RF Exposure Report Report No.: SA131203E01B FCC ID: TX2-RTL8821AU Test Model: RTL8821AU Received Date: Dec. 21, 2015 Test Date: Jan. 06, 2016 **Issued Date:** Feb. 03, 2016 **Applicant:** Realtek Semiconductor Corp. Address: No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C. This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies. # **Table of Contents** | Relea | se Control Record | . 3 | |-------|---|-----| | 1 | Certificate of Conformity | . 4 | | 2 | RF Exposure | . 5 | | 2.1 | Limits for Maximum Permissible Exposure (MPE) | . 5 | | | MPE Calculation Formula | | | 2.3 | Classification | . 5 | | | Antenna Gain | | | 2.5 | Calculation Result of Maximum Conducted Power | . 9 | ## **Release Control Record** | Issue No. | Description | Date Issued | |--------------|-------------------|---------------| | SA131203E01B | Original release. | Feb. 03, 2016 | Page No. 3 / 9 Report Format Version: 6.1.1 Report No.: SA131203E01B Reference No.: 151221E12 #### 1 Certificate of Conformity Product: 802.11a/b/g/n/ac RTL8821AU Combo module Brand: Realtek Test Model: RTL8821AU Sample Status: ENGINEERING SAMPLE Applicant: Realtek Semiconductor Corp. Test Date: Jan. 06, 2016 Standards: FCC Part 2 (Section 2.1091) KDB 447498 D01 General RF Exposure Guidance v06 IEEE C95.1-2005 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. | Prepared by : | TH | , Date: | Feb. 03, 2016 | | |---------------|------------------------|---------|---------------|--| | | Fleie Heu / Specialist | | | | Approved by: ______, Date: _____, Feb. 03, 2016 Report No.: SA131203E01B Reference No.: 151221E12 #### 2 RF Exposure ## 2.1 Limits for Maximum Permissible Exposure (MPE) | Frequency Range
(MHz) | Electric Field
Strength (V/m) | Magnetic Field
Strength (A/m) | Power Density
(mW/cm²) | Average Time
(minutes) | | | | | |---|----------------------------------|----------------------------------|---------------------------|---------------------------|--|--|--|--| | Limits For General Population / Uncontrolled Exposure | | | | | | | | | | 300-1500 | | | F/1500 | 30 | | | | | | 1500-100,000 | | | 1.0 | 30 | | | | | F = Frequency in MHz ### 2.2 MPE Calculation Formula $Pd = (Pout*G) / (4*pi*r^2)$ where Pd = power density in mW/cm² Pout = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416 R = distance between observation point and center of the radiator in cm ### 2.3 Classification The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as **Mobile Device**. Report No.: SA131203E01B Reference No.: 151221E12 Page No. 5 / 9 Report Format Version: 6.1.1 # 2.4 Antenna Gain | No. | Brand | Model | Antenna
Type | Peak gain
with cable
loss (dBi)
(2.4GHz) | Peak gain
with cable
loss(dBi)
(5GHz) | Cable
Loss
(dB)
(2.4GHz) | Cable
Loss
(dB)
(5GHz) | Connector
Type | |-----|---------------|--|-----------------|---|--|-----------------------------------|---------------------------------|-------------------| | 1 | LYNwave | ALA110-222050-300010 (Main)
ALA110-222050-300010 (Aux) | PIFA | 3.5
3.5 | 5
5 | NA | NA | IPEX | | 2 | WGT | SKA91WMPB02+A (Tx1)
SKA91WMPB01+A (Tx2) | PIFA | 0.82
-2.23 | 0.94
2.18 | -1.32
-0.75 | -2.04
-1.17 | IPEX | | 3 | JEM | 1510-0122-0027 (Tx1)
1510-0122-0027 (Tx2) | PIFA | 3.23
2.31 | 4.89
1.89 | NA | NA | RF | | 4 | EVC | K05007014501(6-23-7W25H-010)
(Tx1)
K05007014501(6-23-7W25H-010)
(Tx2) | PIFA | 2.85
1.59 | 2.46
2.91 | NA | NA | IPEX | | 5 | JEM | 1510-0122-0022(IA-120073) (Tx1)
1510-0122-0022(IA-120073) (Tx2) | PIFA | 2.23
2.21 | 1.69
1.84 | NA | NA | RF | | 6 | WGT | SK81WMPB01+A (Tx1)
SK81WMPB02+A (Tx2) | PIFA | 1.79
0.66 | 1.49
-0.40 | -1.88
-2.95 | -3.17
-4.96 | IPEX | | 7 | WGT | SKW2UWMPB01+A (Tx1)
SKW2UWMPB01+A (Tx2) | PIFA | 1.36
2.88 | 1.92
3.16 | NA | NA | IPEX | | 8 | WGT | SKW25WMPB01+A (Tx1)
SKW25WMPB01+A (Tx2) | PIFA | 0.72
0.49 | -0.72
-0.71 | -1.41
-1.39 | -2.18
-2.15 | IPEX | | 9 | WGT | SK549WMPB01+A (Tx1)
SK549WMPB02+A (Tx2) | PIFA | -0.17
-2.24 | -0.13
0.03 | -1.04
-0.88 | -1.94
-1.64 | IPEX | | 10 | WGT | SK110WMPB01+A (Tx1)
SK110WMPB02+A (Tx2) | PIFA | 1.05
-0.41 | 1.08
2.32 | -0.98
-0.99 | -1.52
-1.54 | IPEX | | 11 | WGT | SKW31WMPB01+A (Tx1)
SKW31WMPB01+A (Tx2) | PIFA | 1.85
3.14 | 1.74
2.10 | NA | NA | IPEX | | 12 | ⊢ \/(: | 6-23-7B51M-031 (Tx1)
6-23-7B51M-031 (Tx2) | PIFA | 1.58
1.75 | 2.54
2.24 | NA | NA | IPEX | | 13 | ⊢ \/(: | 6-23-7E51Q-011 (Tx1)
6-23-7E51Q-011 (Tx2) | PIFA | 2.70
2.19 | 1.57
2.94 | NA | NA | IPEX | | 14 | ⊢ \/(: | 6-23-7B710-022 (WM1)
6-23-7B710-022 (WM2) | PIFA | 1.51
2.04 | 2.99
3.02 | NA | NA | IPEX | | 15 | WGT | SKM11WMPB03+A (Tx1)
SKM11WMPB02+D (Tx2) | PIFA | -1.84
-2.93 | 0.44
1.35 | 1.17
0.89 | 2.02
1.54 | IPEX | | 16 | WGT | SKW23WMPB01+A (Tx1)
SKW23WMPB02+A (Tx2) | PIFA | -1.61
-2.84 | -0.14
-0.96 | -2.10
-2.07 | -3.25
-3.20 | IPEX | | No. | Brand | Model | Antenna
Type | Peak gain
with cable
loss (dBi)
(2.4GHz) | Peak gain
with cable
loss(dBi)
(5GHz) | Cable
Loss
(dB)
(2.4GHz) | Cable
Loss
(dB)
(5GHz) | Connector
Type | |-----|-------|--|-----------------|---|--|-----------------------------------|---------------------------------|-------------------| | 17 | WGT | SKW24WMPB01+B (WM1)
SKW24WMPB01+B (WM2) | PIFA | 1.25
3.17 | 1.95
2.42 | NA | NA | IPEX | | 18 | FVC | K05007015501(6-23-7W244-020-
1) (Tx1)
K05007015501(6-23-7W244-020-
1) (Tx2) | PIFA | 2.53
2.28 | 2.86
2.97 | NA | NA | IPEX | | 19 | FVC | K05007014201(6-23-7W25P-020)
(Tx1)
K05007014201(6-23-7W25P-020)
(Tx2) | PIFA | 3.00
1.52 | 2.82
2.21 | NA | NA | IPEX | | 20 | WGT | SKW10WMPB01+A (Tx1)
SKW10WMPB02+A (Tx2) | PIFA | 0.85
0.44 | 0.75
1.24 | -1.56
-1.53 | -2.42
-2.36 | IPEX | | 21 | WGT | SKCZTWMPB01+A (Tx1)
SKCZTWMPB02+A (Tx2) | PIFA | 0.46
-0.79 | 2.80
1.03 | -1.56
-1.53 | -2.42
-2.36 | IPEX | | 22 | JEM | IA-120266 (Tx1)
IA-120267 (Tx2) | PIFA | 2.60
0.53 | 2.61
2.60 | 2.12
1.76 | 3.48
2.87 | IPEX | | 23 | WGT | SK547WMPB01+A (Tx1)
SK549WMPB02+A (Tx2) | PIFA | -0.66
0.78 | -0.19
2.06 | -1.42
-1.43 | -2.20
-2.21 | IPEX | | 24 | WGT | SK555WMPB01+B (Tx1)
SK555WMPB02+B (Tx2) | PIFA | 0.76
0.09 | 1.97
0.56 | -1.83
-1.80 | -2.83
-2.78 | IPEX | | 25 | WGT | SK65EWMPB01+A (Tx1)
SK650WMPB02+A (Tx2) | PIFA | 0.42
-0.13 | 0.11
1.27 | -1.56
-0.61 | -2.41
-0.94 | IPEX | | 26 | WGT | SK670WMPB01+A (Tx1)
SK670WMPB02+A (Tx2) | PIFA | 1.48
1.15 | -0.44
0.42 | -2.47
-1.93 | -3.82
-2.99 | IPEX | | 27 | WGT | SK740WMPB01+A (Tx1)
SK740WMPB02+A (Tx2) | PIFA | -0.93
0.20 | 0.96
0.86 | -1.39
-1.26 | -2.16
-1.95 | IPEX | | 28 | WGT | SK840WMPB01+B_SN (Tx1)
SK840WMPB01+B_SN (Tx2) | PIFA | 3.03
0.55 | 4.16
0.90 | -1.12
-1.20 | -1.74
-1.86 | IPEX | | 29 | WGT | SK94SWMPB01+B (TX1)
SK94SWMPB01+B (TX2) | PIFA | 0.76
0.46 | 1.12
1.44 | -0.32
-0.44 | -0.50
-0.68 | IPEX | | 30 | WGT | SK94TWMPB01+B (TX1)
SK94TWMPB01+B (TX2) | PIFA | 1.32
1.86 | 2.59
1.57 | -0.59
-0.71 | -0.91
-1.10 | IPEX | | 31 | WGT | SK50SWMPB01+A (TX1)
SK50SWMPB02+A (TX2) | PIFA | -0.03
-0.13 | 1.25
2.13 | -0.86
-0.72 | -1.32
-1.12 | IPEX | | 32 | WGT | SK94TWMPB01+D (TX1)
SK94TWMPB01+D (TX2) | PIFA | 1.32
1.86 | 2.59
1.57 | -0.59
-0.71 | -0.91
-1.10 | IPEX | | 33 | WGT | SKC45WMPB03+B (WM1)
SKC45WMPB03+B (WM2) | PIFA | 2.46
2.91 | 2.90
2.67 | NA | NA | IPEX | | 34 | FVC | K05007015801 (WM1)
K05007015901 (WM2) | PIFA | 3.12
1.01 | 3.51
1.93 | NA | NA | RF | | 35 | WGT | SK345WMPB01+A (WM1)
SK345WMPB02+A (WM2) | PIFA | 0.86
2.51 | 2.94
3.25 | NA | NA | IPEX | | No. | Brand | Model | Antenna
Type | Peak gain
with cable
loss (dBi)
(2.4GHz) | _ | Cable
Loss
(dB)
(2.4GHz) | Cable
Loss
(dB)
(5GHz) | Connector
Type | |-----|-----------------|---|-----------------|---|----------------|-----------------------------------|---------------------------------|-------------------| | 36 | ⊢ \/ (: | K05007014901 (WM1)
K05007015001 (WM2) | PIFA | 1.85
1.94 | 1.35
1.99 | NA | NA | IPEX | | 37 | V//(-i | SKX51WMPB01+C (WM1)
SKX51WMPB02+C (WM2) | PIFA | 3.2
2.76 | 2.28
2.51 | NA | NA | IPEX | | 38 | INIPAC | WA-P-LB-02-122 (Main)
WA-P-LB-01-072 (Aux) | PIFA | -1.41
-0.33 | -2.44
-3.87 | 1.23
1.86 | 2.06
3.12 | IPEX | | 39 | | SE-ECZ50-001 (Tx1)
SE-ECZ50-002 (Tx2) | PIFA | -1.37
-2.17 | 1.83
1.86 | 0.96
1.45 | 1.73
2.62 | IPEX | | 40 | INPAC | WA-P-LB-02-121 (Main)
WA-P-LB-01-071 (Aux) | PIFA | -2.26
-4.63 | -2.87
-2.49 | 1.32
1.95 | 2.22
3.28 | IPEX | | 41 | | SE-ECZ70-001 (Tx1)
SE-ECZ70-002 (Tx2) | PIFA | -0.65
-2.39 | 1.52
0.58 | 1.03
1.52 | 1.87
2.76 | IPEX | #### 2.5 Calculation Result of Maximum Conducted Power For BT-EDR, BT-LE, WLAN (2.4GHz) & WLAN (5GHz - U-NII-1, U-NII-2A, U-NII-2C) data was copied from the original test report (Report No.: SA131203E01) ## **WLAN** | Frequency
Band
(MHz) | Max Power
(mW) | Antenna Gain
(dBi) | Distance
(cm) | Power Density
(mW/cm²) | Limit
(mW/cm²) | |---|-------------------|-----------------------|------------------|---------------------------|-------------------| | 2412-2462 | 293.765 | 3.5 | 20 | 0.13084 | 1 | | 5180 -5240,
5260 - 5320,
5500 - 5580 &
5660 - 5700 | 71.285 | 5 | 20 | 0.04485 | 1 | | 5745-5825 | 68.077 | 5 | 20 | 0.04283 | 1 | #### **BT-EDR** | Frequency
Band
(MHz) | Max Power (mW) | Antenna Gain
(dBi) | Distance
(cm) | Power Density
(mW/cm²) | Limit
(mW/cm²) | |----------------------------|----------------|-----------------------|------------------|---------------------------|-------------------| | 2402-2480 | 3.532 | 3.5 | 20 | 0.00157 | 1 | #### **BT-LE** | Frequency
Band
(MHz) | Max Power (mW) | Antenna Gain
(dBi) | Distance
(cm) | Power Density
(mW/cm ²) | Limit
(mW/cm ²) | |----------------------------|----------------|-----------------------|------------------|--|--------------------------------| | 2402 - 2480 | 3.048 | 3.5 | 20 | 0.00136 | 1 | #### Conclusion: The formula of calculated the MPE is: CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1 CPD = Calculation power density LPD = Limit of power density BT + WLAN 2.4GHz = 0.13084 + 0.00157 = 0.132 BT + WLAN 5GHz = 0.04485 + 0.00157 = 0.046 Therefore the maximum calculations of above situations are less than the "1" limit. --- END ---