Impinj Inc.

ADDENDUM TO TEST REPORT 95794-4

xArray
Model: IPJ-REV-R680-USA

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s) 15.207 \& 15.247

Report No.: 95794-4A

Date of issue: July 9, 2014

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Conditions During Testing 5
Equipment Under Test 6
Peripheral Devices 6
FCC Part 15 Subpart C 7
15.207 AC Conducted Emissions 7
15.247(a)(1)(i) -20dB Occupied Bandwidth 20
15.247(a)(1)(i) Average Time of Occupancy 26
15.247(b)(2) RF Power Output 35
15.247(d) Conducted Spurious Emissions and Band edge. 38
15.247(d) Radiated Spurious Emissions and Band edge 44
Supplemental Information 53
Measurement Uncertainty 53
Emissions Test Details 53

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Impinj Inc.
701 N. 34th Street, Suite 300
Seattle, WA 98103

Representative: John Moran
Customer Reference Number: 116099-1

DATE OF EQUIPMENT RECEIPT:

DATE(S) OF TESTING:

REPORT PREPARED BY:

Morgan Tramontin
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 95794

May 9, 2014
May 9- June 17, 2014

Revision History

Original: Testing of the xArray, IPJ-REV-R680-USA to 15.207 \& 15.247.
Addendum A: To add a Conducted Hopping Band Edge plot to section 15.247(d) and to correct the Average Time of Occupancy statement that's under the Figure 5 plot in section 15.247(a)(1)(i).

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00 .14
Immunity	5.00 .07

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Bothell	USO081	SL2-IN-E-1145R	$3082 \mathrm{C}-1$	318736	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C § 15.207 \& 15.247

Test Procedure/Method	Description	Modifications*	Results
15.207 / ANSI C63.4 / FHSS - DA00-705	Conducted Emissions	NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i}) /$ FHSS - DA00-705	-20 dB Occupied Bandwidth	NA	Pass
		NA	Pass
$15.247(\mathrm{a})(1)(\mathrm{i}) /$ FHSS - DA00-705	Average Time of Occupancy	NA	Pass
		NA	Pass
$15.247(\mathrm{~b})(2) /$ FHSS - DA00-705	RF Power Output	NA	Pass
$15.247(\mathrm{~d}) /$ FHSS - DA00-705		Conducted Spurious Emissions and Band edge	
$15.247(\mathrm{~d}) /$ FHSS - DA00-705	Radiated Spurious Emissions and Band edge		

Modifications*/Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

Note: There are two modes for powering the EUT; POE \& Brick (Switching adaptor).
All testing has a set of data for each mode except 15.247(d) Conducted and Radiated Spurious Emissions / Band edge testing only has one set of data taken in the worst case configuration.
No modifications were done during testing.
*Modifications listed above must be incorporated into all production units.

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Switching Adaptor

Manuf: CUI Inc.
Model: DSA-60W-20 124060
Serial: NA

Speedway Revolution

Manuf: Impinj Inc.
Model: IPJ-R220
Serial: 37013050366

PoE Switch

Manuf: D-Link
Model: DES-1008PA
Serial: F3GR187000462

xArray
Manuf: Impinj Inc.
Model: IPJ-REV-R680-USA
Serial: 40314150059
ITE Power Supply
Manuf: D-Link
Model: VAN90C-480B
Serial: 13093600198-OD

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Firewall Router

Manuf: Linksys
Model: BEFSX41
Serial: CB900E900020

POE

Manuf: Netgear
Model: FS726TP
Serial: NA
FCC ID: 1DA5895Y0031B

Laptop

Manuf: Lenovo
Model: ThinkPad X61S
Serial: NA

Switching Adaptor

Manuf: CUI Inc.
Model: DSA-60W-20 124060
Serial: NA

PoE Switch
Manuf: D-Link
Model: DES-1008PA
Serial: F3GR187000462

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) CFR 47 Section 15 Subpart C requirements for Intentional Radiators.

15.207 AC Conducted Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.
Specification: Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:
15.207 AC Mains - Average

95794
Conducted Emissions
xArray
Impinj Inc.
IPJ-REV-R680-USA
40314150059

Date: 6/16/2014
Time: 12:49:08 PM Sequence\#: 1 Tested By: Steven Pittsford 120 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T2	ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$
T3	ANP06505	Cable	$32026-29080-$ $29080-84$	$10 / 18 / 2013$	$10 / 18 / 2015$
		50uH LISN-Line	$3816 / 2 N M$	$7 / 21 / 2013$	$7 / 21 / 2015$
T4	AN01492	50uH LISN-Neutral	$3816 / 2 N M$	$7 / 21 / 2013$	$7 / 21 / 2015$
	AN01492	Spectrum Analyzer	E4440A	$7 / 19 / 2013$	$7 / 19 / 2015$
	AN02872	High Pass Filter	HE9615-150K- $50-720 B$	$3 / 26 / 2014$	$3 / 26 / 2016$
T5	AN02611				

Equipment Under $\boldsymbol{\text { Test } \text { (* } \text { (EUT } \text {): }}$

Function	Manufacturer	Model \#	S/N
Switching Adaptor	CUI Inc.	DSA-60W-20124060	NA
xArray*	Impinj Inc.	IPJ-REV-R680-USA	40314150059
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366
Support Devices:			
Function	Manufacturer	Model \#	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA

Test Conditions / Notes:
A laptop sends test command to the EUT via an Ethernet cable. The EUT is in normal operation.
The EUT is powered by a Switching Adaptor. The EUT is transmitting into its antenna.
Frequency range of measurement $=150 \mathrm{k}-30 \mathrm{MHz}$
CISPR Bandwidths used
Test method in accordance with FCC document: DA 00-705
Temperature: $23^{\circ} \mathrm{C}$
Pressure: 101.7 kPa
Humidity: 38\%
Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	430.702k	32.4	$\begin{aligned} & \hline+9.0 \\ & +0.2 \end{aligned}$	$+0.0$	+0.0	+0.6	+0.0	42.2	47.2	-5.0	Line
2	2.438 M	31.0	$\begin{aligned} & \hline+9.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.4	+0.0	40.6	46.0	-5.4	Line
3	2.621 M	30.7	$\begin{array}{r} +9.0 \\ +0.1 \end{array}$	+0.1	+0.0	+0.4	+0.0	40.3	46.0	-5.7	Line
4	422.702k	31.8	$\begin{array}{r} +9.0 \\ +0.2 \\ \hline \end{array}$	+0.0	+0.0	+0.6	+0.0	41.6	47.4	-5.8	Line
5	367.435 k	32.8	$\begin{aligned} & \hline+9.0 \\ & +0.1 \end{aligned}$	$+0.0$	+0.0	+0.7	+0.0	42.6	48.6	-6.0	Line
6	2.378 M	30.4	$\begin{array}{r} +9.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.4	+0.0	40.0	46.0	-6.0	Line
7	485.242k	30.4	$\begin{aligned} & \hline+9.0 \\ & +0.2 \end{aligned}$	$+0.0$	+0.0	$+0.5$	+0.0	40.1	46.2	-6.1	Line
8	2.680 M	30.0	$\begin{aligned} & \hline+9.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.4	+0.0	39.6	46.0	-6.4	Line
9	2.315 M	29.9	$\begin{aligned} & \hline+9.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.4	+0.0	39.5	46.0	-6.5	Line
10	2.566 M	29.3	$\begin{array}{r} +9.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.4	+0.0	38.9	46.0	-7.1	Line
11	187.815k	36.0	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.0	+0.0	+1.5	+0.0	46.8	54.1	-7.3	Line
12	2.251 M	28.6	$\begin{aligned} & \hline+9.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.4	+0.0	38.2	46.0	-7.8	Line
13	2.497 M	28.3	$\begin{aligned} & \hline+9.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.4	+0.0	37.9	46.0	-8.1	Line
14	2.068 M	27.8	$\begin{array}{r} +9.0 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+0.4	+0.0	37.4	46.0	-8.6	Line
15	2.128 M	27.7	$\begin{aligned} & \hline+9.0 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+0.4	+0.0	37.3	46.0	-8.7	Line

CKC Laboratories, Inc. Date: 6/16/2014 Time: 12:49:08 PM Impinj Inc. WO\#: 95794 Test Lead: Line 120 V 60Hz Sequence\#: 1 Line Impinj Inc. xArray P/N: IPJ-REV-R680-USA

	Sweep Data		Readings
\bigcirc	Peak Readings	\times	QP Readings
*	Average Readings	∇	Ambient
	1-15.207 AC Mains - Average		2-15.207 AC Mains - Quasi-peak

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.
Specification: $\mathbf{1 5 . 2 0 7}$ AC Mains - Average
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
95794
Conducted Emissions
xArray
Impinj Inc.
IPJ-REV-R680-USA
Date: 6/16/2014
Time: 13:02:20
Sequence\#: 2
Tested By: Steven Pittsford
120 V 60 Hz
S/N: 40314150059
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T2	ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$
T3	ANP06505	Cable	$32026-29080-$ $29080-84$	$10 / 18 / 2013$	$10 / 18 / 2015$
	AN01492	50uH LISN-Line	$3816 / 2 N M$	$7 / 21 / 2013$	$7 / 21 / 2015$
T4	AN01492	50uH LISN-Neutral	$3816 / 2 N M$	$7 / 21 / 2013$	$7 / 21 / 2015$
	AN02872	Spectrum Analyzer	E4440A	$7 / 19 / 2013$	$7 / 19 / 2015$
T5	AN02611	High Pass Filter	HE9615-150K-	$3 / 26 / 2014$	$3 / 26 / 2016$
			$50-720 B$		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Switching Adaptor	CUI Inc.	DSA-60W-20 1 24060	NA
xArray*	Impinj Inc.	IPJ-REV-R680-USA	40314150059
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366

Support Devices:

Function	Manufacturer	Model \#	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is in normal operation.
The EUT is powered by a Switching Adaptor. The EUT is transmitting into its antenna.

Frequency range of measurement $=150 \mathrm{k}-30 \mathrm{MHz}$
CISPR Bandwidths used
Test method in accordance with FCC document: DA 00-705

Temperature: $23^{\circ} \mathrm{C}$
Pressure: 101.7 kPa
Humidity: 38\%

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: Neutral

CKC Laboratories, Inc. Date: 6/16/2014 Time: 13:02:20 Impinj Inc. WO\#: 95794 Test Lead: Neutral 120 V 60 Hz Sequence\#: 2 Neutral Impinj Inc. xArray P/N: IPJ-REV-R680-USA

	Sweep Data
P	Peak Readings
*	Average Readings

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.
Specification: $\mathbf{1 5 . 2 0 7}$ AC Mains - Average

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
95794
Conducted Emissions
xArray
Impinj Inc.
IPJ-REV-R680-USA
S/N: 40314150059

Date: 6/17/2014
Time: 11:16:53
Sequence\#: 9
Tested By: Steven Pittsford
120 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T2	ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$
T3	ANP06505	Cable	$32026-29080-$ $29080-84$	$10 / 18 / 2013$	$10 / 18 / 2015$
T4	AN02872	Spectrum Analyzer	E4440A	$7 / 19 / 2013$	$7 / 19 / 2015$
T5	AN02611	High Pass Filter	HE9615-150K- $50-720 B$	$3 / 26 / 2014$	$3 / 26 / 2016$
T6	AN01492	50uH LISN-Line	3816/2NM	$7 / 21 / 2013$	$7 / 21 / 2015$
	AN01492	50uH LISN-Neutral	3816/2NM	$7 / 21 / 2013$	$7 / 21 / 2015$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
xArray*	Impinj Inc.	IPJ-REV-R680-USA	40314150059
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366
ITE Power Supply	D-Link	VAN90C-480B	13093600198-0D
PoE Switch	D-Link	DES-1008PA	F3GR187000462

Support Devices:

Function	Manufacturer	Model \#	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is in normal operation.
The EUT is powered by POE. The EUT is transmitting into its antenna.
Frequency range of measurement $=150 \mathrm{k}-30 \mathrm{MHz}$
CISPR Bandwidths used
Test method in accordance with FCC document: DA 00-705
Temperature: $23^{\circ} \mathrm{C}$
Pressure: 101.7 kPa
Humidity: 38\%

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: Line

CKC Laboratories, Inc. Date: 6/17/2014 Time: 11:16:53 Impinj Inc. WO\#: 95794 Test Lead: Line 120 V 60Hz Sequence\#: 9 Line Impinj Inc. xArray P/N: IPJ-REV-R680-USA

	Sweep Data
P	Peak Readings
*	Average Readings
	$1-15.207$ AC Mains - Average

——Readings
\times QP Readings
v Ambient
- 2-15.207 AC Mains - Quasi-peak

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
15.207 AC Mains - Average

95794
Conducted Emissions
Date: 6/17/2014
Time: 11:13:05
xArray
Sequence\#: 10
Tested By: Steven Pittsford
120 V 60 Hz
S/N: 40314150059
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T2	ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$
T3	ANP06505	Cable	$32026-29080-$ $29080-84$	$10 / 18 / 2013$	$10 / 18 / 2015$
			Spectrum Analyzer	E4440A	$7 / 19 / 2013$
	HN02872	High Pass Filter	HE9615-150K- $50-720 B$	$3 / 26 / 2014$	$7 / 19 / 2015$
	AN02611	50uH LISN-Line	3816/2NM	$7 / 21 / 2013$	$7 / 2016$
T5	AN01492	50uH LISN-Neutral	3816/2NM	$7 / 21 / 2013$	$7 / 21 / 2015$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
xArray*	Impinj Inc.	IPJ-REV-R680-USA	40314150059
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366
PoE Switch	D-Link	DES-1008PA	F3GR187000462
ITE Power Supply	D-Link	VAN90C-480B	13093600198-0D
Support Devices:			
Function	Manufacturer	Model \#	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is in normal operation.
The EUT is powered by POE. The EUT is transmitting into its antenna.
Frequency range of measurement $=150 \mathrm{k}-30 \mathrm{MHz}$
CISPR Bandwidths used
Test method in accordance with FCC document: DA 00-705
Temperature: $23^{\circ} \mathrm{C}$
Pressure: 101.7 kPa
Humidity: 38\%

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: Neutral

\#	$\begin{array}{r} \text { Freq } \\ \mathrm{MHz} \end{array}$	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \\ & \hline \end{aligned}$	T2 dB	T3 dB	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	11.330 M	38.7	+9.0	+0.1	+0.1	+0.1	+0.0	48.5	50.0	-1.5	Neutr
	ve		+0.5								
\wedge	11.328M	39.4	$\begin{aligned} & +9.0 \\ & +0.5 \end{aligned}$	+0.1	+0.1	+0.1	+0.0	49.2	50.0	-0.8	Neutr
	$358.676 \mathrm{k}$ ve	36.0	$\begin{array}{r} +9.0 \\ +0.7 \\ \hline \end{array}$	+0.0	+0.0	+0.1	+0.0	45.8	48.8	-3.0	Neutr
\wedge	361.617 k	40.2	$\begin{array}{r} +9.0 \\ +0.7 \\ \hline \end{array}$	${ }^{+0.0}$	+0.0	+0.1	+0.0	50.0	48.7	+1.3	Neutr
5	$\begin{aligned} & \text { 12.359M } \\ & \text { ve } \end{aligned}$	36.8	$\begin{array}{r} +9.0 \\ +0.6 \\ \hline \end{array}$	+0.1	+0.1	+0.2	+0.0	46.8	50.0	-3.2	Neutr
\wedge	12.364 M	37.9	$\begin{array}{r} +9.0 \\ +0.6 \end{array}$	+0.1	+0.1	+0.2	+0.0	47.9	50.0	-2.1	Neutr
7	2.157M	33.2	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	42.7	46.0	-3.3	Neutr
8	2.106 M	33.1	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	42.6	46.0	-3.4	Neutr
9	2.187M	32.8	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	$+0.0$	+0.1	+0.0	42.3	46.0	-3.7	Neutr
10	2.204 M	32.8	$\begin{array}{r} +9.0 \\ \hline+0.3 \end{array}$	+0.1	$+0.0$	$+0.1$	$+0.0$	42.3	46.0	-3.7	Neutr
11	2.234 M	32.4	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	41.9	46.0	-4.1	Neutr
12	1.821 M	32.3	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	41.8	46.0	-4.2	Neutr
13	2.391M	31.4	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	40.9	46.0	-5.1	Neutr
14	2.008M	31.1	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	$+0.0$	+0.1	+0.0	40.6	46.0	-5.4	Neutr
15	2.259M	30.8	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	+0.0	$+0.1$	+0.0	40.3	46.0	-5.7	Neutr
16	839.391k	30.5	$\begin{aligned} & +9.0 \\ & +0.4 \end{aligned}$	${ }^{+0.0}$	+0.0	+0.2	$+0.0$	40.1	46.0	-5.9	Neutr
17	2.349M	30.6	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	$+0.0$	$+0.1$	+0.0	40.1	46.0	-5.9	Neutr
18	$\mathrm{ve}^{2.132 \mathrm{M}}$	27.5	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	${ }^{+0.1}$	$+0.0$	+0.1	$+0.0$	37.0	46.0	-9.0	Neutr
^	2.132M	33.4	$\begin{array}{r} +9.0 \\ +0.3 \\ \hline \end{array}$	+0.1	+0.0	+0.1	+0.0	42.9	46.0	-3.1	Neutr

CKC Laboratories, Inc. Date: 6/17/2014 Time: 11:13:05 Impinj Inc. WO\#: 95794 Test Lead: Neutral 120 V 60 Hz Sequence\#: 10 Neutral Impinj Inc. XArray P/N: IPJ-REV-R680-USA

Test Setup Photos

Switching Adaptor

PoE Switch

15.247(a)(1)(i) -20dB Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification:
Work Order \#:
Test Type:
FCC15.247-20dB Bandwidth
95794
Conducted Emissions

EUT Information:

Manufacturer: Impinj Inc.
Equipment: xArray
Design Phase: Production Model

Date: 6/16/14
Time: 09:02:21
Engineer: S. Pittsford
Model \#: IPJ-REV-R680-USA
Serial \#: 40314150059
Installation: Mobile

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
ANP05748	Attenuator	PE7004-20	$4 / 2 / 2014$	$4 / 2 / 2016$	
ANP06217	Attenuator	$768-10$	$4 / 7 / 2014$	$4 / 7 / 2016$	
ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$	
ANP06505	Cable	$32026-29080-$	$10 / 18 / 2013$	$10 / 18 / 2015$	
		$29080-84$			
AN02872	Spectrum Analyzer	E4440A	$7 / 19 / 2013$	$7 / 19 / 2015$	

Support Devices:

Function	Manufacturer	Model \#	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA
POE	NetGear	FS726TP	1DA5895Y0031B
Switching Adaptor	CUI Inc.	DSA-60W-20 124060	NA
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is powered by a Netgear POE Model FS726TP and also using the Switching adaptor.

Frequency: $902-928 \mathrm{MHz}$
Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Firmware setting $=31.5 \mathrm{dBm}, 31.5 \mathrm{dBm}, 31.5 \mathrm{dBm}$
Test method in accordance with FCC document: DA 00-705

Temperature: $22^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 40%

Test Data

	Low Channel	Mid Channel	High Channel
-20 dB OBW with POE	414.0 kHz	414.1 kHz	415.5 kHz
-20 dB OBW with Switching adaptor	421.2 kHz	421.1 kHz	420.8 kHz

OBW Low Channel, Switching Adaptor

OBW Middle Channel, Switching Adaptor

OBW High Channel, Switching Adaptor

OBW Low Channel, PoE Switch

OBW Middle Channel, PoE Switch

OBW High Channel, PoE Switch

Test Setup Photos

Switching Adaptor

PoE Switch

15.247(a)(1)(i) Average Time of Occupancy

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717
Customer: Impinj Inc.
Specification: $\quad \mathbf{1 5 . 2 4 7 (a) (1) (i)}$
Work Order \#: 95794
Date: 6/16/14
Time: 09:02:21

EUT Information:

Manufacturer: Impinj Inc.
Equipment: xArray
Design Phase: Production Model

Engineer: S. Pittsford
Model \#: IPJ-REV-R680-USA
Serial \#: 40314150059
Installation: Mobile

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANP05748	Attenuator	PE7004-20	$4 / 2 / 2014$	$4 / 2 / 2016$
ANP06217	Attenuator	$768-10$	$4 / 7 / 2014$	$4 / 7 / 2016$	
ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$	
ANP06505	Cable	$32026-29080-$	$10 / 18 / 2013$	$10 / 18 / 2015$	
		$29080-84$			
AN02872	Spectrum Analyzer	E4440A	$7 / 19 / 2013$	$7 / 19 / 2015$	

Support Devices:

Function	Manufacturer	Model \#	S/N
POE	NetGear	FS726TP	1DA5895Y0031B
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is powered by a Netgear POE Model FS726TP.

Frequency: $902-928 \mathrm{MHz}$
Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$

Firmware setting $=31.5 \mathrm{dBm}, 31.5 \mathrm{dBm}, 31.5 \mathrm{dBm}$
Attenuator insertion loss applied for in the Spectrum Analyzer screen capture.
Test method in accordance with FCC document: DA 00-705

Temperature: $22^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 40%

Test Data

15.247(a)(1) For frequency hopping systems operating in the $902-928 \mathrm{MHz}$ band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz , the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz .

Frequency Separation

Channel separation $=500 \mathrm{kHz}$

-20 dB Bandwidth

-20 dB BW= 414.1 kHz
15.247(a)(1)(i) For frequency hopping systems operating in the $902-928 \mathrm{MHz}$ band if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least $\mathbf{2 5}$ hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Number of Hopping Channels

Total number of hopping channel $=50$

Average time of occupancy

Event duration $=200 \mathrm{~ms}$

Figure 1: Number of events in 20 sec sample 1

Figure 2: Number of events in 20sec sample 2

Figure 3: Number of events in 20 sec sample 3

Figure 4: Number of events in 20 sec sample 4

Figure 5: Number of events in 20 sec sample 5

Limit: On time shall not exceed 0.4 second, per 10sec interval.

Five separate sweeps at 20 second were acquired, averaging 2 events per 20 second sweep or 1 event per 10second segment.

Each events on time $=200 \mathrm{~ms}$,

$$
\text { Ave Time of occupancy }=\frac{0.200 \mathrm{sec}}{\text { event }} * \frac{1 \text { evnet }}{10 \mathrm{sec} \text { interval }}=\frac{0.200 \mathrm{sec}}{10 \mathrm{sec} \text { interval }}
$$

Test Setup Photos

Switching Adaptor

PoE Switch

LABORATORIES, INC.

15.247(b)(2) RF Power Output

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.
Specification:
Work Order \#:
FCC15.247 (b)(ii) Max Cond Power

95794
Conducted Emissions

Date: 6/16/14
Time: 09:02:21
Engineer: S. Pittsford
Model \#: IPJ-REV-R680-USA
Serial \#: 40314150059 :
Installation: Mobile

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
ANP05748	Attenuator	PE7004-20	$4 / 2 / 2014$	$4 / 2 / 2016$	
ANP06217	Attenuator	$768-10$	$4 / 7 / 2014$	$4 / 7 / 2016$	
ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$	
ANP06505	Cable	$32026-29080-$	$10 / 18 / 2013$	$10 / 18 / 2015$	
		Spectrum Analyzer	E4440A	$7 / 19 / 2013$	$7 / 19 / 2015$
AN02872	SN4				

Support Equipment:

Description	Manufacturer	Model	Serial
POE	NetGear	FS726TP	1DA5895Y0031B
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA
Switching Adaptor	CUI Inc.	DSA-60W-20 124060	NA
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is powered by a Netgear POE Model FS726TP and also measured using the Switching power adaptor at $85 \%, 100 \%$ and 115% supply voltages.

Frequency: $902-928 \mathrm{MHz}$
Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Firmware setting $=31.5 \mathrm{dBm}, 31.5 \mathrm{dBm}, 31.5 \mathrm{dBm}$
Attenuator insertion loss applied for in the Spectrum Analyzer screen capture.
Test method in accordance with FCC document: DA 00-705

Temperature: $22^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 40\%

Test Data

Conducted Power					
	EUT Power Source	Conducted Power at the RF Output Port (dBm)	Min Cable Loss (dB)	RF output power (dBm)	Limit (dBm)
Low Channel	POE	31.36	2.0	29.36	30
Mid Channel	POE	31.32	2.0	29.32	30
High Channel	POE	31.28	2.0	29.28	30
Low Channel	Power Brick Supply Voltage $=85 \%$	31.35	2.0	29.35	30
Mid Channel	Power Brick Supply Voltage = 85\%	31.48	2.0	29.48	30
High Channel	Power Brick Supply Voltage = 85\%	31.56	2.0	29.56	30
Low Channel	Power Brick Supply Voltage = 100\%	31.28	2.0	29.28	30
Mid Channel	Power Brick Supply Voltage $=100 \%$	31.54	2.0	29.54	30
High Channel	Power Brick Supply Voltage $=100 \%$	31.55	2.0	29.55	30
Low Channel	Power Brick Supply Voltage = 115\%	31.37	2.0	29.37	30
Mid Channel	Power Brick Supply Voltage = 115\%	31.58	2.0	29.58	30
High Channel	Power Brick Supply Voltage = 115\%	31.54	2.0	29.54	30

Test Setup Photos

Switching Adaptor

PoE Switch

LABORATORIES, INC.

15.247(d) Conducted Spurious Emissions and Band edge

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.
Specification: \quad FCC Part 15.247(d) Conducted Spurious emission
Work Order \#: 95794 Date: 6/16/14
Test Type: Conducted Emissions
Time: 09:02:21

EUT Information:

Manufacturer: Impinj Inc.
Equipment: xArray
Design Phase: Production Model

Engineer: S. Pittsford
Model \#: IPJ-REV-R680-USA
Serial \#: 40314150059:
Installation: Mobile

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
ANP05748	Attenuator	PE7004-20	$4 / 2 / 2014$	$4 / 2 / 2016$	
ANP06217	Attenuator	$768-10$	$4 / 7 / 2014$	$4 / 7 / 2016$	
ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$	
ANP06505	Cable	$32026-29080-$	$10 / 18 / 2013$	$10 / 18 / 2015$	
		Spectrum Analyzer	E4440A	$7 / 19 / 2013$	$7 / 19 / 2015$

Support Equipment:

Description	Manufacturer	Model	Serial
POE	NetGear	FS726TP	1DA5895Y0031B
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA
Switching Adaptor	CUI Inc.	DSA-60W-20 124060	NA
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable. The EUT is powered by POE and by switching adaptor. Only worst case is reported.
Frequency: $902-928 \mathrm{MHz}$
Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Firmware setting $=31.5 \mathrm{dBm}, 31.5 \mathrm{dBm}, 31.5 \mathrm{dBm}$
Attenuator insertion loss applied for in the Spectrum Analyzer screen capture.
Test method in accordance with FCC document: DA 00-705

Temperature: $22^{\circ} \mathrm{C}$
Pressure: 101.8 kPa
Humidity: 40\%

Test Data

Band edge

Test Setup Photos

Switching Adaptor

PoE Switch

LABORATORIES, INC.

15.247(d) Radiated Spurious Emissions and Band edge

Test Setup \& Conditions / Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:

Impinj Inc.

15.247(d) / 15.209 Radiated Spurious Emissions

95794 Date: 6/17/2014
Radiated Scan Time: 10:14:15
xArray
Impinj Inc.
IPJ-REV-R680-USA
40314150059

Sequence\#: 6
Tested By: Steven Pittsford

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02307	Preamp	8447D	$3 / 14 / 2014$	$3 / 14 / 2016$
T2	ANP05748	Attenuator	PE7004-20	$4 / 2 / 2014$	$4 / 2 / 2016$
T3	ANP05360	Cable	RG214	$12 / 3 / 2012$	$12 / 3 / 2014$
T4	ANP05963	Cable	RG-214	$2 / 21 / 2014$	$2 / 21 / 2016$
T5	ANP06505	Cable	$32026-29080-$ $29080-84 ~$	$10 / 18 / 2013$	$10 / 18 / 2015$
T6	AN02872	Spectrum Analyzer	E4440A	$7 / 19 / 2013$	$7 / 19 / 2015$
T7	AN01992	Biconilog Antenna	CBL6111C	$8 / 1 / 2012$	$8 / 1 / 2014$
T8	AN03209	Preamp	83051 A	$3 / 5 / 2013$	$3 / 5 / 2015$
T9	AN01467	Horn Antenna-ANSI	3115	$9 / 16 / 2013$	$9 / 16 / 2015$
		C63.5 Calibration			
T10	ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$
T11	AN03170	High Pass Filter	HM1155-11SS	$10 / 14 / 2013$	$10 / 14 / 2015$
T12	AN00052	Loop Antenna	6502	$5 / 20 / 2014$	$5 / 20 / 2016$

Equipment Under Test (*= EUT):

Function	Manufacturer	Model \#	S/N
xArray*	Impinj Inc.	IPJ-REV-R680-USA	40314150059
Speedway Revolution	Impinj Inc.	IPJ-R220	37013050366

Support Devices:

Function	Manufacturer	Model \#	S/N
Firewall Router	Linksys	BEFSX41	CB900E900020
Laptop	Lenovo	ThinkPad X61S	NA
POE	Netgear	FS726TP	NA
Switching Adaptor	CUI Inc.	DSA-60W-20 124060	NA

Test Conditions / Notes:

A laptop sends test command to the EUT via an Ethernet cable.
The EUT is powered by POE and by switching adaptor. Only worst case is reported.
Transmit antenna tested with boresight and furthest right off beam states in vertical polarity. Only worst case is reported. The EUT is transmitting into its antenna.
Low, Mid and High channels investigated.

Frequency range of measurement $=9 \mathrm{k}-9.28 \mathrm{GHz}$
$30-1000 \mathrm{MHz}$ RBW $=\mathrm{VBW}=100 \mathrm{kHz}$
$1-9.28 \mathrm{GHz}$ RBW $=\mathrm{VBW}=1 \mathrm{MHz}$
CISPR Bandwidths used below 30 MHz
Test method in accordance with FCC document: DA 00-705
Temperature: $23^{\circ} \mathrm{C}$
Pressure: 101.7 kPa
Humidity: 38\%
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

104636.196 M	36.8	$\begin{array}{r} +0.0 \\ +2.2 \\ +31.6 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{gathered} +0.0 \\ -31.0 \\ +0.0 \end{gathered}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-10.6	$\begin{gathered} \text { Horiz } \\ 104 \end{gathered}$
11 2781.850M	39.3	$\begin{array}{r} +0.0 \\ +1.5 \\ +28.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -30.2 \\ +0.0 \end{array}$	$+0.0$	42.6	$\begin{aligned} & \quad 54.0 \\ & \text { High } \end{aligned}$	-11.4	Horiz 104
123658.208 M	38.1	$\begin{array}{r} +0.0 \\ +1.6 \\ +29.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.9 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-11.9	$\begin{array}{r} \hline \text { Vert } \\ 110 \end{array}$
13 3610.742M	38.1	$\begin{array}{r} +0.0 \\ +1.6 \\ +29.7 \end{array}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +3.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-12.0	Horiz 107
14 2708.505M	38.5	$\begin{array}{r} +0.0 \\ +1.4 \\ +28.6 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.2 \\ +0.0 \end{array}$	$\begin{gathered} +0.0 \\ 7 \end{gathered}$	41.3	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-12.7	Horiz 111
15 2781.690M	37.9	$\begin{array}{r} +0.0 \\ +1.5 \\ +28.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	41.2	$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-12.8	$\begin{array}{r} \hline \text { Vert } \\ 113 \end{array}$
163611.148 M	37.2	$\begin{array}{r} +0.0 \\ +1.6 \\ +29.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.9 \\ +0.0 \\ \hline \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-12.9	$\begin{gathered} \hline \text { Vert } \\ 108 \end{gathered}$
17 2708.430M	37.5	$\begin{array}{r} +0.0 \\ +1.4 \\ +28.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -30.2 \\ +0.0 \\ \hline \end{array}$	$+0.0$	40.3	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-13.7	$\begin{array}{r} \hline \text { Vert } \\ 108 \end{array}$
18 3709.100M	36.3	$\begin{array}{r} +0.0 \\ +1.6 \\ +29.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-13.8	Horiz 104
$\begin{aligned} & 197418.317 \mathrm{M} \\ & \text { Ave } \end{aligned}$	23.6	$\begin{array}{r} +0.0 \\ +2.5 \\ +37.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.2 \\ +0.0 \\ \hline \end{array}$	$\begin{gathered} +0.0 \\ 2 \end{gathered}$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	-14.2	$\begin{array}{r} \hline \text { Vert } \\ 104 \end{array}$
^ 7418.317M	38.6	$\begin{array}{r} +0.0 \\ +2.5 \\ +37.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$		$\begin{aligned} & 54.0 \\ & \text { High } \end{aligned}$	+0.8	$\begin{gathered} \hline \text { Vert } \\ 104 \end{gathered}$
$\begin{aligned} & 217322.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	24.0	$\begin{array}{r} +0.0 \\ +2.4 \\ +37.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.2 \\ +0.0 \\ \hline \end{array}$	$+0.0$	39.7	$\begin{aligned} & \text { 54.0 } \\ & \text { Mid } \end{aligned}$	-14.3	$\begin{gathered} \hline \text { Vert } \\ 110 \end{gathered}$
^ 7322.000M	38.9	$\begin{array}{r} +0.0 \\ +2.4 \\ +37.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -28.2 \\ +0.0 \\ \hline \end{array}$	$+0.0$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	+0.6	$\begin{array}{r} \hline \text { Vert } \\ 110 \end{array}$
$\begin{aligned} & 239152.500 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.7	$\begin{array}{r} +0.0 \\ +2.8 \\ +36.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -27.6 \\ +0.0 \\ \hline \end{array}$	$+0.0$		$\begin{aligned} & \text { } 54.0 \\ & \text { Mid } \end{aligned}$	-14.5	$\begin{array}{r} \hline \text { Vert } \\ 110 \end{array}$
$\wedge 9152.500 \mathrm{M}$	36.6	$\begin{array}{r} +0.0 \\ +2.8 \\ +36.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -27.6 \\ +0.0 \end{array}$	$+0.0$		$\begin{aligned} & \text { Mid } \\ & \text { M4.0 } \end{aligned}$	-0.6	$\begin{gathered} \hline \text { Vert } \\ 110 \end{gathered}$
$\begin{aligned} & 259027.259 \mathrm{M} \\ & \text { Ave } \end{aligned}$	22.8	$\begin{array}{r} +0.0 \\ +2.7 \\ +36.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -27.6 \\ +0.0 \end{array}$	$+0.0$		$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-14.8	$\begin{gathered} \hline \text { Vert } \\ 106 \end{gathered}$
^ 9027.259M	37.0	$\begin{array}{r} +0.0 \\ +2.7 \\ +36.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -27.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 60 \end{aligned}$	53.4	$\begin{aligned} & 54.0 \\ & \text { Low } \end{aligned}$	-0.6	$\begin{gathered} \hline \text { Vert } \\ 106 \end{gathered}$

61	904.900 M	37.0	-27.4	+20.0	+2.0	+1.5	+0.0	57.0	130.8	-73.8	Horiz
			+0.9	+0.0	+23.0	+0.0	360				
			+0.0	+0.0	+0.0	+0.0					
62	19.563 M	38.0	+0.0	+0.0	+0.0	+0.0	-40.0	5.8	110.8	-105.0	Paral
			+0.1	+0.0	+0.0	+0.0	230				134
			+0.0	+0.0	+0.0	+7.7					
63	29.850 M	26.4	+0.0	+0.0	+0.0	+0.0	-40.0	-8.8	110.8	-119.6	Paral
			+0.2	+0.0	+0.0	+0.0					134
			+0.0	+0.1	+0.0	+4.5					
64	$19.323 M$	16.5	+0.0	+0.0	+0.0	+0.0	-40.0	-15.6	110.8	-126.4	Paral
			+0.1	+0.0	+0.0	+0.0	360				134
			+0.0	+0.0	+0.0	+7.8					

CKC Laboratories, Inc. Date: 6/17/2014 Time: 10:14:15 Impinj Inc. WO\#: 95794 Test Distance: 3 Meters Sequence\#: 6 Vert Impinj Inc. xArray P/N: IPJ-REV-R680-USA

Band edge

Test Setup Photos

Switching Adaptor

Switching Adaptor

PoE Switch

PoE Switch

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mathrm{\mu V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mathrm{\mu V/m)}$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

