

	- 0 (010)		No.: SCS 108	
ccredited by the Swiss Accreditation The Swiss Accreditation Service in	is one of the signatories	to the EA	No.: 303 100	
Aultilateral Agreement for the reconstruction Sporton (Auden			DAE3-577_Nov07	
CALIBRATION C	ERTIFICATE			
Object	DAE3 - SD 000 D	03 AA - SN: 577		
Calibration procedure(s)	QA CAL-06.v12 Calibration proceed	dure for the data acquisition elect	ronics (DAE)	
Calibration date:	November 16, 200	07		
	In Tolerance			
The measurements and the uncerta	ainties with confidence pro	mal standards, which realize the physical unit obability are given on the following pages and r facility: environment temperature (22 ± 3)°C	are part of the certificate.	
This calibration certificate documer The measurements and the uncert All calibrations have been conducte	nts the traceability to natio ainties with confidence pro ed in the closed laboratory	obability are given on the following pages and	are part of the certificate.	
This calibration certificate documer The measurements and the uncert All calibrations have been conducte Celibration Equipment used (M&TE Primary Standards	nts the traceability to natio ainties with confidence pro ed in the closed laboratory contical for calibration)	cal Date (Calibrated by, Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Calibration	
This calibration certificate documer The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702	nts the traceability to natio ainties with confidence pro ed in the closed laboratory contical for calibration)	obability are given on the following pages and γ facility: environment temperature (22 ± 3)°C	are part of the certificate. and humidity < 70%.	
This calibration certificate documer The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001	nts the traceability to natio ainties with confidence pro- ed in the closed laboratory ciritical for celibration) ID # SN: 6295803 SN: 0810278	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6465)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08	
This calibration certificate documer The measurements and the uncert	nts the traceability to natio ainties with confidence pro- ed in the closed laboratory ciritical for calibration) ID # SN: 6295803	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6467) 03-Oct-07 (Elcal AG, No: 6465) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08	
This calibration certificate documer The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	Inte the traceability to natio ainties with confidence pro- ed in the closed laboratory critical for celibration) ID # SN: 6295803 SN: 0810278 ID #	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6467) 03-Oct-07 (Elcal AG, No: 6465) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Scheduled Check	
This calibration certificate documer The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	Inte the traceability to natio ainties with confidence pro- ed in the closed laboratory critical for calibration) in # SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6467) 03-Oct-07 (Elcal AG, No: 6465) Check Date (in house) 25-Jun-07 (SPEAG, in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Scheduled Check In house check Jun-08	
This calibration certificate documer The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	Inte the traceability to natio ainties with confidence pro- ed in the closed laboratory critical for celibration) ID # SN: 6295803 SN: 0810278 ID #	Cal Date (Calibrated by, Certificate No.) 04-Oct-07 (Elcal AG, No: 6467) 03-Oct-07 (Elcal AG, No: 6465) Check Date (in house) 25-Jun-07 (SPEAG, in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-08 Oct-08 Scheduled Check	

Certificate No: DAE3-577_Nov07

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS C S BRUT

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov07

Page 2 of 5

DC Voltage Measurement

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV

Calibration Factors	X	Y	Z
High Range	404.432 ± 0.1% (k=2)	403.884 ± 0.1% (k=2)	404.331 ± 0.1% (k=2)
Low Range	3.94218 ± 0.7% (k=2)	3.94771 ± 0.7% (k=2)	3.94526 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	268°±1°
Connector Angle to be used in DASY system	208 ± 1 -

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	199999.3	0.00
Channel X + Input	20000	20005.75	0.03
Channel X - Input	20000	-19997.67	-0.01
Channel Y + Input	200000	199999.5	0.00
Channel Y + Input	20000	20002.82	0.01
Channel Y - Input	20000	-20004.40	0.02
Channel Z + Input	200000	199999.6	0.00
Channel Z + Input	20000	20005.54	0.03
Channel Z - Input	20000	-20001.11	0.01

Low Range		Input (µV)	Reading (µV)	Error (%)
Channel X	+ input	2000	2000.1	0.00
Channel X	+ Input	200	199.12	-0.44
Channel X	- Input	200	-200.64	0.32
Channel Y	+ Input	2000	2000	0.00
Channel Y	+ Input	200	199.96	-0.02
Channel Y	- Input	200	-201.00	0.50
Channel Z	+ Input	2000	1999.9	0.00
Channel Z	+ input	200	199.05	-0.47
Channel Z	- Input	200	-201.08	0.54

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Averaģe Reading (μV)	Low Range Average Reading (µV)
Channel X	200	13.88	12.97
	- 200	-12.40	-14.29
Channel Y	200	-6.32	-6.22
	- 200	5.34	5.31
Channel Z	200	1.08	0.59
	- 200	-1.42	-1.66

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.14	0.16
Channel Y	200	1.52	-	3.87
Channel Z	200	0.23	0.75	-

Certificate No: DAE3-577_Nov07

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	16269
Channel Y	15848	16148
Channel Z	16203	16661

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

*****	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.12	-1.70	1.72	0.50
Channel Y	-2.46	-3.42	-1.39	0.44
Channel Z	-0.78	-2.16	0.00	0.29

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.3
Channel Y	0.2001	199.9
Channel Z	0.1999	199.4

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	· +7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.0	₩ +6 ·	+14	
Supply (- Vcc)	-0.01	-8	-9	

Page 5 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland						
Accredited by the Swiss Federal O The Swiss Accreditation Service Multilateral Agreement for the re	is one of the signatori	es to the EA certificates	reditation No.:			
Client Sporton (Aude	n)	Cert	ificate No: ET	3-1788_Sep07		
CALIBRATION O	ERTIFICAT	E				
Object	ET3DV6 - SN:17	788				
Calibration procedure(s)	QA CAL-01.v6 Calibration proce	edure for dosimetric E-field	probes			
Calibration date:	September 26, 2	2007				
Condition of the calibrated item	In Tolerance					
All calibrations have been conduct		ory facility: environment temperature	(22 ± 3)°C and I	humidity < 70%.		
Primary Standards	ID #	Cal Date (Calibrated by, Certifica	te No.)	Scheduled Calibration		
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-006	370)	Mar-08		
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-006		Mar-08		
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-006		Mar-08		
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-0071		Aug-08		
Reference 20 dB Attenuator Reference 30 dB Attenuator	SN: S5086 (20b) SN: S5129 (30b)	29-Mar-07 (METAS, No. 217-006 8-Aug-07 (METAS, No. 217-0072		Mar-08 Aug-08		
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013	5 10 NOSON	Jan-08		
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-65		Apr-08		
Secondary Standards	ID #	Check Date (in house)	14	Scheduled Check		
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house chec	ok Nov-05)	In house check: Nov-07		
Network Analyzer HP 8753E	U\$37390585	18-Oct-01 (SPEAG, in house che	ck Oct-06)	In house check: Oct-07		
Per 1991 121 1945	Name	Function		Signatura		
Calibrated by:	Katja Pokovic	Technical Manager		defa: Halfe		
Approved by:	Niels Kuster	Quality Manager	\wedge	1.100		
This calibration certificate shall no	t be reproduced except in	n full without written approval of the la	aboratory.	Issued: September 26, 2007		

Certificate No: ET3-1788_Sep07

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C PR 20

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $9 = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization ϑ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788_Sep07

Page 2 of 9

September 26, 2007

Probe ET3DV6

SN:1788

Manufactured: Last calibrated: Modified: Recalibrated: May 28, 2003 September 19, 2006 September 24, 2007 September 26, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep07

Page 3 of 9

September 26, 2007

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Free Space ^A						
NormX	1.72 ± 10.1%	$\mu V/(V/m)^2$				

Diode Compression^B

NormX	1.72 ± 10.1%	μ V/(V/m) ²	DCP X	91 mV
NormY	1.66 ± 10.1%	μ V/(V/m) ²	DCP Y	93 mV
NormZ	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	6.2	3.3
SAR _{ba} [%]	With Correction Algorithm	0.4	1.0

1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center	to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.0	8.1
SAR _{be} [%]	With Correction Algorithm	0.2	0.1

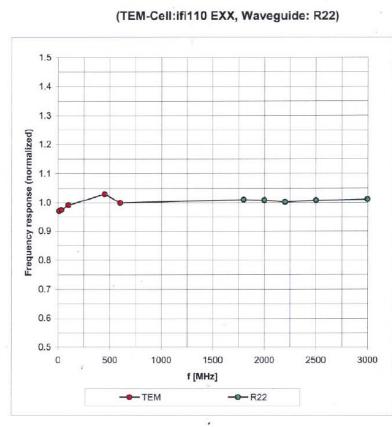
Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

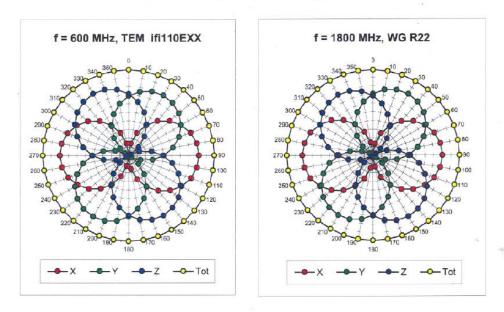

^B Numerical linearization parameter: uncertainty not required.

Certificate No: ET3-1788_Sep07

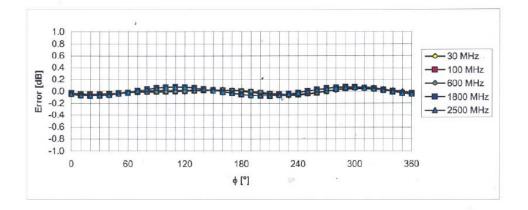
Page 4 of 9

September 26, 2007

Frequency Response of E-Field

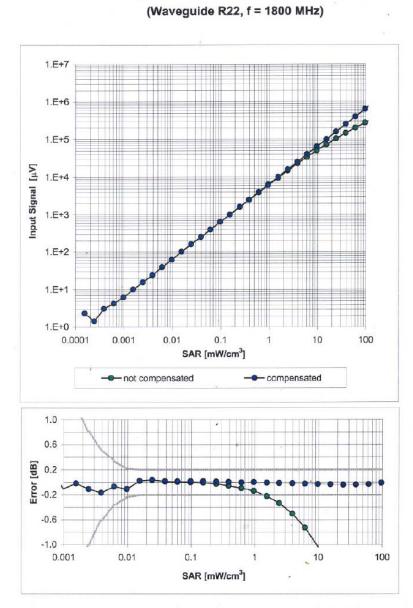

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1788_Sep07


Page 5 of 9

September 26, 2007

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

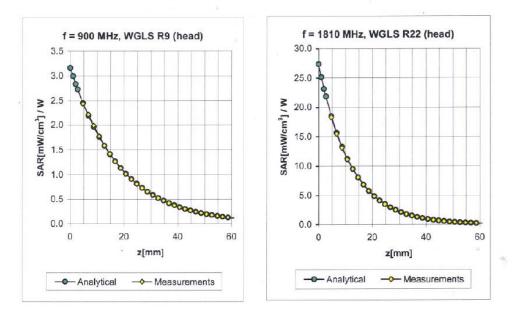

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1788_Sep07

Page 6 of 9

September 26, 2007

Dynamic Range f(SAR_{head})


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

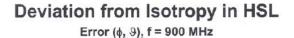
Certificate No: ET3-1788_Sep07

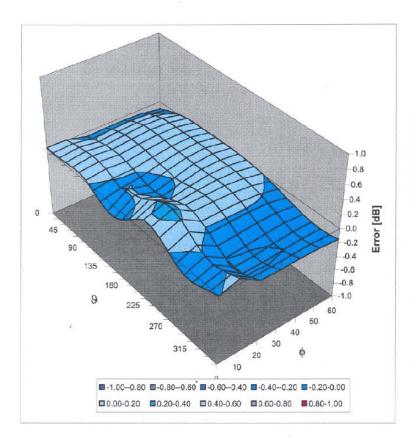
Page 7 of 9

September 26, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.22	3.28	6.54 ± 11.0% (k=2)
1810	± 50 / ± 100 '	Head	40.0 ± 5%	1.40 ± 5%	0.59	2.15	5.28 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.60	2.23	4.87 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.61	2.39	4.58 ± 11.8% (k=2)
				ê			
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.28	2.94	6.37 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.63	2.39	4.75 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.63	2.33	4.36 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.61	2.58	4.17 ± 11.8% (k=2)

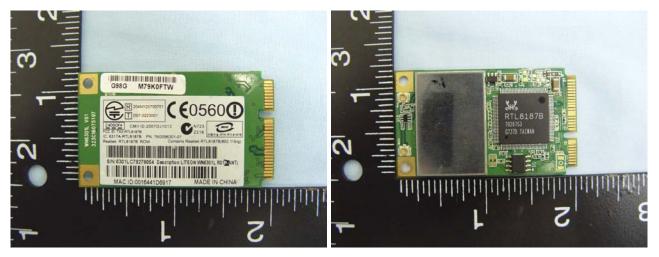

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: ET3-1788_Sep07

Page 8 of 9

September 26, 2007

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)


Certificate No: ET3-1788_Sep07

Page 9 of 9

Appendix D - Product Photos

<WLAN Module>

<Laptop Computer>

Appendix E - Test Setup Photo

Laptop Bottom with 0cm Gap