

SAR Test Report

Product Name :	Notebook	
Model No. :	Lenovo IdeaPad S100xxxx; 20109xxxx; 1067xxxx	
	(The "X" in the model name can be 0 to 9, A to Z	
	"-" or blank, it represents different sales	
	customer code, not relevant to safety and EMC.)	

Applicant : Shenzhen Bitland Information Technology Co., Ltd.

Address : 1-4F, 44# Building, Zone B, Tanglang Industrial Park & 1-6F, #7 Building, TangLang, XiLi Tongfuyu Industrial Town, Nanshan District, Shenzhen, ChinaShenzhen City, Guangdong 518055, China.

Date of Receipt	:	Jan. 18, 2011
Date of Test	:	Jan. 27, 2011
Issued Date	:	Jan. 31, 2011
Report No.	:	111S033R-HP-US-P03V01
Report Version	:	V4.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Jan. 31, 2011 Report No: 111S033R-HP-US-P03V01

Product Name	:	Notebook
Applicant	:	Shenzhen Bitland Information Technology Co., Ltd.
	:	1-4F, 44# Building, Zone B, Tanglang Industrial Park & 1-6F, #7
A 1 1		Building, TangLang, XiLi Tongfuyu Industrial Town, Nanshan
Address		District, Shenzhen, China Shenzhen City, Guangdong 518055,
		China.
Manufacturer	:	Lenovo (Singapore) Pte Ltd.
Address	:	9 Changi Business Park, Central 1486048 Singapore
Model No.	:	Lenovo IdeaPad S100xxxx; 20109xxxx; 1067xxxx (The "X" in
		the model name can be 0 to 9, A to Z, "-" or blank, it represents
		different sales customer code, not relevant to safety and EMC.)
Trade Name	:	lenovo
EUT Voltage	:	AC 230V/50Hz
Applicable Standard	:	FCC OET65 Supplement C June 2001
		RSS-102 Issue 4 (March 2010), updated December 2010.
		IEEE Std. 1528-2003; 47CFR § 2.1093
Test Result	:	Max. SAR Measurement (1g)
		802.11g: 0.012 W/kg
Performed Location	:	Suzhou EMC Laboratory
		No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech
		Development Zone., Suzhou, China
		TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098
		FCC Registration Number: 800392; IC Lab Code: 4075B
Documented By	:	Alice Mi
		(Engineering ADM: Alice Ni)
Tested By	:	Bobin Wu.
		(Senior Engineer: Robin Wu)
Approved By	:	Marlinchen
		(Engineering Supervisor: Marlin Chen)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited by the following accreditation Bodies in compliance with ISO 17025, EN 45001 and Guide 25:

Taiwan R.O.C.	:	BSMI, NCC, TAF
Germany	:	TUV Rheinland
Norway	:	Nemko, DNV
USA	:	FCC, NVLAP
Japan	:	VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: <u>http://tw.quietek.com/modules/myalbum/</u>

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C.TEL:+886-3-592-8858 / FAX:+886-3-592-8859E-Mail : service@quietek.com

LinKou Testing Laboratory :

No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

Suzhou (China) Testing Laboratory :

No. 99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., Suzhou, China. TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 E-Mail: <u>service@quietek.com</u>

Testing Laboratory **0914**

TABLE OF CONTENTS

Des	scription	Page
1.	General Information	6
1	.1. EUT Description	6
1	.2. Test Environment	7
2.	SAR Measurement System	8
2	.1. DASY5 System Description	8
	2.1.1. Applications	9
	2.1.2. Area Scans	
	2.1.3. Zoom Scan (Cube Scan Averaging)	
2	2.1.4. Uncertainty of Inter-/Extrapolation and Averaging.2. DASY5 E-Field Probe	
Z	2.2.1. Isotropic E-Field Probe Specification	
2	.3. Boundary Detection Unit and Probe Mounting Device	
	.4. DATA Acquisition Electronics (DAE) and Measurement Server	
2	.5. Robot	
2	.6. Light Beam Unit	12
2	.7. Device Holder	13
2	.8. SAM Twin Phantom	13
3.	Tissue Simulating Liquid	14
3	.1. The composition of the tissue simulating liquid	14
3	.2. Tissue Calibration Result	14
3	.3. Tissue Dielectric Parameters for Head and Body Phantoms	15
4.	SAR Measurement Procedure	16
4	.1. SAR System Validation	16
	4.1.1. Validation Dipoles	16
	4.1.2. Validation Result	16
4	.2. SAR Measurement Procedure	17
5.	SAR Exposure Limits	18
6.	Test Equipment List	19
7.	Measurement Uncertainty	20
8.	Conducted Power Measurement	21
9.	Test Results	22

QuieTek

9.1.	SAR Test Results Summary	22	
9.2.	Operation Mode	22	
9.3.	Document Reference	22	
9.4.	Test Results	23	
Appen	dix A. SAR System Validation Data	24	
Appendix B. SAR measurement Data			
Appen	dix C. Test Setup Photographs & EUT Photographs	39	
Appen	dix D. Probe Calibration Data	48	
Appen	dix E. Dipole Calibration Data	59	

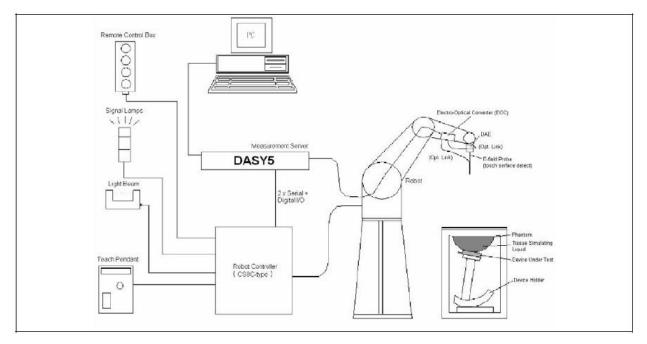
1. General Information

1.1. EUT Description

Product Name	Notebook	
Trade Name	lenovo	
Model No.	Lenovo IdeaPad S100xxxx; 20109xxxx; 1067xxxx (The	
	"X" in the model name can be 0 to 9, A to Z, "-"	
	or blank, it represents different sales customer code, not	
	relevant to safety and EMC.)	
Wireless Module Name	RTL8188CE	
FCC ID	TX2-RTL8188CE	
IC	6317A-RTL8188CE	
Frequency Range	802.11b/g/n(20MHz): 2412 - 2462 MHz	
	802.11n(40MHz): 2422 - 2452 MHz	
Channel Number	802.11b/g/n(20MHz): 11	
	802.11n(40MHz): 7	
Type of Modulation	802.11b: DSSS	
	802.11g/n: OFDM	
Data Rate	802.11b: 1/2/5.5/11 Mbps	
	802.11g: 6/9/12/18/24/36/48/54 Mbps	
	802.11n: up to 150 Mbps	
Device Category	Mobile	
RF Exposure Environment	Uncontrolled	
Antenna Type	PIFA	
Peak Antenna Gain	2.47dBi	
Max. Output Power	802.11b: 18.5dBm	
(Conducted)	802.11g: 24.6dBm	
	802.11n(20MHz): 24.5dBm	
	802.11n(40MHz): 22.8dBm	

Component	
AC Adapter	Manufacturer: lenovo
M/N: PA-1300-12	
Input: 100-240V~50/60Hz 1.0A	
	Output: 20Vdc, 1.5A

1.2. Test Environment


Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.3± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software.
 An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- > A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$
$$f_2(x, y, z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$
$$f_3(x, y, z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in sl charges PEEK enclosure material (resistant to o DGBE)	00
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	1
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in an (e.g., very strong gradient fields). Only proceeding for frequencies up to 6 GHz w 30%.	obe which enables

2.2.1. Isotropic E-Field Probe Specification

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

QuieTek

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

QuieTek

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	2450MHz	2450MHz	5200MHz	5800MHz
(% Weight)	Head	Body	Body	Body
Water	46.7	73.2	76	75.68
Salt	0.00	0.04	0.00	0.43
Sugar	0.00	0.00	0.00	0.00
HEC	0.00	0.00	0.00	0.00
Preventol	0.00	0.00	0.00	0.00
DGBE	53.3	26.7	4.44	4.42
Triton X-100	0.00	0.00	19.56	19.47

3.2. Tissue Calibration Result

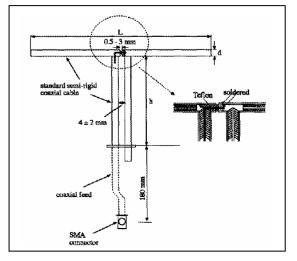
The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue Simulant Measurement					
Frequency	Description	Dielectric Pa	Tissue Temp.		
[MHz]	Description	ε _r	σ [s/m]	[°C]	
	Reference result	52.7	1.95	N/A	
2450MHz	± 5% window	50.07 to 55.34	1.85 to 2.05	IN/A	
	27-Jan-2011	50.89	1.96	20.1	
2412 MHz	Low channel	51.03	1.90	20.1	
2437 MHz	Mid channel	50.94	1.94	20.1	
2462 MHz	High channel	50.84	1.97	20.1	

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Bo	dy	
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	


(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

4.1.2. Validation Result

System Performance Check at 2450MHz Validation Dipole: D2450V2, SN: 839						
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]		
2450 MHz	Reference result ± 10% window	51.6 46.44 to 56.76	24.2 21.78 to 26.62	N/A		
	27-Jan-2011	50.40	23.32	20.1		
Note: All SAR values are normalized to 1W forward power.						

4.2. SAR Measurement Procedure

Quielek

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

 σ : represents the simulated tissue conductivity ρ : represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Limits for General Population/Uncontrolled Exposure (W/kg)

6. Test Equipment List

Instrument	Manufacturer	Model No.	Model No. Serial No.		Next	
				Calibration	Calibration	
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	Mar. 2010	only once	
Controller	Stäubli	SP1	S-0034	Mar. 2010	only once	
DASY5 Reference Dipole 2450MHz	Speag	D2450V2	839	Mar. 2010	Mar. 2012	
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A	N/A	
Device Holder	Speag	SD 000 H01 HA	N/A	N/A	N/A	
Data	Speag	DAE4	1220	Mar. 2010	Mar. 2011	
Acquisition Electronic						
E-Field Probe	Speag	EX3DV4	3710	Mar. 2010	Mar. 2011	
SAR Software	Speag	DASY5	V5.2 Build 162	N/A	N/A	
Power Amplifier	Mini-Circuit	ZHL-42	D051404-28	N/A	N/A	
Directional Coupler	Agilent	778D	20160	N/A	N/A	
Universal Radio	R&S	CMU 200	117088	Jul. 2009	Jul. 2010	
Communication Tester						
Vector Network	Agilent	E5071C	MY48367267	Mar. 2010	Mar. 2011	
Signal Generator	Agilent	E4438C	MY49070163	Apr. 2010	Apr. 2011	
Power Meter	Anritsu	ML2495A	0905006	Jan. 2011	Jan. 2012	
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	Jan. 2011	Jan. 2012	

7. Measurement Uncertainty

		DASY	5 Und	ertain	ty			
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±5.5%	Ν	1	1	1	±5.5%	±5.5%	8
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	8
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	8
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	Ν	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	8
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	8
Test Sample Related			•					•
Device Positioning	±2.9%	Ν	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	Ν	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup			•		•			•
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	8
Liquid Conductivity (target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncerta	inty				·	±10.7%	±10.5%	387
Expanded STD Uncerta	inty					±21.5%	±21.0%	

8. Conducted Power Measurement

Test under normal condition

Test Mode	Channel No.	Frequency	Conducted Power	
		(MHz)	(dBm)	
	01	2412	18.1	
802.11b	06	2437	18.5	
	11	2462	18.4	
	01	2412	23.5	
802.11g	06	2437	24.6	
	11	2462	22.3	
	01	2412	22.3	
802.11n(20MHz)	06	2437	24.5	
	11	2462	22.1	
	03	2422	21.6	
802.11n(40MHz)	06	2437	22.8	
	09	2452	21.6	

9. Test Results

9.1. SAR Test Results Summary

IC bystander SAR was performed with the device configured in the positions according to IEEE1528 and RSS-102 Supplementary Procedures (SPR)-001. SAR test was performed with the device 25mm from the phantom for final test.

Test Position: the rear of LCD panel, side of LCD panel and bottom of notebook (for FCC body SAR requirement). Please refer to the test photograph for details.

9.2. Operation Mode

The final SAR test was done with continuous transmission setting by RF control software MP819xVC.exe. Evaluation mode: 802.11b, 802.11g, 802.11n (20MHz BW) and 802.11n (40MHz BW).

9.3. Document Reference

FCC KDB Publication 447498; KDB Publication 616217; RSS-102 Supplementary Procedures (SPR)-001.

9.4. Test Results

SAR MEASUREM	IENT							
Ambient Temperature (°C) : 21.4 ±2				Relative	Relative Humidity (%): 55			
Liquid Temperature (°C) : 20.1 ±2				Depth o	f Liquid (c	:m):>15		
Product: Notebook								
Test Mode: 802.11b		1				1	1	
Test Position	Antenna	Frequ	ency	Separation Distance	Power Drift	SAR 1g	Limit	
Body	Position	Channel	MHz	(mm)	(<±0.2)	(W/kg)	(W/kg)	
Bottom of PC	Fixed	6	2437	0	-0.113	0.004	1.6	
Rear of LCD panel	Fixed	6	2437	25	0.177	0.011	1.6	
Test Mode: 802.11g								
Bottom of PC	Fixed	1	2412	0	0.196	0.005	1.6	
Bottom of PC	Fixed	6	2437	0	0.132	0.005	1.6	
Bottom of PC	Fixed	11	2462	0	-0.107	0.004	1.6	
Rear of LCD panel	Fixed	1	2412	25	0.185	0.008	1.6	
Rear of LCD panel	Fixed	6	2437	25	0.112	0.012	1.6	
Rear of LCD panel	Fixed	11	2462	25	0.159	0.005	1.6	
Side of LCD panel	Fixed	6	2437	25	0.115	0.001	1.6	
Test Mode: 802.11n	(20MHz)							
Bottom of PC	Fixed	6	2437	0	0.162	0.002	1.6	
Rear of LCD panel	Fixed	6	2437	25	0.174	0.001	1.6	
Test Mode: 802.11n(40MHz)								
Bottom of PC	Fixed	6	2437	0	0.130	0.004	1.6	
Rear of LCD panel	Fixed	6	2437	25	0.183	0.002	1.6	

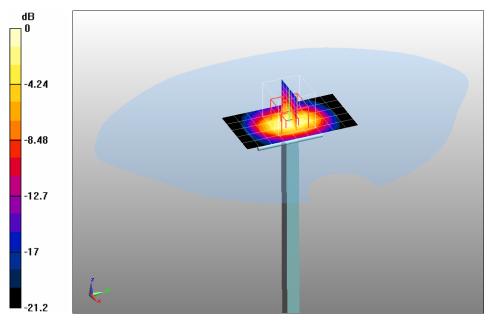
Appendix A. SAR System Validation Data

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab System Check Body 2450MHz **DUT: Dipole 2450 MHz D2450V2; Type: D2450V2** Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; σ = 1.96 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section ; Input Power=250mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 2450MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 12.7 mW/g

Configuration/Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm, Reference Value = 85.6 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 25.4 W/kg

```
SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.83 mW/g Maximum value of SAR (measured) = 14.5 mW/g
```


⁰ dB = 14.5mW/g

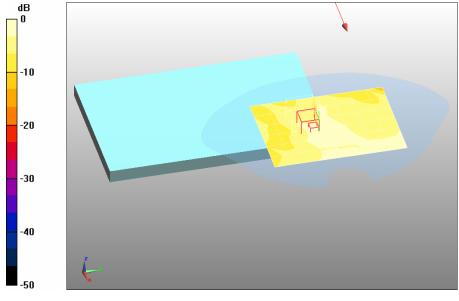
Appendix B. SAR measurement Data

Date/Time: 27-Jan-2011

Test Laboratory: QuieTek Lab 802.11b 2437MHz-Bottom **DUT: Notebook; Type: S100xxxx** Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.00525 mW/g

Configuration/802.11b Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm, Reference Value = 1.57 V/m; Power Drift = -0.113 dB

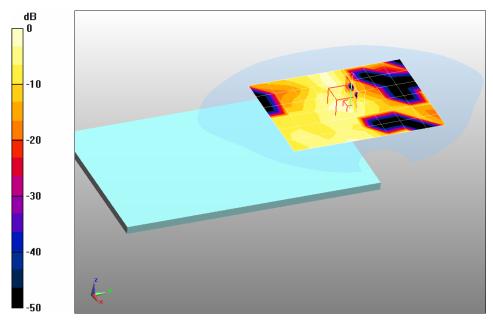
Peak SAR (extrapolated) = 0.011 W/kg

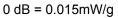
SAR(1 g) = 0.004 mW/g; SAR(10 g) = 0.001 mW/g Maximum value of SAR (measured) = 0.00566 mW/g

 $^{0 \,} dB = 0.00566 \, mW/g$

Test Laboratory: QuieTek Lab 802.11b 2437MHz-Rear **DUT: Notebook; Type: S100xxxx** Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11b Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.012 mW/g

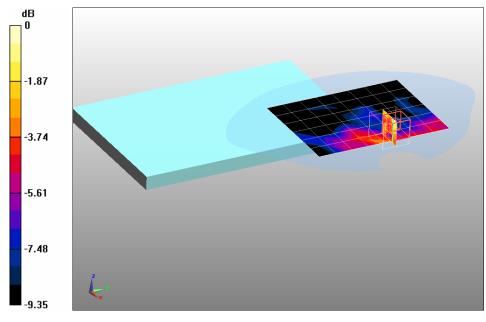
Configuration/802.11b Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.31 V/m; Power Drift = 0.177 dB

Peak SAR (extrapolated) = 0.031 W/kg

SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00453 mW/g Maximum value of SAR (measured) = 0.015 mW/g

Test Laboratory: QuieTek Lab 802.11g 2412MHz-Bottom **DUT: Notebook; Type: S100xxxx** Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; σ = 1.9 mho/m; ε_r = 51; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11g Low Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.00309 mW/g

Configuration/802.11g Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 0.866 V/m; Power Drift = 0.196 dB

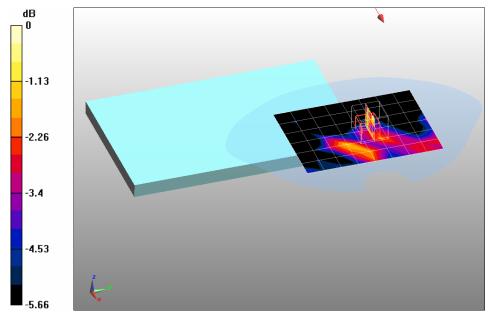
Peak SAR (extrapolated) = 0.00651 W/kg

SAR(1 g) = 0.005 mW/g; SAR(10 g) = 0.0034 mW/g Maximum value of SAR (measured) = 0.00636 mW/g

0 dB = 0.00636mW/g

Test Laboratory: QuieTek Lab 802.11g 2437MHz-Bottom **DUT: Notebook; Type: S100xxxx** Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11g Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.00353 mW/g

Configuration/802.11g Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.11 V/m; Power Drift = 0.132 dB

Peak SAR (extrapolated) = 0.00706 W/kg

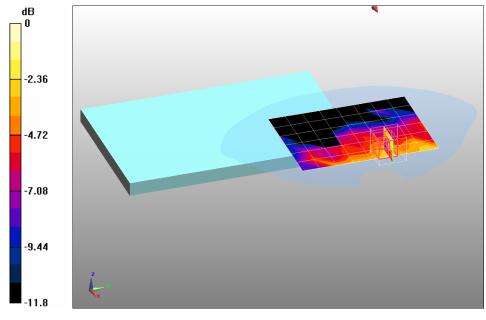
SAR(1 g) = 0.005 mW/g; SAR(10 g) = 0.0032 mW/g Maximum value of SAR (measured) = 0.00486 mW/g

0 dB = 0.00486mW/g

Test Laboratory: QuieTek Lab 802.11g 2462MHz-Bottom **DUT: Notebook; Type: S100xxxx** Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 1.97 mho/m; ε_r = 50.8; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g High Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.00339 mW/g

Configuration/802.11g High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 0.973 V/m; Power Drift = -0.107 dB

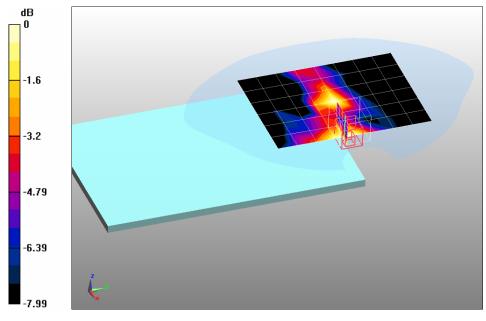
Peak SAR (extrapolated) = 0.00746 W/kg

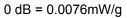
SAR(1 g) = 0.004 mW/g; SAR(10 g) = 0.003 mW/g Maximum value of SAR (measured) = 0.00561 mW/g

0 dB = 0.00561mW/g

Test Laboratory: QuieTek Lab 802.11g 2412MHz-Rear **DUT: Notebook; Type: S100xxxx** Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; σ = 1.9 mho/m; ε_r = 51; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11g Low Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.00768 mW/g

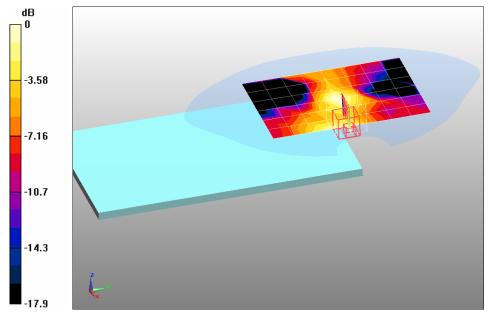
Configuration/802.11g Low Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.9 V/m; Power Drift = 0.185 dB

Peak SAR (extrapolated) = 0.025 W/kg

SAR(1 g) = 0.008 mW/g; SAR(10 g) = 0.005 mW/g Maximum value of SAR (measured) = 0.0076 mW/g

Test Laboratory: QuieTek Lab 802.11g 2437MHz-Rear **DUT: Notebook; Type: S100xxxx** Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

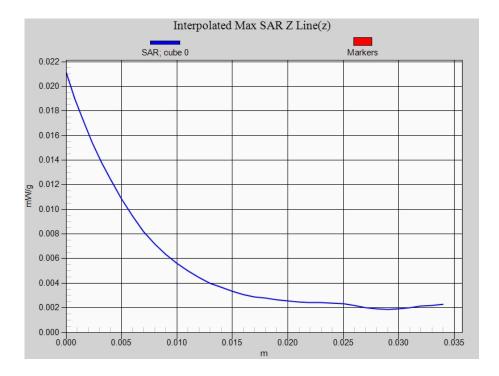
- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11g Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (measured) = 0.015 mW/g

Configuration/802.11g Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.59 V/m; Power Drift = 0.112 dB

Peak SAR (extrapolated) = 0.021 W/kg


SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00644 mW/g Maximum value of SAR (measured) = 0.012 mW/g

 $0 \, dB = 0.012 mW/g$

802.11g EUT Rear, Z-Axis Plot

Test Laboratory: QuieTek Lab

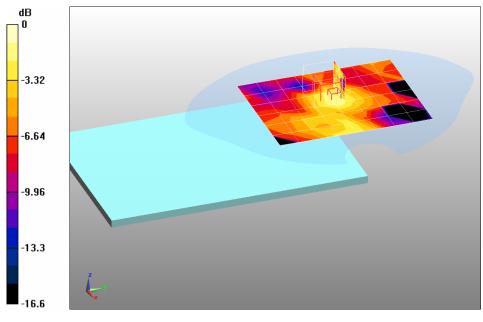
802.11g 2462MHz-Rear

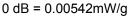
DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; σ = 1.97 mho/m; ε_r = 50.8; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g High Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.00431 mW/g


Configuration/802.11g High Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 1.4 V/m; Power Drift = 0.159 dB

Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.005 mW/g; SAR(10 g) = 0.003 mW/g Maximum value of SAR (measured) = 0.00542 mW/g

Test Laboratory: QuieTek Lab

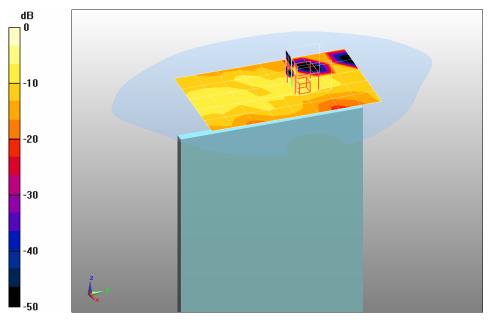
802.11g 2437MHz-Side

DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g Mid Channel/Area Scan (6x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 0.00982 mW/g

Configuration/802.11g Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm, Reference Value = 1.64 V/m; Power Drift = 0.115 dB

Peak SAR (extrapolated) = 0.051 W/kg

SAR(1 g) = 0.001 mW/g; SAR(10 g) = 0.0002 mW/g Maximum value of SAR (measured) = 0.051 mW/g

 $^{0 \,} dB = 0.051 mW/g$

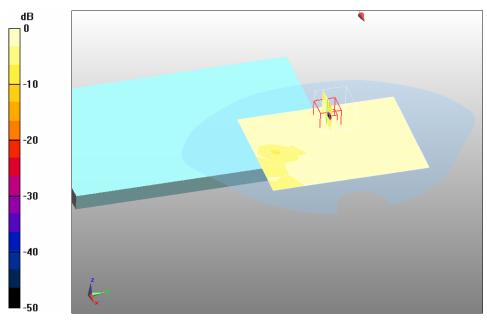
Test Laboratory: QuieTek Lab

802.11n(20) 2437MHz-Bottom

DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11n(20) Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.00396 mW/g

Configuration/802.11n(20) Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 1.03 V/m; Power Drift = 0.162 dB

Peak SAR (extrapolated) = 0.0087 W/kg

SAR(1 g) = 0.002 mW/g; SAR(10 g) = 0.001 mW/g Maximum value of SAR (measured) = 0.00337 mW/g

 $^{0 \}text{ dB} = 0.00337 \text{mW/g}$

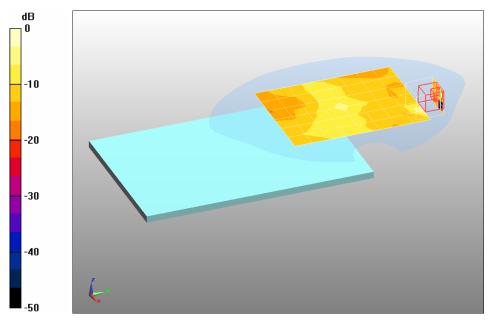
Test Laboratory: QuieTek Lab

802.11n(20) 2437MHz-Rear

DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11n(20) Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.016 mW/g

Configuration/802.11n(20) Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 1.73 V/m; Power Drift = 0.174 dB

Peak SAR (extrapolated) = 0.026 W/kg

SAR(1 g) = 0.001 mW/g; SAR(10 g) = 0.0001 mW/g Maximum value of SAR (measured) = 0.026 mW/g

 $^{0 \,} dB = 0.026 mW/g$

Date/Time: 27-Jan-2011

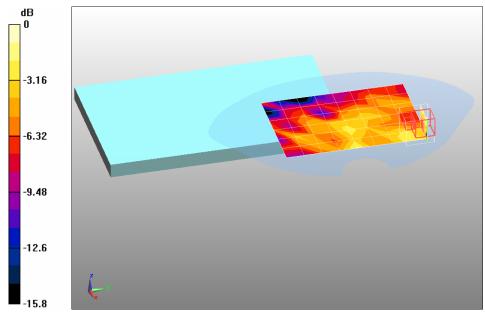
Test Laboratory: QuieTek Lab

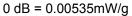
802.11n(40) 2437MHz-Bottom

DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11n(40) Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.00361 mW/g


Configuration/802.11n(40) Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 0.507 V/m; Power Drift = 0.130 dB

Peak SAR (extrapolated) = 0.00687 W/kg

SAR(1 g) = 0.004 mW/g; SAR(10 g) = 0.002 mW/g Maximum value of SAR (measured) = 0.00535 mW/g

Date/Time: 27-Jan-2011

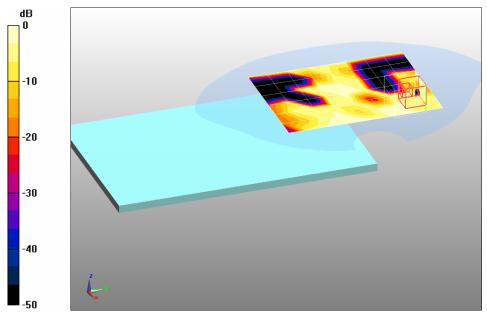
Test Laboratory: QuieTek Lab

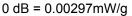
802.11n(40) 2437MHz-Rear

DUT: Notebook; Type: S100xxxx

Communication System: CW; Communication System Band: Wi-Fi(2412-2472MHz); Duty Cycle: 1:1.0; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; σ = 1.94 mho/m; ε_r = 50.9; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(7, 7, 7); Calibrated: 05/03/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59


Configuration/802.11n(40) Mid Channel/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.0035 mW/g


Configuration/802.11n(40) Mid Channel/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm, Reference Value = 1.13 V/m; Power Drift = 0.183 dB

Peak SAR (extrapolated) = 0.00451 W/kg

SAR(1 g) = 0.002 mW/g; SAR(10 g) = 0.001 mW/g Maximum value of SAR (measured) = 0.00297 mW/g

QuieTek

Appendix D. Probe Calibration Data

ccredited by the Swiss Accredi			
			No.: SCS 108
he Swiss Accreditation Servi ultilateral Agreement for the			
	-		
lient Quietek (Aud	en)	Certificate No	EX3-3710_Mar10
CALIBRATION	CEDTIEICAT	E	
SALIBRATION	CENTIFICAT	E	
Dbject	EX3DV4 - SN:3	710	
Calibration procedure(s)		QA CAL-14.v3, QA CAL-23.v3 and edure for dosimetric E-field probes	
Calibration date:	March 5, 2010		
	certainties with confidence	tional standards, which realize the physical uni probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C	d are part of the certificate.
All calibrations have been cond	certainties with confidence	probability are given on the following pages an	d are part of the certificate.
All calibrations have been cond Calibration Equipment used (M	certainties with confidence	probability are given on the following pages an ory facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.
All calibrations have been cond Calibration Equipment used (M Primary Standards	certainties with confidence lucted in the closed laborat &TE critical for calibration)	probability are given on the following pages an	d are part of the certificate.
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID #	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.)	d are part of the certificate. c and humidity < 70%. Scheduled Calibration
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID # GB41293874	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030)	d are part of the certificate. c and humidity < 70%. Scheduled Calibration Apr-10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	d are part of the certificate. c and humidity < 70%. Scheduled Calibration Apr-10 Apr-10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41498087	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	d are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Apr-10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	Certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01036)	d are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41495087 SN: S5054 (3c) SN: S5056 (20b)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	d are part of the certificate. c and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027)	d are part of the certificate. c and humidity < 70%. <u>Scheduled Calibration</u> Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Mar-10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09)	d are part of the certificate. c and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Mar-10 Dec-10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (20b) SN: S5129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Mar-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09)	d are part of the certificate. c and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41495277 MY41495277 SN: S5054 (3c) SN: S5054 (3c) SN: S5024 (3c) SN: S5129 (30b) SN: 660 ID #	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house)	d are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (20b) SN: S5026 (20b) SN: S5129 (30b) SN: 660 ID # US3642U01700	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	d are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129 (30b) SN: 660 ID # US3642U01700 US37390585	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5028 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 660 ID # US3642U01700 US37390585 Name Katja Pokovic	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. 253-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Technical Manager	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct10
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	certainties with confidence ucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct10
	certainties with confidence lucted in the closed laborat &TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5028 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 660 ID # US3642U01700 US37390585 Name Katja Pokovic	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 30-Dec-09 (No. 253-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Technical Manager	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

18RP

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

e.eeeury.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
- b) proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3710_Mar10

Page 2 of 11

March 5, 2010

Probe EX3DV4

SN:3710

Manufactured: Calibrated: July 21, 2009 March 5, 2010

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3710_Mar10

Page 3 of 11

March 5, 2010

DASY - Parameters of Probe: EX3DV4 SN:3710

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.48	0.58	0.60	± 10.1%
DCP (mV) ^B	90.8	94.4	91.8	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	с	VR mV	Unc ^e (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300	± 1.5%
			Y	0.00	0.00	1.00	300	
			z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3710_Mar10

Page 4 of 11

March 5, 2010

DASY - Parameters of Probe: EX3DV4 SN:3710

Calibration Parameter Determined in Head Tissue Simulating Media

Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	onvF Y	ConvF Z	Alpha	Depth Unc (k=2)
± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	8.83	8.83	8.83	0.68	0.64 ± 11.0%
± 50 / ± 100	41.5 ± 5%	0.97 ± 5%	8.73	8.73	8.73	0.83	0.58 ± 11.0%
± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.69	7.69	7.69	0.62	0.63 ± 11.0%
± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.35	7.35	7.35	0.70	0.60 ± 11.0%
± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	6.96	6.96	6.96	0.46	0.75 ± 11.0%
± 50 / ± 100	$39.0 \pm 5\%$	1.96 ± 5%	6.88	6.88	6.88	0.31	0.92 ± 11.0%
± 50 / ± 100	37.9 ± 5%	2.91 ± 5%	6.64	6.64	6.64	0.33	1.18 ± 13.1%
± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.92	4.92	4.92	0.40	1.90 ± 13.1%
± 50 / ± 100	35.9 ± 5%	4.76 ± 5%	4.60	4.60	4.60	0.40	1.90 ± 13.1%
± 50 / ± 100	35.6 ± 5%	4.96 ± 5%	4.42	4.42	4.42	0.50	1.90 ± 13.1%
± 50 / ± 100	$35.5 \pm 5\%$	5.07 ± 5%	4.42	4.42	4.42	0.40	1.90 ± 13.1%
± 50 / ± 100	35.3 ± 5%	5.27 ± 5%	4.26	4.26	4.26	0.50	1.90 ± 13.1%
	$\begin{array}{c} \pm 50 \ / \pm 100 \\ \pm 50 \ / \pm 100 \end{array}$	$\begin{array}{c} \pm 50 \ / \pm 100 \\ \pm 50 \ / \pm 5\% \\ \pm 50 \ / \pm 100 \\ \pm 50 \ / \pm 100 \\ \pm 50 \ / \pm 100 \\ \pm 50 \ / \pm 5\% \\ \pm 50 \ / \pm 100 \\ \pm 5\% \\ \pm 5\%$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3710_Mar10

Page 5 of 11

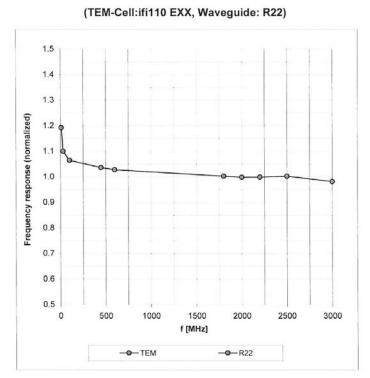
March 5, 2010

DASY - Parameters of Probe: EX3DV4 SN:3710

Calibration Parameter Determined in Body Tissue Simulating Media

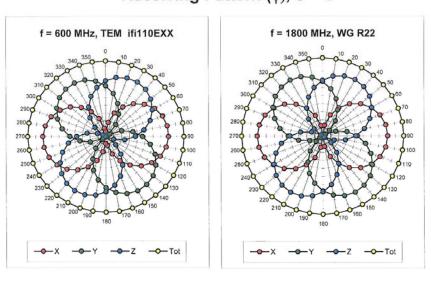
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	8.95	8.95	8.95	0.84	0.62 ± 11.0%
900	± 50 / ± 100	$55.0 \pm 5\%$	1.05 ± 5%	8.80	8.80	8.80	0.65	0.69 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.71	7.71	7.71	0.57	0.72 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.45	7.45	7.45	0.38	0.87 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	7.00	7.00	7.00	0.32	0.95 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.90	6.90	6.90	0.47	0.79 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	6.19	6.19	6.19	0.31	1.44 ± 13.1%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	4.13	4.13	4.13	0.50	1.90 ± 13.1%
5300	± 50 / ± 100	48.5 ± 5%	$5.42 \pm 5\%$	3.91	3.91	3.91	0.55	1.90 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	$5.65 \pm 5\%$	3.81	3.81	3.81	0.55	1.90 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.58	3.58	3.58	0.60	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.97	3.97	3.97	0.60	1.90 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

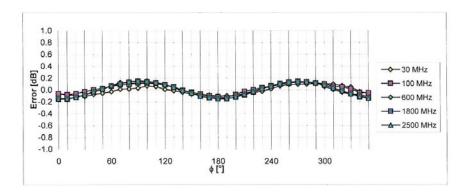

Certificate No: EX3-3710_Mar10

Page 6 of 11

March 5, 2010

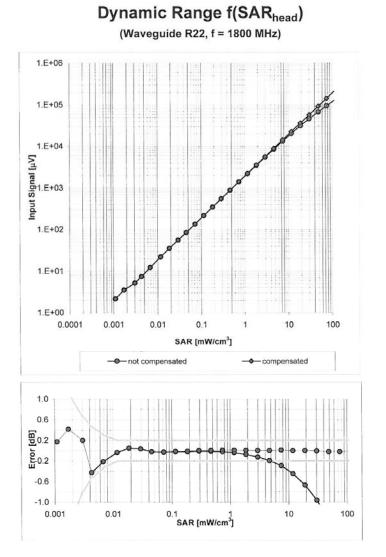

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3710_Mar10


Page 7 of 11

March 5, 2010

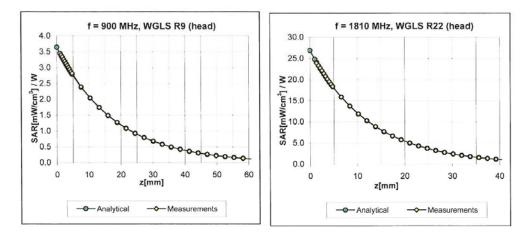
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3710_Mar10

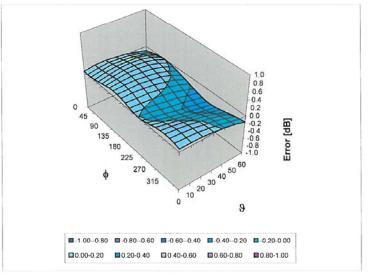
Page 8 of 11

March 5, 2010


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3710_Mar10

Page 9 of 11


March 5, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, ϑ), f = 900 MHz

Certificate No: EX3-3710_Mar10

Page 10 of 11

March 5, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3710_Mar10

Page 11 of 11

Appendix E. Dipole Calibration Data

Calibration Laboratory Chmid & Partner Engineering AG Eughausstrasse 43, 8004 Zurich			 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accredital he Swiss Accreditation Service lultilateral Agreement for the re	is one of the signatories	s to the EA	on No.: SCS 108
lient Quietek (Auden			No: D2450V2-839_Mar10
CALIBRATION C	ERTIFICATE		
Dbject	D2450V2 - SN: 8	39	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 12, 2010		
Calibration Equipment used (M&T Primary Standards	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
ype-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV3 DAE4	SN: 3205 SN: 601	26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	Jun-10 Mar-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06 Network Analyzer HP 8753E	100005 US37390585 S4206	4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	In house check: Oct-11 In house check: Oct-10
	Name	Function	Signalure
Calibrated by:	Mike Meili	Laboratory Technician	on Dern
Approved by:	Katja Pokovic	Technical Manager	Sel. My
This collibration contificate at -11 -	the reproduced every h	full without written oppressed of the tobarrow	Issued: March 18, 2010
This calibration certificate shall no	or pe reproduced except in	full without written approval of the labora	tory.
ertificate No: D2450V2-839_I	Mar10	Page 1 of 9	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-839_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 mW / g
SAR normalized	normalized to 1W	24.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10

Page 3 of 9

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω - 0.6 jΩ	
Return Loss	- 29.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.0 Ω + 0.9 jΩ	
Return Loss	- 40.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

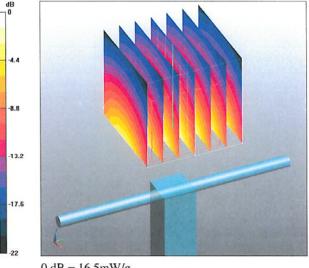
Certificate No: D2450V2-839_Mar10

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 12.03.2010 13:24:52

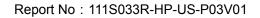
Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

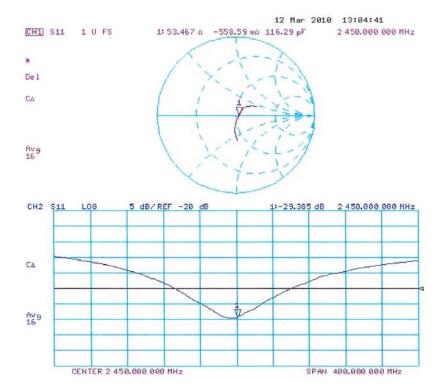
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 2450 MHz; σ = 1.81 mho/m; ϵ_r = 40.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57


Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 99.1 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.11 mW/g Maximum value of SAR (measured) = 16.5 mW/g

0 dB = 16.5 mW/g


Certificate No: D2450V2-839_Mar10

Page 6 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-839_Mar10

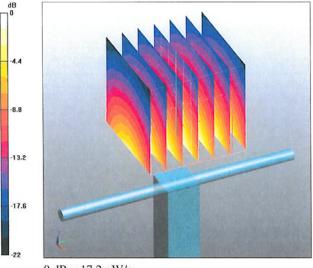
Page 7 of 9

DASY5 Validation Report for Body

Date/Time: 12.03.2010 15:25:35

Test Laboratory: SPEAG, Zurich, Switzerland

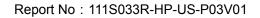
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; σ = 2.01 mho/m; ϵ_r = 54.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Body/d=10mm, Pin250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 94.9 V/m; Power Drift = -0.0047 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/g Maximum value of SAR (measured) = 17.2 mW/g

 $0 \, dB = 17.2 \, mW/g$

Certificate No: D2450V2-839_Mar10

Page 8 of 9

12 Mar 2010 13:05:23 CH1 S11 1 U FS 1: 50.037 0 0.9102 0 59.125 pH 2 450.000 000 MHz * De 1 CA Av9 16 1 CH2 \$11 L06 5 dB/REF -20 dB 1:-40.789 dB 2 450.000 000 MHz CΔ Av9 16 t CENTER 2 450.000 000 MHz SPAN 400.000 000 MHz

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-839_Mar10

Page 9 of 9