

FCC SAR Test Report (Class II Permissive Change)

Product Name	:	802.11b/g/n RTL8723BS Combo module
Model No.	:	RTL8723BS

Applicant : Realtek Semiconductor Corp.Address : No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan

Date of Receipt	: 2014/09/17
Issued Date	: 2015/02/03
Report No.	: 1520037R-SAUSP01V00
Report Version	: V1.0
1. () 3	aboratory 223

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government. The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: 2015/02/03 Report No.: 1520037R-SAUSP01V00

QuieTek

Product Name	:	802.11b/g/n RTL8723BS Combo module		
Applicant	:	Realtek Semiconductor Corp.		
Address	:	No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu		
		300, Taiwan		
Manufacturer	:	Realtek Semiconductor Corp.		
Model No.	:	RTL8723BS		
Trade Name	:	Realtek		
FCC ID	:	TX2-RTL8723BS		
Applicable Standard	:	FCC Oet65 Supplement C June 2001		
		IEEE Std. 1528-2003		
		47CFR § 2.1093		
Measurement	:	KDB 447498 , KDB 248227, KDB 616217,KDB 865664		
procedures				
Test Result	:	Max. SAR Measurement (1g)		
		0.88 W/kg		
Application Type	:	Certification		
		0 61		
Documented By	:	Anny Chou		
		(Adm. Specialist / Anny Chou)		
		- 100		
Tested By	:	WENLEE		
		(Engineer / Wen Lee)		
Approved By	:	LAD B		
, .pp: 0100 D)		attom St		
		(Director / Vincent Lin)		

TABLE OF CONTENTS

Desc	cription	Page
1.	General Information	4
	1.1EUT Description	4
	1.2Antenna List	
	1.3Maximum output power and tolerance allowed for production units	
	1.4 Test Environment	5
2.	SAR Measurement System	6
	2.1 DASY5 System Description	6
	2.1.1 Applications	7
	2.1.2 Area Scans	7
	2.1.3 Zoom Scan (Cube Scan Averaging)	7
	2.1.4 Uncertainty of Inter-/Extrapolation and Averaging	7
	2.2 DASY5 E-Field Probe	8
	2.2.1 Isotropic E-Field Probe Specification	8
	2.3 Boundary Detection Unit and Probe Mounting Device	9
	2.4 DATA Acquisition Electronics (DAE) and Measurement Server	9
	2.5 Robot	10
	2.6 Light Beam Unit	
	2.7 Device Holder	
	2.8 SAM Twin Phantom	
3.	Tissue Simulating Liquid	12
	3.1 The composition of the tissue simulating liquid	12
	3.2 Tissue Calibration Result	
	3.3 Tissue Dielectric Parameters for Head and Body Phantoms	13
4.	SAR Measurement Procedure	14
	4.1 SAR System Check	14
	4.1.1 Dipoles	
	4.1.2 System Check Result	
	4.2 SAR Measurement Procedure	
5.	SAR Exposure Limits	16
6.	Test Equipment List	
7.	Measurement Uncertainty	
8.	Conducted Power Measurement	19
9.	Test Results	20
	9.1 SAR Test Results Summary	
	9.2 Simultaneous Transmission	
10.	SAR measurement variability	
	Appendix	23
	Appendix A. SAR System Check Data	
	Appendix B. SAR measurement Data	
	Appendix C. Test Setup Photographs & EUT Photographs	
	Appendix D. Probe Calibration Data	
	Appendix E. Dipole Calibration Data	

1. General Information

1.1 EUT Description

Product Name	802.11b/g/n RTL8723BS Combo module
Trade Name	Realtek
Model No.	RTL8723BS
FCC ID	TX2-RTL8723BS
TX Frequency	802.11b/g/n-20M: 2412MHz~2462MHz
	802.11n-40M: 2422MHz~2452MHz
Type of Modulation	DSSS/OFDM/BPSK/QPSK/16QAM/64QAM
Antenna Type	PIFA Antenna
Device Category	Portable
RF Exposure Environment	Uncontrolled
Max. Output Power	802.11b: 17.69 dBm
(Conducted)	802.11g: 16.27 dBm
	802.11n: 16.18 dBm

*Note: (1) This is to request a Class II permissive change for FCC ID: TX2-RTL8723BS,

originally granted on 05/14/2014

The major change filed under this application is:

Change #1: Implementation in new tablet

Model number: TC69RA3

Product name: Tablet PC

- (2) Per FCC KDB 447498 D01.The output power of BT is less than 10mW, so SAR not required.
- (3) BT & WLAN can't work simultaneously, thus simultaneous mode is no need.

1.2 Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	JEM	13H130-JY6071	0.79 dBi for 2.4GHz
2	INNETECH	13H130-JY6280	1.91 dBi for 2.4GHz
3	JEM	13H130-JY6070	0.25 dBi for 2.4GHz
4	WGT	13H130-JY6050	1.98 dBi for 2.4GHz

Note : Only the higher gain antenna was tested and recorded in this report.

Band	Mode	Nominal power (dBm)	Tolerance (dBm)	Upper Tolerance (dBm)
2.4G	802.11b	16	±2	18
2.4G	802.11g/n-20	14.5	±2	16.5
2.4G	802.11n-40	13	±2	15

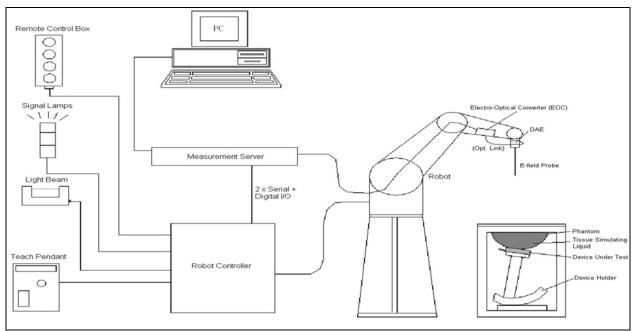
1.3 Maximum output power and tolerance allowed for production units

1.4 Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	23.1 ± 2
Humidity (%RH)	30-70	55

Site Description:


Accredited by TAF Accredited Number: 3023 Effective through: December 12, 2017

- Site Name: Quietek Corporation
- Site Address: No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789 E-Mail: <u>service@quietek.com</u>

2. SAR Measurement System

2.1 DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- > A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1 Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3 Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

2.1.4 Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat

distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$
$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$
$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2 DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1 Isotropic E-Field Probe Specification

Model	Ex3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. DGBE)
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2.3 Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4 DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5 Robot

QuieTek

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions.

During probe rotations, the probe tip will keep its actual position.

QuieTek

2.7 Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

INGREDIENT	900MHz	1800MHz	2450MHz	2450MHz
(% Weight)	Head	Head	Head	Body
Water				73.2
Salt				0.04
Sugar				0.00
HEC				0.00
Preventol				0.00
DGBE				26.7

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using APREL Dielectric Probe Kit and Agilent E5071C Vector Network Analyzer.

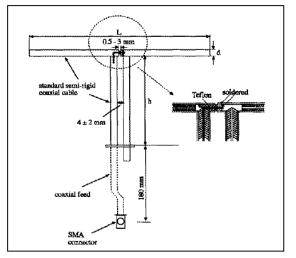
Body Tissue Simulate Measurement						
Frequency	Description	Dielectric P	arameters	Tissue Temp.		
[MHz]	Description	٤r	σ [s/m]	[°C]		
	Reference result	52.7	1.95	N/A		
2450 MHz	± 5% window	50.065 to 55.335	1.8525 to 2.0475	N/A		
	01-Oct-14	52.41	1.98	21.8		
2412 MHz	Low channel	52.82	1.94	21.8		
2437 MHz	Mid channel	52.63	1.96	21.8		
2462 MHz	High channel	52.26	1.99	21.8		

QuieTek

3.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	Head		equency Head Body		dy
(MHz)	ε _r	σ (S/m)	٤r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	


(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1 SAR System Check

4.1.1 Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

4.1.2 System Check Result

System Performance Check at 2450MHz Dipole Kit: ALS-D-2450							
Frequency [MHz]DescriptionSAR [w/kg] 1gSAR [w/kg] 10gTissue 							
2450 MHz	Reference result ± 10% window	50.4 45.36 to 55.44	23.44 21.10 to 25.78	N/A			
	01-Oct-14	54.4	25.04	21.8			
Note: (1) The power level is used 250mW (2) All SAR values are normalized to 1W forward power. (3) The reference result is from Appendix E.							

4.2 SAR Measurement Procedure

The Dasy5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

 σ : represents the simulated tissue conductivity

 $\boldsymbol{\rho}:$ represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Limits for General Population/Uncontrolled Exposure (W/kg)

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last	Next
				Calibration	Calibration
Stäubli Robot TX60L	Stäubli	TX60L	F09/5BL1A1/A06	2009/05/18	only once
Controller	Speag	CS8c	N/A	2009/05/18	only once
Aprel Reference Dipole 2450MHz	Aprel	ALS-D-2450	QTK-319	2014/07/24	2016/07/23
SAM Twin Phantom	Speag	QD000 P40 CA	Tp 1515	N/A	N/A
Device Holder	Speag	N/A	N/A	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1207	2014/05/19	2015/05/18
E-Field Probe	Speag	EX3DV4	3698	2014/07/25	2015/07/24
SAR Software	Speag	DASY52	V52.8 (8)	N/A	N/A
Aprel Dipole Spaccer	Aprel	ALS-DS-U	QTK-295	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-20	N/A	N/A
Directional Coupler	Agilent	778D-012	50550	N/A	N/A
Universal Radio Communication	R&S	CMU 200	104846	2014/05/05	2015/05/04
Tester					
Vector Network	Agilent	E5071C	MY46108013	2013/10/09	2014/10/08
Signal Generator	Anritsu	MG3694A	041902	2014/08/06	2015/08/05
Power Meter	Anritsu	ML2487	6K00001447	2013/12/14	2014/12/13
Wide Bandwidth Sensor	Anritsu	MA2491A	034457	2013/12/14	2014/12/13

7. Measurement Uncertainty

	DA	SY5 U	ncerta	ainty	Accordir	ig to IEC 622	209-2/2010)	
Measurement u	ncertainty for	30 MHz to	o 6 GHz	average	ed over 1	gram / 10 g	ram.	
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.	(Vi)
	value	Dist.		1g	10g	(1g)	(10g)	Veff
Measurement System			-		-		1	
Probe Calibration	±6.55%	Ν	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	8
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	8
Modulation Response	±2.4%	R	√3	1	1	±1.4%	±1.4%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	8
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	√3	1	1	±3.9%	±3.9%	8
Post-processing	±4.0%	R	√3	1	1	±2.3%	±2.3%	8
Test Sample Related		•		·				
Device Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Scaling	±0%	R	√3	1	1	±0.0%	±0.0%	
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	8
Phantom and Setup								
Phantom Uncertainty	±7.9%	R	√3	1	1	±4.6%	±4.6%	8
SAR correction	±1.9%	R	√3	1	0.84	±1.1%	±1.1%	∞
Liquid Conductivity (meas.)	±2.5%	Ν	1	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity (meas.)	±2.5%	Ν	1	0.26	0.26	±0.3%	±0.4%	∞
Temp. unc Conductivity	±3.4%	R	√3	0.78	0.71	±1.5%	±1.4%	8
Temp. unc Permittivity	±0.4%	R	√3	0.23	0.26	±0.1%	±0.1%	∞
Combined Std. Uncertainty						±12.5%	±12.5%	748
Expanded STD Uncertainty						±25.1%	±25.1%	

8. Conducted Power Measurement

Test Mode	Channel No.	Frequency	Average Power
		(MHz)	(dBm)
	01	2412	17.67
802.11b	06	2437	17.71
	11	2462	17.69
	01	2412	15.96
802.11g	06	2437	16.27
	11	2462	15.83
	01	2412	14.75
802.11n(20M)	06	2437	16.18
	11	2462	14.98
	03	2422	14.83
802.11n(40M)	06	2437	14.99
	09	2452	14.89

F

9. Test Results

9.1 SAR Test Results Summary

SAR MEAS	SUREMEN	ΙT						
Ambient Ter	mperature ((°C) : 23.1	<u>+</u> 2		Relativ	e Humidity (%):	55	
Liquid Temp	erature (°C	c):21.8 ±2	2		Depth	of Liquid (cm):>	15	
Test Mode:	802.11b - 2	450 MHz-	WGT An	itenna, P/N: 13	H130-JY60	50		
Test		Frequ	ency	Conducted Po	wer (dBm)	SAR 1g (W/kg)	
Position Body	Antenna Position	Channel	MHz	Measurement	Tune-up Limit	Measurement	Tune-up Scaled	Limit (W/kg)
Back	Fixed	1	2412	17.67	18	0.453	0.489	1.6
Back	Fixed	6	2437	17.71	18	0.674	0.721	1.6
Back	Fixed	11	2462	17.69	18	0.822	0.883	1.6
Тор	Fixed	6	2437	17.71	18	0.479	0.512	1.6
Right-Side	Fixed	6	2437	17.71	18	0.038	0.041	1.6
Test Mode:	802.11g - 2	450 MHz-	WGT An	itenna, P/N: 13	H130-JY60	50		
Back	Fixed	6	2437	16.27	16.5	0.455	0.480	1.6
Test Mode:	802.11n (20	OM)- 2450	MHz- W	GT Antenna, P/	'N: 13H130	-JY6050		
Back	Fixed	6	2437	16.18	16.5	0.447	0.481	1.6
Test Mode:	802.11n (40	OM)- 2450	MHz- W	GT Antenna, P/	N: 13H130	-JY6050		
Back	Fixed	6	2437	14.99	15	0.174	0.174	1.6
	•		•	s) located ≥ 5 cm fi de is 183mm/55mm		e , the SAR is not re	equired. In th	is device,

9.2 Simultaneous Transmission

According the KDB 447498 D01 Section 4.3.2, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion

(max. power of channel, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)}/7.5$]

Frequency	Max. power (dBm)	Test separation distance ,(mm)	Estimated BT SAR (W/Kg)	
N/A	N/A	N/A	N/A	

When the sum of SAR is larger than the limit, The ratio is determined by (SAR1 + SAR2)^1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion. The estimation result as below :

For DTS Band :

WLAN	Estimated BT	Simultaneous	Antenna pair in mm	Peak location
SAR (W/Kg)	SAR (W/Kg)	Transmission (W/Kg)		separation ratio
N/A	N/A	N/A	N/A	N/A

The sum of value is less than 1.6W/Kg, thus simultaneous SAR testing is no need.

QuieTek

10. SAR measurement variability

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5
 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Freque	ency		SAR 1g (W/kg)					
Ohannal			First Re	epeated	Second Repeated		Third Repeated	
Channel MHz	Original	Value	Ratio	Value	Ratio	Value	Ratio	
11	2462	0.822	0.821	1.001	N/A	N/A	N/A	N/A

- Appendix
- Appendix A. SAR System Check Data
- Appendix B. SAR measurement Data
- Appendix C. Test Setup Photographs & EUT Photographs
- Appendix D. Probe Calibration Data
- Appendix E. Dipole Calibration Data

Appendix A. SAR System Check Data

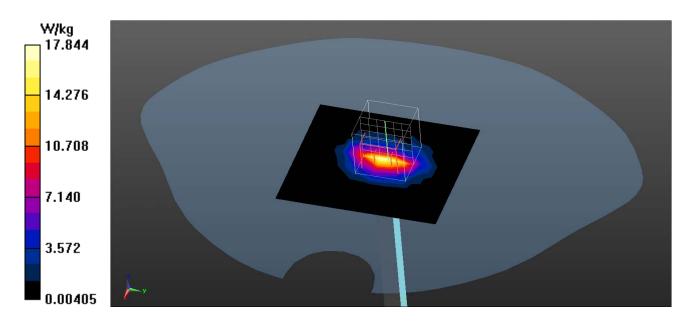
Test Laboratory: QuieTek

Date/Time: 10/1/2014

System Performance Check_2450MHz-Body

DUT: Dipole 2450 MHz; Type: ALS-D-2450 Communication System: UID 10000, CW; Frequency: 2450 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2450 MHz; σ = 1.98 S/m; ε_r = 52.41; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:


- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/2450MHz_Body/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 17.8 W/kg

Configuration/2450MHz_Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

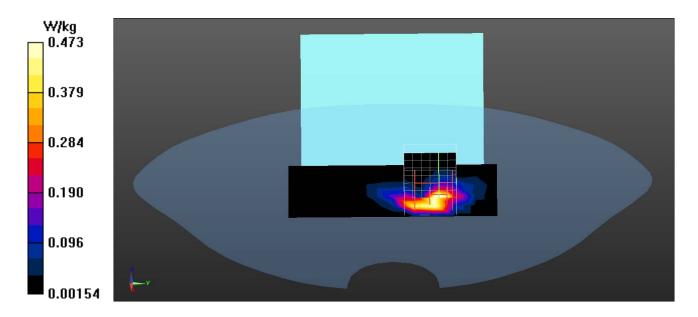
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.94 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 17.9 W/kg

Appendix B. SAR measurement Data

Test Laboratory: QuieTek

Date/Time: 10/1/2014

802.11b_1-Back DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2412 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2412 MHz; σ = 1.94 S/m; ε _r = 52.82; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

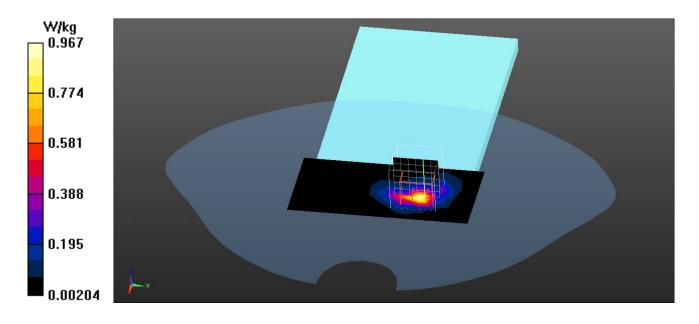
Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.473 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 7.285 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.453 W/kg; SAR(10 g) = 0.172 W/kg Maximum value of SAR (measured) = 0.642 W/kg

Date/Time: 10/1/2014

802.11b 6-Back DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2437 MHz; σ = 1.96 S/m; ε_r = 52.63; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- •
- Phantom: SAM with left table; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

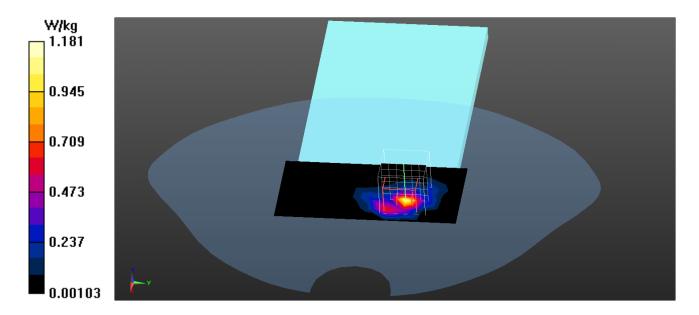
Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.967 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mmReference Value = 10.35 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.82 W/kg SAR(1 g) = 0.674 W/kg; SAR(10 g) = 0.259 W/kg Maximum value of SAR (measured) = 0.931 W/kg

Date/Time: 10/1/2014

802.11b_11-Back DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2462 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2462 MHz; σ = 1.99 S/m; ε _r = 52.26; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

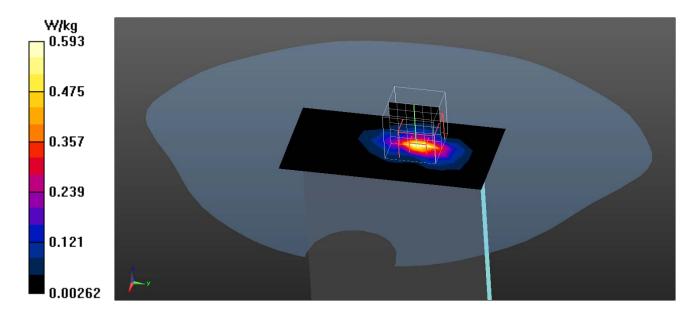
Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.18 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 9.077 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 2.19 W/kg SAR(1 g) = 0.822 W/kg; SAR(10 g) = 0.324 W/kg Maximum value of SAR (measured) = 1.20 W/kg

Date/Time: 10/1/2014

802.11b_6-Top DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2437 MHz; σ = 1.96 S/m; ε _r = 52.63; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

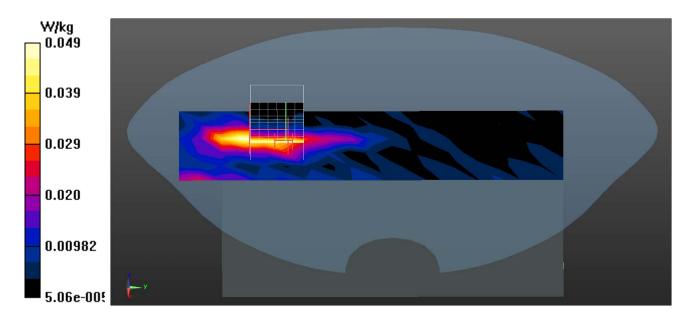
Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.593 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 10.00 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.44 W/kg SAR(1 g) = 0.479 W/kg; SAR(10 g) = 0.155 W/kg Maximum value of SAR (measured) = 0.721 W/kg

Date/Time: 10/1/2014

802.11b_6-Right-Side DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2437 MHz; σ = 1.96 S/m; ε r = 52.63; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

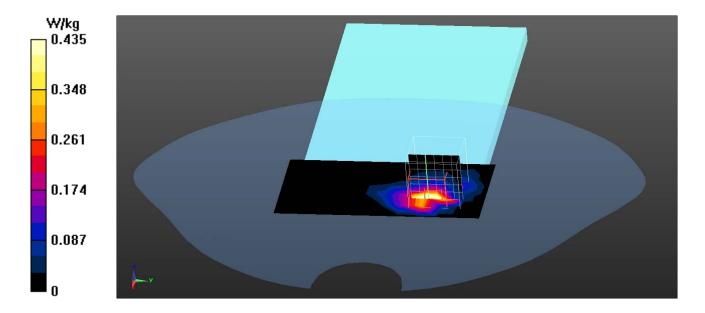
Configuration/Body/Area Scan (6x19x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0489 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 3.915 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.0830 W/kg SAR(1 g) = 0.038 W/kg; SAR(10 g) = 0.017 W/kg Maximum value of SAR (measured) = 0.0541 W/kg

Date/Time: 10/2/2014

802.11g_6-Back DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2437 MHz; σ = 1.96 S/m; ε _r = 52.63; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

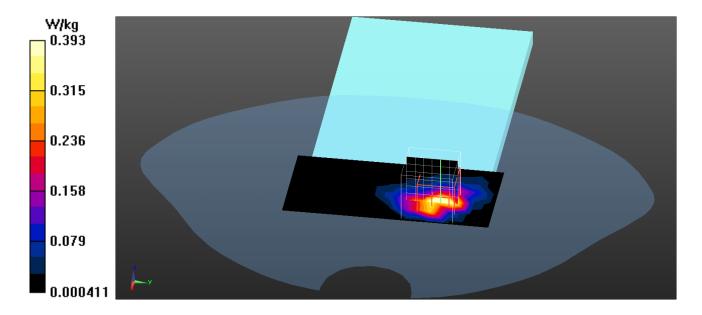
Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.435 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 5.741 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.24 W/kg SAR(1 g) = 0.455 W/kg; SAR(10 g) = 0.174 W/kg Maximum value of SAR (measured) = 0.638 W/kg

Date/Time: 10/1/2014

802.11n-20M_6-Back DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2437 MHz; σ = 1.96 S/m; ε r = 52.63; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

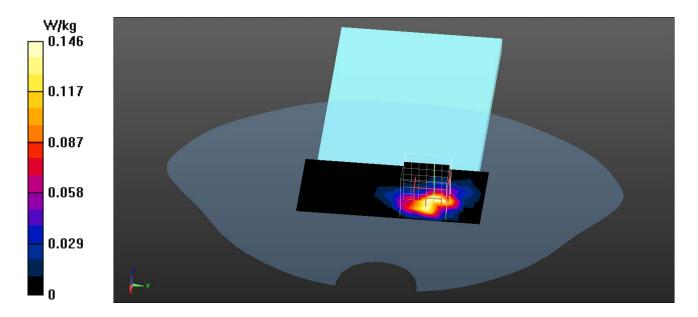
Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.393 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 5.883 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.22 W/kg SAR(1 g) = 0.447 W/kg; SAR(10 g) = 0.171 W/kg Maximum value of SAR (measured) = 0.666 W/kg

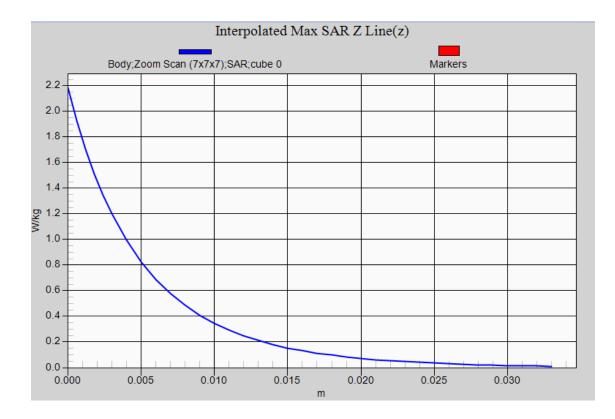
Date/Time: 10/1/2014

802.11n-40M_6-Back DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2437 MHz; σ = 1.96 S/m; ε _r = 52.63; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.146 W/kg

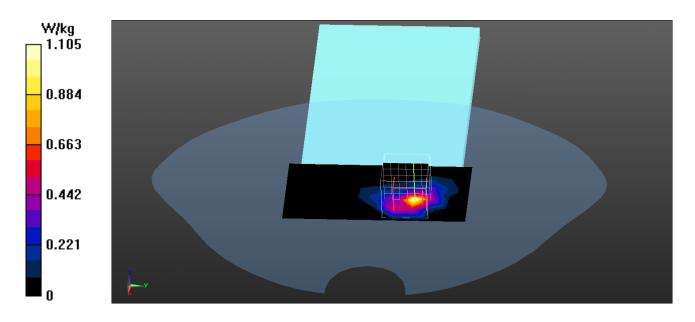

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 3.422 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.483 W/kg SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.066 W/kg Maximum value of SAR (measured) = 0.259 W/kg

802.11b EUT Back Z-Axis plot Channel: 11

Date/Time: 10/1/2014

802.11b 11-Back-Verify DUT: Tablet PC; Type: TC69RA3 Communication System: UID 0, WLAN 2.4G; Frequency: 2462 MHz; Communication System PAR: 0 dB Medium parameters used: f = 2462 MHz; σ = 1.99 S/m; ε_r = 52.26; ρ = 1000 kg/m³ Phantom section: Flat Section Ambient Temperature (°C) : 23.1, Liquid Temperature (°C) : 21.8 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- •
- Phantom: SAM with left table; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.10 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mmReference Value = 8.319 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 2.18 W/kg SAR(1 g) = 0.821 W/kg; SAR(10 g) = 0.328 W/kg Maximum value of SAR (measured) = 1.20 W/kg

Appendix D. Probe Calibration Data

Object: EX3DV4- SN: 3698

1155

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GWISS CP D NO

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Quietek-TW (Auden)

Certificate No: EX3-3698_Jul14

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3	698	
Calibration procedure(s)		QA CAL-14.v4, QA CAL-23.v5, (edure for dosimetric E-field prob	
Calibration date:	July 25, 2014		
		tional standards, which realize the physical ι probability are given on the following pages	
All calibrations have been con	nducted in the closed laborat	ory facility: environment temperature (22 ± 3))°C and humidity < 70%.
Calibration Equipment used (M&TE critical for calibration)		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor F4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15

Power meter E44 19B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Assen Chraenog
Approved by:	Katja Pokovic	Technical Manager	selly "
This calibration cortificate	a chall not be reproduced event in full	without written ennroval of the loberation	Issued: July 26, 2014
This calibration certificate	e snail not be reproduced except in full	without written approval of the laboratory	<i>y</i> .

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:3698

Manufactured: April 22, 2009 Calibrated:

July 25, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.41	0.36	0.36	± 10.1 %
DCP (mV) ^B	100.1	100.4	101.1	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc [⊭]
			dB	dBõV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	142.4	±3.8 %
		Y	0.0	0.0	1.0		132.4	
		Z	0.0	0.0	1.0		134.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.19	9.19	9.19	0.80	0.50	± 12.0 %
835	41.5	0.90	8.77	8.77	8.77	0.75	0.50	± 12.0 %
900	41.5	0.97	8.58	8.58	8.58	0.43	0.84	± 12.0 %
1750	40.1	1.37	7.50	7.50	7.50	0.49	0.71	± 12.0 %
1900	40.0	1.40	7.20	7.20	7.20	0.51	0.72	± 12.0 %
2450	39.2	1.80	6.59	6.59	6.59	0.30	0.98	± 12.0 %
2600	39.0	1.96	6.41	6.41	6.41	0.30	1.00	± 12.0 %
3500	37.9	2.91	6.29	6.29	6.29	0.25	1.92	± 13.1 %
5200	36.0	4.66	4.67	4.67	4.67	0.45	1.80	± 13.1 %
5300	35.9	4.76	4.46	4.46	4.46	0.45	1.80	<u>± 13.1 %</u>
5500	35.6	4.96	4.43	4.43	4.43	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.16	4.16	4.16	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.24	4.24	4.24	0.50	1.80	± 13.1 %

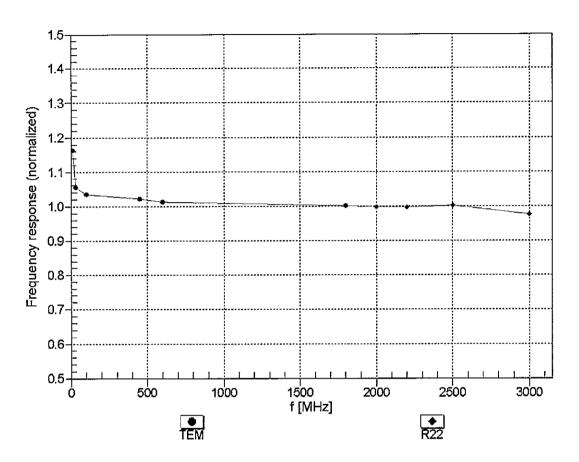
Calibration Parameter	[·] Determined in	Head Tissue	Simulating Media
------------------------------	----------------------------	--------------------	------------------

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

⁵ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

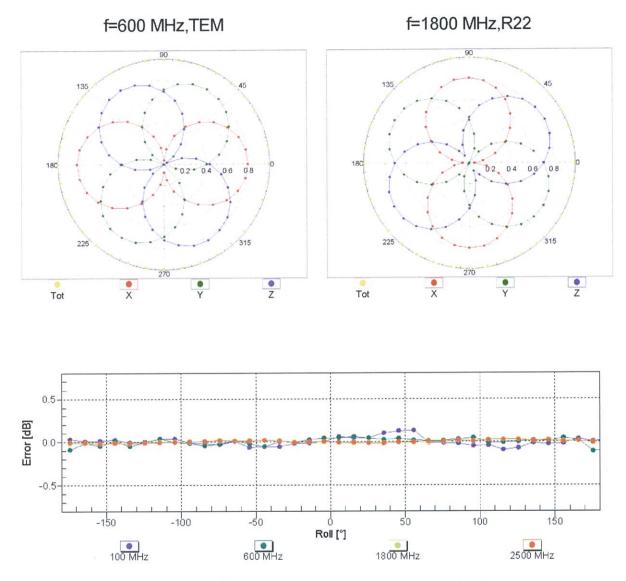
the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

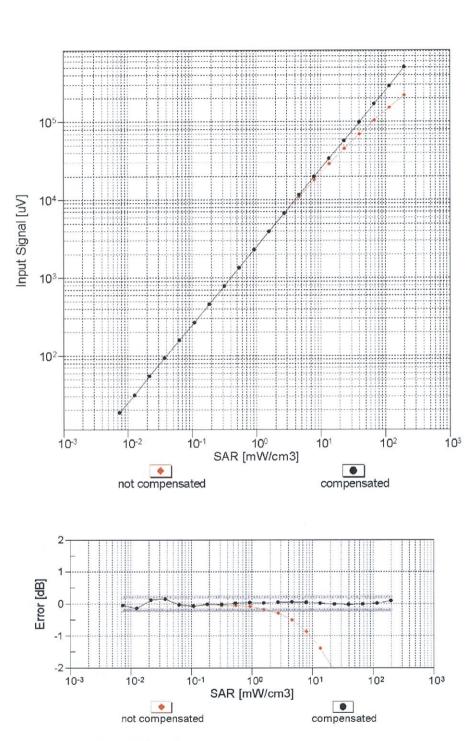

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.03	9.03	9.03	0.50	0.70	± 12.0 %
835	55.2	0.97	8.86	8.86	8.86	0.80	0.50	± 12.0 %
900	55.0	_1.05	8.51	8.51	8.51	0.80	0.64	<u>± 12.0 %</u>
1750	53.4	1.49	7.44	7.44	7.44	0.37	0.89	± 12.0 %
1900	53.3	1. <u>52</u>	6.81	6.81	6.81	0.45	0.90	± 12.0 %
2450	52.7	1.95	6.50	6.50	6.50	0.70	0.65	± 12.0 %
2600	52.5	2.16	6.31	6.31	6.31	0.80	0.60	± 12.0 %
3500	51.3	3.31	5.84	5.84	5.84	0.27	1.74	<u>± 13.1 %</u>
5200	49.0	5.30	4.23	4.23	4.23	0.50	1.90	± 13.1 %
5300	4 <u>8.</u> 9	5.42	4.13	4.13	4.13	0.50	1.80	<u>± 13.1 %</u>
5500	48.6	5.65	3.81	3.81	3.81	0.50	1.90	<u>± 13.1 %</u>
5600	48.5	5.77	3.64	3.64	3.64	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.94	3.94	3.94	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

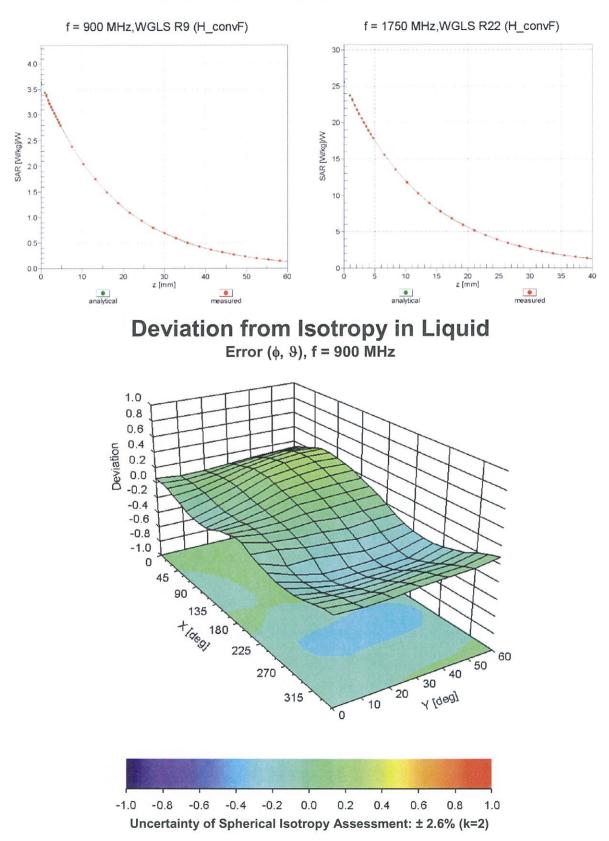
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Other Probe Parameters

Triangular
-134.3
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm

Appendix E. Dipole Calibration

Validation Dipole 2450 MHz M/N: ALS-D-2450 S/N: QTK-319

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Quietek-TW (Auden) Client

Certificate No: ALS-D-2450_QTK-319_Jul14

CALIBRATION CERTIFICATE

ALS-D-2450 - SN: QTK-319							
QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz							
July 24, 2014							
ainties with confidence pr ed in the closed laborator	obability are given on the following pages and	d are part of the certificate.					
חו #	Cal Date (Certificate No.)	Scheduled Calibration					
		Oct-14					
		Oct-14					
		Oct-14					
second second second second second	second of a second branch second second second	Apr-15					
		Apr-15					
		Dec-14					
SN: 601	30-Apr-14 (No. DAE4-601_Apr14)	Apr-15					
 Check and and constrained at the second secon							
ID #	Check Date (in house)	Scheduled Check					
100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16					
US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14					
Name	Function	Signature					
Claudio Leubler	Laboratory Technician						
		IKI					
Katja Pokovic	Technical Manager	el la					
		Issued: July 24, 2014					
	QA CAL-05.v9 Calibration process July 24, 2014 Ints the traceability to national ainties with confidence process critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name Claudio Leubler Katja Pokovic	QA CAL-05.v9 Calibration procedure for dipole validation kits abo July 24, 2014 Ints the traceability to national standards, which realize the physical unialities with confidence probability are given on the following pages and ed in the closed laboratory facility: environment temperature (22 ± 3)°C E critical for calibration) ID # Cal Date (Certificate No.) GB37480704 09-Oct-13 (No. 217-01827) US37292783 09-Oct-13 (No. 217-01827) US37292783 09-Oct-13 (No. 217-01827) SN: 5058 (20k) 03-Apr-14 (No. 217-01921) SN: 5058 (20k) 03-Apr-14 (No. 217-01921) SN: 5057 30-Dec-13 (No. ES3-3205_Dec13) SN: 601 30-Apr-14 (No. DAE4-601_Apr14) ID # Check Date (in house) 100005 04-Aug-99 (in house check Oct-13) US37390585 S4206 18-Oct-01 (in house check Oct-13) Name Function Claudio Leubler Laboratory Technician					

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	· · · · · · · · · · · · · · · · · · ·
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.0 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.1 Ω + 6.5 jΩ
Return Loss	- 20.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	59.6 Ω + 9.2 jΩ
Return Loss	- 18.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	0.983 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

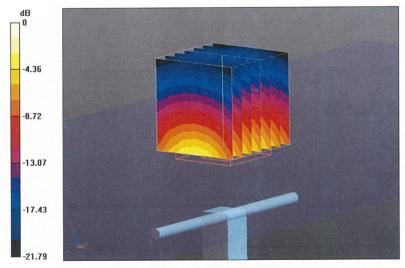
Manufactured by	APREL
Manufactured on	Not available

DASY5 Validation Report for Head TSL

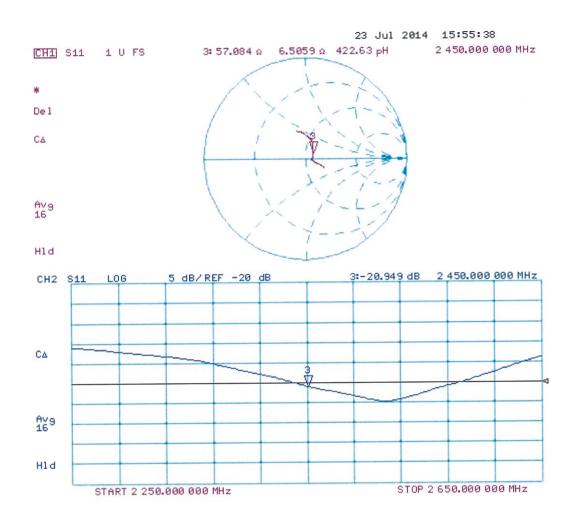
Date: 24.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: ALS-D-2450-S-2; Serial: SN: QTK-319


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 100.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.1 W/kg **SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kg** Maximum value of SAR (measured) = 17.3 W/kg

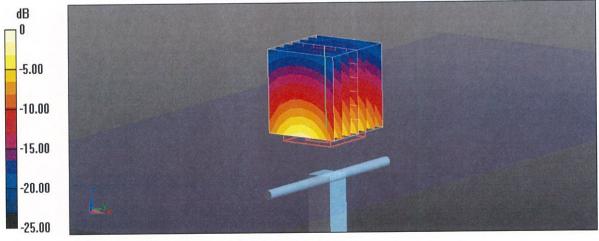
0 dB = 17.3 W/kg = 12.38 dBW/kg

DASY5 Validation Report for Body TSL

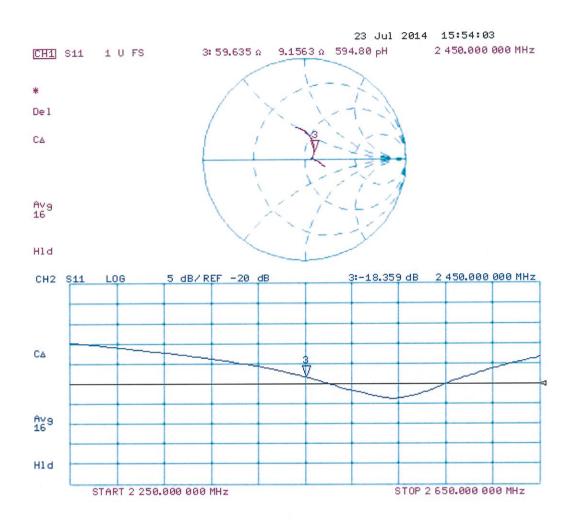
Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: ALS-D-2450-S-2; Serial: SN: QTK-319


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.03 S/m; ϵ_r = 50.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 93.28 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 26.2 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 16.6 W/kg

0 dB = 16.6 W/kg = 12.20 dBW/kg

