                   |           |                  |                    |           |
|                    |                   |                  |                   |           |                  |                    |           |
|                    |                   |                  |                   |           |                  |                    |           |
|                    |                   | 2                |                   |           |                  |                    |           |
| 30.0               |                   |                  |                   |           |                  |                    |           |
| 2452.000 2462.0    | 10 2472.00 24     | 182.00 2492.00   | 2502.00           | 2512.00 2 | 2522.00 2532     | 2 00 25            | 52.00 MHz |
| 2102.000 2102.0    |                   |                  | 2002.00           |           | -012.00 200      |                    |           |
| _                  | -                 | Correct          |                   |           |                  |                    |           |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Result<br>(dBuV/r |           | Limit<br>dBuV/m) | Margin<br>(dB)     | Remark    |
| 2456.100           | 76.74             | -0.39            | 76.35             |           | -                | -                  | AVG       |
|                    |                   | -0.30            | 37.56             |           | 54.00            | -16.44             | AVG       |

| Test Mode                                                                                                       | IEEE 802.                | 11n HT20 L                    | ow CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp/Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24(°C)/ 33%RH      |            |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
| Test Item                                                                                                       |                          | and Edge                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Novembe            | er 10, 201 |
| Polarize                                                                                                        | F                        | lorizontal                    | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | est Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jerry              | Chuang     |
| Detector                                                                                                        |                          | Peak                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |            |
| 120.0 dBu¥/m                                                                                                    |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |            |
|                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit1:<br>Limit2: | _          |
|                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |            |
| 80                                                                                                              |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m                  | 3          |
|                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |            |
|                                                                                                                 |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v                  |            |
| den of the second se | androwent-kanthelenation | have non-pro-the holds of the | water and a state of the state | allowedge of the second s |                    |            |
| 2310.000 232                                                                                                    | .20 2332.40 2            | 343.60 2354.80                | 2366.00 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.20 2388.40 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99.60 24           | 22.00 MHz  |
| Frequency<br>(MHz)                                                                                              | Reading<br>(dBuV)        | Correct<br>Factor<br>(dB/m)   | Result<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Margin<br>(dB)     | Remark     |
|                                                                                                                 | 51.92                    | -0.60                         | 51.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -22.68             | peak       |
| 2388.288                                                                                                        |                          |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |            |

| Test Mode          | IEEE 802.11n HT20 Low CH |                             |                    | emperature:       | 24(°C)/ 33%RH                          |             |
|--------------------|--------------------------|-----------------------------|--------------------|-------------------|----------------------------------------|-------------|
| Test Item          | Band Edge                |                             |                    | Test Date         | Novembe                                | er 10, 2017 |
| Polarize           |                          | lorizontal                  | Te                 | st Engineer       | Jerry                                  | Chuang      |
| Detector           |                          | Average                     |                    |                   |                                        |             |
| 110.0 dBuV/m       |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    |                   | Limit1:<br>Limit2:                     |             |
|                    |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    |                   |                                        | ç           |
| 70                 |                          |                             |                    |                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |             |
| 70                 |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    |                   |                                        |             |
|                    |                          |                             |                    | ¥                 |                                        |             |
| 30.0               |                          |                             |                    |                   |                                        |             |
| 2310.000 2321.2    | 20 2332.40 23            | 343.60 2354.80              | 2366.00 2377       | .20 2388.40 239   | 9.60 24                                | 22.00 MHz   |
|                    |                          |                             |                    |                   |                                        |             |
| Frequency<br>(MHz) | Reading<br>(dBuV)        | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)                         | Remark      |
| 2390.000           | 39.99                    | -0.60                       | 39.39              | 54.00             | -14.61                                 | AVG         |
| 2405.424           | 77.95                    | -0.55                       | 77.40              |                   |                                        | AVG         |
|                    |                          |                             |                    |                   |                                        |             |

| Test Mode              | IEEE 802.11n HT20 High CH |                             |                   | Temp/Hum  |                        | 24(°C)/ 33%RH      |           |
|------------------------|---------------------------|-----------------------------|-------------------|-----------|------------------------|--------------------|-----------|
| Test Item              | Band Edge                 |                             |                   | Test Date |                        | November 10, 2017  |           |
| Polarize               | H                         | orizontal                   |                   | Test Eng  | ineer                  | Jerry              | Chuang    |
| Detector               |                           | Peak                        |                   |           |                        |                    | -         |
| 120.0 dBuV/m           |                           |                             |                   |           |                        | Limit1:<br>Limit2: |           |
| 80                     |                           | WILZ WANNER WANT            |                   |           | and the set of the set |                    |           |
| 40.0<br>2452.000 2462. |                           | 482.00 2492.00              | 2502.00           |           | 2.00 2532              |                    | 52.00 MHz |
| Frequency<br>(MHz)     | Reading<br>(dBuV)         | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/n |           | imit<br>uV/m)          | Margin<br>(dB)     | Remark    |
| 2458.600               | 86.43                     | -0.37                       | 86.06             |           | -                      | -                  | peak      |
|                        | 52.27                     | -0.30                       | 51.97             | 7         | 4.00                   | -22.03             | peak      |

| Test Mode             | IEEE 802.11n HT20 High CH |                  |         | Temperature: |          | 24(°∁)/ 33%RH     |                    |             |
|-----------------------|---------------------------|------------------|---------|--------------|----------|-------------------|--------------------|-------------|
| Test Item             | Band Edge                 |                  |         | Test Date    |          | November 10, 2017 |                    |             |
| Polarize              |                           | orizontal        |         | Test         | t Engin  | eer               | Jerry              | / Chuang    |
| Detector              | Average                   |                  |         |              |          |                   |                    |             |
| 110.0 dBu∀/m          |                           |                  |         |              |          |                   | Limit1:<br>Limit2: | _           |
| 70                    |                           | 2                |         |              |          |                   |                    |             |
| 30.0<br>2452.000 2462 | .00 2472.00 24            | 82.00 2492.00    | 2502.00 | 2512.00      | ) 2522.0 | 0 2532            | 2.00               | 2552.00 MHz |
| Frequency             | Reading                   | Correct          | Resu    | ılt          | Lin      | nit               | Margin             |             |
| (MHz)                 | (dBuV)                    | Factor<br>(dB/m) | (dBuV   |              | (dBu     |                   | (dB)               | Remark      |
| 2456.400              | 76.43                     | -0.39            | 76.0    | 4            | -        |                   | -                  | AVG         |
| 2483.600              | 37.78                     | -0.30            | 37.4    | ·8           | 54.      | 00                | -16.52             | AVG         |
|                       |                           |                  |         |              |          |                   |                    |             |

| Test Mode                                                                                                       | IEEE 802.11n HT40 Low CH           |                                       |                                                                                                                 | ſemp/Hum        | 24(°C)/ 33%RH    |           |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|------------------|-----------|
| Test Item                                                                                                       | Band Edge                          |                                       |                                                                                                                 | Test Date       | November 10, 201 |           |
| Polarize                                                                                                        | Ho                                 | orizontal                             | Te                                                                                                              | st Engineer     | Jerry (          | Chuang    |
| Detector                                                                                                        |                                    | Peak                                  |                                                                                                                 |                 |                  |           |
| 120.0 dBuV/m                                                                                                    |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 | Limit1:          | -         |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 | Limit2:          | _         |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 | 2                |           |
| 80                                                                                                              |                                    |                                       |                                                                                                                 | man             |                  | $\neg$    |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 | /               |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 | /               |                  |           |
|                                                                                                                 |                                    |                                       |                                                                                                                 | ·               |                  |           |
| المردية المراجع | ah tuda susu na tha salat Natur. A | Lauren marshes Marshes                | us bu hundred and a march and                                                                                   | NMRYAN .        |                  |           |
| a ti dana ƙasarin ƙasarin ƙasa                                                                                  | alutanican chapter Munut           | an Malada a se a se a stra da da a da | a post of the second |                 |                  |           |
| 40.0                                                                                                            |                                    |                                       |                                                                                                                 |                 |                  |           |
| 2310.000 2323.                                                                                                  | 20 2336.40 23                      | 49.60 2362.80                         | 2376.00 2389                                                                                                    | .20 2402.40 241 | 5.60 24          | 42.00 MHz |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |
|                                                                                                                 |                                    | •                                     |                                                                                                                 |                 |                  |           |
| Frequency                                                                                                       | Reading                            | Correct<br>Factor                     | Result                                                                                                          | Limit           | Margin           | Remark    |
| (MHz)                                                                                                           | (dBuV)                             | (dB/m)                                | (dBuV/m)                                                                                                        | (dBuV/m)        | (dB)             | Kennark   |
| 2389.596                                                                                                        | 52.23                              | -0.60                                 | 51.63                                                                                                           | 74.00           | -22.37           | peak      |
| 2429.988                                                                                                        | 84.35                              | -0.48                                 | 83.87                                                                                                           | -               | -                | peak      |
|                                                                                                                 |                                    |                                       |                                                                                                                 |                 |                  |           |

| Test Mode     | IEEE 802.11n HT20 Low CH |                   |              | emperature:     | 24(°∁)/ 33%RH    |            |
|---------------|--------------------------|-------------------|--------------|-----------------|------------------|------------|
| Test Item     | Band Edge                |                   |              | Test Date       | November 10, 201 |            |
| Polarize      | H                        | orizontal         | Те           | st Engineer     | Jerry            | Chuang     |
| Detector      | A                        | verage            |              |                 |                  |            |
| 110.0 dBuV/m  |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 | Limit1:          |            |
|               |                          |                   |              |                 | Limit2:          |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  | 2          |
| 70            |                          |                   |              |                 | - y              | +          |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
|               |                          |                   |              | ¢               |                  |            |
| 30.0          |                          |                   |              |                 |                  |            |
| 2310.000 2323 | .20 2336.40 23           | 349.60 2362.80    | 2376.00 2389 | .20 2402.40 241 | 5.60 24          | 142.00 MHz |
| _             |                          |                   |              |                 |                  |            |
|               |                          |                   |              |                 |                  |            |
| Frequency     | Reading                  | Correct<br>Factor | Result       | Limit           | Margin           | Remark     |
| (MHz)         | (dBuV)                   | (dB/m)            | (dBuV/m)     | (dBuV/m)        | (dB)             | Kelliark   |
| 2390.000      | 37.56                    | -0.60             | 36.96        | 54.00           | -17.04           | AVG        |
| 2436.324      | 73.11                    | -0.46             | 72.65        | -               | -                | AVG        |
|               |                          |                   |              |                 |                  |            |

| Test Mode          | IEEE 802.1        | 1n HT40 Hi                  | gh CH                          | Temp/Hu            | n               | <b>24(</b> °C)/    | 33%RH       |
|--------------------|-------------------|-----------------------------|--------------------------------|--------------------|-----------------|--------------------|-------------|
| Test Item          | Ba                | nd Edge                     |                                | Test Date          | Э               | Novembe            | er 10, 2017 |
| Polarize           | H                 | orizontal                   |                                | est Engin          | eer             | Jerry              | Chuang      |
| Detector           |                   | Peak                        |                                |                    |                 |                    |             |
| 120.0 dBu∀/m       |                   |                             |                                |                    |                 |                    |             |
|                    |                   |                             |                                |                    |                 | Limit1:<br>Limit2: | _           |
|                    |                   |                             |                                |                    |                 |                    |             |
|                    |                   |                             |                                |                    |                 |                    |             |
|                    |                   |                             |                                |                    |                 |                    |             |
|                    | 1                 |                             |                                |                    |                 |                    |             |
| 80                 |                   | $\neg$                      |                                |                    |                 |                    |             |
|                    |                   |                             |                                |                    |                 |                    |             |
|                    |                   |                             |                                |                    |                 |                    |             |
|                    |                   |                             |                                |                    |                 |                    |             |
|                    |                   | "MATLY MAR                  | Mr. M. Hud Agether March world | nun Mendenschliene | Introduction of | wanter             | www.hat     |
| 40.0               |                   |                             |                                |                    |                 |                    |             |
| 2432.000 2444      | .00 2456.00 24    | 468.00 2480.00              | 2492.00 25                     | 04.00 2516.0       | ) 2528          | .00 25             | 52.00 MHz   |
|                    | •                 |                             |                                | -                  |                 |                    |             |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m)             | Lim<br>(dBu\       |                 | Margin<br>(dB)     | Remark      |
| 2449.640           | 83.43             | -0.41                       | 83.02                          | 74.0               | 00              | 9.02               | peak        |
| 2483.500           | 51.82             | -0.30                       | 51.52                          | -                  |                 | -                  | peak        |
|                    |                   |                             |                                |                    |                 |                    |             |

| Test Mode          | IEEE 802.1        | 1n HT40 Hi       | gh CH         | Ten     | nperatu      | ire:   | <b>24(</b> °C)     | / 33%RH     |
|--------------------|-------------------|------------------|---------------|---------|--------------|--------|--------------------|-------------|
| Test Item          | Ba                | nd Edge          |               | Т       | est Dat      | е      | Novemb             | er 10, 2017 |
| Polarize           |                   | orizontal        |               | Tes     | t Engin      | eer    | Jerry              | Chuang      |
| Detector           | A                 | verage           |               |         |              |        |                    |             |
| 110.0 dBu¥/m       |                   |                  |               |         |              |        | Limit1:            |             |
|                    |                   |                  |               |         |              |        | Limit1:<br>Limit2: |             |
|                    |                   |                  |               |         |              |        |                    |             |
|                    |                   |                  |               |         |              |        |                    |             |
|                    | 1                 |                  |               |         |              |        |                    |             |
| 70                 |                   | -                |               |         |              |        |                    |             |
|                    |                   |                  |               |         |              |        |                    |             |
|                    |                   |                  |               |         |              |        |                    |             |
|                    |                   |                  |               |         |              |        |                    |             |
|                    |                   | 2                |               |         | <b></b>      |        |                    |             |
| 30.0               |                   |                  |               |         |              |        |                    |             |
| 2432.000 2444      | .00 2456.00 24    | 168.00 2480.00   | 2492.00       | 2504.00 | 0 2516.0     | 0 2520 | 8.00 2             | 552.00 MHz  |
| -                  | D I'm             | Correct          | D             |         |              | •      |                    |             |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Resu<br>(dBuV |         | Lin<br>(dBu) |        | Margin<br>(dB)     | Remark      |
| 2450.480           | 73.02             | -0.40            | 72.6          | 2       | -            |        | -                  | AVG         |
| 2483.500           | 38.58             | -0.30            | 38.2          | 8       | 54.          | 00     | -15.72             | AVG         |
|                    |                   |                  |               |         |              |        |                    |             |
|                    |                   |                  |               |         |              |        |                    |             |

# Below 1G Test Data

| Test Mode            |                   | Mode 1                                                                             |                    | Temp/Hum                                |                    | ′ 33%RH    |
|----------------------|-------------------|------------------------------------------------------------------------------------|--------------------|-----------------------------------------|--------------------|------------|
| Test Item            | 3                 | 30MHz-1GH                                                                          |                    | Test Date                               |                    | er 10, 201 |
| Polarize             |                   | Vertical                                                                           | 7                  | lest Engineer                           | Jerry              | Chuang     |
| Detector             |                   | Peak                                                                               |                    |                                         |                    |            |
| 80.0 dBuV/m          |                   |                                                                                    |                    |                                         | Limit1:<br>Margin: |            |
| -20<br>30.000 127.00 | 224.00 3          | 2 3<br>2 3<br>X X<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 515.00 61          | 5 5 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                    | 00.00 MHz  |
| Frequency<br>(MHz)   | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m)                                                        | Result<br>(dBuV/m) | Limit<br>(dBuV/m)                       | Margin<br>(dB)     | Remark     |
| 63.9500              | 55.05             | -21.60                                                                             | 33.45              | 40.00                                   | -6.55              | peak       |
| 384.0500             | 42.49             | -11.90                                                                             | 30.59              | 46.00                                   | -15.41             | peak       |
| 399.5700             | 42.55             | -11.40                                                                             | 31.15              | 46.00                                   | -14.85             | peak       |
| 527.6100             | 44.64             | -7.97                                                                              | 36.67              | 46.00                                   | -9.33              | peak       |
| 600.6400             | 44.79             | -6.27                                                                              | 38.52              | 46.00                                   | -7.48              | peak       |
| 623.6400             |                   |                                                                                    |                    |                                         |                    |            |

| Test Mode     |           | Mode 1           |         | Te     | emp/Hum    | 24(℃)/ 33%RH |                    |  |
|---------------|-----------|------------------|---------|--------|------------|--------------|--------------------|--|
| Test Item     | 3         | 30MHz-1GH        | z       |        | est Date   |              | er 10, 20 <i>1</i> |  |
| Polarize      |           | Horizontal       |         | Tes    | t Engineer | Jerry        | Chuang             |  |
| Detector      |           | Peak             |         |        |            |              |                    |  |
| 80.0 dBuV/m   |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            | Limit1:      | _                  |  |
|               |           |                  |         |        |            | Margin:      | _                  |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
| 1             | 2 X 4     |                  |         |        | 5<br>X     |              | 6<br>X             |  |
| 30            |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
| -20           |           |                  |         |        |            |              |                    |  |
| 30.000 127.00 | 224.00 32 | 21.00 418.00     | 515.00  | 612.00 | 709.00 80  | 6.00 1       | <br>D00.00 MHz     |  |
|               |           |                  |         |        |            |              |                    |  |
|               |           |                  |         |        |            |              |                    |  |
| Frequency     | Reading   | Correct          | Resul   | t      | Limit      | Margin       | Remark             |  |
| (MHz)         | (dBuV)    | Factor<br>(dB/m) | (dBuV/i | m)     | (dBuV/m)   | (dB          | Remark             |  |
| 162.8900      | 45.45     | -16.13           | 29.32   | 2      | 43.50      | -14.18       | peak               |  |
| 191.9900      | 46.53     | -16.04           | 30.49   | )      | 43.50      | -13.01       | peak               |  |
| 239.5200      | 48.58     | -16.16           | 32.42   | 2      | 46.00      | -13.58       | peak               |  |
| 285.1100      | 43.60     | -14.22           | 29.38   | 3      | 46.00      | -16.62       | peak               |  |
| 716.7600      | 38.56     | -4.69            | 33.87   | ,      | 46.00      | -12.13       | peak               |  |
| 958.2900      | 32.87     | -1.10            | 31.77   | ,      | 46.00      | -14.23       | peak               |  |
|               | 32.87     | -1.10            | 31.77   | ,      | 46.00      | -14.23       | peak               |  |

# Above 1G Test Data

| Test Mode          |       | IEEE 802.11b Low CH |                |              |          | Temp/Hum      |               |                 | 24(°∁)/ 33%RH |       |  |
|--------------------|-------|---------------------|----------------|--------------|----------|---------------|---------------|-----------------|---------------|-------|--|
| Test Item          |       |                     | Harmon         |              |          | est Da        |               | November 10, 20 |               |       |  |
| Polarize           |       |                     | Vertica        |              | Tes      | Test Engineer |               |                 | ry Chu        | ang   |  |
| Detector           |       | Pea                 | ak and Av      | /erage       |          |               |               |                 |               |       |  |
| 110.0 dBuV/m       |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               | Limit           |               |       |  |
|                    |       |                     |                |              |          |               |               | Limit           | 2:            |       |  |
|                    |       |                     |                |              |          |               |               |                 |               | ĺ     |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
| 70                 |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    | 1     |                     |                |              |          |               |               |                 |               | ĺ     |  |
|                    | Ť     |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
| 30.0               |       |                     |                |              | 10000    |               |               |                 |               |       |  |
| 1000.000 3550.0    | UU 61 | 100.00 8            | 650.00 1120    | 0.00 13750.0 | D 16300. | .00 188:      | 50.00 2140    | )0.00           | 26500.00      | MHz   |  |
|                    |       |                     | Correct        |              |          |               |               | I               |               |       |  |
| Frequency<br>(MHz) |       | ading<br>BuV)       | Factor         | Res<br>(dBu  |          |               | imit<br>uV/m) | Margii<br>(dB)  | n R           | emark |  |
| 4827.000           |       | 7.27                | (dB/m)<br>6.84 |              |          |               | 4.00          | -19.89          | , , ,         | beak  |  |
| 4827.000           |       | 6.23                | 6.84           | 53.          |          |               | 4.00          | -0.93           |               | AVG   |  |
| 4021.000           | 4     | 0.23                | 0.04           | 53.          | 07       | 54            | +.00          | -0.93           |               | AVG   |  |
|                    |       |                     |                |              |          |               |               |                 |               |       |  |
| emark:             |       |                     |                |              |          |               |               |                 |               |       |  |

- fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| t Mode       |                            | IEEE                           | 802.11b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Low CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | emp/H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     | °C)/ 33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             |
|--------------|----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| st Item      |                            |                                | Harmonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | November 10, 2                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
| larize       |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | st Engi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | neer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jei                                                                                                 | rry Chu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ang                                                                         |
| tector       |                            | Pea                            | ik and Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /erage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
| dBuV/m       |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              | ×                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
|              |                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
| 0.000 3550.0 | 00 6                       | 100.00 86                      | 50.00 1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00 13750.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 16300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .00 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.00 2140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )0.00                                                                                               | 26500.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MHz                                                                         |
|              |                            | a d'a a                        | Correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>1</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |
| lency<br>Iz) |                            |                                | Factor<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (dB)                                                                                                | n R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | emark                                                                       |
| .000         | 4                          | 4.71                           | 6.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -22.4                                                                                               | 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | beak                                                                        |
|              | larize<br>tector<br>dBuV/m | larize<br>tector<br>dBuV/m<br> | larize<br>tector Pea<br>dBuV/m<br>dBuV/m<br>abuv/m<br>abuv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>bauv/m<br>ba | Iarize     Horizoni       tector     Peak and Average       dBuV/m     Image: state st | Iarize       Horizontal         tector       Peak and Average         dBuV/m       Image: State of the | Iarize     Horizontal     Test       tector     Peak and Average     Image: State of the state of t | Iarize       Horizontal       Test Engi         dBuV/m       dBuV/m       dBuV/m       dBuV/m         dBuV/m       dBuV/m       dBuV/m       dBuV/m | Iarize     Horizontal     Test Engineer       tector     Peak and Average       dBuV/m       dBuV/m | Iarize     Horizontal     Test Engineer     Jei       d8uV/m     d8uV/m     Imit     Imit     Imit       d8uV/m     Imit     Imit     Imit     Imit       Imit     Imit     Imit     Imit     Imit | Iarize       Horizontal       Test Engineer       Jerry Chua         d8uV/m |

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode      | IEE        | IEEE 802.11b Mid CH |            |         | emp/Hum        | . ,        | / 33%RH    |
|----------------|------------|---------------------|------------|---------|----------------|------------|------------|
| Test Item      |            | Harmonic            |            |         | est Date       |            | er 10, 201 |
| Polarize       |            | Vertical            |            | Tes     | t Engineer     | Jerry      | Chuang     |
| Detector       | P          | eak and Ave         | age        |         |                |            |            |
| 110.0 dBuV/m   |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                | Limit1:    | -          |
|                |            |                     |            |         |                | Limit2:    |            |
|                |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
| 70             |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
|                | 1          |                     |            |         |                |            |            |
|                | Ĩ.         |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
|                |            |                     |            |         |                |            |            |
| 30.0           |            |                     |            |         |                |            |            |
| 1000.000 3550. | 00 6100.00 | 8650.00 11200.0     | 0 13750.00 | 16300.0 | 00 18850.00 21 | 1400.00 26 | 500.00 MHz |
|                |            |                     |            |         |                |            |            |
|                | -          |                     |            | -       |                |            |            |
| Frequency      | Reading    | Correct             | Result     | t       | Limit          | Margin     |            |
| (MHz)          | (dBu )     | Factor<br>(dB/m)    | (dBuV/r    |         | (dBuV/m)       | (dB)       | Remark     |
| 4876.000       | 47.96      | 6.97                | 54.93      | 5       | 74.00          | -19.07     | peak       |
| 4876.000       | 46.82      | 6.97                | 53.79      | )       | 54.00          | -0.21      | AVG        |
|                | 1          | 1                   | 1          |         |                | L          | r          |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode        | IEEE 802.11        | o Mid CH        | Temp/Hum             | 24(°C)/ 33%RH          |
|------------------|--------------------|-----------------|----------------------|------------------------|
| Test Item        | Harmo              |                 | Test Date            | November 10, 201       |
| Polarize         | Horizor            |                 | Test Engineer        | Jerry Chuang           |
| Detector         | Peak and A         | verage          |                      |                        |
| 110.0 dBuV/m     |                    |                 |                      |                        |
|                  |                    |                 |                      | Limit1: —<br>Limit2: — |
|                  |                    |                 |                      |                        |
|                  |                    |                 |                      |                        |
|                  |                    |                 |                      |                        |
|                  |                    |                 |                      |                        |
| 70               |                    |                 |                      |                        |
|                  |                    |                 |                      |                        |
|                  | <u>د</u>           |                 |                      |                        |
| 2                |                    |                 |                      |                        |
|                  |                    |                 |                      |                        |
|                  |                    |                 |                      |                        |
| 30.0             |                    |                 |                      |                        |
| 1000.000 3550.00 | 6100.00 8650.00 11 | 200.00 13750.00 | 16300.00 18850.00 21 | 400.00 26500.00 MHz    |
|                  |                    |                 |                      |                        |
| Frequency        | Reading Correct    | I Resi          | ult Limit            | Margin                 |

| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |
|--------------------|-------------------|-----------------------------|--------------------|-------------------|----------------|--------|
| 4876.000           | 49.94             | 6.97                        | 56.91              | 74.00             | -17.09         | peak   |
| 4876.000           | 46.33             | 6.97                        | 53.30              | 54.00             | -0.70          | AVG    |
|                    |                   |                             |                    |                   |                |        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode              |        | IEEE            | 802.11b          | High CH        |       | emp/H     |                     | ,                | C)/ 33%RH    |
|------------------------|--------|-----------------|------------------|----------------|-------|-----------|---------------------|------------------|--------------|
| Test Item              |        |                 | Harmonic         |                |       | Test Date |                     | November 10, 20  |              |
| Polarize               |        |                 | Vertica          |                | Tes   | st Engi   | neer                | Jer              | ry Chuang    |
| Detector               |        | Pea             | ak and Av        | /erage         |       |           |                     |                  |              |
| 110.0 dBu∀/m           |        |                 |                  |                |       |           |                     |                  |              |
|                        |        |                 |                  |                |       |           |                     | Limit1<br>Limit2 |              |
|                        |        |                 |                  |                |       |           |                     |                  |              |
|                        |        |                 |                  |                |       |           |                     |                  |              |
|                        |        |                 |                  |                |       |           |                     |                  |              |
| 70                     |        |                 |                  |                |       |           |                     |                  |              |
| 70                     |        |                 |                  |                |       |           |                     |                  |              |
|                        |        |                 |                  |                |       |           |                     |                  |              |
|                        | 1<br>X |                 |                  |                |       |           |                     |                  |              |
|                        |        |                 |                  |                |       |           |                     |                  |              |
| 30.0                   |        |                 |                  |                |       |           |                     |                  |              |
| 30.0<br>1000.000 3550. | 00 61  | 100.00 86       | 50.00 112        | 00.00 13750.00 | 16300 | .00 1885  | i0.00 21 <b>4</b> 0 | 00.00            | 26500.00 MHz |
|                        |        |                 |                  |                |       |           |                     |                  |              |
| <b>F</b>               | De     | a din a         | Correct          | Dee            |       |           | lune lé             | Manain           |              |
| Frequency<br>(MHz)     |        | eading<br>IBuV) | Factor<br>(dB/m) | Res<br>(dBu)   |       |           | imit<br>uV/m)       | Margin<br>(dB)   | Remark       |
|                        | 4      | 3.12            | 7.09             | 50.2           | 21    | 74        | 4.00                | -23.79           | peak         |

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



FCC ID: TX2-RTL8821AU

| Test Item          |                   |                | gh CH              | Temp/Hum           | 24(°C)/ 33%R⊦ |            |  |
|--------------------|-------------------|----------------|--------------------|--------------------|---------------|------------|--|
| Delerier           |                   | Harmonic       |                    | Test Date          | Novembe       |            |  |
| Polarize           |                   | Horizontal     |                    | est Engineer       | Jerry         | Chuang     |  |
| Detector           | Pea               | ak and Aver    | age                |                    |               |            |  |
| 110.0 dBuV/m       |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    | Limit1:       |            |  |
|                    |                   |                |                    |                    | Limit2:       | _          |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
| 70                 |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
|                    | 1                 |                |                    |                    |               |            |  |
|                    | 2                 |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
| 30.0               |                   |                |                    |                    |               |            |  |
| 1000.000 3550.00   | 6100.00 86        | 50.00 11200.00 | ) 13750.00 163     | 300.00 18850.00 21 | 400.00 26     | 500.00 MHz |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   |                |                    |                    |               |            |  |
|                    |                   | Correct        |                    |                    |               |            |  |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Factor         | Result<br>(dBuV/m) | Limit<br>(dBuV/m)  | Margin<br>(dB | Remark     |  |
| (10112)            | (ubuv)            | (dB/m)         | (ubuv/iii)         | (ubuv/iii)         | (UD           |            |  |
| 4925.000           | 50.28             | 7.09           | 57.37              | 74.00              | -16.63        | peak       |  |
| 4925.000           | 46.04             | 7.09           | 53.13              | 54.00              | -0.87         | AVG        |  |
| 4920.000           |                   |                |                    |                    |               |            |  |

- fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



FCC ID: TX2-RTL8821AU

| Test Mode          | IEEE              | IEEE 802.11g Low CH |            |               | np/Hum      | 24(°C)/ 33%RF      |            |  |
|--------------------|-------------------|---------------------|------------|---------------|-------------|--------------------|------------|--|
| Test Item          |                   | Harmonic            |            |               | st Date     | November 10, 20    |            |  |
| Polarize           |                   | Vertical            |            | Test Engineer |             | Jerry              | Chuang     |  |
| Detector           | Pe                | ak and Aver         | age        |               |             |                    |            |  |
| 110.0 dBuV/m       |                   |                     |            |               |             |                    |            |  |
|                    |                   |                     |            |               |             | Limit1:<br>Limit2: | _          |  |
|                    |                   |                     |            |               |             |                    |            |  |
|                    |                   |                     |            |               |             |                    |            |  |
|                    |                   |                     |            |               |             |                    |            |  |
|                    |                   |                     |            |               |             |                    |            |  |
|                    |                   |                     |            |               |             |                    |            |  |
| 70                 |                   |                     |            |               |             |                    |            |  |
|                    |                   |                     |            |               |             |                    |            |  |
|                    | 1                 |                     |            |               |             |                    |            |  |
|                    | X                 |                     |            |               |             |                    |            |  |
|                    | 2                 |                     |            |               |             |                    |            |  |
|                    | ×                 |                     |            |               |             |                    |            |  |
| 30.0               |                   |                     |            |               |             |                    |            |  |
| 1000.000 3550.0    | 00 6100.00 8      | 3650.00 11200.00    | 0 13750.00 | 16300.00      | 18850.00 21 | 400.00 26          | 500.00 MHz |  |
|                    |                   | _                   |            |               |             |                    |            |  |
| Frequency          | Deading           | Correct             | Result     |               | Limit       | Margin             |            |  |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m)    | (dBuV/r    |               | (dBuV/m)    | Margin<br>(dB)     | Remark     |  |
| 4827.000           | 47.57             | 6.84                | 54.41      |               | 74.00       | -19.59             | peak       |  |
| 4827.000           | 36.22             | 6.84                | 43.06      |               | 54.00       | -10.94             | AVG        |  |
|                    |                   |                     |            |               |             |                    |            |  |
|                    |                   |                     |            |               |             |                    |            |  |

- fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode          | IEE               | E 802.11g Lo     | w CH              | Temp/Hum           | · · · ·            | ′ 33%RH    |
|--------------------|-------------------|------------------|-------------------|--------------------|--------------------|------------|
| Test Item          |                   | Harmonic         |                   | Test Date          | November 10, 20    |            |
| Polarize           |                   | Horizontal       |                   | est Engineer       | Jerry              | Chuang     |
| Detector           | Pe                | eak and Aver     | age               |                    |                    |            |
| 110.0 dBuV/m       |                   |                  |                   |                    |                    |            |
|                    |                   |                  |                   |                    | Limit1:<br>Limit2: | _          |
|                    |                   |                  |                   |                    |                    |            |
|                    |                   |                  |                   |                    |                    |            |
|                    |                   |                  |                   |                    |                    |            |
|                    |                   |                  |                   |                    |                    |            |
| 70                 |                   |                  |                   |                    |                    |            |
|                    | 1                 |                  |                   |                    |                    |            |
|                    | ×                 |                  |                   |                    |                    |            |
|                    | 2                 |                  |                   |                    |                    |            |
|                    |                   |                  |                   |                    |                    |            |
|                    |                   |                  |                   |                    |                    |            |
| 30.0               | 0.0100.00         | 0050 00 11000 0  |                   | 200.00 10050.00 01 | 400.00 00          | 500 00 MIL |
| 1000.000 3550.0    | DO 6100.00        | 8650.00 11200.0  | 0 13750.00 16     | 300.00 18850.00 21 | 400.00 26          | 500.00 MHz |
|                    |                   | Correct          |                   |                    |                    |            |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Result<br>(BuV/m) | Limit<br>(dBuV/m)  | Margin<br>(dB)     | Remark     |
| 4820.000           | 51.66             | 6.82             | 58.48             | 74.00              | -15.52             | peak       |
| 4820.000           | 40.80             | 6.82             | 47.62             | 54.00              | -6.38              | AVG        |

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode       | IEEE        | 802.11g M         | id CH             | Temp/Hum           | <b>24(°</b> ℃)/    | / 33%RH    |
|-----------------|-------------|-------------------|-------------------|--------------------|--------------------|------------|
| Test Item       |             | Harmonic          |                   | Test Date          | November 10, 2017  |            |
| Polarize        |             | Vertical          |                   | est Engineer       | Jerry              | Chuang     |
| Detector        | Pea         | ak and Aver       | age               |                    |                    |            |
| 110.0 dBuV/m    |             |                   |                   |                    |                    |            |
|                 |             |                   |                   |                    | Limit1:<br>Limit2: | _          |
|                 |             |                   |                   |                    |                    |            |
| 70              |             |                   |                   |                    |                    |            |
|                 | 1<br>X      |                   |                   |                    |                    |            |
|                 | 2           |                   |                   |                    |                    |            |
| 30.0            |             |                   |                   |                    |                    |            |
| 1000.000 3550.0 | 0 6100.00 8 | 650.00 11200.00   | ) 13750.00 163    | 00.00 18850.00 214 | 00.00 26           | 500.00 MHz |
| Frequency       | Reading     | Correct<br>Factor | Result            | Limit              | Margin             | Remark     |
| (MHz)           | (dBu )      | (dB/m)            | (dBuV/m)          | (dBuV/m)           | (dB)               |            |
|                 |             |                   | (dBuV/m)<br>54.73 | (dBuV/m)<br>74.00  | (dB)<br>-19.27     | peak       |

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode          | IEEE 802.11g Mid CH              | Temp/Hum              | 24(°∁)/ 33%RH      |  |
|--------------------|----------------------------------|-----------------------|--------------------|--|
| Test Item          | Harmonic                         | Test Date             | November 10, 201   |  |
| Polarize           | Horizontal                       | Test Engineer         | Jerry Chuang       |  |
| Detector           | Peak and Average                 |                       |                    |  |
| 110.0 dBuV/m       |                                  |                       |                    |  |
|                    |                                  |                       | Limit1: —          |  |
|                    |                                  |                       | Limit2: —          |  |
|                    |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
| 70                 |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
| 1<br>×             |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
| 2 X                |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
|                    |                                  |                       |                    |  |
| 30.0               |                                  |                       |                    |  |
| 1000.000 3550.00 6 | 100.00 8650.00 11200.00 13750.00 | 16300.00 18850.00 214 | 00.00 26500.00 MHz |  |
|                    |                                  |                       |                    |  |

| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |
|--------------------|-------------------|-----------------------------|--------------------|-------------------|----------------|--------|
| 4876.000           | 49.20             | 6.97                        | 56.17              | 74.00             | -17.83         | peak   |
| 4876.000           | 38.06             | 6.97                        | 45.03              | 54.00             | -8.97          | AVG    |

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode          | IEEE              | 802.11g Hig                 | gh CH             | Temp/Hum  |                   | 24(°C)/ 33%RH    |            |
|--------------------|-------------------|-----------------------------|-------------------|-----------|-------------------|------------------|------------|
| Test Item          |                   | Harmonic                    |                   | Test Date |                   | November 10, 201 |            |
| Polarize           |                   | Vertical                    |                   | Test E    | ngineer           | Jerry (          | Chuang     |
| Detector           | Pea               | ak and Aver                 | age               |           |                   |                  |            |
| 110.0 dBuV/m       |                   |                             |                   |           |                   | Limit1:          | _          |
| 70                 |                   |                             |                   |           |                   |                  |            |
| 30.0               | 2                 | 650.00 11200.00             | D 13750.00        | 16300.00  | 18850.00 2140     | 00.00 26         | 500.00 MHz |
|                    |                   |                             |                   |           |                   |                  |            |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m | )         | Limit<br>(dBuV/m) | Margin<br>(dB)   | Remark     |
| 4925.000           | 47.86             | 7.09                        | 54.95             |           | 74.00             | -19.05           | peak       |
| 4925.000           | 35.11             | 7.09                        | 42.20             |           | 54.00             | -11.80           | AVG        |

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



FCC ID: TX2-RTL8821AU

| ize<br>ctor |                      | Harmonic<br>Horizontal<br>k and Avei                                                        |                                  |                                                                                                  | st Date<br>Engineer                                                                         | Novembe<br>Jerry (                                                                                                    | er 10, 20<br>Chuang                                                                                                                             |
|-------------|----------------------|---------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| tor         |                      |                                                                                             |                                  | Test E                                                                                           | Engineer                                                                                    | Jerry (                                                                                                               | Chuang                                                                                                                                          |
|             | Pea                  | k and Ave                                                                                   | rage                             |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
| W/m         |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             | Limit1:<br>Limit2:                                                                                                    |                                                                                                                                                 |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
| ×           |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
| 2<br>X      |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
| 3550.00 6   | 100.00 86            | 50.00 11200.0                                                                               | 0 13750.00                       | 16300.00                                                                                         | 18850.00 2140                                                                               | DO.OO 265                                                                                                             | 500.00 MHz                                                                                                                                      |
|             |                      |                                                                                             |                                  |                                                                                                  |                                                                                             |                                                                                                                       |                                                                                                                                                 |
|             |                      | Correct<br>Factor<br>(dB/m)                                                                 |                                  |                                                                                                  | Limit<br>(dBuV/m)                                                                           | Margin<br>(dB                                                                                                         | Remark                                                                                                                                          |
| 0 4         | 47.62                | 7.08                                                                                        | 54.7                             | 0                                                                                                | 74.00                                                                                       | -19.30                                                                                                                | peak                                                                                                                                            |
|             | 37.18                | 7.08                                                                                        | 44.20                            | _                                                                                                | 54.00                                                                                       | -9.74                                                                                                                 | AVG                                                                                                                                             |
|             | 0 3550.00 6<br>cy R( | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Cy Reading Correct Factor (dBuV) | Q         Reading<br>(dBuV)         Correct<br>Factor<br>(dB/m)         Resu<br>(dBuV/<br>(dB/m) | Cy         Reading<br>(dBuV)         Correct<br>Factor<br>(dB/m)         Result<br>(dBuV/m) | Cy         Reading<br>(dBuV)         Correct<br>Factor<br>(dB/m)         Result<br>(dBuV/m)         Limit<br>(dBuV/m) | Q         Reading<br>(dBuV)         Correct<br>Factor<br>(dB/m)         Result<br>(dBuV/m)         Limit<br>(dBuV/m)         Margin<br>(dBuV/m) |

- fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



| Test Mode           | IEEE 802.1                                    | 1n HT20 Lc                          | w CH      | Temp/Hum |             | 24(°C)/ 33%RH      |                      |
|---------------------|-----------------------------------------------|-------------------------------------|-----------|----------|-------------|--------------------|----------------------|
| Test Item           | H                                             | Harmonic                            |           |          | est Date    |                    | er 10, 2017          |
| Polarize            | ١                                             | /ertical                            |           | Tes      | t Engineer  |                    | Chuang               |
| Detector            | Peak a                                        | and Average                         | Э         |          |             |                    |                      |
| 110.0 dBuV/m        |                                               |                                     |           |          |             |                    |                      |
|                     |                                               |                                     |           |          |             | Limit1:<br>Limit2: |                      |
|                     |                                               |                                     |           |          |             |                    |                      |
| 70                  |                                               |                                     |           |          |             |                    |                      |
|                     | 1<br>X                                        |                                     |           |          |             |                    |                      |
|                     | 2                                             |                                     |           |          |             |                    |                      |
| 30.0                |                                               |                                     |           |          |             |                    |                      |
| 1000.000 3550.      | Reading                                       | 50.00 11200.00<br>Correct<br>Factor | Resul     |          | Limit       | Margin             | 500.00 MHz<br>Remark |
| (MHz)               | (dBuV)                                        | (dB/m)                              | (dBuV/r   | n)       | (dBuV/m)    | (dB)               |                      |
| 4820.000            | 48.76                                         | 6.82                                | 55.58     | 3        | 74.00       | -18.42             | peak                 |
| 4820.000            | 35.50                                         | 6.82                                | 42.32     | 2        | 54.00       | -11.68             | AVG                  |
| funda<br>2.  For al | uring frequer<br>mental frequ<br>bove 1GHz,tl | ency.                               | k value v | vas u    | nder averag | -                  |                      |

| Test Mode          | IEEE 802.         | 11n HT20 L                  | ow CH            | Temp/Hum |                   | 24(°C)/ 33%RH      |            |
|--------------------|-------------------|-----------------------------|------------------|----------|-------------------|--------------------|------------|
| Test Item          | F                 | Harmonic                    |                  |          | est Date          | November 10, 201   |            |
| Polarize           |                   | Horizontal                  |                  |          | Engineer          | Jerry              | Chuang     |
| Detector           | Peak              | and Averag                  | e                |          |                   |                    |            |
| 110.0 dBuV/m       |                   |                             |                  |          |                   |                    |            |
|                    |                   |                             |                  |          |                   | Limit1:<br>Limit2: | _          |
|                    |                   |                             |                  |          |                   |                    |            |
|                    |                   |                             |                  |          |                   |                    |            |
|                    |                   |                             |                  |          |                   |                    |            |
| 70                 |                   |                             |                  |          |                   |                    |            |
|                    | 1<br>X            |                             |                  |          |                   |                    |            |
|                    | 2                 |                             |                  |          |                   |                    |            |
|                    |                   |                             |                  |          |                   |                    |            |
| 30.0               |                   |                             |                  |          |                   |                    |            |
| 1000.000 3550.     | 00 6100.00 8      | 650.00 11200.00             | 13750.00         | 16300.00 | ) 18850.00 214    | 00.00 26           | 500.00 MHz |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Resul<br>(dBuV/r |          | Limit<br>(dBuV/m) | Margin<br>(dB)     | Remark     |
| 4820.000           | 50.03             | 6.82                        | 56.85            | ;        | 74.00             | -17.15             | peak       |
| 4820.000           | 39.79             | 6.82                        | 46.61            |          | 54.00             | -7.39              | AVG        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode          | IEEE 802.         | 11n HT20 N                  | /lid CH            | Temp/Hum           | <b>24(°</b> ℃)/    | 33%RH       |
|--------------------|-------------------|-----------------------------|--------------------|--------------------|--------------------|-------------|
| Test Item          | F                 | larmonic                    |                    | Test Date          |                    | er 10, 2017 |
| Polarize           |                   | Vertical                    | -                  | Test Engineer      | Jerry              | Chuang      |
| Detector           | Peak              | and Averag                  | je                 |                    |                    |             |
| 110.0 dBuV/m       |                   |                             |                    |                    |                    |             |
|                    |                   |                             |                    |                    | Limit1:<br>Limit2: | _           |
|                    |                   |                             |                    |                    |                    |             |
|                    |                   |                             |                    |                    |                    |             |
|                    |                   |                             |                    |                    |                    |             |
|                    |                   |                             |                    |                    |                    |             |
| 70                 |                   |                             |                    |                    |                    |             |
|                    |                   |                             |                    |                    |                    |             |
|                    | 1<br>X            |                             |                    |                    |                    |             |
|                    |                   |                             |                    |                    |                    |             |
|                    |                   |                             |                    |                    |                    |             |
|                    | 2×                |                             |                    |                    |                    |             |
| 30.0               |                   |                             |                    |                    |                    |             |
| 1000.000 3550.0    | 00 6100.00 8      | 650.00 11200.00             | ) 13750.00 1       | 6300.00 18850.00 2 | 1400.00 26         | 500.00 MHz  |
|                    |                   |                             |                    |                    |                    |             |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m)  | Margin<br>(dB)     | Remark      |
| 4876.000           | 50.23             | 6.97                        | 57.20              | 74.00              | -16.80             | peak        |
| 4876.000           | 34.19             | 6.97                        | 41.16              | 54.00              | -12.84             | AVG         |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



| Test Mode             |                   | 11n HT20 M            |                    | emp/Hum                  | 24(°C)/ 33%RH                     |
|-----------------------|-------------------|-----------------------|--------------------|--------------------------|-----------------------------------|
| Test Item<br>Polarize |                   | larmonic<br>orizontal |                    | Fest Date<br>st Engineer | November 10, 2017<br>Jerry Chuang |
| Detector              |                   | and Average           |                    |                          | Jerry Ondarig                     |
| 110.0 dBuV/i          | ·                 |                       |                    |                          |                                   |
|                       |                   |                       |                    |                          | Limit1: —<br>Limit2: —            |
|                       |                   |                       |                    |                          |                                   |
|                       |                   |                       |                    |                          |                                   |
|                       |                   |                       |                    |                          |                                   |
| 70                    |                   |                       |                    |                          |                                   |
|                       | 1                 |                       |                    |                          |                                   |
|                       |                   |                       |                    |                          |                                   |
|                       | 2<br>X            |                       |                    |                          |                                   |
| 30.0                  |                   |                       |                    |                          |                                   |
| 1000.000 3            | 50.00 6100.00 8   | 650.00 11200.00       | ) 13750.00 16300   | .00 18850.00 2140        | 00.00 26500.00 MHz                |
| Frequency             | Reading           | Correct               | Result             | Limit                    | Margin                            |
| Frequency<br>(MHz)    | Reading<br>(dBuV) | Factor<br>(dB/m)      | Result<br>(dBuV/m) | Limit<br>(dBuV/m)        | Margin<br>(dB Remark              |

4869.000

4869.000

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

(dB/m)

6.95

6.95

50.30

37.55

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

57.25

44.50

74.00

54.00

-16.75

-9.50

peak

AVG



| Test Mode          | IEEE 802.11       | n HT20 Hig                  | gh CH          | Temp/Hum  |                   | 24(°∁)/ 33%RH      |            |
|--------------------|-------------------|-----------------------------|----------------|-----------|-------------------|--------------------|------------|
| Test Item          |                   | armonic                     |                | Test Date |                   | November 10, 2017  |            |
| Polarize           |                   | ertical                     |                | Tes       | t Engineer        | Jerry              | Chuang     |
| Detector           | Peak a            | ind Average                 | ;              |           |                   |                    |            |
| 110.0 dBu∀/m       |                   |                             |                |           |                   |                    |            |
|                    |                   |                             |                |           |                   | Limit1:<br>Limit2: |            |
|                    |                   |                             |                |           |                   |                    |            |
| 70                 |                   |                             |                |           |                   |                    |            |
|                    | 1<br>X            |                             |                |           |                   |                    |            |
|                    | 2                 |                             |                |           |                   |                    |            |
| 30.0               |                   |                             |                |           |                   |                    |            |
| 1000.000 35        | 50.00 6100.00 86  | 650.00 11200.00             | ) 13750.00     | 16300.    | 00 18850.00 2140  | 00.00 26           | 500.00 MHz |
|                    |                   |                             |                |           |                   |                    |            |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Resu<br>(dBuV/ |           | Limit<br>(dBuV/m) | Margin<br>(dB)     | Remark     |
| 4925.000           | 49.03             | 7.09                        | 56.1           | 2         | 74.00             | -17.88             | peak       |
| 4925.000           | 32.88             | 7.09                        | 39.9           | 7         | 54.00             | -14.03             | AVG        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



| Test Mode     | IEEE 802.11n HT20        | High CH        | Temp/Hum                          | 24(°C)/ 33%RH          |  |
|---------------|--------------------------|----------------|-----------------------------------|------------------------|--|
| Test Item     | Harmonic                 |                | Test Date                         | November 10, 201       |  |
| Polarize      | Horizontal               |                | Test Engineer                     | Jerry Chuang           |  |
| Detector      | Peak and Avera           | age            |                                   |                        |  |
| 110.0 dBu¥/m  |                          |                |                                   |                        |  |
|               |                          |                |                                   | Limit1: —<br>Limit2: — |  |
|               |                          |                |                                   |                        |  |
|               |                          |                |                                   |                        |  |
|               |                          |                |                                   |                        |  |
| 70            |                          |                |                                   |                        |  |
|               | 1<br>X                   |                |                                   |                        |  |
|               | 2                        |                |                                   |                        |  |
|               | *                        |                |                                   |                        |  |
| 30.0          |                          |                |                                   |                        |  |
| 1000.000 3550 | .00 6100.00 8650.00 1120 | 00.00 13750.00 | 16300.00 18850.00 21 <sup>,</sup> | 400.00 26500.00 MHz    |  |
|               | Deadling Correct         |                |                                   |                        |  |

| Frequency<br>(MHz | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |
|-------------------|-------------------|-----------------------------|--------------------|-------------------|----------------|--------|
| 4932.000          | 48.69             | 7.11                        | 55.80              | 74.00             | -18.20         | peak   |
| 4932.000          | 38.05             | 7.11                        | 45.16              | 54.00             | -8.84          | AVG    |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



| Test Mode      | IEEE 802.1                    | 1n HT40 Lo                | w CH       | Te     | emp/Hu     | m      | 24(              | °C)/ 339       | %RH    |
|----------------|-------------------------------|---------------------------|------------|--------|------------|--------|------------------|----------------|--------|
| Test Item      | H                             | armonic                   |            | Т      | est Date   | e      | November 10, 201 |                |        |
| Polarize       | ١                             | /ertical                  |            | Tes    | t Engin    | eer    | Je               | rry Chu        | ang    |
| Detector       | Peak a                        | and Average               | e          |        |            |        |                  |                |        |
| 110.0 dBu∀/m   |                               |                           |            |        |            |        | Limi             | 1: —           | ]      |
|                |                               |                           |            |        |            |        | Limi             | t <b>2</b> : — |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
| 70             |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                | 1                             |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
|                |                               |                           |            |        |            |        |                  |                |        |
| 30.0           |                               |                           | 10750.00   | 10000  | 00 10050   |        |                  | 00500.00       |        |
| 1000.000 3550. | 00 6100.00 86                 | 50.00 11200.00            | ) 13750.00 | 16300. | 00 18850.1 | UU 214 | 00.00            | 26500.00       | MHZ    |
| Frequency      | Reading                       | Correct<br>Factor         | Resu       |        | Lim        |        | Margi            |                | emark  |
| (MHz)          | (dBuV)                        | (dB/m)                    | (dBuV      | /m)    | (dBu\      | //m)   | (dB)             |                | Cinark |
| 4848.000       | 45.92                         | 6.90                      | 52.8       | 2      | 74.(       | 00     | -21.1            | 8              | peak   |
| N/A            |                               |                           |            |        |            |        |                  |                |        |
| Remark:        |                               |                           |            |        |            |        |                  | ÷              |        |
|                | uring frequer<br>mental frequ |                           | GHz to     | the 1  | 0th hari   | monic  | of high          | est            |        |
|                | bove 1GHz,tl                  | he EUT pea<br>npliance wi |            |        |            | /erage | e limit, ti      | herefore       | e the  |

| Test Mode          | IEEE 802.                      | 11n HT40 L                  | .ow CH        | Te        | emp/Hu   | Jm           | <b>24(</b> °C      | )/ 33%RH     |  |
|--------------------|--------------------------------|-----------------------------|---------------|-----------|----------|--------------|--------------------|--------------|--|
| Test Item          |                                | Harmonic                    |               | Test Date |          |              | November 10, 20    |              |  |
| Polarize           |                                | Iorizontal                  |               | Tes       | st Engil | neer         | Jerr               | y Chuang     |  |
| Detector           | Peak                           | and Avera                   | ge            |           |          |              |                    |              |  |
| 110.0 dBuV/m       |                                |                             |               |           |          |              |                    |              |  |
|                    |                                |                             |               |           |          |              | Limit1:<br>Limit2: |              |  |
|                    |                                |                             |               |           |          |              |                    |              |  |
|                    |                                |                             |               |           |          |              |                    |              |  |
|                    |                                |                             |               |           |          |              |                    |              |  |
|                    |                                |                             |               |           |          |              |                    |              |  |
| 70                 |                                |                             |               |           |          |              |                    |              |  |
|                    |                                |                             |               |           |          |              |                    |              |  |
|                    | 1.                             |                             |               |           |          |              |                    |              |  |
|                    | ×                              |                             |               |           |          |              |                    |              |  |
|                    |                                |                             |               |           |          |              |                    |              |  |
| 30.0               |                                |                             |               |           |          |              |                    |              |  |
| 1000.000 3550      | ).00 6100.00 8                 | 650.00 11200.0              | 0 13750.00    | 16300.    | 00 1885  | 0.00 2140    | 0.00               | 26500.00 MHz |  |
|                    |                                |                             |               |           |          |              |                    |              |  |
| Frequency<br>(MHz) | Reading<br>(dBuV)              | Correct<br>Factor<br>(dB/m) | Resi<br>(dBuV |           |          | mit<br>ıV/m) | Margin<br>(dB)     | Remark       |  |
| 4844.000           | 43.21                          | 6.88                        | 50.0          | )9        | 74       | .00          | -23.91             | peak         |  |
|                    | suring freque<br>amental frequ |                             | 1 GHz to      | the 1     | 0th ha   | rmonic       | of highes          | st           |  |
|                    | above 1GHz,i                   | •                           | ak valua      | 14/201    | indor a  | woraa        | limit the          | proforo tho  |  |

Average value compliance with the average limit

| Test Mode          | IEEE 802.         | 11n HT40 N                  | /lid CH            | Temp/Hum                   | <b>24(°</b> ℃)/    | 33%RH       |  |  |
|--------------------|-------------------|-----------------------------|--------------------|----------------------------|--------------------|-------------|--|--|
| Test Item          | F                 | larmonic                    |                    | Test Date                  |                    | er 10, 2017 |  |  |
| Polarize           |                   | Vertical                    | Т                  | Test Engineer Jerry Chuang |                    |             |  |  |
| Detector           | Peak              | and Average                 | je                 |                            |                    |             |  |  |
| 110.0 dBuV/m       |                   |                             |                    |                            |                    |             |  |  |
|                    |                   |                             |                    |                            | Limit1:<br>Limit2: | _           |  |  |
|                    |                   |                             |                    |                            |                    |             |  |  |
|                    |                   |                             |                    |                            |                    |             |  |  |
|                    |                   |                             |                    |                            |                    |             |  |  |
| 70                 |                   |                             |                    |                            |                    |             |  |  |
|                    |                   |                             |                    |                            |                    |             |  |  |
|                    | 1<br>X            |                             |                    |                            |                    |             |  |  |
|                    |                   |                             |                    |                            |                    |             |  |  |
| 30.0               | 0 0100.00 00      | CO 00 11200 0               | 10750.00 10        |                            | 00.00 26           | 500.00 MHz  |  |  |
| 1000.000 3550.0    | 0 6100.00 80      | 550.00 11200.00             | ) 13750.00 163     | 300.00 18850.00 214        | .00.00 26          | DUU.UU MHZ  |  |  |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m)          | Margin<br>(dB)     | R mark      |  |  |
| 4874.000           | 45.75             | 6.97                        | 52.72              | 74.00                      | -21.28             | peak        |  |  |
| N/A                |                   |                             |                    |                            |                    |             |  |  |
|                    |                   |                             |                    |                            | · ·                |             |  |  |
| Remark:            |                   |                             |                    |                            |                    |             |  |  |

- fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



| Test Mode     | IEEE 802.11n HT40 Mid CH               | Temp/Hum 24(°C)/ 33%  |                              |  |  |
|---------------|----------------------------------------|-----------------------|------------------------------|--|--|
| Test Item     | Harmonic                               | Test Date             | November 10, 20 <sup>°</sup> |  |  |
| Polarize      | Horizontal                             | Test Engineer         | Jerry Chuang                 |  |  |
| Detector      | Peak and Average                       |                       |                              |  |  |
| 110.0 dBuV/m  |                                        |                       |                              |  |  |
|               |                                        |                       | Limit1: —                    |  |  |
|               |                                        |                       | Limit2: —                    |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
| 70            |                                        |                       |                              |  |  |
| ~~            |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               | 1<br>X                                 |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
|               |                                        |                       |                              |  |  |
| 30.0          |                                        |                       |                              |  |  |
| 1000.000 3550 | D.00 6100.00 8650.00 11200.00 13750.00 | 16300.00 18850.00 214 | 00.00 26500.00 MHz           |  |  |
|               |                                        |                       |                              |  |  |

| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB | Remark |
|--------------------|-------------------|-----------------------------|--------------------|-------------------|---------------|--------|
| 4874.000           | 42.36             | 6.97                        | 49.33              | 74.00             | -24.67        | peak   |
| N/A                |                   |                             |                    |                   |               |        |

- 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



| Test Mode          | IEEE 802.11       |                             |                    | emp/Hum           | ( )            | 33%RH      |
|--------------------|-------------------|-----------------------------|--------------------|-------------------|----------------|------------|
| Test Item          |                   | armonic                     |                    | Test Date         | Novembe        |            |
| Polarize           |                   | 'ertical                    |                    | st Engineer       | Jerry (        | Chuang     |
| Detector           | Peak a            | ind Average                 |                    |                   |                |            |
| 110.0 dBuV/m       |                   |                             |                    |                   | Limit1:        |            |
|                    |                   |                             |                    |                   | Limit2:        | _          |
|                    |                   |                             |                    |                   |                |            |
|                    |                   |                             |                    |                   |                |            |
|                    |                   |                             |                    |                   |                |            |
| 70                 |                   |                             |                    |                   |                |            |
|                    | 1                 |                             |                    |                   |                |            |
|                    | ×                 |                             |                    |                   |                |            |
|                    |                   |                             |                    |                   |                |            |
| 30.0               |                   |                             |                    |                   |                |            |
| 1000.000 355       | 50.00 6100.00 86  | 650.00 11200.00             | 13750.00 16300     | ).00 18850.00 214 | 00.00 26       | 500.00 MHz |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark     |
| 4904.000           | 45.74             | 7.04                        | 52.78              | 74.00             | -21.22         | peak       |
| N/A                |                   |                             |                    |                   |                |            |
|                    | •                 |                             |                    |                   |                |            |

- Remark:
  - 3. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
  - 4. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



| Test Mode     | IEEE 802.1     | 1n HT40 Hi       | gh CH      | Te     | emp/H    | um         | <b>24(</b> °( | )/ 33%RF      | 1  |
|---------------|----------------|------------------|------------|--------|----------|------------|---------------|---------------|----|
| Test Item     | H              | armonic          |            | Т      | est Da   | ate        | Novem         | ber 10, 20    | 17 |
| Polarize      |                | orizontal        |            | Tes    | st Engi  | neer       | Jerr          | y Chuang      |    |
| Detector      | Peaka          | and Averag       | е          |        |          |            |               |               |    |
| 110.0 dBuV/m  |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            | Limit1:       |               |    |
|               |                |                  |            |        |          |            | Limit2:       |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
| 70            |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               | 1              |                  |            |        |          |            |               |               |    |
|               | ×              |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
|               |                |                  |            |        |          |            |               |               |    |
| 30.0          |                |                  |            |        |          |            |               |               |    |
| 1000.000 3550 | .00 6100.00 80 | 650.00 11200.00  | 0 13750.00 | 16300. | 00 1885  | 50.00 2140 | 0.00          | 26500.00 MHz  |    |
| 1000.000 0000 |                | 1120.0           |            | 10000. | .00 100. | 0.00 214   |               | 20000.00 1112 |    |
|               |                |                  |            |        |          |            |               |               |    |
| Frequency     | Reading        | Correct          | Res        | ult    |          | imit       | Margin        |               |    |
| (MHz          | (dBuV)         | Factor<br>(dB/m) | (dBuV      |        |          | uV/m)      | (dB)          | Remar         | k  |
| 4904.000      | 41.42          | 7.04             | 48.4       | 16     | 74       | 4.00       | -25.54        | peak          | _  |
| Remark:       | 1              | 1                | 1          |        |          |            | 1             |               |    |
|               | suring frequer | ncies from 1     | 1 GHz to   | the 1  | 0th ha   | rmonic     | of highe      | st            |    |
| funda         | amental frequ  | ency.            |            |        |          |            | -             |               |    |
| 4. For a      | bove 1GHz,ti   | he EUT pea       | ak value   | was L  | under a  | averade    | e limit. the  | erefore the   | e  |

Average value compliance with the average limit