

**SPORTON International Inc.** 

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

# FCC RADIO TEST REPORT

| Applicant's company    | Realtek Semiconductor Corp.                                          |
|------------------------|----------------------------------------------------------------------|
| Applicant Address      | No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan |
| FCC ID                 | TX2-RTL8821AE                                                        |
| Manufacturer's company | Realtek Semiconductor Corp.                                          |
| Manufacturer Address   | No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan |

| Product Name        | 802.11a/b/g/n/ac RTL8821AE Combo module           |  |
|---------------------|---------------------------------------------------|--|
| Brand Name          | REALTEK                                           |  |
| Model No. RTL8821AE |                                                   |  |
| Test Rule Part(s)   | 47 CFR FCC Part 15 Subpart E § 15.407             |  |
| Test Freq. Range    | 5150 ~ 5350MHz / 5470 ~ 5725MHz / 5725 ~ 5850 MHz |  |
| Received Date       | Dec. 08, 2015                                     |  |
| Final Test Date     | Dec. 27, 2015                                     |  |
| Submission Type     | Class II Change                                   |  |

# Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E,

KDB789033 D02 v01, KDB662911 D01 v02r01, KDB644545 D03 v01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.





# Table of Contents

| 1.           | VERIF  | ICATION OF COMPLIANCE                                 | 1  |
|--------------|--------|-------------------------------------------------------|----|
| 2.           | SUMN   | Mary of the test result                               | 2  |
| 3.           | GENE   | RAL INFORMATION                                       | 3  |
|              | 3.1.   | Product Details                                       | 3  |
|              | 3.2.   | Accessories                                           | 4  |
|              | 3.3.   | Table for Filed Antenna                               | 5  |
|              | 3.4.   | Table for Carrier Frequencies                         | 7  |
|              | 3.5.   | Table for Test Modes                                  | 8  |
|              | 3.6.   | Table for Testing Locations                           | 9  |
|              | 3.7.   | Table for Class II Change                             | 9  |
|              | 3.8.   | Table for Supporting Units                            | 10 |
|              | 3.9.   | Table for Parameters of Test Software Setting         | 10 |
|              | 3.10.  | EUT Operation during Test                             | 10 |
|              | 3.11.  | Duty Cycle                                            | 10 |
|              | 3.12.  | Test Configurations                                   | 11 |
| <b>4</b> . ' | TEST F | RESULT                                                | 12 |
|              | 4.1.   | 26dB Bandwidth and 99% Occupied Bandwidth Measurement | 12 |
|              | 4.2.   | 6dB Spectrum Bandwidth Measurement                    | 19 |
|              | 4.3.   | Maximum Conducted Output Power Measurement            | 23 |
|              | 4.4.   | Power Spectral Density Measurement                    | 25 |
|              | 4.5.   | Radiated Emissions Measurement                        | 30 |
|              | 4.6.   | Band Edge Emissions Measurement                       | 51 |
|              | 4.7.   | Frequency Stability Measurement                       | 60 |
|              | 4.8.   | Antenna Requirements                                  | 64 |
| 5.           | list c | OF MEASURING EQUIPMENTS                               | 65 |
| 6.           | MEAS   |                                                       | 66 |
| AP           | PEND   | IX A. TEST PHOTOS                                     | A5 |
| AP           | PEND   | IX B. ANTENNA LIST                                    |    |



# History of This Test Report

| REPORT NO.  | VERSION | DESCRIPTION             | ISSUED DATE   |
|-------------|---------|-------------------------|---------------|
| FR342603-36 | Rev. 01 | Initial issue of report | Jan. 29, 2016 |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
|             |         |                         |               |
| •           |         |                         |               |



Report No.: FR342603-36

Project No: CB10501002

# 1. VERIFICATION OF COMPLIANCE

| Product Name      | : | 802.11a/b/g/n/ac RTL8821AE Combo module |
|-------------------|---|-----------------------------------------|
| Brand Name        | : | REALTEK                                 |
| Model No.         | : | RTL8821AE                               |
| Applicant         | : | Realtek Semiconductor Corp.             |
| Test Rule Part(s) | : | 47 CFR FCC Part 15 Subpart E § 15.407   |
|                   |   |                                         |

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Dec. 08, 2015 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen SPORTON INTERNATIONAL INC.



# 2. SUMMARY OF THE TEST RESULT

| Applied Standard: 47 CFR FCC Part 15 Subpart E |                                                              |                                |             |          |  |  |
|------------------------------------------------|--------------------------------------------------------------|--------------------------------|-------------|----------|--|--|
| Part                                           | <b>Rule Section</b>                                          | Result                         | Under Limit |          |  |  |
| 4.1                                            | 15.407(a) 26dB Spectrum Bandwidth and 99% Occupied Bandwidth |                                | Complies    | -        |  |  |
| 4.2 15.407(e) 6dB Spectrum Bandwidth           |                                                              |                                | Complies    | -        |  |  |
| 4.3                                            | 15.407(a)                                                    | Maximum Conducted Output Power | Complies    | 13.62 dB |  |  |
| 4.4                                            | 15.407(a)                                                    | Power Spectral Density         | Complies    | 29.68 dB |  |  |
| 4.5                                            | 15.407(b)                                                    | Radiated Emissions             | Complies    | 5.18 dB  |  |  |
| 4.6                                            | 15.407(b)                                                    | Band Edge Emissions            | Complies    | 0.51 dB  |  |  |
| 4.7                                            | 15.407(g)                                                    | Frequency Stability            | Complies    | -        |  |  |
| 4.8                                            | 15.203                                                       | Antenna Requirements           | Complies    | -        |  |  |



# 3. GENERAL INFORMATION

### 3.1. Product Details

| Items                    | Description                                                |
|--------------------------|------------------------------------------------------------|
| Product Type             | WLAN (1TX, 1RX)                                            |
| Radio Type               | Intentional Transceiver                                    |
| Power Type               | From host system                                           |
| Modulation               | IEEE 802.11a: OFDM                                         |
|                          | IEEE 802.11n/ac: see the below table                       |
| Data Modulation          | IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)         |
|                          | IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM) |
| Data Rate (Mbps)         | IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)                 |
|                          | IEEE 802.11n/ac: see the below table                       |
| Frequency Range          | 5150 ~ 5350MHz / 5470 ~ 5725MHz / 5725 ~ 5850 MHz          |
| Channel Number           | 21 for 20MHz bandwidth ; 9 for 40MHz bandwidth             |
|                          | 4 for 80MHz bandwidth                                      |
| Channel Band Width (99%) | IEEE 802.11a: 16.93 MHz                                    |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT20): 18.06 MHz                 |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT40): 37.48 MHz                 |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT80): 76.12 MHz                 |
| Maximum Conducted Output | IEEE 802.11a: 16.32 dBm                                    |
| Power                    | IEEE 802.11ac MCS0/Nss1 (VHT20): 16.38 dBm                 |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT40): 16.12 dBm                 |
|                          | IEEE 802.11ac MCS0/Nss1 (VHT80): 12.06 dBm                 |
| Carrier Frequencies      | Please refer to section 3.4                                |
| Antenna                  | Please refer to section 3.3                                |

| Items                       | Description             |                      |  |
|-----------------------------|-------------------------|----------------------|--|
| Communication Mode          | 🛛 IP Based (Load Based) | Frame Based          |  |
| TPC Function                | With TPC                | Without TPC          |  |
| Weather Band (5600~5650MHz) | ☐ With 5600~5650MHz     | Without 5600~5650MHz |  |
| Beamforming Function        | With beamforming        | Without beamforming  |  |



### Antenna & Band width

| Antenna         | Single (TX) |        |        |  |
|-----------------|-------------|--------|--------|--|
| Band width Mode | 20 MHz      | 40 MHz | 80 MHz |  |
| IEEE 802.11a    | V           | X      | Х      |  |
| IEEE 802.11n    | V           | V      | Х      |  |
| IEEE 802.11ac   | V           | V      | V      |  |

#### IEEE 11n/ac Spec.

| Protocol         | Number of<br>Transmit Chains (NTX) | Data Rate / MCS |  |  |  |  |
|------------------|------------------------------------|-----------------|--|--|--|--|
| 802.11n (HT20)   | 1                                  | MCS 0-7         |  |  |  |  |
| 802.11n (HT40)   | 1                                  | MCS 0-7         |  |  |  |  |
| 802.11ac (VHT20) | 1                                  | MCS 0-9/Nss1    |  |  |  |  |
| 802.11ac (VHT40) | 1                                  | MCS 0-9/Nss1    |  |  |  |  |
| 802.11ac (VHT80) | 1                                  | MCS 0-9/Nss1    |  |  |  |  |
|                  |                                    |                 |  |  |  |  |

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT supports VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration:

HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

### 3.2. Accessories

N/A



## 3.3. Table for Filed Antenna

| Ant  | Brand   | Madal Nama           |                | Connector  | Gain (dBi) |      |
|------|---------|----------------------|----------------|------------|------------|------|
| Ani. |         |                      | Amerina type   | Connector  | 2.4GHz     | 5GHz |
| 1    | LYNwave | ALA110-222050-300011 | PIFA Antenna   | I-PEX MHF4 | 3.5        | 5.0  |
| 2    | LYNwave | ALA110-222050-300010 | PIFA Antenna   | I-PEX      | 3.5        | 5.0  |
| 3    | JOYMAX  | TWF-614XMPXX-500     | Dipole Antenna | I-PEX      | 3.0        | 5.0  |

There are fourteen configurations of EUT. The more information is listed as below table.

| Configuration | Туре  | Module | Power Type      | Antenna<br>Variety        | Type of Antenna                |
|---------------|-------|--------|-----------------|---------------------------|--------------------------------|
| 1             |       |        |                 | Diversity                 | PIFA with I-PEX connector      |
| I             |       | -      | PCIE            | Diversity                 | Dipole with I-PEX connector    |
| 0             |       |        |                 | <b>Five d</b>             | PIFA with I-PEX connector      |
| 2             | HIVIC | -      | PCI-E           | Fixed                     | Dipole with I-PEX connector    |
| 3             | NGFF  | -      | PCI-E           | Diversity                 | PIFA with I-PEX MHF4 connector |
| 4             | NGFF  | -      | SDIO            | Diversity                 | PIFA with I-PEX MHF4 connector |
| 5             | NGFF  | -      | PCI-E           | Fixed                     | PIFA with I-PEX MHF4 connector |
| 6             | NGFF  | -      | SDIO            | Fixed                     | PIFA with I-PEX MHF4 connector |
| 7             |       |        |                 | Diversity                 | PIFA with I-PEX connector      |
| /             |       | RC     | PCI-E Diversity | FCI-E                     | Dipole with I-PEX connector    |
| 0             |       |        |                 | Fixed                     | PIFA with I-PEX connector      |
| 0             |       | ĸĊ     | PCI-E           | Fixed                     | Dipole with I-PEX connector    |
| 9             | NGFF  | RC     | PCI-E           | Diversity                 | PIFA with I-PEX MHF4 connector |
| 10            | NGFF  | RC     | PCI-E           | Fixed                     | PIFA with I-PEX MHF4 connector |
| 11            | NGFF  | RC     | SDIO            | Diversity                 | PIFA with I-PEX MHF4 connector |
| 12            | NGFF  | RC     | SDIO            | Fixed                     | PIFA with I-PEX MHF4 connector |
| 12            |       |        | PCI-E           | Diversity                 | PIFA with I-PEX connector      |
| 13            | HIVIC |        |                 | Diversity                 | Dipole with I-PEX connector    |
| 14            |       |        | <b>F</b> ire el | PIFA with I-PEX connector |                                |
| 14            | HIVIC |        | PCI-E           | rixea                     | Dipole with I-PEX connector    |

Note: The more detail information of diversity type and fixed type is listed as below.



### For diversity type: (Both of those two antenna connectors can be used.)

### <For 2.4GHz Band:>

The EUT supports the antenna with TX/RX diversity function for 2.4GHz WLAN and Bluetooth, but only one of them will be used at the same time.

Base on WLAN's operation mode to select the other antenna to work.

(Ex. Assume Main port was selected to conduct transmitting function in 2.4GHz WLAN, so AUX port was selected in Bluetooth Mode. Vice versa.)

#### <For 5GHz Band:>

The EUT supports the antenna with TX/RX diversity function for 5GHz WLAN and Bluetooth, and both them can transmit and receive signal simultaneously.

#### For WLAN function (1TX, 1RX):

Both of Chain 1 and Chain 2 can be used as transmitting/receiving functions, but only one antenna can be used as transmitting/receiving functions at the same time.

Chain 1 generated the worst case than Chain 2, so it is tested and recorded in the report.

### For Bluetooth function (1TX, 1RX):

Both of Chain 1 and Chain 2 can be used as transmitting/receiving functions, but only one antenna can be used as transmitting/receiving functions at the same time.

Chain 1 generated the worst case than Chain 2, so it is tested and recorded in the report.

For fixed type: (Chain 1 is designated for 2.4 GHz WLAN function, Chain 2 is designated for 5GHz

### WLAN and Bluetooth functions.)

For 2.4GHz WLAN function (1TX, 1RX):

Only Chain 1 can be used as transmitting/receiving functions.

For 5GHz WLAN function (1TX, 1RX):

Only Chain 2 can be used as transmitting/receiving functions.

### For Bluetooth function (1TX, 1RX):

Only Chain 2 can be used as transmitting/receiving functions.







### 3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 54, 62, 102, 110, 134, 151, 159.

For 80MHz bandwidth systems, use Channel 42, 58, 106, 155.

| Frequency Band | Channel No. | Frequency | Channel No. | Frequency |
|----------------|-------------|-----------|-------------|-----------|
|                | 36          | 5180 MHz  | 44          | 5220 MHz  |
| 5150~5250 MHz  | 38          | 5190 MHz  | 46          | 5230 MHz  |
| Band 1         | 40          | 5200 MHz  | 48          | 5240 MHz  |
|                | 42          | 5210 MHz  | -           | -         |
|                | 52          | 5260 MHz  | 60          | 5300 MHz  |
| 5250~5350 MHz  | 54          | 5270 MHz  | 62          | 5310 MHz  |
| Band 2         | 56          | 5280 MHz  | 64          | 5320 MHz  |
|                | 58          | 5290 MHz  | -           | -         |
|                | 100         | 5500 MHz  | 112         | 5560 MHz  |
|                | 102         | 5510 MHz  | 116         | 5580 MHz  |
| 5470~5725 MHz  | 104         | 5520 MHz  | 132         | 5660 MHz  |
| Band 3         | 106         | 5530 MHz  | 134         | 5670 MHz  |
|                | 108         | 5540 MHz  | 136         | 5680 MHz  |
|                | 110         | 5550 MHz  | 140         | 5700 MHz  |
|                | 149         | 5745 MHz  | 157         | 5785 MHz  |
| 5725~5850 MHz  | 151         | 5755 MHz  | 159         | 5795 MHz  |
| Band 4         | 153         | 5765 MHz  | 161         | 5805 MHz  |
|                | 155         | 5775 MHz  | 165         | 5825 MHz  |



### 3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Test Items                   | Mode       |        | Data Rate | Channel      | Chain |
|------------------------------|------------|--------|-----------|--------------|-------|
| Max. Conducted Output Power  | 11a/BPSK   | Band 4 | 6Mbps     | 149/157/165  | 2     |
|                              | 11ac VHT20 | Band 4 | MCS0/Nss1 | 149/157/165  | 2     |
|                              | 11ac VHT40 | Band 4 | MCS0/Nss1 | 151/159      | 2     |
|                              | 11ac VHT80 | Band 4 | MCS0/Nss1 | 155          | 2     |
| Power Spectral Density       | 11a/BPSK   | Band 4 | 6Mbps     | 149/157/165  | 2     |
|                              | 11ac VHT20 | Band 4 | MCS0/Nss1 | 149/157/165  | 2     |
|                              | 11ac VHT40 | Band 4 | MCS0/Nss1 | 151/159      | 2     |
|                              | 11ac VHT80 | Band 4 | MCS0/Nss1 | 155          | 2     |
| 26dB Spectrum Bandwidth &    | 11a/BPSK   | Band 4 | 6Mbps     | 149/157/165  | 2     |
| 99% Occupied Bandwidth       | 11ac VHT20 | Band 4 | MCS0/Nss1 | 149/157/165  | 2     |
| Measurement                  | 11ac VHT40 | Band 4 | MCS0/Nss1 | 151/159      | 2     |
|                              | 11ac VHT80 | Band 4 | MCS0/Nss1 | 155          | 2     |
| 6dB Spectrum Bandwidth       | 11a/BPSK   | Band 4 | 6Mbps     | 149/157/165  | 2     |
| Measurement                  | 11ac VHT20 | Band 4 | MCS0/Nss1 | 149/157/165  | 2     |
|                              | 11ac VHT40 | Band 4 | MCS0/Nss1 | 151/159      | 2     |
|                              | 11ac VHT80 | Band 4 | MCS0/Nss1 | 155          | 2     |
| Radiated Emission Above 1GHz | 11a/BPSK   | Band 4 | 6Mbps     | 149/157/165  | 2     |
|                              | 11ac VHT20 | Band 4 | MCS0/Nss1 | 149/157/165/ | 2     |
|                              | 11ac VHT40 | Band 4 | MCS0/Nss1 | 151/159      | 2     |
|                              | 11ac VHT80 | Band 4 | MCS0/Nss1 | 155          | 2     |
| Band Edge Emission           | 11a/BPSK   | Band 4 | 6Mbps     | 149/157/165  | 2     |
|                              | 11ac VHT20 | Band 4 | MCS0/Nss1 | 149/157/165  | 2     |
|                              | 11ac VHT40 | Band 4 | MCS0/Nss1 | 151/159      | 2     |
|                              | 11ac VHT80 | Band 4 | MCS0/Nss1 | 155          | 2     |
| Frequency Stability          | 20 MHz     | Band 4 | -         | 157          | 2     |
|                              | 40 MHz     | Band 4 | -         | 151          | 2     |
|                              | 80 MHz     | Band 4 | -         | 155          | 2     |

After evaluating, configuration 14 has been evaluated to be the worst case, so it was selected to test and

record in this test report. The following test modes were performed for all tests:

### For other test itmes

Mode 1. Configuration 14

For Radiated Emission and Band Edge Emission test

Mode 1. Configuration 14 + PIFA Ant. (I-PEX connector)

Mode 2. Configuration 14 + Dipole Ant. (I-PEX connector)



### 3.6. Table for Testing Locations

| Test Site Location |                                                                 |                                  |                     |                  |                   |    |  |
|--------------------|-----------------------------------------------------------------|----------------------------------|---------------------|------------------|-------------------|----|--|
| Address:           | No.                                                             | 8, Lane 724, Bo-a                | i St., Jhubei City, | Hsinchu County 3 | 02, Taiwan, R.O.C | ×. |  |
| TEL:               | 886                                                             | 5-3-656-9065                     |                     |                  |                   |    |  |
| FAX:               | 886-3-656-9085                                                  |                                  |                     |                  |                   |    |  |
| Test Site N        | o. Site Category Location FCC Reg. No. IC File No. VCCI Reg. No |                                  |                     |                  |                   |    |  |
| 03CH01-0           | CB                                                              | B SAC Hsin Chu 262045 IC 4086D - |                     |                  |                   |    |  |
| TH01-CB            | 3                                                               | OVEN Room                        | Hsin Chu            | -                | -                 | -  |  |

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

### 3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR342603-07AA and FR342603-07AB

Below is the table for the change of the product with respect to the original one.

| Modifications                         | Performance Checking                                             |  |  |  |
|---------------------------------------|------------------------------------------------------------------|--|--|--|
| Updating 5GHz Band 1 to "New          | The output power remains the same so it's no need to re test     |  |  |  |
| Rules" from "Old Rules".              |                                                                  |  |  |  |
| Updating 5GHz Band $2{\sim}3$ to "New | After evaluating, it's no need to re test                        |  |  |  |
| Rules" from "Old Rules".              | Aner evoluaring, it's no need to re-rest.                        |  |  |  |
|                                       | 1. 26dB Bandwidth and 99% Occupied Bandwidth                     |  |  |  |
|                                       | 2. 6dB Spectrum Bandwidth                                        |  |  |  |
| Underling SOUR Dand 4 to "New         | 3. Maximum Conducted Output Power                                |  |  |  |
| Dulas" from "Old Dulas"               | 4. Power Spectral Density                                        |  |  |  |
| Rules from Old Rules .                | 5. Radiated Emissions above 1GHz (1GHz~40GHz)                    |  |  |  |
|                                       | 6. Band Edge Emissions                                           |  |  |  |
|                                       | 7. Frequency Stability                                           |  |  |  |
| Remove the Slot antenna               | -                                                                |  |  |  |
|                                       | Adding 125 sets same type of PIFA antenna and 7 sets same type   |  |  |  |
| Adding antennas and the total         | of Dipole antenna with lower gain than the original Certificate, |  |  |  |
| antennas amounted to 175 sets.        | and it is not necessary to verify for RF test.                   |  |  |  |
|                                       | Please refer to the Appendix B for detail.                       |  |  |  |

Note: There is no hardware or electrical modification made to the applying modular transmitter itself.



### 3.8. Table for Supporting Units

| Support Unit | Brand                | Model | FCC ID |
|--------------|----------------------|-------|--------|
| NB           | NB DELL              |       | DoC    |
| Test fixture | Test fixture REALTEK |       | N/A    |

### 3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

| Test Software Version    | Realtek              |          |          |  |
|--------------------------|----------------------|----------|----------|--|
|                          | Test Frequency (MHz) |          |          |  |
| Mode                     | NCB: 20MHz           |          |          |  |
|                          | 5745 MHz             | 5785 MHz | 5825 MHz |  |
| 802.11a                  | 51                   | 51       |          |  |
| 802.11ac MCS0/Nss1 VHT20 | 51 51                |          | 51       |  |
| Mode                     | NCB: 40MHz           |          |          |  |
| 802 11ac MCS0/Nss1 VHT/0 | 5755 MHz             |          | 5795 MHz |  |
|                          | 48                   |          | 52       |  |
| Mode                     | NCB: 80MHz           |          |          |  |
| 802 11ac MCS0/Nss1 VHT80 | 5775 MHz             |          |          |  |
|                          | 44                   |          |          |  |

### 3.10. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

### 3.11. Duty Cycle

| Mada                     | On Time | On+Off Time | Duty Cycle | Duty Factor | 1/T Minimum VBW |
|--------------------------|---------|-------------|------------|-------------|-----------------|
| MODE                     | (ms)    | (ms)        | (%)        | (dB)        | (kHz)           |
| 802.11a                  | 1.000   | 1.000       | 100.00     | 0.00        | 0.01            |
| 802.11ac MCS0/Nss1 VHT20 | 1.000   | 1.000       | 100.00     | 0.00        | 0.01            |
| 802.11ac MCS0/Nss1 VHT40 | 1.000   | 1.000       | 100.00     | 0.00        | 0.01            |
| 802.11ac MCS0/Nss1 VHT80 | 1.000   | 1.000       | 100.00     | 0.00        | 0.01            |





# 3.12. Test Configurations

### 3.12.1. Radiation Emissions Test Configuration



| ltem | Connection  | Shielded | Length(m) |
|------|-------------|----------|-----------|
| 1    | Power cable | No       | 2.6       |





### 4. TEST RESULT

### 4.1. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

### 4.1.1. Limit

No restriction limits.

### 4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| 26dB Bandwidth      |                                            |  |  |  |
|---------------------|--------------------------------------------|--|--|--|
| Spectrum Parameters | Setting                                    |  |  |  |
| Attenuation         | Auto                                       |  |  |  |
| Span Frequency      | > 26dB Bandwidth                           |  |  |  |
| RBW                 | Approximately 1% of the emission bandwidth |  |  |  |
| VBW                 | VBW > RBW                                  |  |  |  |
| Detector            | Peak                                       |  |  |  |
| Trace               | Max Hold                                   |  |  |  |
| Sweep Time          | Auto                                       |  |  |  |
| 99% Occupie         | ed Bandwidth                               |  |  |  |
| Spectrum Parameters | Setting                                    |  |  |  |
| Span                | 1.5 times to 5.0 times the OBW             |  |  |  |
| RBW                 | 1 % to 5 % of the OBW                      |  |  |  |
| VBW                 | ≥ 3 x RBW                                  |  |  |  |
| Detector            | Peak                                       |  |  |  |
| Trace               | Max Hold                                   |  |  |  |

### 4.1.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

### 4.1.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

### 4.1.5. Test Deviation

There is no deviation with the original standard.

### 4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



### 4.1.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

| Temperature   | <b>24</b> °C | Humidity | 60% |
|---------------|--------------|----------|-----|
| Test Engineer | Clemens Fang |          |     |
|               |              |          |     |

| Mode                        | Frequency | 26dB Bandwidth<br>(MHz) | 99% Occupied Bandwidth<br>(MHz) |  |
|-----------------------------|-----------|-------------------------|---------------------------------|--|
|                             | 5745 MHz  | 21.04                   | 16.85                           |  |
| 802.11a                     | 5785 MHz  | 21.04                   | 16.85                           |  |
|                             | 5825 MHz  | 22.96                   | 16.93                           |  |
| 802.11ac<br>MCS0/Nss1 VHT20 | 5745 MHz  | 21.65                   | 17.89                           |  |
|                             | 5785 MHz  | 22.26                   | 17.97                           |  |
|                             | 5825 MHz  | 22.35                   | 18.06                           |  |
| 802.11ac                    | 5755 MHz  | 45.36                   | 37.48                           |  |
| MCS0/Nss1 VHT40             | 5795 MHz  | 56.52                   | 37.48                           |  |
| 802.11ac                    |           | 94.25                   | 76 10                           |  |
| MCS0/Nss1 VHT80             | 5775 WIHZ | 04.35                   | /0.12                           |  |





### 26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5745 MHz

Date: 27.DEC.2015 18:43:21

#### 26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5785 MHz

| Spect         | rum   |         |                          |         |                           |                  |     | 9                                          |
|---------------|-------|---------|--------------------------|---------|---------------------------|------------------|-----|--------------------------------------------|
| Ref Lo<br>Att | evel  | 97,00 d | lBµV<br>0dB <b>SWT</b> 1 | ms 🖷 VE | SW 300 kHz<br>SW 1 MHz Mo | de Sweep         |     |                                            |
| ●1Pk Vi       | ew    |         |                          |         |                           |                  |     |                                            |
| 90 dBµ\       |       |         |                          |         |                           | M1[1]<br>Occ Bw  |     | 55,44 dB)<br>5,7743913 G<br>16,845151954 M |
| 80 dBh/       | 7=0   | 1 81.28 | 3 dBµV                   | Tf.     | man and the               | ALAKA MAN        |     | 0.45 c                                     |
| 70 dBµA       |       | _       | -                        |         |                           |                  | 1   |                                            |
| 60 dBµA       |       | -02     | 55 202 db//              | Mal     |                           | X                | 62  |                                            |
| 50 dBµV       |       |         | mar Mar                  |         |                           |                  | TAN | Milnille                                   |
| 40 dBµN       | J.W.  | and me  |                          |         |                           |                  |     | a gran a han wor                           |
| 20 dBµ\       |       |         |                          |         |                           |                  |     |                                            |
| 10 dBµ\       |       |         |                          | t       |                           | -                | F2  |                                            |
| 0 dBuV-       | -     |         | _                        | F1      |                           |                  | 1   |                                            |
| CF 5.7        | 85 GH | Iz      |                          |         | 691 pt:                   | 5                | 2 · | Span 60.0 MH                               |
| Marker        |       |         |                          | -       | 1000 M                    | 1997 B.          | -   |                                            |
| Type          | Ref   | Trc     | Stimulu                  | IS      | Response                  | Function         | 0.  | Function Result                            |
| M1            | -     | 1       | 5,77439                  | 13 GHz  | 55.44 dBµV                |                  |     |                                            |
| T1            | 1     | 1       | 5,77649                  | O6 GHz  | 71.64 dBµV                | Occ Bw           |     | 16.845151954 MH                            |
| T2            |       | 1       | 5.79333                  | IS7 GHz | 74.23 dBµV                | a strange of the | -   |                                            |
| D1            | M1    | 1       | 21.04                    | 35 MHz  | 0.45 dB                   |                  |     |                                            |
|               |       | )[]     |                          |         |                           |                  |     | 1 49                                       |

Date: 27.DEC.2015 18:42:13





### 26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5825 MHz

Date: 27.DEC.2015 18:41:53

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 2 / 5745 MHz

| Spectr        | um   |               |             |           |                          |                 |                                          |                            |                               |
|---------------|------|---------------|-------------|-----------|--------------------------|-----------------|------------------------------------------|----------------------------|-------------------------------|
| Ref Le<br>Att | vel  | 97,00 de<br>0 | dB SWT 1    | E ms E VE | SW 300 kHz<br>SW 1 MHz M | ode Sweep       |                                          |                            |                               |
| 1Pk Vie       | W    |               |             |           |                          |                 | _                                        |                            |                               |
| 90 dBµV-      | -    |               |             |           |                          | M1[1]<br>Occ Bw |                                          | 5.734<br>17.88712          | .31 dBµ<br>1304 GH<br>1116 MH |
| 80 dBpV       | D    | 1 80.37       | 6 dBuV-     | The       | monent                   | montality       | 1                                        | 21.                        | -1.37 di<br>5522 MH           |
| 70 dBµV-      |      |               | -           |           |                          |                 |                                          |                            |                               |
| 60 dBµV-      | -    | -00.5         | 1 275 dbiat | MI        | _                        |                 | E1                                       |                            |                               |
| 50 dBµV       |      | where a       | moundary    | Jev.      |                          |                 | here                                     |                            |                               |
| 40 dBuv       | Jun  |               | -           |           |                          |                 |                                          | man manusching             | Munduly                       |
| 20 dBµV-      | -    |               |             |           | -                        |                 |                                          |                            |                               |
| 10 dBµV-      | +    |               | -           |           |                          |                 | F2                                       |                            | _                             |
| 0 dBuV-       | -    |               | _           | F1        |                          |                 | T                                        |                            |                               |
| CF 5.74       | 5 GH | z             | 4           |           | 691 pt                   | 5               |                                          | Span 6                     | 0.0 MHz                       |
| Marker        |      |               |             |           | - C                      | 1200 C          |                                          | and a second second second |                               |
| Type          | Ref  | Trc           | Stimulu     | IS        | Response                 | Function        | () — — — — — — — — — — — — — — — — — — — | Function Result            |                               |
| M1            | -    | 1             | 5,73413     | 304 GHz   | 56.31 dBµV               |                 |                                          |                            |                               |
| T1            |      | 1             | 5,73605     | 564 GHz   | 72.33 dBµV               | Occ Bw          |                                          | 17.887120                  | 116 MHz                       |
| 12<br>D1      | M1   | 1             | 5.75394     | 136 GHZ   | 72.04 dBµV<br>-1.37 dB   |                 |                                          |                            |                               |
|               | -    | 1             |             |           |                          |                 |                                          | 1 40                       | the state                     |

Date: 27.DEC.2015 18:40:13





26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 2 / 5785 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 2 / 5825 MHz



Date: 27.DEC.2015 18:41:01





26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 2 / 5755 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 2 / 5795 MHz



Date: 27.DEC.2015 18:39:17



| • 1Pk View       90 dBµV     • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref L<br>Att     | eve  | 97,00  | 0dBµV<br>0dB <b>SWT</b> 1 | ms RBW 1 MHz | Mode Swa        | eep     |                        |                                      |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|--------|---------------------------|--------------|-----------------|---------|------------------------|--------------------------------------|-----------|
| 90 dBµV<br>90 dBµV<br>90 dBµV<br>91 78.554 dBµV<br>170 dBµV<br>171 1 5.732971 GHz<br>172 dBµV<br>172 dBµV<br>172 dBµV<br>173 dBµV<br>174 1 5.813205 GHz<br>172 dBµV<br>174 1 5.813205 GHz<br>172 dBµV<br>175 dBµV<br>176 dBµV<br>176 dBµV<br>177 dB<br>177 dB<br>1 | 1Pk V            | 'iew |        |                           |              |                 | 1 A A   |                        |                                      |           |
| 70 dBµv   84,348 MHz     60 dBµv   92     50 dBµv   93     50 dBµv   91 pts     51 pts   52.79 dBµv     52 pts   52.79 dBµv     71 1   5.737084 GHz     72 1   5.813205 GHz     72 1   5.813205 GHz     72.94 dBµv   0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90 dBµ<br>80 dBµ |      | 1 78,5 | 54 dBµV                   | ~~~~         | M1[1]<br>Occ Bw | 72      | 52<br>5.73<br>76,12156 | 2971 GHz<br>2971 GHz<br>2952 MHz<br> |           |
| 60 dBµV<br>50 dBµV<br>10 dBµV<br>20 dBµV<br>10 dBµV<br>10 dBµV<br>11 5.775 GHz<br>12 52.75 GHz<br>13 0 dBµV<br>11 5.732971 GHz<br>15 .732971 GHz<br>16 .72.94 dBµV<br>17 1 1 5 .732971 GHz<br>17 2 1 5 .813205 GHz<br>17 2 .94 dBµV<br>10 dBµV<br>1                             | 70 dBµ           | N    |        | 1                         | / w ~ ~ *    |                 | Y.      | 84                     | .348 MHz                             |           |
| S0       B2       S2-36+000       T         40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40 <t< td=""><td>60 dBµ</td><td>N-</td><td>- 00</td><td>ED REA do</td><td></td><td></td><td>54</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60 dBµ           | N-   | - 00   | ED REA do                 |              |                 | 54      |                        |                                      |           |
| 30 dBµV   20 dBµV     20 dBµV   F1     10 dBµV   F1     0 dBµV   F1     10 dBµV   F1     0 dBµV   F1     11 dBµV   F2     11 1   5.732971 GHz     52.79 dBµV   Function Result     11 1   5.737084 GHz     72   1     11 1   5.813205 GHz     72.94 dBµV   76.121562952 MHz     10 M1   84.348 MHz     0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 dBµ           | WMA  | home   | when the and a log of the |              |                 | Lawrith | wooderwood the         | Suchacher                            |           |
| 20 dBµV       F1       F2         10 dBµV       F1       F2         3 dBµV       F2       F2         3 dBµV       F2       F2         3 dBµV       F2       F2         1 1       5.732971 GHz       52.79 dBµV       F2         1 1       5.737084 GHz       73.10 dBµV       Occ Bw       76.121562952 MHz         1 1       5.813205 GHz       72.94 dBµV       F2       F2         1 M1       1       84.348 MHz       0.97 dB       F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 dBµ           | N    | -      |                           | _            |                 |         | -                      |                                      |           |
| ID       dBµV       F1       F2         ) dBµV       F1       F2         Darker       F1       F2         M1       1       5.732971 GHz       52.79 dBµV         T1       1       5.737084 GHz       73.10 dBµV       Occ Bw         T1       1       5.813205 GHz       72.94 dBµV       T6.121562952 MHz         T2       1       5.813205 GHz       72.94 dBµV       T6.121562952 MHz         D1       M1       1       84.348 MHz       0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 dBµ           | N    |        |                           |              | -               | -       | -                      |                                      |           |
| DdBµV       F1       F2         CF 5.775 GHz       691 pts       Span 200.0 MHz         Tarker         Type       Ref       Trc       Stimulus       Response       Function       Function Result         M1       1       5.732971 GHz       52.79 dBµV       52.79 dBµV       73.10 dbµV       0cc Bw       76.121562952 MHz         T2       1       5.813205 GHz       72.94 dBµV       0.97 dB       0.97 dB       0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 dBµ           | N    | _      |                           |              |                 |         |                        |                                      |           |
| CF 5.775 GHz       691 pts       Span 200.0 MHz         Marker       Type       Ref       Trc       Stimulus       Response       Function       Function Result         M1       1       5.732971 GHz       52.79 dBµV           T1       1       5.732971 GHz       73.10 dBµV           T2       1       5.813205 GHz       72.94 dBµV           D1       M1       1       84.348 MHz       0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 dBµV           | -    | _      | F1                        |              |                 | #2      |                        |                                      |           |
| Marker         Type       Ref       Trc       Stimulus       Response       Function       Function Result         M1       1       5.732971 GHz       52.79 dBµV           T1       1       5.732974 GHz       73.10 dBµV           T2       1       5.813205 GHz       72.94 dBµV           D1       M1       1       84.348 MHz       0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CF 5.7           | 75 0 | Hz     |                           |              | 691 pts         | -       |                        | Spar                                 | 200.0 MHz |
| Type       Ref       Trc       Stimulus       Response       Function       Function Result         M1       1       5.732971 GHz       52.79 dBµV           T1       1       5.732971 GHz       73.10 dBµV           T2       1       5.732951 GHz       73.10 dBµV           T2       1       5.813205 GHz       72.94 dBµV           D1       M1       1       84.348 MHz       0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1arker           | •    | 10.00  |                           |              | 10 C            |         |                        |                                      |           |
| M1       1       5.732971 GHz       52.79 0bpv         T1       1       5.737084 GHz       73.10 dbpv       Occ Bw       76.121562952 MHz         T2       1       5.813205 GHz       72.94 dbpv       D1       M1       84.348 MHz       0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Type             | Ref  | Trc    | Stimulus                  | Response     | Function        | Fun     | ction Resul            | t                                    |           |
| T2 1 5.813205 GHz 72.94 dBµV<br>D1 M1 1 84.348 MHz 0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T1               |      | 1      | 5.732971 GH               | 2 52.79 UBUV | Occ Bw          |         | 76.121565              | 952 MHz                              |           |
| D1 M1 1 84.348 MHz 0.97 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T2               | -    | 1      | 5.813205 GH               | z 72.94 dBuV | OCC DW          |         | .0.121302              | ANDE MILL                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1               | M1   | 1      | 84.348 MH                 | z 0.97 dB    |                 |         |                        |                                      |           |

# 26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 2 / 5775 MHz

Date: 27.DEC.2015 18:36:34



### 4.2. 6dB Spectrum Bandwidth Measurement

### 4.2.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

### 4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

| 6dB Spectrum Bandwidth |                 |  |  |  |
|------------------------|-----------------|--|--|--|
| Spectrum Parameters    | Setting         |  |  |  |
| Attenuation            | Auto            |  |  |  |
| Span Frequency         | > 6dB Bandwidth |  |  |  |
| RBW                    | 100kHz          |  |  |  |
| VBW                    | ≥ 3 x RBW       |  |  |  |
| Detector               | Peak            |  |  |  |
| Trace                  | Max Hold        |  |  |  |
| Sweep Time             | Auto            |  |  |  |

### 4.2.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth.
- 3. Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

### 4.2.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

### 4.2.5. Test Deviation

There is no deviation with the original standard.

### 4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



### 4.2.7. Test Result of 6dB Spectrum Bandwidth

| Temperature   | 24°C         | Humidity | 60% |
|---------------|--------------|----------|-----|
| Test Engineer | Clemens Fang |          |     |
|               |              |          |     |

| Mode                           | Frequency | 6dB Bandwidth (MHz) | Min. Limit (kHz) | Test Result |
|--------------------------------|-----------|---------------------|------------------|-------------|
|                                | 5745 MHz  | 16.58               | 500              | Complies    |
| 802.11a                        | 5785 MHz  | 16.58               | 500              | Complies    |
|                                | 5825 MHz  | 16.52               | 500              | Complies    |
| 802.11ac                       | 5745 MHz  | 17.80               | 500              | Complies    |
| MCS0/Nss1                      | 5785 MHz  | 17.74               | 500              | Complies    |
| VHT20                          | 5825 MHz  | 17.68               | 500              | Complies    |
| 802.11ac                       | 5755 MHz  | 36.52               | 500              | Complies    |
| VHT40                          | 5795 MHz  | 36.52               | 500              | Complies    |
| 802.11ac<br>MCS0/Nss1<br>VHT80 | 5775 MHz  | 76.52               | 500              | Complies    |

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.





### 6 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5825 MHz

Date: 27.DEC.2015 18:45:58

#### 6 dB Bandwidth Plot on Configuration IEEE 802.11 ac MCS0/Nss1 VHT20 / Chain 2 / 5825 MHz



Date: 27.DEC.2015 18:46:34





### 6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 2 / 5755MHz

Date: 27.DEC.2015 18:48:16

#### 6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 2 / 5775 MHz



Date: 27.DEC.2015 18:51:26



### 4.3. Maximum Conducted Output Power Measurement

### 4.3.1. Limit

| Frequency Band | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.725~5.85 GHz | The maximum conducted output power over the frequency band of<br>operation shall not exceed 1 W (30dBm). If transmitting antennas of<br>directional gain greater than 6 dBi are used, both the maximum<br>conducted output power and the maximum power spectral density shall<br>be reduced by the amount in dB that the directional gain of the antenna<br>exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this<br>band may employ transmitting antennas with directional gain greater<br>than 6 dBi without any corresponding reduction in transmitter conducted<br>power. |

### 4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

| Power Meter Parameter | Setting |
|-----------------------|---------|
| Detector              | AVERAGE |

### 4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

### 4.3.4. Test Setup Layout



### 4.3.5. Test Deviation

There is no deviation with the original standard.

### 4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



### 4.3.7. Test Result of Maximum Conducted Output Power

| Temperature   | <b>24°</b> C | Humidity  | 60%           |
|---------------|--------------|-----------|---------------|
| Test Engineer | Clemens Fang | Test Date | Dec. 27, 2015 |

| Mada               | Fraguanay | Conducted Power (dBm) | Max. Limit | Dogult   |
|--------------------|-----------|-----------------------|------------|----------|
| Mode               | riequency | Chain 2               | (dBm)      | Result   |
|                    | 5745 MHz  | 16.29                 | 30.00      | Complies |
| 802.11a            | 5785 MHz  | 16.32                 | 30.00      | Complies |
|                    | 5825 MHz  | 16.21                 | 30.00      | Complies |
| 802.11ac           | 5745 MHz  | 16.18                 | 30.00      | Complies |
| MCS0/Nss1          | 5785 MHz  | 16.38                 | 30.00      | Complies |
| VHT20              | 5825 MHz  | 16.31                 | 30.00      | Complies |
| 802.11ac           | 5755 MHz  | 13.68                 | 30.00      | Complies |
| VHT40              | 5795 MHz  | 16.12                 | 30.00      | Complies |
| 802.11ac           |           |                       |            |          |
| MCSO/Nss1<br>VHT80 | 5775 MHz  | 12.06                 | 30.00      | Complies |



### 4.4. Power Spectral Density Measurement

### 4.4.1. Limit

The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

| Frequency Band   | Limit         |
|------------------|---------------|
| ⊠ 5.725~5.85 GHz | 30 dBm/500kHz |

### 4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter                                                                              | Setting                                                      |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| Attenuation                                                                                     | Auto                                                         |  |  |  |
| Span Frequency                                                                                  | Encompass the entire emissions bandwidth (EBW) of the signal |  |  |  |
| RBW                                                                                             | 1000 kHz                                                     |  |  |  |
| VBW                                                                                             | 3000 kHz                                                     |  |  |  |
| Detector                                                                                        | RMS                                                          |  |  |  |
| Trace AVERAGE                                                                                   |                                                              |  |  |  |
| Sweep Time                                                                                      | Auto                                                         |  |  |  |
| Trace Average 100 times                                                                         |                                                              |  |  |  |
| Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to |                                                              |  |  |  |
| the measured result, whereas RBW ( $<$ 500 kHz) is the reduced resolution bandwidth of the      |                                                              |  |  |  |
| spectrum analyzer                                                                               | r set during measurement.                                    |  |  |  |



### 4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.
- 5. For  $5.725 \sim 5.85$  GHz, the measured result of PSD level must add  $10\log(500 \text{kHz/RBW})$  and the final result should  $\leq 30$  dBm.

### 4.4.4. Test Setup Layout



### 4.4.5. Test Deviation

There is no deviation with the original standard.

### 4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



### 4.4.7. Test Result of Power Spectral Density

| Temperature   | <b>24°</b> C | Humidity | 60% |
|---------------|--------------|----------|-----|
| Test Engineer | Clemens Fang |          |     |

### Configuration IEEE 802.11a / Chain 2

| Channel | Frequency | Power Density<br>(dBm/MHz) | 1 Olog(500kHz/RBW)<br>Factor (dB) | Power Density<br>(dBm/500kHz) | Power Density<br>Limit<br>(dBm/500kHz) | Result   |
|---------|-----------|----------------------------|-----------------------------------|-------------------------------|----------------------------------------|----------|
| 149     | 5745 MHz  | 3.09                       | -3.01                             | 0.08                          | 30.00                                  | Complies |
| 157     | 5785 MHz  | 3.07                       | -3.01                             | 0.06                          | 30.00                                  | Complies |
| 165     | 5825 MHz  | 3.10                       | -3.01                             | 0.09                          | 30.00                                  | Complies |

### Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 2

| Channel | Frequency | Power Density<br>(dBm/MHz) | 10log(500kHz/RBW)<br>Factor (dB) | Power Density<br>(dBm/500kHz) | Power Density<br>Limit<br>(dBm/500kHz) | Result   |
|---------|-----------|----------------------------|----------------------------------|-------------------------------|----------------------------------------|----------|
| 149     | 5745 MHz  | 3.08                       | -3.01                            | 0.07                          | 30.00                                  | Complies |
| 157     | 5785 MHz  | 3.33                       | -3.01                            | 0.32                          | 30.00                                  | Complies |
| 165     | 5825 MHz  | 3.25                       | -3.01                            | 0.24                          | 30.00                                  | Complies |

### Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 2

| Channel | Frequency | Power Density<br>(dBm/MHz) | 1 Olog(500kHz/RBW)<br>Factor (dB) | Power Density<br>(dBm/500kHz) | Power Density<br>Limit<br>(dBm/500kHz) | Result   |
|---------|-----------|----------------------------|-----------------------------------|-------------------------------|----------------------------------------|----------|
| 151     | 5755 MHz  | -2.35                      | -3.01                             | -5.36                         | 30.00                                  | Complies |
| 159     | 5795 MHz  | -0.06                      | -3.01                             | -3.07                         | 30.00                                  | Complies |

### Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 2

| Channel | Frequency | Power Density<br>(dBm/MHz) | 10log(500kHz/RBW)<br>Factor (dB) | Power Density<br>(dBm/500kHz) | Power Density<br>Limit<br>(dBm/500kHz) | Result   |
|---------|-----------|----------------------------|----------------------------------|-------------------------------|----------------------------------------|----------|
| 155     | 5775 MHz  | -7.13                      | -3.01                            | -10.14                        | 30.00                                  | Complies |

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.





Power Density Plot on Configuration IEEE 802.11a / Chain 2 / 5825 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 2 / 5785 MHz







Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 2 / 5795 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 2 / 5775 MHz





### 4.5. Radiated Emissions Measurement

### 4.5.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |  |  |
|-------------|--------------------|----------------------|--|--|
| (MHz)       | (micorvolts/meter) | (meters)             |  |  |
| 0.009~0.490 | 2400/F(kHz)        | 300                  |  |  |
| 0.490~1.705 | 24000/F(kHz)       | 30                   |  |  |
| 1.705~30.0  | 30                 | 30                   |  |  |
| 30~88       | 100                | 3                    |  |  |
| 88~216      | 150                | 3                    |  |  |
| 216~960     | 200                | 3                    |  |  |
| Above 960   | 500                | 3                    |  |  |

### 4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter                          | Setting                |
|---------------------------------------------|------------------------|
| Attenuation                                 | Auto                   |
| Start Frequency                             | 1000 MHz               |
| Stop Frequency                              | 40 GHz                 |
| RBW / VBW (Emission in restricted band)     | 1 MHz / 3MHz for Peak, |
|                                             | 1MHz / 1/T for Average |
| RBW / VBW (Emission in non-restricted band) | 1 MHz / 3MHz for peak  |

| Receiver Parameter          | Setting                           |
|-----------------------------|-----------------------------------|
| Attenuation                 | Auto                              |
| Start $\sim$ Stop Frequency | 9kHz~150kHz / RBW 200Hz for QP    |
| Start $\sim$ Stop Frequency | 150kHz~30MHz / RBW 9kHz for QP    |
| Start ~ Stop Frequency      | 30MHz~1000MHz / RBW 120kHz for QP |



### 4.5.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1m & 3m far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



### 4.5.4. Test Setup Layout



### 4.5.5. Test Deviation

There is no deviation with the original standard.

### 4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



### 4.5.7. Results for Radiated Emissions (1GHz~40GHz)

#### For PIFA Antenna:

| Tem   | perature | 2      | 3℃              |               | Hur           | Humidity60ConfigurationsIEE |                   |                  | 60%<br>IEEE 802.11a CH 149 / Chain 2 |       |         |            |  |
|-------|----------|--------|-----------------|---------------|---------------|-----------------------------|-------------------|------------------|--------------------------------------|-------|---------|------------|--|
| Test  | Engineer | Ģ      | ary Chu         |               | Co            |                             |                   |                  |                                      |       |         |            |  |
| Test  | Date     | C      | ec. 15, 2       | 2015          |               |                             |                   |                  |                                      |       |         |            |  |
| Horiz | ontal    |        |                 |               |               |                             |                   |                  |                                      |       |         |            |  |
|       | Freq     | Leve   | Limit<br>L Line | Over<br>Limit | Read<br>Level | Cable<br>Loss               | Antenna<br>Factor | Preamp<br>Factor | A/Pos                                | T/Pos | Remark  | Pol/Phase  |  |
|       | MHz      | dBu∀/r | n dBu∀/m        | dB            | dBu∨          | dB                          | dB/m              | dB               | cm                                   | deg   |         |            |  |
| 1     | 11489.06 | 46.2   | 54.00           | -7.75         | 26.18         | 14.24                       | 39.20             | 33.37            | 121                                  | 339   | Average | HORIZONTAL |  |
| 2     | 11489.37 | 59.3   | 7 74.00         | -14.63        | 39.30         | 14.24                       | 39.20             | 33.37            | 121                                  | 339   | Peak    | HORIZONTAL |  |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu∀/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 11489.44 | 46.39  | 54.00         | -7.61         | 26.32         | 14.24          | 39.20            | 33.37            | 123   | 333   | Average | VERTICAL  |
| 2 | 11490.69 | 58,91  | 74.00         | -15.09        | 38.84         | 14.24          | 39.20            | 33.37            | 123   | 333   | Peak    | VERTICAL  |



| Tem   | perature | 23                              | S℃            | Humidity 60%  |               |                               |                   |                  |       |       |         |            |
|-------|----------|---------------------------------|---------------|---------------|---------------|-------------------------------|-------------------|------------------|-------|-------|---------|------------|
| Test  | Engineer | ngineer Gary Chu Configurations |               |               |               | IEEE 802.11a CH 157 / Chain 2 |                   |                  |       |       |         |            |
| Test  | Date     | De                              | ec. 15, 2     | 2015          |               |                               |                   |                  |       |       |         |            |
| Horiz | ontal    |                                 |               |               |               |                               |                   |                  |       |       |         |            |
|       | Freq     | Level                           | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss                 | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|       | MHz      | dBu∀/m                          | dBu∀/m        | dB            | dBu∨          | dB                            | dB/m              | dB               | cm    | deg   |         |            |
| 1     | 11570.38 | 47.62                           | 54.00         | -6.38         | 27.46         | 14.35                         | 39.20             | 33.39            | 115   | 327   | Average | HORIZONTAL |
| 2     | 11570.72 | 61.41                           | 74.00         | -12.59        | 41.25         | 14.35                         | 39.20             | 33.39            | 115   | 327   | Peak    | HORIZOHTAL |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu∀/m | dBu∀/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   | (       | 10        |
| 1 | 11569.65 | 60.90  | 74.00         | -13.10        | 40.74         | 14.35          | 39.20            | 33.39            | 118   | 341   | Peak    | VERTICAL  |
| 2 | 11570.77 | 47.50  | 54.00         | -6.50         | 27.34         | 14.35          | 39.20            | 33.39            | 118   | 341   | Average | VERTICAL  |



| Temperature   | <b>23</b> ℃   | Humidity       | 60%                           |
|---------------|---------------|----------------|-------------------------------|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11a CH 165 / Chain 2 |
| Test Date     | Dec. 15, 2015 |                |                               |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|----------|---------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|------------|
|   | MHz      | dBu\∕/m | dBu∀/m        | dB            | dBu∀          | dB            | dB/m              | dB               | cm    | deg   |         | - V        |
| 1 | 11649.02 | 61.53   | 74.00         | -12.47        | 41.29         | 14.45         | 39.20             | 33.41            | 108   | 332   | Peak    | HORIZONTAL |
| 2 | 11650.92 | 48.63   | 54.00         | -5.37         | 28.33         | 14.51         | 39.20             | 33.41            | 108   | 332   | Average | HORIZONTAL |

|   |   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---|----------|---------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|-----------|
|   |   | MHz      | dBu\∕/m | dBu∀/m        | dB            | dBu∀          | dB            | dB/m              | dB               | cm    | deg   | -       | 8         |
|   | 1 | 11649.78 | 61.85   | 74.00         | -12.15        | 41.61         | 14.45         | 39.20             | 33.41            | 111   | 328   | Peak    | VERTICAL  |
| 1 | 2 | 11650.74 | 48.82   | 54.00         | -5.18         | 28.58         | 14.45         | 39.20             | 33.41            | 111   | 328   | Average | VERTICAL  |



| Temperature   | <b>23</b> ℃   | Humidity       | 60%                                               |
|---------------|---------------|----------------|---------------------------------------------------|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT20 CH 149 /<br>Chain 2 |
| Test Date     | Dec. 15, 2015 |                |                                                   |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|------------|
|   | MHz      | dBu∨/m | dBu\∕/m       | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   |         | - W        |
| 1 | 11490.43 | 59.63  | 74.00         | -14.37        | 39.56         | 14.24          | 39.20            | 33.37            | 105   | 331   | Peak    | HORIZONTAL |
| 2 | 11490.73 | 46.40  | 54.00         | -7.60         | 26.33         | 14.24          | 39.20            | 33.37            | 105   | 331   | Average | HORIZONTAL |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable/<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|---------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu\∕/m | dBu\/m        | dB            | dBu∨          | dB             | dB/m              | dB               | cm    | deg   | -       | 8         |
| 1 | 11489.05 | 59.99   | 74.00         | -14.01        | 39.92         | 14.24          | 39.20             | 33.37            | 107   | 324   | Peak    | VERTICAL  |
| 2 | 11489.44 | 46.41   | 54.00         | -7.59         | 26.34         | 14.24          | 39.20             | 33.37            | 107   | 324   | Average | VERTICAL  |



| Temperature   | <b>23</b> ℃   | Humidity       | 60%                                    |
|---------------|---------------|----------------|----------------------------------------|
| Test Fnaineer | Gary Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT20 CH 157 / |
|               | eary end      | Connigaranonio | Chain 2                                |
| Test Date     | Dec. 15, 2015 |                |                                        |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|----------|--------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|------------|
|   | MHz      | dBu∨/m | dBu∀/m        | dB            | dBu∀          | dB             | dB/m              | dB               | cm    | deg   |         | - W        |
| 1 | 11569.26 | 61.01  | 74.00         | -12.99        | 40.85         | 14.35          | 39.20             | 33.39            | 100   | 311   | Peak    | HORIZONTAL |
| 2 | 11570.82 | 47.70  | 54.00         | -6.30         | 27.54         | 14.35          | 39.20             | 33.39            | 100   | 311   | Average | HORIZONTAL |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable/<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|---------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu\//m | dBu\/m        | dB            | dBu√          | dB             | dB/m              | dB               | cm    | deg   | -       | 8         |
| 1 | 11570.12 | 61.06   | 74.00         | -12.94        | 40,90         | 14.35          | 39.20             | 33.39            | 102   | 328   | Peak    | VERTICAL  |
| 2 | 11570.64 | 47.86   | 54.00         | -6.14         | 27.70         | 14.35          | 39.20             | 33.39            | 102   | 328   | Average | VERTICAL  |



HORIZONTAL

| Tem   | perature | 23     | 3°C           |               | Hum           | idity         |                   | 60%              |          |        |            |            |
|-------|----------|--------|---------------|---------------|---------------|---------------|-------------------|------------------|----------|--------|------------|------------|
| Toot  | Engineer |        | any Chu       |               | Con           | ficurati      | 0.00              | IEEE 802         | 2.11ac M | MCSO/N | lss1 VHT20 | CH 165 /   |
| 1621  | Engineer | G      |               |               | Con           | iguiai        | ONS               | Chain 2          |          |        |            |            |
| Test  | Date     | De     | ec. 15, 2     | 015           |               |               |                   |                  |          |        |            |            |
| Horiz | ontal    |        |               |               |               |               |                   |                  |          |        |            |            |
|       | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos    | T/Pos  | Remark     | Pol/Phase  |
|       | MHz      | dBu∀/m | dBuV/m        | dB            | dBu∨          | dB            | dB/m              | dB               | cm       | deg    |            |            |
| 1     | 11650.13 | 48.67  | 54.00         | -5.33         | 28.43         | 14.45         | 39.20             | 33.41            | 102      | 289    | Average    | HORIZONTAL |

2 11650.55 62.22 74.00 -11.78 41.98 14.45 39.20 33.41 102 289 Peak

Т

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|------------|
|   | MHz      | dBu∨/m | dBu∀/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   |         | - 2<br>- 2 |
| 1 | 11650.10 | 61.60  | 74.00         | -12.40        | 41.36         | 14.45          | 39.20            | 33.41            | 104   | 298   | Peak    | VERTICAL   |
| 2 | 11650.44 | 48.76  | 54.00         | -5.24         | 28.52         | 14.45          | 39.20            | 33.41            | 104   | 298   | Average | VERTICAL   |



| Tem   | perature | 23     | S℃            |               | Hum           | idity          | 60%               |                                        |       |       |         |            |  |
|-------|----------|--------|---------------|---------------|---------------|----------------|-------------------|----------------------------------------|-------|-------|---------|------------|--|
| Toot  | Engineer |        |               |               | Con           | Configurations |                   | IEEE 802.11ac MCS0/Nss1 VHT40 CH 151 / |       |       |         |            |  |
| iesi  | Engineer | G      | ary Chu       |               | Con           | iiguraiid      | JIIS              | Chain 2                                | 1     |       |         |            |  |
| Test  | Date     | De     | ∋c. 15, 2     | 2015          |               |                |                   |                                        |       |       |         |            |  |
| Horiz | ontal    | -      |               |               |               |                |                   |                                        |       |       |         |            |  |
|       | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss  | Antenna<br>Factor | Preamp<br>Factor                       | A/Pos | T/Pos | Remark  | Pol/Phase  |  |
|       | MHz      | dBu∨/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m              | dB                                     | cm    | deg   |         |            |  |
| 1     | 11509.17 | 46.83  | 54.00         | -7.17         | 26.77         | 14.24          | 39.20             | 33.38                                  | 100   | 279   | Average | HORIZONTAL |  |
| 2     | 11509.31 | 60.40  | 74.00         | -13,60        | 40.34         | 14.24          | 39.20             | 33.38                                  | 100   | 279   | Peak    | HORIZONTAL |  |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu∨/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   |         | _         |
| 1 | 11509.11 | 47.14  | 54.00         | -6.86         | 27.08         | 14.24          | 39.20            | 33.38            | 101   | 282   | Average | VERTICAL  |
| 2 | 11509.49 | 60.26  | 74.00         | -13.74        | 40.20         | 14.24          | 39.20            | 33.38            | 101   | 282   | Peak    | VERTICAL  |



| Tem   | perature | 23     | 3°C           |               | Hum           | idity          | ty 60%           |                  |        |        |            |            |
|-------|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|--------|--------|------------|------------|
| Toot  | Engineer |        |               |               | Con           | flaunatio      |                  | EEE 802.         | 11ac M | CS0/Ns | s1 VHT40 C | CH 159 /   |
| lesi  | Engineer | G      | ary Chu       |               | Con           | ngurand        |                  | Chain 2          |        |        |            |            |
| Test  | Date     | D      | əc. 15, 2     | 2015          |               |                |                  |                  |        |        |            |            |
| Horiz | ontal    |        |               |               |               |                |                  |                  |        |        |            |            |
|       | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos  | T/Pos  | Remark     | Pol/Phase  |
|       | MHz      | dBu∨/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm     | deg    |            |            |
| 1     | 11590.50 | 48.29  | 54.00         | -5.71         | 28.09         | 14.40          | 39.20            | 33.40            | 120    | 271    | Average    | HORIZONTAL |
| 2     | 11590.55 | 62.08  | 74.00         | -11.92        | 41.88         | 14.40          | 39.20            | 33,40            | 120    | 271    | Peak       | HORIZOHTAL |

Т

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu∨/m | dBu\∕/m       | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 11590.85 | 61.12  | 74.00         | -12.88        | 40.92         | 14.40          | 39.20            | 33.40            | 122   | 269   | Peak    | VERTICAL  |
| 2 | 11590.90 | 48.16  | 54.00         | -5.84         | 27.96         | 14.40          | 39.20            | 33.40            | 122   | 269   | Average | VERTICAL  |



| Tem   | perature | 2      | 3℃            |               | Hum           | idity         | 60%               |                  |          |        |            |            |  |
|-------|----------|--------|---------------|---------------|---------------|---------------|-------------------|------------------|----------|--------|------------|------------|--|
| Toot  | Engineer |        | any Chu       |               | Con           | ficuratio     | 200               | IEEE 802         | 2.11ac M | NCSO/N | lss1 VHT80 | CH 155 /   |  |
| 1621  | Engineer | 9      | ary Chu       |               | Con           | ngurano       | 5115              | Chain 2          |          |        |            |            |  |
| Test  | Date     | D      | ec. 15,       | 2015          |               |               |                   |                  |          |        |            |            |  |
| Horiz | ontal    |        |               |               |               |               |                   |                  |          |        |            |            |  |
|       | Freq     | Leve]  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos    | T/Pos  | Remark     | Pol/Phase  |  |
|       | MHz      | dBu∨/n | dBu√/m        | dB            | dBu∨          | dB            | dB/m              | dB               | cm       | deg    |            |            |  |
| 1     | 11550.50 | 47.32  | 54.00         | -6.68         | 27.16         | 14.35         | 39.20             | 33.39            | 118      | 279    | Average    | HORIZONTAL |  |
| 2     | 11550,78 | 60.55  | 74.00         | -13.45        | 40.39         | 14.35         | 39.20             | 33.39            | 118      | 279    | Peak       | HORIZOHTAL |  |

1

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu∨/m | dBu√/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   | -       |           |
| 1 | 11550.25 | 47.67  | 54.00         | -6.33         | 27.51         | 14.35          | 39.20            | 33.39            | 122   | 287   | Average | VERTICAL  |
| 2 | 11550.51 | 60.90  | 74.00         | -13.10        | 40.74         | 14.35          | 39.20            | 33.39            | 122   | 287   | Peak    | VERTICAL  |



### For Dipole Antenna:

| Temperature   | <b>23</b> ℃   | Humidity       | 60%                           |
|---------------|---------------|----------------|-------------------------------|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11a CH 149 / Chain 2 |
| Test Date     | Dec. 15, 2015 |                |                               |

Horizontal

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|----------|---------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|------------|
|   | MHz      | dBu\∕/m | dBu∀/m        | dB            | dBu∨          | dB            | dB/m              | dB               | cm    | deg   |         | -2         |
| 1 | 11489.50 | 58.94   | 74.00         | -15.06        | 38.87         | 14.24         | 39.20             | 33.37            | 120   | 16    | Peak    | HORIZONTAL |
| 2 | 11490.92 | 45.99   | 54.00         | -8.01         | 25.92         | 14.24         | 39.20             | 33.37            | 120   | 16    | Average | HORIZONTAL |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|---------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu\//m | dBu∀/m        | dB            | dBu∀          | dB             | dB/m              | dB               | cm    | deg   |         |           |
| 1 | 11489.47 | 46.24   | 54.00         | -7.76         | 26.17         | 14.24          | 39.20             | 33.37            | 118   | 11    | Average | VERTICAL  |
| 2 | 11489.77 | 59.24   | 74.00         | -14.76        | 39.17         | 14.24          | 39.20             | 33.37            | 118   | 11    | Peak    | VERTICAL  |



| Temperature   | <b>23</b> ℃   | Humidity       | 60%                           |
|---------------|---------------|----------------|-------------------------------|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11a CH 157 / Chain 2 |
| Test Date     | Dec. 15, 2015 |                |                               |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|----------|---------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|------------|
|   | MHz      | dBu\∕/m | dBu√/m        | dB            | dBu∨          | dB            | dB/m              | dB               | cm    | deg   |         |            |
| 1 | 11569.10 | 60.58   | 74.00         | -13.42        | 40.42         | 14.35         | 39.20             | 33.39            | 122   | 21    | Peak    | HORIZONTAL |
| 2 | 11570.70 | 47.29   | 54.00         | -6.71         | 27.13         | 14.35         | 39.20             | 33.39            | 122   | 21    | Average | HORIZONTAL |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|---------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu\//m | dBu∀/m        | dB            | dBu∨          | dB            | dB/m              | dB               | cm    | deg   |         |           |
| 1 | 11569.41 | 59.96   | 74.00         | -14.04        | 39.80         | 14.35         | 39.20             | 33.39            | 119   | 18    | Peak    | VERTICAL  |
| 2 | 11570.95 | 47.24   | 54.00         | -6.76         | 27.08         | 14.35         | 39.20             | 33.39            | 119   | 18    | Average | VERTICAL  |



| Tem   | perature | 2      | 3°C           |               | н             | lumidity      | ,                 | 60%              |         |         |           |            |
|-------|----------|--------|---------------|---------------|---------------|---------------|-------------------|------------------|---------|---------|-----------|------------|
| Test  | Engineer | G      | ary Chu       | I             | C             | onfigu        | rations           | IEEE 8           | 802.11c | 1 CH 16 | 5 / Chain | 2          |
| Test  | Date     | D      | ec. 15, :     | 2015          |               |               |                   |                  |         |         |           |            |
| loriz | ontal    |        |               |               |               |               |                   |                  |         |         |           |            |
|       | Freq     | Leve]  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos   | T/Pos   | Remark    | Pol/Phase  |
|       | MHz      | dBuV/n | dBu∀/m        | dB            | dBu∀          | dB            | dB/m              | dB               | cm      | deg     | -         |            |
| 1     | 11650.58 | 48.52  | 54.00         | -5.48         | 28.28         | 14.45         | 39.20             | 33.41            | 118     | 21      | Average   | HORIZONTAL |
| 2     | 11650.61 | 61.30  | 74.00         | -12.70        | 41.06         | 14.45         | 39.20             | 33.41            | 118     | 21      | Peak      | HORIZOHTAL |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|--------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu∨/m | dBu∨/m        | dB            | dBu∀          | dB             | dB/m              | dB               | cm    | deg   |         |           |
| 1 | 11650.66 | 48.49  | 54.00         | -5.51         | 28.25         | 14.45          | 39.20             | 33.41            | 121   | 25    | Average | VERTICAL  |
| 2 | 11650.77 | 61.54  | 74.00         | -12.46        | 41.24         | 14.51          | 39.20             | 33.41            | 121   | 25    | Peak    | VERTICAL  |



| Temperature   | <b>23</b> ℃   | Humidity       | 60%                                    |
|---------------|---------------|----------------|----------------------------------------|
| Test Engineer | Garv Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT20 CH 149 / |
| lest Engineer |               | <b>g</b>       | Chain 2                                |
| Test Date     | Dec. 15, 2015 |                |                                        |
|               |               |                |                                        |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|----------|--------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|------------|
|   | MHz      | dBu∀/m | dBu√/m        | dB            | dBu∨          | dB            | dB/m              | dB               | cm    | deg   |         |            |
| 1 | 11489.17 | 59.45  | 74.00         | -14.55        | 39.38         | 14.24         | 39.20             | 33.37            | 114   | 28    | Peak    | HORIZONTAL |
| 2 | 11489.38 | 46.08  | 54.00         | -7.92         | 26.01         | 14.24         | 39.20             | 33.37            | 114   | 28    | Average | HORIZONTAL |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|---------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu\//m | dBu∀/m        | dB            | dBu∀          | dB            | dB/m              | dB               | cm    | deg   |         |           |
| 1 | 11489.30 | 46.08   | 54.00         | -7.92         | 26.01         | 14.24         | 39.20             | 33.37            | 115   | 31    | Average | VERTICAL  |
| 2 | 11490.80 | 59.51   | 74.00         | -14.49        | 39.44         | 14.24         | 39.20             | 33.37            | 115   | 31    | Peak    | VERTICAL  |



| Temperature 23°C |          |     |     |               |               |               | idity         | 6                 | 60%              |        |        |            |            |
|------------------|----------|-----|-----|---------------|---------------|---------------|---------------|-------------------|------------------|--------|--------|------------|------------|
| Toot             | Engineer |     | ~   |               |               | Con           | ila vati      |                   | EEE 802.         | 11ac M | CS0/Ns | s1 VHT20 ( | CH 157 /   |
| 1621             | Engineer |     | GC  | ary Chu       |               | Com           | iguraid       |                   | Chain 2          |        |        |            |            |
| Test             | Date     |     | De  | ec. 15, 2     | 2015          |               |               | ·                 |                  |        |        |            |            |
| Horiz            | ontal    |     |     |               |               |               |               |                   |                  |        |        |            |            |
|                  | Freq     | Le  | vel | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos  | T/Pos  | Remark     | Pol/Phase  |
|                  | MHz      | dBu | V/m | dBu∨/m        | dB            | dBu∀          | dB            | dB/m              | dB               | cm     | deg    |            |            |
| 1                | 11570.00 | 47  | .43 | 54.00         | -6.57         | 27.27         | 14.35         | 39.20             | 33.39            | 109    | 38     | Average    | HORIZONTAL |
| 2                | 11570.09 | 60  | .53 | 74.00         | -13.47        | 40.37         | 14.35         | 39.20             | 33.39            | 109    | 38     | Peak       | HORIZONTAL |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|---------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu\//m | dBu∀/m        | dB            | dBu∨          | dB            | dB/m              | dB               | cm    | deg   | -       | -2        |
| 1 | 11569.06 | 60.60   | 74.00         | -13.40        | 40.44         | 14.35         | 39.20             | 33.39            | 112   | 33    | Peak    | VERTICAL  |
| 2 | 11570.12 | 47.52   | 54.00         | -6.48         | 27.36         | 14.35         | 39.20             | 33.39            | 112   | 33    | Average | VERTICAL  |



| Temperature23°C |          |     |     |               |               | Humidity      |               |                   | 60%              |          |        |            |            |
|-----------------|----------|-----|-----|---------------|---------------|---------------|---------------|-------------------|------------------|----------|--------|------------|------------|
| Tort            | Engineer |     | 6   |               |               | Con           | figurati      | 0.06              | IEEE 802         | 2.11ac N | MCSO/N | lss1 VHT20 | CH 165 /   |
| 1031            | Engineer |     | GC  |               |               | Con           | ngurun        |                   | Chain 2          |          |        |            |            |
| Test            | Date     |     | De  | ec. 15, 2     |               |               |               |                   |                  |          |        |            |            |
| Horiz           | ontal    |     |     |               |               |               |               |                   |                  |          |        |            |            |
|                 | Freq     | Le  | vel | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos    | T/Pos  | Remark     | Pol/Phase  |
|                 | MHz      | dBu | //m | dBu∀/m        | dB            | dBu∀          | dB            | dB/m              | dB               | cm       | deg    |            |            |
| 1               | 11649.16 | 48. | .45 | 54.00         | -5.55         | 28.21         | 14.45         | 39.20             | 33.41            | 105      | 52     | Average    | HORIZONTAL |
| 2               | 11650.37 | 61. | .47 | 74.00         | -12.53        | 41.23         | 14.45         | 39.20             | 33.41            | 105      | 52     | Peak       | HORIZONTAL |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|---------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu\∕/m | dBu∀/m        | dB            | dBu∨          | dB            | dB/m              | dB               | cm    | deg   | _       |           |
| 1 | 11649.41 | 61.23   | 74.00         | -12.77        | 40.99         | 14.45         | 39.20             | 33.41            | 107   | 41    | Peak    | VERTICAL  |
| 2 | 11650.39 | 48.68   | 54.00         | -5.32         | 28.44         | 14.45         | 39.20             | 33.41            | 107   | 41    | Average | VERTICAL  |



| Tem   | perature |     | 23   | °C            |               | Humidity      |                   |                   | 60%              |          |        |            |           |
|-------|----------|-----|------|---------------|---------------|---------------|-------------------|-------------------|------------------|----------|--------|------------|-----------|
| Tort  | Engineer |     | 6    |               |               | Con           | figurati          | 0.000             | IEEE 802         | 2.11ac N | MCS0/N | lss1 VHT40 | CH 151 /  |
| 1621  | Engineer |     | GC   | ary Chu       |               | Con           | iiguraii          | ONS               | Chain 2          |          |        |            |           |
| Test  | Date     |     | De   | ec. 15, 2     | 2015          |               |                   |                   |                  |          |        |            |           |
| Horiz | ontal    |     |      |               |               |               |                   |                   |                  |          |        |            |           |
|       | Freq     | Le  | /el  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss     | Antenna<br>Factor | Preamp<br>Factor | A/Pos    | T/Pos  | Remark     | Pol/Phase |
|       | MHz      | dBu | //m  | dBu∀/m        | dB            | dBu∀          | dB                | dB/m              | dB               | cm       | deg    |            |           |
| 1     | 11509.08 | 46. | . 51 | 54.00         | -7.49         | 26.45         | 14.24             | 39.20             | 33.38            | 104      | 65     | Average    | HORIZONTA |
| 2     | 11509.71 | 59. | .25  | 74.00         | -14.75        | 39,19         | 39.19 14.24 39.20 |                   | 33.38            | 104      | 65     | Peak       | HORIZONTA |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu∨/m | dBu∨/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   | -       |           |
| 1 | 11509.03 | 46.65  | 54.00         | -7.35         | 26.59         | 14.24          | 39.20            | 33.38            | 108   | 62    | Average | VERTICAL  |
| 2 | 11510.95 | 59.74  | 74.00         | -14.26        | 39.68         | 14.24          | 39.20            | 33.38            | 108   | 62    | Peak    | VERTICAL  |



| Temperature   | <b>23</b> ℃   | Humidity       | 60%                                               |
|---------------|---------------|----------------|---------------------------------------------------|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT40 CH 159 /<br>Chain 2 |
| Test Date     | Dec. 15, 2015 |                |                                                   |

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable/<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|----------|--------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|------------|
|   | MHz      | dBu∀/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m              | dB               | cm    | deg   |         |            |
| 1 | 11590.14 | 61.07  | 74.00         | -12.93        | 40.87         | 14.40          | 39.20             | 33.40            | 100   | 71    | Peak    | HORIZONTAL |
| 2 | 11590.94 | 47.91  | 54.00         | -6.09         | 27.71         | 14.40          | 39.20             | 33.40            | 100   | 71    | Average | HORIZONTAL |

|   | Freq     | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|---------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu\∕/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   | -       | -2        |
| 1 | 11590.34 | 61.16   | 74.00         | -12.84        | 40.96         | 14.40          | 39.20            | 33.40            | 102   | 69    | Peak    | VERTICAL  |
| 2 | 11590.62 | 48.04   | 54.00         | -5.96         | 27.84         | 14.40          | 39.20            | 33.40            | 102   | 69    | Average | VERTICAL  |



| Tem   | perature |      | 23°C    |               |               | Hum           | Humidity      |                   |                                        | 60%   |       |         |            |  |  |  |
|-------|----------|------|---------|---------------|---------------|---------------|---------------|-------------------|----------------------------------------|-------|-------|---------|------------|--|--|--|
| Toot  | Engineer |      | Car     | Chu           |               | Cont          | ilau uati     |                   | IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 / |       |       |         |            |  |  |  |
| lest  | Engineer |      | Gary    | / Chu         |               | Con           | igurano       | ons               | Chain 2                                |       |       |         |            |  |  |  |
| Test  | Date     |      | Dec.    | . 15, 2       | 015           |               |               | <u>.</u>          |                                        |       |       |         |            |  |  |  |
| Horiz | ontal    |      |         |               |               |               |               |                   |                                        |       |       |         |            |  |  |  |
|       | Freq     | Lev  | L<br>el | .imit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor                       | A/Pos | T/Pos | Remark  | Pol/Phase  |  |  |  |
|       | MHz      | dBu∀ | /m dB   | BuV/m         | dB            | dBu∀          | dB            | dB/m              | dB                                     | cm    | deg   | -       |            |  |  |  |
| 1     | 11549.16 | 60.  | 52 7    | 74.00         | -13.48        | 40.42         | 14.29         | 39.20             | 33.39                                  | 137   | 93    | Peak    | HORIZONTAL |  |  |  |
| 2     | 11550.90 | 47.  | 34 5    | 54.00         | -6.66         | 27.18         | 14.35         | 39.20             | 33.39                                  | 137   | 93    | Average | HORIZONTAL |  |  |  |

#### Vertical

|   | Freq     | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|----------|--------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz      | dBu∨/m | uV/m dBuV/m   | dB            | dBu∀          | dB             | dB/m              | dB               | cm    | deg   | -       |           |
| 1 | 11550.60 | 47.34  | 54.00         | -6.66         | 27.18         | 14.35          | 39.20             | 33.39            | 133   | 82    | Average | VERTICAL  |
| 2 | 11550.87 | 60.18  | 74.00         | -13.82        | 40.02         | 14.35          | 39.20             | 33.39            | 133   | 82    | Peak    | VERTICAL  |

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) =  $20 \log Emission level (uV/m)$ .

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.



### 4.6. Band Edge Emissions Measurement

### 4.6.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies<br>(MHz) | Field Strength<br>(micorvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(kHz)                          | 300                              |
| 0.490~1.705          | 24000/F(kHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

### 4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter                          | Setting                |
|---------------------------------------------|------------------------|
| Attenuation                                 | Auto                   |
| Span Frequency                              | 100 MHz                |
| RBW / VBW (Emission in restricted band)     | 1MHz / 3MHz for Peak,  |
|                                             | 1MHz / 1/T for Average |
| RBW / VBW (Emission in non-restricted band) | 1MHz / 3MHz for Peak   |

### 4.6.3. Test Procedures

1. The test procedure is the same as section 4.5.3.

### 4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

### 4.6.5. Test Deviation

There is no deviation with the original standard.

### 4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



### 4.6.7. Test Result of Band Edge and Fundamental Emissions

#### For PIFA Antenna:

| Temperature   | <b>23℃</b>    | Humidity       | 60%                             |
|---------------|---------------|----------------|---------------------------------|
| Test Engineer | Cary Chu      | Configurations | IEEE 802.11a CH 149, 157, 165 / |
|               |               | Comgaranons    | Chain 2                         |
| Test Date     | Dec. 14, 2015 |                |                                 |

### Channel 149

|   | Freq    | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|---------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBu\∕/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   | -       |           |
| 1 | 5714.60 | 63.05   | 68.20         | -5.15         | 53.24         | 8.51           | 34.43            | 33.13            | 149   | 189   | Peak    | VERTICAL  |
| 2 | 5724.60 | 71.17   | 78.20         | -7.03         | 61.39         | 8.47           | 34.44            | 33.13            | 149   | 189   | Peak    | VERTICAL  |
| 3 | 5751.20 | 95.12   |               |               | 85.38         | 8.43           | 34.45            | 33.14            | 149   | 189   | Average | VERTICAL  |
| 4 | 5751.40 | 104.14  |               |               | 94.40         | 8.43           | 34.45            | 33.14            | 149   | 189   | Peak    | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5745 MHz.

#### Channel 157

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|------------|
|   | MHz     | dBu∨/m | dBuV/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   |         |            |
| 1 | 5698.60 | 60.74  | 68.20         | -7.46         | 50.89         | 8.56           | 34.42            | 33.13            | 155   | 217   | Peak    | HORIZONTAL |
| 2 | 5721.40 | 61.61  | 78.20         | -16.59        | 51.80         | 8.51           | 34.43            | 33.13            | 155   | 217   | Peak    | HORIZONTAL |
| 3 | 5778.60 | 103.42 |               |               | 93.75         | 8.35           | 34.47            | 33.15            | 155   | 217   | Peak    | HORIZONTAL |
| 4 | 5778.60 | 93.97  |               |               | 84.30         | 8.35           | 34.47            | 33.15            | 155   | 217   | Average | HORIZONTAL |
| 5 | 5855.00 | 62.28  | 78.20         | -15.92        | 52.38         | 8.56           | 34.51            | 33.17            | 155   | 217   | Peak    | HORIZONTAL |
| 6 | 5869.40 | 62.16  | 68.20         | -6.04         | 52.18         | 8.64           | 34.52            | 33.18            | 155   | 217   | Peak    | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 5785 MHz.

### Channel 165

|   | Freq    | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|---------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|------------|
| Ĩ | MHz     | dBu\∕/m | dBu\∕/m       | dB            | dBuV          | dB             | dB/m              | dB               | cm    | deg   | -       |            |
| 1 | 5831.20 | 95.80   |               |               | 86.00         | 8,47           | 34.50             | 33.17            | 153   | 215   | Average | HORIZONTAL |
| 2 | 5831.40 | 104.65  |               |               | 94.85         | 8.47           | 34.50             | 33.17            | 153   | 215   | Peak    | HORIZONTAL |
| 3 | 5850.00 | 68.06   | 78.20         | -10.14        | 58.16         | 8.56           | 34.51             | 33.17            | 153   | 215   | Peak    | HORIZONTAL |
| 4 | 5864.40 | 63.60   | 68.20         | -4.60         | 53,62         | 8.64           | 34.52             | 33.18            | 153   | 215   | Peak    | HORIZONTAL |

Item 1, 2 are the fundamental frequency at 5825 MHz.



| Temperature   | <b>23</b> °C  | Humidity       | 60%                                                         |
|---------------|---------------|----------------|-------------------------------------------------------------|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT20 CH 149,<br>157, 165 / Chain 2 |
| Test Date     | Dec. 14, 2015 |                |                                                             |

|   | Freq    | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|---------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
| Ĩ | MHz     | dBu\∕/m | dBu∀/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   | -       |           |
| 1 | 5709.80 | 64.57   | 68.20         | -3.63         | 54.76         | 8.51           | 34.43            | 33.13            | 151   | 182   | Peak    | VERTICAL  |
| 2 | 5723.40 | 75.19   | 78.20         | -3.01         | 65.41         | 8.47           | 34.44            | 33.13            | 151   | 182   | Peak    | VERTICAL  |
| 3 | 5750.40 | 94.97   |               |               | 85.23         | 8.43           | 34.45            | 33.14            | 151   | 182   | Average | VERTICAL  |
| 4 | 5751.40 | 104.50  |               |               | 94.76         | 8.43           | 34.45            | 33.14            | 151   | 182   | Peak    | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5745 MHz.

### Channel 157

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|------------|
|   | MHz     | dBu∨/m | dBu√/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   |         |            |
| 1 | 5709.80 | 60.82  | 68.20         | -7.38         | 51.01         | 8.51           | 34.43            | 33.13            | 151   | 219   | Peak    | HORIZONTAL |
| 2 | 5723.00 | 60.84  | 78.20         | -17.36        | 51.06         | 8.47           | 34.44            | 33.13            | 151   | 219   | Peak    | HORIZONTAL |
| 3 | 5779.40 | 103.46 |               |               | 93.79         | 8.35           | 34.47            | 33.15            | 151   | 219   | Peak    | HORIZONTAL |
| 4 | 5779.40 | 93.97  |               |               | 84.30         | 8.35           | 34.47            | 33.15            | 151   | 219   | Average | HORIZONTAL |
| 5 | 5854.00 | 61.64  | 78.20         | -16.56        | 51.74         | 8.56           | 34.51            | 33.17            | 151   | 219   | Peak    | HORIZONTAL |
| 6 | 5877.40 | 62.64  | 68.20         | -5.56         | 52.57         | 8.72           | 34.53            | 33.18            | 151   | 219   | Peak    | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 5785 MHz.

#### Channel 165

|   |         |         | Limit  | Over  | Read  | Cable | Antenna | Preamp | A/Pos | T/Pos |         |           |
|---|---------|---------|--------|-------|-------|-------|---------|--------|-------|-------|---------|-----------|
|   | Freq    | Level   | Line   | Limit | Level | Loss  | Factor  | Factor |       |       | Remark  | Pol/Phase |
|   | MHz     | dBu\//m | dBu\/m | dB    | dBu∀  | dB    | dB/m    | dB     | cm    | deg   | -       | -0        |
| 1 | 5831.40 | 106.11  |        |       | 96.31 | 8.47  | 34.50   | 33.17  | 153   | 183   | Peak    | VERTICAL  |
| 2 | 5832.00 | 96.71   |        |       | 86.91 | 8.47  | 34.50   | 33.17  | 153   | 183   | Average | VERTICAL  |
| 3 | 5851.80 | 68.98   | 78.20  | -9.22 | 59.08 | 8.56  | 34.51   | 33.17  | 153   | 183   | Peak    | VERTICAL  |
| 4 | 5861.00 | 65.64   | 68.20  | -2.56 | 55.66 | 8.64  | 34.52   | 33.18  | 153   | 183   | Peak    | VERTICAL  |

Item 1, 2 are the fundamental frequency at 5825 MHz.



| Temperature   | <b>23℃</b>    | Humidity       | 60%                                   |
|---------------|---------------|----------------|---------------------------------------|
| Tost Engineer |               | Configurations | IEEE 802.11ac MCS0/Nss1 VHT40 CH 151, |
|               | Gary Cha      | Conligurations | 159 / Chain 2                         |
| Test Date     | Dec. 15, 2015 |                |                                       |

|   | Freq    | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|---------|---------------|---------------|---------------|----------------|-------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBu\∕/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m              | dB               | cm    | deg   | -       |           |
| 1 | 5715.00 | 67.54   | 68.20         | -0.66         | 57.73         | 8.51           | 34.43             | 33.13            | 148   | 187   | Peak    | VERTICAL  |
| 2 | 5719.00 | 72.30   | 78.20         | -5.90         | 62.49         | 8.51           | 34.43             | 33.13            | 148   | 187   | Peak    | VERTICAL  |
| 3 | 5752.60 | 99.45   |               |               | 89.71         | 8.43           | 34.45             | 33.14            | 148   | 187   | Peak    | VERTICAL  |
| 4 | 5756.60 | 90.37   |               |               | 80.66         | 8.39           | 34.46             | 33.14            | 148   | 187   | Average | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5755 MHz.

### Channel 159

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase  |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|------------|
|   | MHz     | dBu∨/m | dBuV/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   |         |            |
| 1 | 5714.60 | 61.16  | 68.20         | -7.04         | 51.35         | 8.51           | 34.43            | 33.13            | 157   | 217   | Peak    | HORIZONTAL |
| 2 | 5715.80 | 62.37  | 78.20         | -15.83        | 52.56         | 8.51           | 34.43            | 33.13            | 157   | 217   | Peak    | HORIZONTAL |
| 3 | 5805.40 | 101.28 |               |               | 91.65         | 8.31           | 34.48            | 33.16            | 157   | 217   | Peak    | HORIZONTAL |
| 4 | 5810.60 | 91.89  |               |               | 82.17         | 8.39           | 34.49            | 33.16            | 157   | 217   | Average | HORIZONTAL |
| 5 | 5859.00 | 65.58  | 78.20         | -12.62        | 55.59         | 8.64           | 34.52            | 33.17            | 157   | 217   | Peak    | HORIZONTAL |
| 6 | 5864.20 | 64.31  | 68.20         | -3.89         | 54.33         | 8.64           | 34.52            | 33.18            | 157   | 217   | Peak    | HORIZONTAL |
|   |         |        |               |               |               |                |                  |                  |       |       |         |            |

Item 3, 4 are the fundamental frequency at 5795 MHz.



| Temperature   | <b>23°</b> ℃  | Humidity       | 60%                                    |
|---------------|---------------|----------------|----------------------------------------|
| Tost Engineer | Cary Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 / |
|               | Gary Chu      | Conligurations | Chain 2                                |
| Test Date     | Dec. 15, 2015 |                |                                        |

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBu∨/m | dBu√/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5704.00 | 67.68  | 68.20         | -0.52         | 57.83         | 8.56           | 34.42            | 33.13            | 152   | 186   | Peak    | VERTICAL  |
| 2 | 5720.00 | 68.20  | 78.20         | -10.00        | 58.39         | 8.51           | 34.43            | 33.13            | 152   | 186   | Peak    | VERTICAL  |
| 3 | 5793.00 | 96.49  |               |               | 86.85         | 8.31           | 34.48            | 33.15            | 152   | 186   | Peak    | VERTICAL  |
| 4 | 5793.00 | 86.65  |               |               | 77.01         | 8.31           | 34.48            | 33.15            | 152   | 186   | Average | VERTICAL  |
| 5 | 5851.00 | 63.91  | 78.20         | -14.29        | 54.01         | 8.56           | 34.51            | 33.17            | 152   | 186   | Peak    | VERTICAL  |
| 6 | 5869.00 | 64.96  | 68.20         | -3.24         | 54.98         | 8.64           | 34.52            | 33.18            | 152   | 186   | Peak    | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5775 MHz.



### For Dipole Antenna:

| Test Engineer       Gary Chu       Configurations       IEEE 802.11a CH 149, 157, 165 / | Humidity 60%                                  | Humidity       | 23°C          | Temperature   |
|-----------------------------------------------------------------------------------------|-----------------------------------------------|----------------|---------------|---------------|
|                                                                                         | Configurations IEEE 802.11a CH 149, 157, 165, | Configurations | Gary Chu      | Test Engineer |
|                                                                                         | Chain 2                                       |                |               | -             |
| <b>Test Date</b> Dec. 15, 2015                                                          |                                               |                | Dec. 15, 2015 | Test Date     |

#### Channel 149

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBu∨/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5713.40 | 63.61  | 68.20         | -4.59         | 53.80         | 8.51           | 34.43            | 33.13            | 225   | 197   | Peak    | VERTICAL  |
| 2 | 5725.00 | 73.96  | 78.20         | -4.24         | 64.18         | 8.47           | 34.44            | 33.13            | 225   | 197   | Peak    | VERTICAL  |
| 3 | 5738.60 | 109.37 |               |               | 99.60         | 8.47           | 34.44            | 33.14            | 225   | 197   | Peak    | VERTICAL  |
| 4 | 5739.80 | 99.65  |               |               | 89.91         | 8.43           | 34.45            | 33.14            | 225   | 197   | Average | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5745 MHz.

### Channel 157

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBu∨/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5713.00 | 60.22  | 68.20         | -7.98         | 50.41         | 8.51           | 34.43            | 33.13            | 224   | 195   | Peak    | VERTICAL  |
| 2 | 5725.00 | 59.33  | 78.20         | -18.87        | 49.55         | 8.47           | 34.44            | 33.13            | 224   | 195   | Peak    | VERTICAL  |
| 3 | 5778.60 | 105.99 |               |               | 96.32         | 8.35           | 34.47            | 33.15            | 224   | 195   | Peak    | VERTICAL  |
| 4 | 5779.80 | 96.46  |               |               | 86.79         | 8.35           | 34.47            | 33.15            | 224   | 195   | Average | VERTICAL  |
| 5 | 5850.00 | 59.68  | 78.20         | -18.52        | 49.78         | 8.56           | 34.51            | 33.17            | 224   | 195   | Peak    | VERTICAL  |
| 6 | 5861.00 | 62.47  | 68.20         | -5.73         | 52.49         | 8.64           | 34.52            | 33.18            | 224   | 195   | Peak    | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5785 MHz.

### Channel 165

|   | Freq    | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|---------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBu\//m | dBu∀/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5818.60 | 108.14  |               |               | 98.42         | 8.39           | 34.49            | 33.16            | 225   | 197   | Peak    | VERTICAL  |
| 2 | 5831.20 | 98.80   |               |               | 89.00         | 8.47           | 34.50            | 33.17            | 225   | 197   | Average | VERTICAL  |
| 3 | 5850.00 | 70.30   | 78.20         | -7.90         | 60.40         | 8.56           | 34.51            | 33.17            | 225   | 197   | Peak    | VERTICAL  |
| 4 | 5860.20 | 64.67   | 68.20         | -3.53         | 54,69         | 8.64           | 34.52            | 33.18            | 225   | 197   | Peak    | VERTICAL  |

Item 1, 2 are the fundamental frequency at 5825 MHz.



| Temperature   | <b>23</b> ℃   | Humidity       | 60%                                                         |
|---------------|---------------|----------------|-------------------------------------------------------------|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT20 CH 149,<br>157, 165 / Chain 2 |
| Test Date     | Dec. 15, 2015 |                |                                                             |

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBuV/m | dBu∀/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5710.80 | 64.42  | 68.20         | -3.78         | 54.61         | 8.51           | 34.43            | 33.13            | 221   | 197   | Peak    | VERTICAL  |
| 2 | 5724.60 | 77.12  | 78.20         | -1.08         | 67.34         | 8.47           | 34.44            | 33.13            | 221   | 197   | Peak    | VERTICAL  |
| 3 | 5739.40 | 99.96  |               |               | 90.22         | 8.43           | 34.45            | 33.14            | 221   | 197   | Average | VERTICAL  |
| 4 | 5739.60 | 108.50 |               |               | 98.76         | 8.43           | 34.45            | 33.14            | 221   | 197   | Peak    | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5745 MHz.

### Channel 157

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBu∨/m | dBu\/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5704.20 | 61.32  | 68.20         | -6.88         | 51.47         | 8.56           | 34.42            | 33.13            | 224   | 199   | Peak    | VERTICAL  |
| 2 | 5719.80 | 61.27  | 78.20         | -16.93        | 51.46         | 8.51           | 34.43            | 33.13            | 224   | 199   | Peak    | VERTICAL  |
| 3 | 5779.40 | 108.82 |               |               | 99.15         | 8.35           | 34.47            | 33.15            | 224   | 199   | Peak    | VERTICAL  |
| 4 | 5779.40 | 99.30  |               |               | 89.63         | 8.35           | 34.47            | 33.15            | 224   | 199   | Average | VERTICAL  |
| 5 | 5853.20 | 62.76  | 78.20         | -15.44        | 52.86         | 8.56           | 34.51            | 33.17            | 224   | 199   | Peak    | VERTICAL  |
| 6 | 5870.20 | 62.78  | 68.20         | -5.42         | 52.80         | 8.64           | 34.52            | 33.18            | 224   | 199   | Peak    | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5785 MHz.

### Channel 165

|   | Freq    | Level   | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable#<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|---------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBu\∕/m | dBu∀/m        | dB            | dBu∀          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5819.40 | 98.91   |               |               | 89.19         | 8.39           | 34.49            | 33.16            | 223   | 199   | Average | VERTICAL  |
| 2 | 5820.20 | 108.34  |               |               | 98.62         | 8.39           | 34.49            | 33.16            | 223   | 199   | Peak    | VERTICAL  |
| 3 | 5851.60 | 71.22   | 78.20         | -6.98         | 61.32         | 8.56           | 34.51            | 33.17            | 223   | 199   | Peak    | VERTICAL  |
| 4 | 5860.20 | 66.94   | 68.20         | -1.26         | 56,96         | 8.64           | 34.52            | 33.18            | 223   | 199   | Peak    | VERTICAL  |

Item 1, 2 are the fundamental frequency at 5825 MHz.





| Temperature   | 23°C          | Humidity       | 60%                                   |  |  |
|---------------|---------------|----------------|---------------------------------------|--|--|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT40 CH 151, |  |  |
| •             |               | •              | 159 / Chain 2                         |  |  |
| Test Date     | Dec. 15, 2015 |                |                                       |  |  |

|   | Freq<br>MHz | Freq    | eq Level | Limit<br>Line | Over<br>Limit | Read<br>Level | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos   | Remark   | Pol/Phase |
|---|-------------|---------|----------|---------------|---------------|---------------|---------------|-------------------|------------------|-------|---------|----------|-----------|
|   |             | dBu\∕/m | dBu∀/m   | dB            | dBu∀          | dB            | dB/m          | dB                | cm               | deg   | -       | -0       |           |
| 1 | 5714.60     | 67.69   | 68.20    | -0.51         | 57.88         | 8.51          | 34.43         | 33.13             | 224              | 198   | Peak    | VERTICAL |           |
| 2 | 5719.00     | 71.97   | 78.20    | -6.23         | 62.16         | 8.51          | 34.43         | 33.13             | 224              | 198   | Peak    | VERTICAL |           |
| 3 | 5740.20     | 94.41   |          |               | 84.67         | 8.43          | 34.45         | 33.14             | 224              | 198   | Average | VERTICAL |           |
| 4 | 5741.00     | 102.71  |          |               | 92.97         | 8.43          | 34.45         | 33.14             | 224              | 198   | Peak    | VERTICAL |           |

Item 3, 4 are the fundamental frequency at 5755 MHz.

### Channel 159

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   |         | dBu∨/m | uV/m dBuV/m   | dB d          | dBu∀          | dBu∨ dB        | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5708.20 | 61.62  | 68.20         | -6.58         | 51.81         | 8.51           | 34.43            | 33.13            | 227   | 200   | Peak    | VERTICAL  |
| 2 | 5725.00 | 62.89  | 78.20         | -15.31        | 53.11         | 8.47           | 34.44            | 33.13            | 227   | 200   | Peak    | VERTICAL  |
| 3 | 5780.20 | 95.81  |               |               | 86.14         | 8.35           | 34.47            | 33.15            | 227   | 200   | Average | VERTICAL  |
| 4 | 5781.00 | 105.18 |               |               | 95.51         | 8.35           | 34.47            | 33.15            | 227   | 200   | Peak    | VERTICAL  |
| 5 | 5851.40 | 66.39  | 78.20         | -11.81        | 56.49         | 8.56           | 34.51            | 33.17            | 227   | 200   | Peak    | VERTICAL  |
| 6 | 5861.40 | 63.38  | 68.20         | -4.82         | 53.40         | 8.64           | 34.52            | 33.18            | 227   | 200   | Peak    | VERTICAL  |
|   | 2001.40 | 03.30  | 00.20         | 7.02          | 55.40         | 0.04           | 54.52            | 35.10            | 221   | 200   | L COV   | V LIVIT   |

Item 3, 4 are the fundamental frequency at 5795 MHz.



| Temperature   | <b>23°</b> ℃  | Humidity       | 60%                                    |
|---------------|---------------|----------------|----------------------------------------|
| Test Engineer | Gary Chu      | Configurations | IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 / |
| Test Date     | Dec. 15, 2015 |                |                                        |

|   | Freq    | Level  | Limit<br>Line | Over<br>Limit | Read<br>Level | CableA<br>Loss | ntenna<br>Factor | Preamp<br>Factor | A/Pos | T/Pos | Remark  | Pol/Phase |
|---|---------|--------|---------------|---------------|---------------|----------------|------------------|------------------|-------|-------|---------|-----------|
|   | MHz     | dBu∨/m | dBu∀/m        | dB            | dBu∨          | dB             | dB/m             | dB               | cm    | deg   |         |           |
| 1 | 5695.00 | 67.59  | 68.20         | -0.61         | 57.74         | 8.56           | 34.42            | 33.13            | 227   | 200   | Peak    | VERTICAL  |
| 2 | 5724.00 | 70.10  | 78.20         | -8.10         | 60.32         | 8.47           | 34.44            | 33.13            | 227   | 200   | Peak    | VERTICAL  |
| 3 | 5783.00 | 99.80  |               |               | 90.13         | 8.35           | 34.47            | 33.15            | 227   | 200   | Peak    | VERTICAL  |
| 4 | 5784.00 | 90.55  |               |               | 80.88         | 8.35           | 34.47            | 33.15            | 227   | 200   | Average | VERTICAL  |
| 5 | 5851.00 | 67.60  | 78.20         | -10.60        | 57.70         | 8.56           | 34.51            | 33.17            | 227   | 200   | Peak    | VERTICAL  |
| 6 | 5866.00 | 67.18  | 68.20         | -1.02         | 57.20         | 8.64           | 34.52            | 33.18            | 227   | 200   | Peak    | VERTICAL  |

Item 3, 4 are the fundamental frequency at 5775 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level





### 4.7. Frequency Stability Measurement

### 4.7.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be  $\pm$  20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

### 4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter | Setting                                          |
|--------------------|--------------------------------------------------|
| Attenuation        | Auto                                             |
| Span Frequency     | Entire absence of modulation emissions bandwidth |
| RBW                | 10 kHz                                           |
| VBW                | 10 kHz                                           |
| Sweep Time         | Auto                                             |

### 4.7.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is  $(fc-f)/fc \times 10^6$  ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 7. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 8. Extreme temperature is  $-20^{\circ}C \sim 70^{\circ}C$ .

### 4.7.4. Test Setup Layout







### 4.7.5. Test Deviation

There is no deviation with the original standard.

### 4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

### 4.7.7. Test Result of Frequency Stability

| Temperature   | <b>24</b> °C | Humidity  | 60%           |
|---------------|--------------|-----------|---------------|
| Test Engineer | Clemens Fang | Test Date | Dec. 27, 2015 |

### Mode: 20 MHz / Chain 2

### Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |           |  |  |  |  |  |
|----------------------|-----------------------------|-----------|-----------|-----------|--|--|--|--|--|
| 00                   | 5785 MHz                    |           |           |           |  |  |  |  |  |
| (*)                  | 0 Minute                    | 2 Minute  | 5 Minute  | 10 Minute |  |  |  |  |  |
| 126.50               | 5784.9782                   | 5784.9768 | 5784.9750 | 5784.9729 |  |  |  |  |  |
| 110.00               | 5784.9770                   | 5784.9757 | 5784.9741 | 5784.9722 |  |  |  |  |  |
| 93.50                | 5784.9756                   | 5784.9745 | 5784.9733 | 5784.9711 |  |  |  |  |  |
| Max. Deviation (MHz) | 0.0244                      | 0.0255    | 0.0267    | 0.0289    |  |  |  |  |  |
| Max. Deviation (ppm) | 4.22                        | 4.41      | 4.62      | 5.00      |  |  |  |  |  |
| Result               |                             | Com       | plies     |           |  |  |  |  |  |

### Temperature vs. Frequency Stability

| Temperature          | Measurement Frequency (MHz) |           |           |           |  |  |  |  |  |
|----------------------|-----------------------------|-----------|-----------|-----------|--|--|--|--|--|
| (**)                 | 5785 MHz                    |           |           |           |  |  |  |  |  |
| (°C)                 | 0 Minute                    | 2 Minute  | 5 Minute  | 10 Minute |  |  |  |  |  |
| -20                  | 5784.9824                   | 5784.9811 | 5784.9794 | 5784.9770 |  |  |  |  |  |
| -10                  | 5784.9809                   | 5784.9797 | 5784.9781 | 5784.9762 |  |  |  |  |  |
| 0                    | 5784.9795                   | 5784.9783 | 5784.9764 | 5784.9742 |  |  |  |  |  |
| 10                   | 5784.9782                   | 5784.9769 | 5784.9754 | 5784.9736 |  |  |  |  |  |
| 20                   | 5784.9770                   | 5784.9757 | 5784.9741 | 5784.9722 |  |  |  |  |  |
| 30                   | 5784.9756                   | 5784.9745 | 5784.9731 | 5784.9715 |  |  |  |  |  |
| 40                   | 5784.9740                   | 5784.9725 | 5784.9709 | 5784.9689 |  |  |  |  |  |
| 50                   | 5784.9723                   | 5784.9711 | 5784.9696 | 5784.9669 |  |  |  |  |  |
| 60                   | 5784.9722                   | 5784.9709 | 5784.9694 | 5784.9658 |  |  |  |  |  |
| 70                   | 5784.9721                   | 5784.9701 | 5784.9690 | 5784.9658 |  |  |  |  |  |
| Max. Deviation (MHz) | 0.0279                      | 0.0299    | 0.0310    | 0.0342    |  |  |  |  |  |
| Max. Deviation (ppm) | 4.82                        | 5.17      | 5.36      | 5.91      |  |  |  |  |  |
| Result               |                             | Corr      | plies     | •         |  |  |  |  |  |



### Mode: 40 MHz / Chain 2

### Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |           |  |  |  |  |  |
|----------------------|-----------------------------|-----------|-----------|-----------|--|--|--|--|--|
| 00                   | 5755 MHz                    |           |           |           |  |  |  |  |  |
| (*)                  | 0 Minute                    | 2 Minute  | 5 Minute  | 10 Minute |  |  |  |  |  |
| 126.50               | 5754.9778                   | 5754.9764 | 5754.9746 | 5754.9725 |  |  |  |  |  |
| 110.00               | 5754.9766                   | 5754.9753 | 5754.9737 | 5754.9718 |  |  |  |  |  |
| 93.50                | 5754.9752                   | 5754.9741 | 5754.9729 | 5754.9707 |  |  |  |  |  |
| Max. Deviation (MHz) | 0.0248                      | 0.0259    | 0.0271    | 0.0293    |  |  |  |  |  |
| Max. Deviation (ppm) | 4.32                        | 4.51      | 4.72      | 5.10      |  |  |  |  |  |
| Result               |                             | Com       | plies     |           |  |  |  |  |  |

### Temperature vs. Frequency Stability

| Temperature          | Measurement Frequency (MHz) |           |           |           |  |  |  |  |  |
|----------------------|-----------------------------|-----------|-----------|-----------|--|--|--|--|--|
| <b>%</b> C)          | 5755 MHz                    |           |           |           |  |  |  |  |  |
| ( 0)                 | 0 Minute                    | 2 Minute  | 5 Minute  | 10 Minute |  |  |  |  |  |
| -20                  | 5754.9820                   | 5754.9807 | 5754.9790 | 5754.9766 |  |  |  |  |  |
| -10                  | 5754.9805                   | 5754.9793 | 5754.9777 | 5754.9758 |  |  |  |  |  |
| 0                    | 5754.9791                   | 5754.9779 | 5754.9760 | 5754.9738 |  |  |  |  |  |
| 10                   | 5754.9778                   | 5754.9765 | 5754.9750 | 5754.9732 |  |  |  |  |  |
| 20                   | 5754.9766                   | 5754.9753 | 5754.9737 | 5754.9718 |  |  |  |  |  |
| 30                   | 5754.9752                   | 5754.9741 | 5754.9727 | 5754.9711 |  |  |  |  |  |
| 40                   | 5754.9736                   | 5754.9721 | 5754.9705 | 5754.9685 |  |  |  |  |  |
| 50                   | 5754.9719                   | 5754.9707 | 5754.9692 | 5754.9665 |  |  |  |  |  |
| 60                   | 5754.9712                   | 5754.9701 | 5754.9690 | 5754.9665 |  |  |  |  |  |
| 70                   | 5754.9706                   | 5754.9688 | 5754.9680 | 5754.9662 |  |  |  |  |  |
| Max. Deviation (MHz) | 0.0294                      | 0.0312    | 0.0320    | 0.0338    |  |  |  |  |  |
| Max. Deviation (ppm) | 5.11                        | 5.42      | 5.56      | 5.87      |  |  |  |  |  |
| Result               |                             | Com       | plies     |           |  |  |  |  |  |



### Mode: 80 MHz / Chain 2

### Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |           |  |
|----------------------|-----------------------------|-----------|-----------|-----------|--|
| 00                   | 5775 MHz                    |           |           |           |  |
| (*)                  | 0 Minute                    | 2 Minute  | 5 Minute  | 10 Minute |  |
| 126.50               | 5774.9773                   | 5774.9759 | 5774.9741 | 5774.9720 |  |
| 110.00               | 5774.9761                   | 5774.9748 | 5774.9732 | 5774.9713 |  |
| 93.50                | 5774.9747                   | 5774.9736 | 5774.9724 | 5774.9702 |  |
| Max. Deviation (MHz) | 0.0253                      | 0.0264    | 0.0276    | 0.0298    |  |
| Max. Deviation (ppm) | 4.38                        | 4.57      | 4.78      | 5.16      |  |
| Result               | Complies                    |           |           |           |  |

### Temperature vs. Frequency Stability

| Temperature          | Measurement Frequency (MHz) |           |           |           |  |  |
|----------------------|-----------------------------|-----------|-----------|-----------|--|--|
| (%)                  | 5775 MHz                    |           |           |           |  |  |
| ( )                  | 0 Minute                    | 2 Minute  | 5 Minute  | 10 Minute |  |  |
| -20                  | 5774.9815                   | 5774.9802 | 5774.9785 | 5774.9761 |  |  |
| -10                  | 5774.9800                   | 5774.9788 | 5774.9772 | 5774.9753 |  |  |
| 0                    | 5774.9786                   | 5774.9774 | 5774.9755 | 5774.9733 |  |  |
| 10                   | 5774.9773                   | 5774.9760 | 5774.9745 | 5774.9727 |  |  |
| 20                   | 5774.9761                   | 5774.9748 | 5774.9732 | 5774.9713 |  |  |
| 30                   | 5774.9747                   | 5774.9736 | 5774.9722 | 5774.9706 |  |  |
| 40                   | 5774.9731                   | 5774.9716 | 5774.9700 | 5774.9680 |  |  |
| 50                   | 5774.9714                   | 5774.9702 | 5774.9687 | 5774.9660 |  |  |
| 60                   | 5774.9712                   | 5774.9702 | 5774.9679 | 5774.9655 |  |  |
| 70                   | 5774.9703                   | 5774.9703 | 5774.9672 | 5774.9650 |  |  |
| Max. Deviation (MHz) | 0.0297                      | 0.0297    | 0.0328    | 0.0350    |  |  |
| Max. Deviation (ppm) | 5.14                        | 5.14      | 5.68      | 6.06      |  |  |
| Result               | Complies                    |           |           |           |  |  |



### 4.8. Antenna Requirements

### 4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

### 4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.



# 5. LIST OF MEASURING EQUIPMENTS

| Instrument                    | Manufacturer | Model No.        | Serial No.    | Characteristics  | Calibration<br>Date | Remark                   |
|-------------------------------|--------------|------------------|---------------|------------------|---------------------|--------------------------|
| Horn Antenna                  | EMCO         | 3115             | 00075790      | 750MHz ~ 18GHz   | Oct. 22, 2015       | Radiation<br>(03CH01-CB) |
| Horn Antenna                  | Schwarzbeck  | BBHA 9170        | BBHA9170252   | 15GHz ~ 40GHz    | Jul. 21, 2015       | Radiation<br>(03CH01-CB) |
| Pre-Amplifier                 | Agilent      | 8449B            | 3008A02310    | 1GHz ~ 26.5GHz   | Jan. 12, 2015       | Radiation<br>(03CH01-CB) |
| Pre-Amplifier                 | WM           | TF-130N-R1       | 923365        | 26GHz ~ 40GHz    | Feb.10, 2015        | Radiation<br>(03CH01-CB) |
| Spectrum Analyzer             | R&S          | FSP40            | 100056        | 9kHz ~ 40GHz     | Oct. 27, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high                 | Woken        | High Cable-16    | N/A           | 1 GHz ~ 18 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high                 | Woken        | High Cable-17    | N/A           | 1 GHz ~ 18 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high                 | Woken        | High Cable-40G-1 | N/A           | 18GHz ~ 40 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| RF Cable-high                 | Woken        | High Cable-40G-2 | N/A           | 18GHz ~ 40 GHz   | Nov. 02, 2015       | Radiation<br>(03CH01-CB) |
| Test Software                 | Audix        | E3               | 6.2009-10-7   | N/A              | N/A                 | Radiation<br>(03CH01-CB) |
| Spectrum analyzer             | R&S          | FSV40            | 100979        | 9kHz~40GHz       | Dec. 09, 2015       | Conducted<br>(TH01-CB)   |
| Temp. and Humidity<br>Chamber | Ten Billion  | TTH-D3SP         | TBN-931011    | -30~100 degree   | Jun. 02, 2015       | Conducted<br>(TH01-CB)   |
| RF Cable-high                 | Woken        | RG402            | High Cable-7  | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB)   |
| RF Cable-high                 | Woken        | RG402            | High Cable-8  | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB)   |
| RF Cable-high                 | Woken        | RG402            | High Cable-9  | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB)   |
| RF Cable-high                 | Woken        | RG402            | High Cable-10 | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB)   |
| RF Cable-high                 | Woken        | RG402            | High Cable-6  | 1 GHz – 26.5 GHz | Nov. 02, 2015       | Conducted<br>(TH01-CB)   |
| Power Sensor                  | Agilent      | U2021XA          | MY53410001    | 50MHz~18GHz      | Nov. 02, 2015       | Conducted<br>(TH01-CB)   |

Note: Calibration Interval of instruments listed above is one year.



# 6. MEASUREMENT UNCERTAINTY

| Test Items                             | Uncertainty | Remark                   |
|----------------------------------------|-------------|--------------------------|
| Radiated Emission (1GHz $\sim$ 18GHz)  | 3.7 dB      | Confidence levels of 95% |
| Radiated Emission (18GHz $\sim$ 40GHz) | 3.5 dB      | Confidence levels of 95% |
| Conducted Emission                     | 1.7 dB      | Confidence levels of 95% |