Impinj Inc.

TEST REPORT FOR

R700 RAIN RFID Reader Model: IPJ-R700-341

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s) 15.247 (FHSS 902-928MHz)

Report No.: 108693-1_Vol.1

Date of issue: August 17, 2023

Test Certificate #803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 98 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

3
3
3
5
5
5
6
11
21
21
97
97
97

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Impinj Inc. 400 Fairview Ave N, Suite 1200

Seattle, WA 98109

Representative: Greg Robinson

Customer Reference Number: 2D-10723504

Viviana Prado CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 108693

July 18, 2023

July 18-26, 2023

DATE OF EQUIPMENT RECEIPT:
DATE(S) OF TESTING:

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve of Below

Page 3 of 98 Report No.: 108693-1_Vol.1

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable, and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive SE, Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

^{*}CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html

Page 4 of 98 Report No.: 108693-1_Vol.1

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	NP
15.247(a)(1)	Carrier Separation	NA	NP
15.247(a)(1)(i)	Number of Hopping Channels	NA	NP
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	NP
15.247(d)	RF Conducted Emissions & Band Edge	NA	NP
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NP

NA = Not Applicable

NP = CKC Laboratories, Inc was not contacted to perform test.

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing; the customer declares that the ferrites installed on the cables at the EUT are part of the final bill of material.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of	Conditions
None.	

Page 5 of 98 Report No.: 108693-1 Vol.1

^{*}Partial testing performed as contracted for permissive change testing. The band edge contracted to be measured from 902 to 960MHz and the spurious emissions contracted to be measured from 1-10GHz.

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Under Test:

Device	Manufacturer	Model #	S/N
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352

Support Equipment:

Manufacturer	Model #	S/N
Keonn	ADAN-p16US-FRSMA-	100029201220280000006
	200.01	
Keonn	ADAN-p16US-FRSMA-	100029201220280000002
	200.01	
Keonn	ADSP-2-eSMA -110	100085602230120000008
Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Panasonic	EQ-511	NA
Phihong	POE29U-1AT(PL)	NA
		_
tp-link	T120100-2B1	NA
tp-link	ER605	22213C4002710
Нр	PPP009D	WECJQ0EARB12DM
HP	EliteBook	REG-5CG5171595
	Keonn Keonn Tycon Systems Panasonic Phihong tp-link tp-link Hp	Keonn ADAN-p16US-FRSMA-200.01 Keonn ADAN-p16US-FRSMA-200.01 Keonn ADSP-2-eSMA -110 Tycon Systems POE-MSPLT-4812P Panasonic EQ-511 Phihong POE29U-1AT(PL) tp-link T120100-2B1 tp-link ER605 Hp PPP009D

Configuration 2

Equipment Under Test:

Device	Manufacturer	Model #	S/N	
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352	

Support Equipment:

Device	Manufacturer	Model #	S/N
1x6 array antenna	Impaq Technology Co. LTD.	Ant16	1x6 array antenna
PoE Splitter	Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Sensor	Panasonic	EQ-511	NA
Single Point Power Over	Phihong	POE29U-1AT(PL)	NA
Ethernet			
ITE Power Supply	tp-link	T120100-2B1	NA
Omada Gigabit VPN Router	tp-link	ER605	22213C4002710
AC Adaptor	Нр	PPP009D	WECJQ0EARB12DM
Laptop	НР	EliteBook	REG-5CG5171595

Page 6 of 98 Report No.: 108693-1_Vol.1

Equipment Under Test:

Device	Manufacturer	Model #	S/N
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352

Support Equipment:

Device	Manufacturer	Model #	S/N
30deg tilted 1x2 array	Impaq Technology Co. LTD.	Ant12	NA
antenna			
PoE Splitter	Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Sensor	Panasonic	EQ-511	NA
Single Point Power Over	Phihong	POE29U-1AT(PL)	NA
Ethernet			
ITE Power Supply	tp-link	T120100-2B1	NA
Omada Gigabit VPN Router	tp-link	ER605	22213C4002710
AC Adaptor	Нр	PPP009D	WECJQ0EARB12DM
Laptop	HP	EliteBook	REG-5CG5171595

Configuration 4

Equipment Under Test:

Device	Manufacturer	Model #	S/N
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352

Support Equipment:

Device	Manufacturer	Model #	S/N
3x3 array antenna	Impaq Technology Co. LTD.	Ant33	NA
PoE Splitter	Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Sensor	Panasonic	EQ-511	NA
Single Point Power Over	Phihong	POE29U-1AT(PL)	NA
Ethernet			
ITE Power Supply	tp-link	T120100-2B1	NA
Omada Gigabit VPN Router	tp-link	ER605	22213C4002710
AC Adaptor	Нр	PPP009D	WECJQ0EARB12DM
Laptop	HP	EliteBook	REG-5CG5171595

Page 7 of 98 Report No.: 108693-1_Vol.1

Equipment Under Test:

Device	Manufacturer	Model #	S/N
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352

Support Equipment:

Device	Manufacturer	Model #	S/N
1x6 array antenna	Impaq Technology Co. LTD.	Ant16	NA
1x6 array antenna	Impaq Technology Co. LTD.	Ant16	NA
RFID UHF power splitter	Keonn	ADSP-2-eSMA -110	100085602230120000008
PoE Splitter	Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Sensor	Panasonic	EQ-511	NA
Single Point Power Over	Phihong	POE29U-1AT(PL)	NA
Ethernet			
ITE Power Supply	tp-link	T120100-2B1	NA
Omada Gigabit VPN Router	tp-link	ER605	22213C4002710
AC Adaptor	Нр	PPP009D	WECJQ0EARB12DM
Laptop	HP	EliteBook	REG-5CG5171595

Configuration 6

Equipment Under Test:

Device	Manufacturer	Model #	S/N
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352

Support Equipment:

Device	Manufacturer	Model #	S/N
Slimline UHF Ground	Times-7	A6590C	210215218
Antenna			
PoE Splitter	Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Sensor	Panasonic	EQ-511	NA
Single Point Power Over	Phihong	POE29U-1AT(PL)	NA
Ethernet			
ITE Power Supply	tp-link	T120100-2B1	NA
Omada Gigabit VPN Router	tp-link	ER605	22213C4002710
AC Adaptor	Нр	PPP009D	WECJQ0EARB12DM
Laptop	HP	EliteBook	REG-5CG5171595

Page 8 of 98 Report No.: 108693-1_Vol.1

Equipment Under Test:

Device	Manufacturer	Model #	S/N
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352

Support Equipment:

Device	Manufacturer	Model #	S/N
902-928 MHZ, 11 DBIC	Mti Wireless Edge Ltd.	MT-263020/TRH/A	100313
RHCP READER ANTENNA			
PoE Splitter	Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Sensor	Panasonic	EQ-511	NA
Single Point Power Over	Phihong	POE29U-1AT(PL)	NA
Ethernet			
ITE Power Supply	tp-link	T120100-2B1	NA
Omada Gigabit VPN Router	tp-link	ER605	22213C4002710
AC Adaptor	Нр	PPP009D	WECJQ0EARB12DM
Laptop	HP	EliteBook	REG-5CG5171595

Configuration 8

Equipment Under Test:

Device	Manufacturer	Model #	S/N
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352

Support Equipment:

Device	Manufacturer	Model #	S/N
UHF RFID antenna	identix	85DL4090	NA
PoE Splitter	Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Sensor	Panasonic	EQ-511	NA
Single Point Power Over	Phihong	POE29U-1AT(PL)	NA
Ethernet			
ITE Power Supply	tp-link	T120100-2B1	NA
Omada Gigabit VPN Router	tp-link	ER605	22213C4002710
AC Adaptor	Нр	PPP009D	WECJQ0EARB12DM
Laptop	HP	EliteBook	REG-5CG5171595

Page 9 of 98 Report No.: 108693-1_Vol.1

Equipment Under Test:

Device	Manufacturer	Model #	S/N
R700 RAIN RFID Reader	Impinj Inc.	IPJ-R700-341	37021230352

Support Equipment:

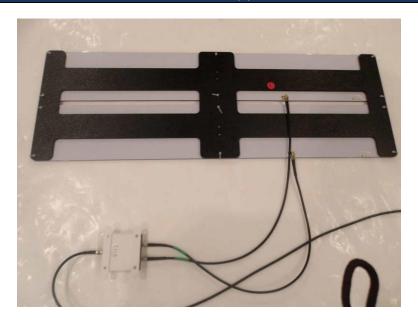
Jupport Equipment			
Device	Manufacturer	Model #	S/N
Slimline UHF Ground	Times-7	A6034-71800	230117672
Antenna			
PoE Splitter	Tycon Systems	POE-MSPLT-4812P	204100656ARC01
Sensor	Panasonic	EQ-511	NA
Single Point Power Over	Phihong	POE29U-1AT(PL)	NA
Ethernet			
ITE Power Supply	tp-link	T120100-2B1	NA
Omada Gigabit VPN Router	tp-link	ER605	22213C4002710
AC Adaptor	Нр	PPP009D	WECJQ0EARB12DM
Laptop	HP	EliteBook	REG-5CG5171595

Page 10 of 98 Report No.: 108693-1_Vol.1

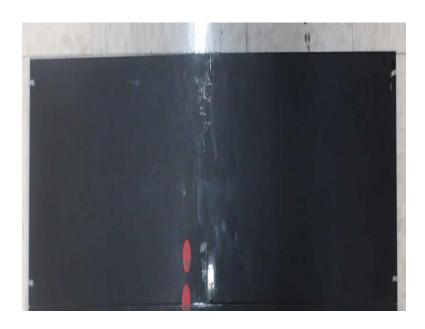
General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	FHSS
Operating Frequency Range:	902.75 – 927.25 MHz
Number of Hopping Channels:	50
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	ASK
Maximum Duty Cycle:	100% Modulated (Tested Worst-Case)

Page 11 of 98 Report No.: 108693-1_Vol.1

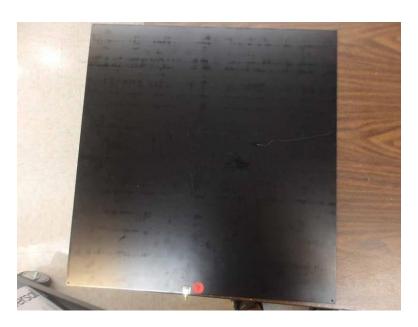

Product Information	Manufacturer-Provided Details
Number of TX Chains:	1
Antenna Type(s) and Gain:	Various, 9 configurations tested in this report. They are all patch antennas with the following gain values:
	Configuration 9: 3.0dB
Beamforming Type:	NA NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	120VACd
Firmware / Software used for Test:	Impinj Item Test v2.0.0-Preview-545
The validity of results is dependen	on the stated product details, the accuracy of which the manufacturer

assumes full responsibility.


Page 12 of 98 Report No.: 108693-1_Vol.1

EUT Photo(s)

Configuration 1; Antenna



Configuration 2; Antenna

Configuration 3; Antenna

Configuration 4; Antenna

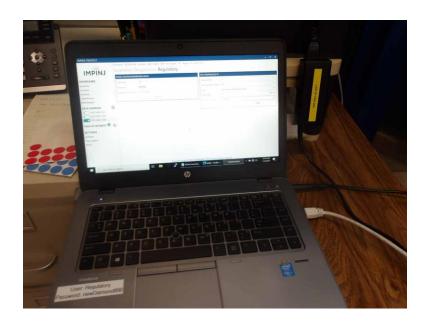
Configuration 5; Antenna

Configuration 6; Antenna

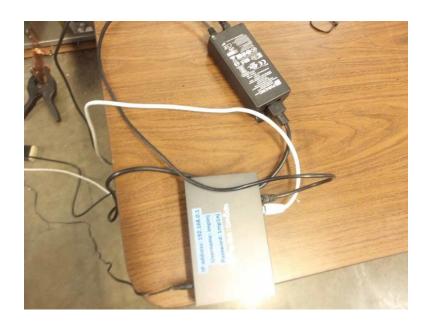
Configuration 7; Antenna

Configuration 8; Antenna

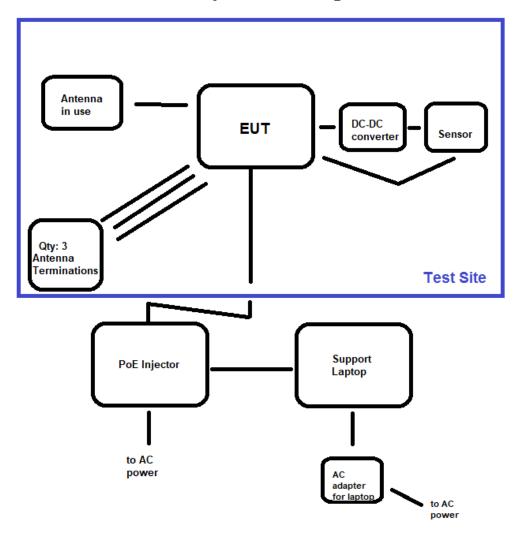
Configuration 9; Antenna



EUT Reader


Support Equipment Photo(s)

Page 18 of 98 Report No.: 108693-1_Vol.1



Block Diagram of Test Setup(s)

Test Setup Block Diagram

Page 20 of 98 Report No.: 108693-1_Vol.1

FCC Part 15 Subpart C

15.247(d) Radiated Emissions & Band Edge

	Test Setup/Conditions								
Test Location:	Bothell Lab C3	Test Engineer:	S. Pittsford & M. Atkinson						
Test Method:	ANSI C63.10 (2013)	Test Date(s):	7/18/2023 to 7/26/2023						
Configuration:	1, 2, 3, 4, 5, 6, 7, 8 and 9								
Declarations:	Partial testing performed as contracted: 902MHz to 960MHz for band edge and for spurious emissions. Band edge data at 614MHz noise floor has less than 6dB to the limit, due to time constraints and equipment availability at time of test. The 614MHz was still recorded to show compliance to the limit.								
	test program as representative	of worst case at time of	s set to 30dBm, the max allowed in of test. For band edge testing, it was and the firmware power setting used						
	Prior testing (including 13 previo	ously approved antenions in the frequency ra lifications to the R700							
	were initially not installed corre the start of testing. During testi and tx spurs above 1GHz with th case data. The photo of the fina	The ferrites that are included on the standard bill of material for the system under test were initially not installed correctly on the Ethernet cables around the power splitter at the start of testing. During testing, additional spot checks were performed on band edge and tx spurs above 1GHz with the final ferrite configuration to confirm the same or worst case data. The photo of the final ferrite configuration is shown below, but may not accurately be shown in all setup photos for the various configurations.							
		07 20 202	3 14:28						

Page 21 of 98 Report No.: 108693-1_Vol.1

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Impinj Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/20/2023
Test Type: Maximized Emissions Time: 15:14:15
Tested By: Michael Atkinson Sequence#: 21

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

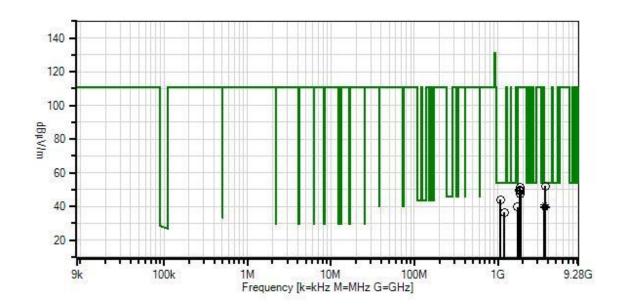
Test Environment Conditions:

Temperature: 24°C Humidity: 41% Pressure: 101.9kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 22 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 21 Date: 7/20/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

- Readings

× QP Readings
 ▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

Peak Readings

 Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T3	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T4	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025

Page 23 of 98 Report No.: 108693-1_Vol.1

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	3709.160M	38.5	+0.0	-33.9	+0.8	+1.4	+0.0	52.1	54.0	-1.9	Horiz
			+3.6	+31.6	+0.2	+9.9			High		
2	1076.000M	35.2	+0.0	-37.0	+0.3	+0.8	+0.0	44.0	54.0	-10.0	Horiz
			+1.8	+24.6	+8.6	+9.7					
3	3611.000M	27.5	+0.0	-34.0	+1.0	+1.3	+0.0	40.8	54.0	-13.2	Vert
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
^	3611.030M	39.1	+0.0	-34.0	+1.0	+1.3	+0.0	52.4	54.0	-1.6	Vert
			+3.7	+31.3	+0.3	+9.7			Low		
5	3709.000M	26.3	+0.0	-33.9	+0.8	+1.4	+0.0	39.9	54.0	-14.1	Vert
	Ave		+3.6	+31.6	+0.2	+9.9			High		
^	3709.040M	39.4	+0.0	-33.9	+0.8	+1.4	+0.0	53.0	54.0	-1.0	Vert
			+3.6	+31.6	+0.2	+9.9			High		
7	3659.000M	26.3	+0.0	-34.0	+0.9	+1.4	+0.0	39.7	54.0	-14.3	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3659.060M	38.0	+0.0	-34.0	+0.9	+1.4	+0.0	51.4	54.0	-2.6	Vert
			+3.7	+31.4	+0.2	+9.8			Mid		
9	3659.000M	26.0	+0.0	-34.0	+0.9	+1.4	+0.0	39.4	54.0	-14.6	Horiz
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3658.930M	37.4	+0.0	-34.0	+0.9	+1.4	+0.0	50.8	54.0	-3.2	Horiz
			+3.7	+31.4	+0.2	+9.8			Mid		
11	3709.000M	25.4	+0.0	-33.9	+0.8	+1.4	+0.0	39.0	54.0	-15.0	Horiz
	Ave		+3.6	+31.6	+0.2	+9.9			High		
12	1192.000M	34.2	+0.0	-36.5	+0.4	+0.8	+0.0	36.5	54.0	-17.5	Horiz
			+1.9	+25.1	+0.9	+9.7					
13	1829.580M	44.5	+0.0	-35.1	+0.4	+1.0	+0.0	51.1	111.0	-59.9	Horiz
			+2.3	+27.6	+0.6	+9.8			Mid		
14	1805.540M	43.6	+0.0	-35.1	+0.4	+1.0	+0.0	49.8	111.0	-61.2	Horiz
			+2.2	+27.3	+0.6	+9.8			Low		
15	1854.450M	42.9	+0.0	-35.0	+0.4	+1.0	+0.0	49.8	111.0	-61.2	Vert
			+2.3	+27.8	+0.6	+9.8			High		
16	1805.510M	43.6	+0.0	-35.1	+0.4	+1.0	+0.0	49.8	111.0	-61.2	Vert
			+2.2	+27.3	+0.6	+9.8			Low		
17	1854.660M	41.9	+0.0	-35.0	+0.4	+1.0	+0.0	48.8	111.0	-62.2	Horiz
			+2.3	+27.8	+0.6	+9.8			High		
18	1829.570M	40.9	+0.0	-35.1	+0.4	+1.0	+0.0	47.5	111.0	-63.5	Horiz
			+2.3	+27.6	+0.6	+9.8			Mid		
19	1728.000M	34.5	+0.0	-35.2	+0.4	+1.0	+0.0	39.6	111.0	-71.4	Horiz
			+2.2	+26.4	+0.5	+9.8					

Page 24 of 98 Report No.: 108693-1_Vol.1

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/20/2023
Test Type: Maximized Emissions Time: 17:21:31
Tested By: Michael Atkinson Sequence#: 22

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

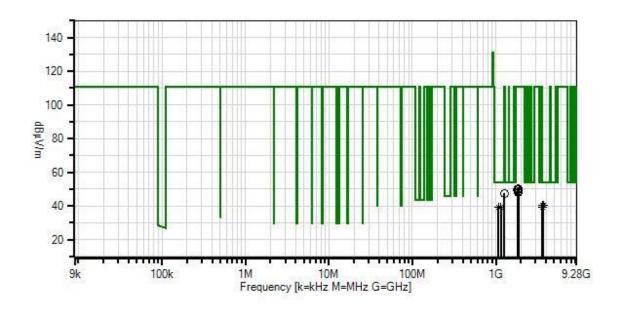
Test Environment Conditions:

Temperature: 24°C Humidity: 41% Pressure: 101.9kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 25 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 22 Date: 7/20/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
 QP Readings

→ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T3	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T4	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025

Page 26 of 98 Report No.: 108693-1_Vol.1

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	}	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBμV/m	dB	Ant
1	3709.000M	26.9	+0.0	-33.9	+0.8	+1.4	+0.0	40.5	54.0	-13.5	Vert
	Ave		+3.6	+31.6	+0.2	+9.9			High		
^	3709.000M	38.6	+0.0	-33.9	+0.8	+1.4	+0.0	52.2	54.0	-1.8	Vert
			+3.6	+31.6	+0.2	+9.9			High		
3	3659.000M	26.7	+0.0	-34.0	+0.9	+1.4	+0.0	40.1	54.0	-13.9	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3659.040M	37.5	+0.0	-34.0	+0.9	+1.4	+0.0	50.9	54.0	-3.1	Vert
			+3.7	+31.4	+0.2	+9.8			Mid		
5	3611.000M	26.1	+0.0	-34.0	+1.0	+1.3	+0.0	39.4	54.0	-14.6	Vert
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
^	3611.000M	37.2	+0.0	-34.0	+1.0	+1.3	+0.0	50.5	54.0	-3.5	Vert
			+3.7	+31.3	+0.3	+9.7			Low		
7	1144.000M	37.1	+0.0	-36.7	+0.4	+0.8	+0.0	39.3	54.0	-14.7	Horiz
	Ave		+1.8	+24.9	+1.3	+9.7					
^	1144.000M	44.8	+0.0	-36.7	+0.4	+0.8	+0.0	47.0	54.0	-7.0	Horiz
			+1.8	+24.9	+1.3	+9.7					
9	1076.000M	30.1	+0.0	-37.0	+0.3	+0.8	+0.0	38.9	54.0	-15.1	Vert
	Ave		+1.8	+24.6	+8.6	+9.7					
^	1076.000M	44.5	+0.0	-37.0	+0.3	+0.8	+0.0	53.3	54.0	-0.7	Vert
			+1.8	+24.6	+8.6	+9.7					
11	1854.500M	43.5	+0.0	-35.0	+0.4	+1.0	+0.0	50.4	111.0	-60.6	Vert
			+2.3	+27.8	+0.6	+9.8			High		
12	1805.480M	43.6	+0.0	-35.1	+0.4	+1.0	+0.0	49.8	111.0	-61.2	Horiz
			+2.2	+27.3	+0.6	+9.8			Low		
13	1854.420M	42.5	+0.0	-35.0	+0.4	+1.0	+0.0	49.4	111.0	-61.6	Horiz
			+2.3	+27.8	+0.6	+9.8			High		
14	1829.480M	41.7	+0.0	-35.1	+0.4	+1.0	+0.0	48.3	111.0	-62.7	Vert
			+2.3	+27.6	+0.6	+9.8			Mid		
15	1829.480M	41.3	+0.0	-35.1	+0.4	+1.0	+0.0	47.9	111.0	-63.1	Horiz
			+2.3	+27.6	+0.6	+9.8			Mid		
16	1258.000M	44.7	+0.0	-36.2	+0.4	+0.8	+0.0	47.3	111.0	-63.7	Horiz
			+1.9	+25.3	+0.7	+9.7					

Page 27 of 98 Report No.: 108693-1_Vol.1

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/21/2023
Test Type: Maximized Emissions Time: 08:32:10
Tested By: Michael Atkinson Sequence#: 23

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 3			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 3				

Test Conditions / Notes:

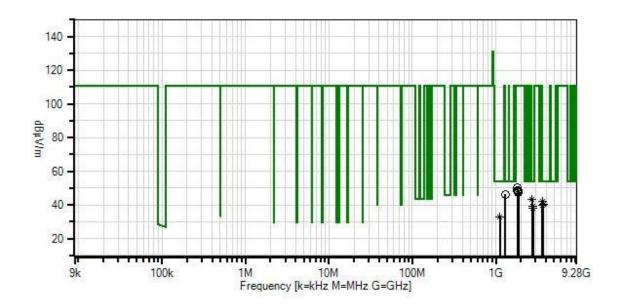
Test Environment Conditions:

Temperature: 24°C Humidity: 41% Pressure: 101.9kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 28 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 23 Date: 7/21/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
 QP Readings

▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T3	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T4	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025

Page 29 of 98 Report No.: 108693-1_Vol.1

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	.	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	_		T5	T6	T7	T8			_	_	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	2708.250M	34.0	+0.0	-34.5	+0.5	+1.2	+0.0	43.5	54.0	-10.5	Vert
	Ave		+3.0	+29.3	+0.2	+9.8			Low		
^	2708.320M	40.4	+0.0	-34.5	+0.5	+1.2	+0.0	49.9	54.0	-4.1	Vert
			+3.0	+29.3	+0.2	+9.8			Low		
3	3611.000M	28.6	+0.0	-34.0	+1.0	+1.3	+0.0	41.9	54.0	-12.1	Vert
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
4	3709.000M	26.7	+0.0	-33.9	+0.8	+1.4	+0.0	40.3	54.0	-13.7	Vert
	Ave		+3.6	+31.6	+0.2	+9.9			High		
^	3709.000M	38.2	+0.0	-33.9	+0.8	+1.4	+0.0	51.8	54.0	-2.2	Vert
			+3.6	+31.6	+0.2	+9.9			High		
6	3659.000M	26.6	+0.0	-34.0	+0.9	+1.4	+0.0	40.0	54.0	-14.0	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3659.060M	38.5	+0.0	-34.0	+0.9	+1.4	+0.0	51.9	54.0	-2.1	Vert
	2<11.0003.5	265	+3.7	+31.4	+0.2	+9.8		40.0	Mid	110	**
8	3611.000M	26.7	+0.0	-34.0	+1.0	+1.3	+0.0	40.0	54.0	-14.0	Vert
	Ave	20.5	+3.7	+31.3	+0.3	+9.7	0.0	50.0	Low	1.0	T. 7
^	3610.970M	39.5	+0.0	-34.0	+1.0	+1.3	+0.0	52.8	54.0	-1.2	Vert
	2610 040 1	20.7	+3.7	+31.3	+0.3	+9.7	. 0. 0	<i>5</i> 2.0	Low	2.0	X 74
^	3610.940M	38.7	+0.0	-34.0	+1.0	+1.3	+0.0	52.0	54.0	-2.0	Vert
11	2744 25014	20.7	+3.7	+31.3	+0.3	+9.7	. 0. 0	39.3	Low	147	XIt
11	2744.250M	29.7	+0.0 +3.0	-34.5 +29.3	+0.5 +0.3	+1.2 +9.8	+0.0	39.3	54.0 Mid	-14.7	Vert
	Ave 2744.320M	40.3	+0.0	-34.5	+0.5	+1.2	+0.0	49.9	54.0	-4.1	Vert
, ,	2744.320WI	40.5	+3.0	-34.3 +29.3	+0.3	+9.8	+0.0	49.9	Mid	-4.1	vert
13	2781.750M	28.2	+0.0	-34.5	+0.5	+1.2	+0.0	37.8	54.0	-16.2	Vert
13	Ave	20.2	+3.0	+29.3	+0.3	+9.8	+0.0	37.0	High	-10.2	VCIT
^	2781.750M	39.3	+0.0	-34.5	+0.5	+1.2	+0.0	48.9	54.0	-5.1	Vert
	2701.730141	37.3	+3.0	+29.3	+0.3	+9.8	10.0	40.7	High	3.1	VCIt
15	1114.000M	29.7	+0.0	-36.8	+0.3	+0.8	+0.0	32.9	54.0	-21.1	Vert
10	Ave	27.7	+1.8	+24.8	+2.6	+9.7	10.0	32.7	2 1.0	21.1	, 611
^	1114.000M	44.3	+0.0	-36.8	+0.3	+0.8	+0.0	47.5	54.0	-6.5	Vert
			+1.8	+24.8	+2.6	+9.7		.,			
17	1805.470M	44.0	+0.0	-35.1	+0.4	+1.0	+0.0	50.2	111.0	-60.8	Horiz
			+2.2	+27.3	+0.6	+9.8			Low		
18	1854.360M	41.6	+0.0	-35.0	+0.4	+1.0	+0.0		111.0	-62.5	Horiz
			+2.3	+27.8	+0.6	+9.8			High		
19	1805.460M	42.0	+0.0	-35.1	+0.4	+1.0	+0.0	48.2	111.0	-62.8	Horiz
			+2.2	+27.3	+0.6	+9.8			Low		
20	1854.560M	41.2	+0.0	-35.0	+0.4	+1.0	+0.0	48.1	111.0	-62.9	Vert
			+2.3	+27.8	+0.6	+9.8			High		
21	1829.580M	41.1	+0.0	-35.1	+0.4	+1.0	+0.0	47.7	111.0	-63.3	Horiz
			+2.3	+27.6	+0.6	+9.8			Mid		
22	1829.440M	40.5	+0.0	-35.1	+0.4	+1.0	+0.0	47.1	111.0	-63.9	Vert
			+2.3	+27.6	+0.6	+9.8			Mid		
23	1290.000M	43.5	+0.0	-36.1	+0.4	+0.8	+0.0	46.3	111.0	-64.7	Horiz
			+1.9	+25.4	+0.7	+9.7					

Page 30 of 98 Report No.: 108693-1_Vol.1

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/21/2023
Test Type: Maximized Emissions Time: 11:00:34
Tested By: Michael Atkinson Sequence#: 24

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Test Conditions / Notes:

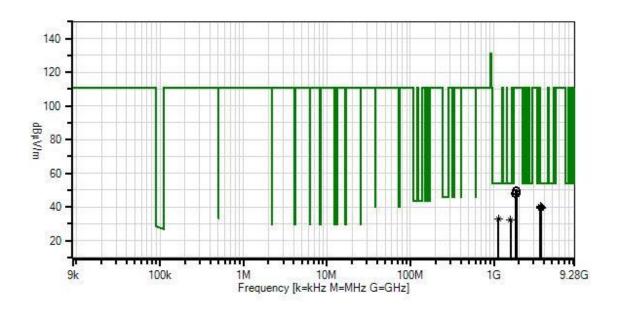
Test Environment Conditions:

Temperature: 24°C Humidity: 41% Pressure: 101.9kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 31 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 24 Date: 7/21/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings
 Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T3	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T4	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025

Page 32 of 98 Report No.: 108693-1_Vol.1

Measu	rement Data:	Re	Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	-		T5	T6	T7	T8			•	_	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	3659.000M	27.1	+0.0	-34.0	+0.9	+1.4	+0.0	40.5	54.0	-13.5	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3659.000M	38.8	+0.0	-34.0	+0.9	+1.4	+0.0	52.2	54.0	-1.8	Vert
			+3.7	+31.4	+0.2	+9.8			Mid		
3	3610.870M	26.7	+0.0	-34.0	+1.0	+1.3	+0.0	40.0	54.0	-14.0	Vert
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
^	3610.870M	38.2	+0.0	-34.0	+1.0	+1.3	+0.0	51.5	54.0	-2.5	Vert
			+3.7	+31.3	+0.3	+9.7			Low		
5	3709.000M	26.2	+0.0	-33.9	+0.8	+1.4	+0.0	39.8	54.0	-14.2	Vert
	Ave		+3.6	+31.6	+0.2	+9.9			High		
^	3708.960M	38.6	+0.0	-33.9	+0.8	+1.4	+0.0	52.2	54.0	-1.8	Vert
			+3.6	+31.6	+0.2	+9.9			High		
7	3659.000M	26.0	+0.0	-34.0	+0.9	+1.4	+0.0	39.4	54.0	-14.6	Horiz
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3658.960M	37.8	+0.0	-34.0	+0.9	+1.4	+0.0	51.2	54.0	-2.8	Horiz
			+3.7	+31.4	+0.2	+9.8			Mid		
9	3709.000M	25.5	+0.0	-33.9	+0.8	+1.4	+0.0	39.1	54.0	-14.9	Horiz
	Ave		+3.6	+31.6	+0.2	+9.9			High		
^	3709.000M	37.4	+0.0	-33.9	+0.8	+1.4	+0.0	51.0	54.0	-3.0	Horiz
			+3.6	+31.6	+0.2	+9.9			High		
11	1128.000M	30.1	+0.0	-36.8	+0.4	+0.8	+0.0	32.6	54.0	-21.4	Vert
	Ave		+1.8	+24.9	+1.7	+9.7					
^	1128.000M	44.6	+0.0	-36.8	+0.4	+0.8	+0.0	47.1	54.0	-6.9	Vert
			+1.8	+24.9	+1.7	+9.7					
13	1582.000M	28.5	+0.0	-35.4	+0.4	+0.9	+0.0	32.2	54.0	-21.8	Horiz
	Ave		+2.1	+25.5	+0.4	+9.8					
^	1582.000M	42.0	+0.0	-35.4	+0.4	+0.9	+0.0	45.7	54.0	-8.3	Horiz
			+2.1	+25.5	+0.4	+9.8					
15	1829.500M	43.2	+0.0	-35.1	+0.4	+1.0	+0.0	49.8	111.0	-61.2	Vert
			+2.3	+27.6	+0.6	+9.8			Mid		
16	1854.460M	42.2	+0.0	-35.0	+0.4	+1.0	+0.0	49.1	111.0	-61.9	Vert
			+2.3	+27.8	+0.6	+9.8			High		
17	1829.720M	42.4	+0.0	-35.1	+0.4	+1.0	+0.0	49.0	111.0	-62.0	Horiz
			+2.3	+27.6	+0.6	+9.8			Mid		
18	1805.530M	41.5	+0.0	-35.1	+0.4	+1.0	+0.0	47.7	111.0	-63.3	Vert
			+2.2	+27.3	+0.6	+9.8			Low		
19	1805.500M	41.5	+0.0	-35.1	+0.4	+1.0	+0.0	47.7	111.0	-63.3	Horiz
			+2.2	+27.3	+0.6	+9.8			Low		
20	1854.580M	40.7	+0.0	-35.0	+0.4	+1.0	+0.0	47.6	111.0	-63.4	Horiz
			+2.3	+27.8	+0.6	+9.8			High		

Page 33 of 98 Report No.: 108693-1_Vol.1

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/21/2023
Test Type: Maximized Emissions Time: 12:38:36
Tested By: Michael Atkinson Sequence#: 25

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

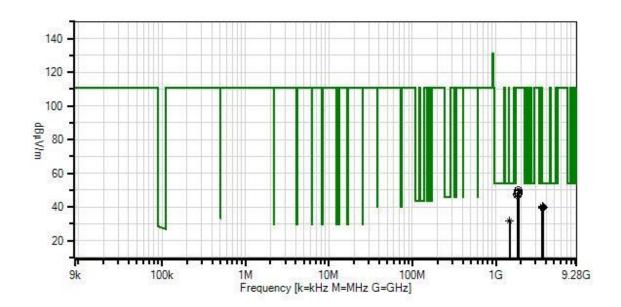
Test Environment Conditions:

Temperature: 24°C Humidity: 41% Pressure: 101.9kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 34 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 25 Date: 7/21/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
 QP Readings

→ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T3	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T4	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025

Page 35 of 98 Report No.: 108693-1_Vol.1

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	3659.320M	26.8	+0.0	-34.0	+0.9	+1.4	+0.0	40.2	54.0	-13.8	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3659.320M	38.5	+0.0	-34.0	+0.9	+1.4	+0.0	51.9	54.0	-2.1	Vert
			+3.7	+31.4	+0.2	+9.8			Mid		
3	3709.000M	26.4	+0.0	-33.9	+0.8	+1.4	+0.0	40.0	54.0	-14.0	Vert
	Ave		+3.6	+31.6	+0.2	+9.9			High		
^	3709.000M	38.1	+0.0	-33.9	+0.8	+1.4	+0.0	51.7	54.0	-2.3	Vert
			+3.6	+31.6	+0.2	+9.9			High		
5	3611.000M	26.7	+0.0	-34.0	+1.0	+1.3	+0.0	40.0	54.0	-14.0	Vert
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
^	3610.940M	38.0	+0.0	-34.0	+1.0	+1.3	+0.0	51.3	54.0	-2.7	Vert
			+3.7	+31.3	+0.3	+9.7			Low		
7	3659.000M	26.2	+0.0	-34.0	+0.9	+1.4	+0.0	39.6	54.0	-14.4	Horiz
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
8	3659.000M	25.8	+0.0	-34.0	+0.9	+1.4	+0.0	39.2	54.0	-14.8	Horiz
	Ave		+3.7	+31.4	+0.2	+9.8					
^	3659.020M	39.0	+0.0	-34.0	+0.9	+1.4	+0.0	52.4	54.0	-1.6	Horiz
			+3.7	+31.4	+0.2	+9.8					
^	3658.980M	38.5	+0.0	-34.0	+0.9	+1.4	+0.0	51.9	54.0	-2.1	Horiz
			+3.7	+31.4	+0.2	+9.8			Mid		
11	1460.000M	28.4	+0.0	-35.6	+0.4	+0.9	+0.0	31.9	54.0	-22.1	Vert
	Ave		+2.1	+25.3	+0.6	+9.8					
^	1460.000M	42.7	+0.0	-35.6	+0.4	+0.9	+0.0	46.2	54.0	-7.8	Vert
			+2.1	+25.3	+0.6	+9.8					
13	1462.000M	28.4	+0.0	-35.6	+0.4	+0.9	+0.0	31.9	54.0	-22.1	Horiz
	Ave		+2.1	+25.3	+0.6	+9.8					
^	1462.000M	43.3	+0.0	-35.6	+0.4	+0.9	+0.0	46.8	54.0	-7.2	Horiz
			+2.1	+25.3	+0.6	+9.8					
15	1854.520M	42.8	+0.0	-35.0	+0.4	+1.0	+0.0	49.7	111.0	-61.3	Horiz
			+2.3	+27.8	+0.6	+9.8			High		
16	1829.520M	41.9	+0.0	-35.1	+0.4	+1.0	+0.0	48.5	111.0	-62.5	Horiz
			+2.3	+27.6	+0.6	+9.8			Mid		
17	1829.280M	41.4	+0.0	-35.1	+0.4	+1.0	+0.0	48.0	111.0	-63.0	Vert
			+2.3	+27.6	+0.6	+9.8			Mid		
18	1854.360M	40.8	+0.0	-35.0	+0.4	+1.0	+0.0	47.7	111.0	-63.3	Vert
			+2.3	+27.8	+0.6	+9.8			High		
19	1805.420M	41.3	+0.0	-35.1	+0.4	+1.0	+0.0	47.5	111.0	-63.5	Horiz
			+2.2	+27.3	+0.6	+9.8			Low		

Page 36 of 98 Report No.: 108693-1_Vol.1

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/21/2023
Test Type: Maximized Emissions Time: 14:31:07
Tested By: Michael Atkinson Sequence#: 26

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Test Conditions / Notes:

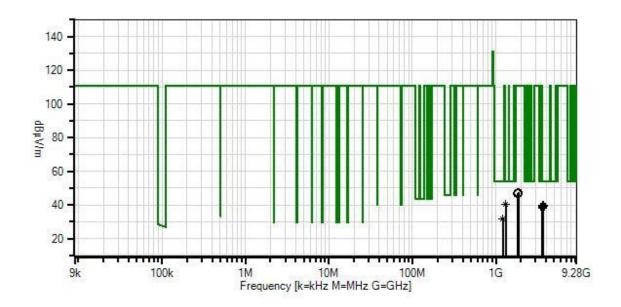
Test Environment Conditions:

Temperature: 24°C Humidity: 41% Pressure: 101.9kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 37 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 26 Date: 7/21/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T3	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T4	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025

Page 38 of 98 Report No.: 108693-1_Vol.1

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	1308.000M	37.3	+0.0	-36.1	+0.4	+0.8	+0.0	40.1	54.0	-13.9	Horiz
	Ave		+1.9	+25.4	+0.7	+9.7					
^	1308.000M	43.4	+0.0	-36.1	+0.4	+0.8	+0.0	46.2	54.0	-7.8	Horiz
			+1.9	+25.4	+0.7	+9.7					
3	3659.000M	26.4	+0.0	-34.0	+0.9	+1.4	+0.0	39.8	54.0	-14.2	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
4	3659.000M	26.4	+0.0	-34.0	+0.9	+1.4	+0.0	39.8	54.0	-14.2	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
٨	3659.040M	38.3	+0.0	-34.0	+0.9	+1.4	+0.0	51.7	54.0	-2.3	Vert
			+3.7	+31.4	+0.2	+9.8			Mid		
٨	3659.000M	37.8	+0.0	-34.0	+0.9	+1.4	+0.0	51.2	54.0	-2.8	Vert
			+3.7	+31.4	+0.2	+9.8			Mid		
7	3709.000M	26.1	+0.0	-33.9	+0.8	+1.4	+0.0	39.7	54.0	-14.3	Vert
	Ave		+3.6	+31.6	+0.2	+9.9			High		
٨	3708.940M	38.6	+0.0	-33.9	+0.8	+1.4	+0.0	52.2	54.0	-1.8	Vert
			+3.6	+31.6	+0.2	+9.9			High		
9	3611.000M	25.8	+0.0	-34.0	+1.0	+1.3	+0.0	39.1	54.0	-14.9	Vert
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
٨	3611.060M	37.5	+0.0	-34.0	+1.0	+1.3	+0.0	50.8	54.0	-3.2	Vert
			+3.7	+31.3	+0.3	+9.7			Low		
11	3709.000M	25.4	+0.0	-33.9	+0.8	+1.4	+0.0	39.0	54.0	-15.0	Horiz
	Ave		+3.6	+31.6	+0.2	+9.9			High		
٨	3708.960M	37.7	+0.0	-33.9	+0.8	+1.4	+0.0	51.3	54.0	-2.7	Horiz
			+3.6	+31.6	+0.2	+9.9			High		
13	3659.000M	25.4	+0.0	-34.0	+0.9	+1.4	+0.0	38.8	54.0	-15.2	Horiz
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
٨	3659.000M	37.9	+0.0	-34.0	+0.9	+1.4	+0.0	51.3	54.0	-2.7	Horiz
			+3.7	+31.4	+0.2	+9.8			Mid		
15	3610.760M	25.0	+0.0	-34.0	+1.0	+1.3	+0.0	38.3	54.0	-15.7	Horiz
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
٨	3610.760M	37.5	+0.0	-34.0	+1.0	+1.3	+0.0	50.8	54.0	-3.2	Horiz
			+3.7	+31.3	+0.3	+9.7			Low		
17	1208.000M	29.3	+0.0	-36.4	+0.4	+0.8	+0.0	31.7	54.0	-22.3	Horiz
	Ave			+25.2	+0.8	+9.7					
^	1208.000M	42.7	+0.0	-36.4	+0.4	+0.8	+0.0	45.1	54.0	-8.9	Horiz
			+1.9	+25.2	+0.8	+9.7					
19	1854.540M	40.5	+0.0	-35.0	+0.4	+1.0	+0.0	47.4	111.0	-63.6	Horiz
			+2.3	+27.8	+0.6	+9.8			High		
20	1829.260M	40.2	+0.0	-35.1	+0.4	+1.0	+0.0	46.8	111.0	-64.2	Horiz
			+2.3	+27.6	+0.6	+9.8			Mid		
21	1805.560M	40.5	+0.0	-35.1	+0.4	+1.0	+0.0	46.7	111.0	-64.3	Horiz
			+2.2	+27.3	+0.6	+9.8			Low		
-											

Page 39 of 98 Report No.: 108693-1_Vol.1

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/21/2023
Test Type: Maximized Emissions Time: 15:55:06
Tested By: Michael Atkinson Sequence#: 27

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Test Conditions / Notes:

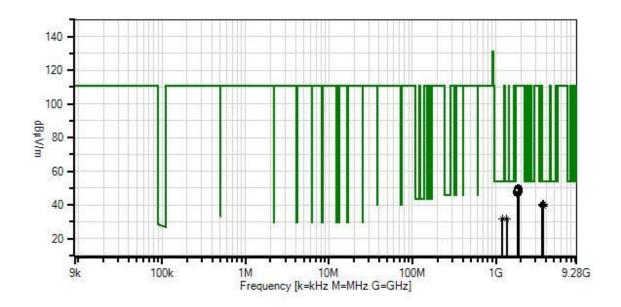
Test Environment Conditions:

Temperature: 24°C Humidity: 41% Pressure: 101.9kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 40 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 27 Date: 7/21/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
 QP Readings

▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T3	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T4	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025

Page 41 of 98 Report No.: 108693-1_Vol.1

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	st Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	3709.000M	26.9	+0.0	-33.9	+0.8	+1.4	+0.0	40.5	54.0	-13.5	Vert
	Ave		+3.6	+31.6	+0.2	+9.9			High		
٨	3709.020M	37.8	+0.0	-33.9	+0.8	+1.4	+0.0	51.4	54.0	-2.6	Vert
			+3.6	+31.6	+0.2	+9.9			High		
3	3611.000M	26.9	+0.0	-34.0	+1.0	+1.3	+0.0	40.2	54.0	-13.8	Vert
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
٨	3611.040M	37.3	+0.0	-34.0	+1.0	+1.3	+0.0	50.6	54.0	-3.4	Vert
			+3.7	+31.3	+0.3	+9.7			Low		
5	3659.000M	26.5	+0.0	-34.0	+0.9	+1.4	+0.0	39.9	54.0	-14.1	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3658.980M	37.8	+0.0	-34.0	+0.9	+1.4	+0.0	51.2	54.0	-2.8	Vert
			+3.7	+31.4	+0.2	+9.8			Mid		
7	3709.120M	25.4	+0.0	-33.9	+0.8	+1.4	+0.0	39.0	54.0	-15.0	Horiz
	Ave		+3.6	+31.6	+0.2	+9.9			High		
^	3709.120M	38.0	+0.0	-33.9	+0.8	+1.4	+0.0	51.6	54.0	-2.4	Horiz
			+3.6	+31.6	+0.2	+9.9			High		
9	1198.000M	29.3	+0.0	-36.4	+0.4	+0.8	+0.0	31.8	54.0	-22.2	Vert
	Ave		+1.9	+25.2	+0.9	+9.7					
^	1198.000M	43.7	+0.0	-36.4	+0.4	+0.8	+0.0	46.2	54.0	-7.8	Vert
			+1.9	+25.2	+0.9	+9.7					
11	1342.000M	28.6	+0.0	-36.0	+0.4	+0.9	+0.0	31.7	54.0	-22.3	Horiz
	Ave		+2.0	+25.4	+0.7	+9.7					
^	1342.000M	42.2	+0.0	-36.0	+0.4	+0.9	+0.0	45.3	54.0	-8.7	Horiz
			+2.0	+25.4	+0.7	+9.7					
13	1854.460M	42.9	+0.0	-35.0	+0.4	+1.0	+0.0	49.8	111.0	-61.2	Horiz
			+2.3	+27.8	+0.6	+9.8			High		
14	1854.600M	41.9	+0.0	-35.0	+0.4	+1.0	+0.0	48.8	111.0	-62.2	Vert
			+2.3	+27.8	+0.6	+9.8			High		
15	1829.520M	41.7	+0.0	-35.1	+0.4	+1.0	+0.0	48.3	111.0	-62.7	Horiz
			+2.3	+27.6	+0.6	+9.8			Mid		
16	1829.480M	41.4	+0.0	-35.1	+0.4	+1.0	+0.0	48.0	111.0	-63.0	Vert
			+2.3	+27.6	+0.6	+9.8			Mid		
17	1805.540M	41.6	+0.0	-35.1	+0.4	+1.0	+0.0	47.8	111.0	-63.2	Horiz
			+2.2	+27.3	+0.6	+9.8			Low		
18	1805.560M	41.1	+0.0	-35.1	+0.4	+1.0	+0.0	47.3	111.0	-63.7	Vert
			+2.2	+27.3	+0.6	+9.8			Low		

Page 42 of 98 Report No.: 108693-1_Vol.1

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Impinj Inc.**

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/26/2023
Test Type: Maximized Emissions Time: 15:10:06
Tested By: Michael Atkinson Sequence#: 28

Software: EMITest 5.03.20

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 8

Support Equipment:

Device Manufacturer Model # S/N
Configuration 8

Test Conditions / Notes:

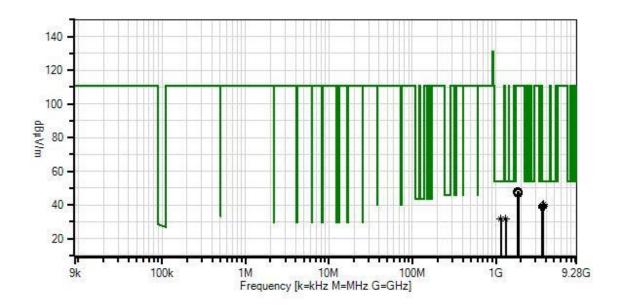
Test Environment Conditions:

Temperature: 24°C Humidity: 46% Pressure: 101.7kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 43 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 28 Date: 7/26/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Readings
 QP Readings

▼ Ambient

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T2	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T3	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T4	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T5	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T6	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T7	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025
T8	AN02673	Spectrum Analyzer	E4446A	3/2/2023	3/2/2025

Page 44 of 98 Report No.: 108693-1_Vol.1

Measu	rement Data:	Re	eading list	ted by ma	ırgin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	3709.000M	26.9	-33.9	+0.8	+1.4	+3.6	+0.0	40.5	54.0	-13.5	Horiz
	Ave		+31.6	+0.2	+9.9	+0.0			High		
^	3709.000M	38.0	-33.9	+0.8	+1.4	+3.6	+0.0	51.6	54.0	-2.4	Horiz
			+31.6	+0.2	+9.9	+0.0			High		
3	3659.000M	26.5	-34.0	+0.9	+1.4	+3.7	+0.0	39.9	54.0	-14.1	Horiz
	Ave		+31.4	+0.2	+9.8	+0.0			Mid		
^	3659.000M	37.8	-34.0	+0.9	+1.4	+3.7	+0.0	51.2	54.0	-2.8	Horiz
			+31.4	+0.2	+9.8	+0.0			Mid		
5	3659.000M	25.9	-34.0	+0.9	+1.4	+3.7	+0.0	39.3	54.0	-14.7	Vert
	Ave		+31.4	+0.2	+9.8	+0.0			Mid		
^	3658.950M	37.1	-34.0	+0.9	+1.4	+3.7	+0.0	50.5	54.0	-3.5	Vert
			+31.4	+0.2	+9.8	+0.0			Mid		
7	3709.000M	25.6	-33.9	+0.8	+1.4	+3.6	+0.0	39.2	54.0	-14.8	Vert
	Ave		+31.6	+0.2	+9.9	+0.0			High		
^	3709.030M	37.0	-33.9	+0.8	+1.4	+3.6	+0.0	50.6	54.0	-3.4	Vert
			+31.6	+0.2	+9.9	+0.0			High		
9	3611.000M	25.4	-34.0	+1.0	+1.3	+3.7	+0.0	38.7	54.0	-15.3	Horiz
	Ave		+31.3	+0.3	+9.7	+0.0			Low		
^	3610.950M	36.9	-34.0	+1.0	+1.3	+3.7	+0.0	50.2	54.0	-3.8	Horiz
			+31.3	+0.3	+9.7	+0.0			Low		
11	3611.000M	25.0	-34.0	+1.0	+1.3	+3.7	+0.0	38.3	54.0	-15.7	Vert
	Ave		+31.3	+0.3	+9.7	+0.0			Low		
^	3610.950M	36.9	-34.0	+1.0	+1.3	+3.7	+0.0	50.2	54.0	-3.8	Vert
			+31.3	+0.3	+9.7	+0.0			Low		
13	1150.000M	29.4	-36.7	+0.4	+0.8	+1.8	+0.0	31.6	54.0	-22.4	Horiz
	Ave		+25.0	+1.2	+9.7	+0.0					
^	1150.000M	49.3	-36.7	+0.4	+0.8	+1.8	+0.0	51.5	54.0	-2.5	Horiz
			+25.0	+1.2	+9.7	+0.0					
15	1308.000M	28.8	-36.1	+0.4	+0.8	+1.9	+0.0	31.6	54.0	-22.4	Vert
	Ave		+25.4	+0.7	+9.7	+0.0					
^	1308.000M	48.2	-36.1	+0.4	+0.8	+1.9	+0.0	51.0	54.0	-3.0	Vert
			+25.4	+0.7	+9.7	+0.0					
17	1854.570M	41.1	-35.0	+0.4	+1.0	+2.3	+0.0	48.0	111.0	-63.0	Horiz
	400# 6007 -	4	+27.8	+0.6	+9.8	+0.0		4	High		**
18	1805.380M	41.7	-35.1	+0.4	+1.0	+2.2	+0.0	47.9	111.0	-63.1	Vert
1.0	1007 0003 7	41.2	+27.3	+0.6	+9.8	+0.0	0.0	47.7	Low		** '
19	1805.380M	41.3	-35.1	+0.4	+1.0	+2.2	+0.0	47.5	111.0	-63.5	Horiz
	1054 1003 5	40.5	+27.3	+0.6	+9.8	+0.0		45.4	Low		**
20	1854.400M	40.5	-35.0	+0.4	+1.0	+2.3	+0.0	47.4	111.0	-63.6	Vert
	1000 7107 -	40.5	+27.8	+0.6	+9.8	+0.0			High		**
21	1829.540M	40.6	-35.1	+0.4	+1.0	+2.3	+0.0	47.2	111.0	-63.8	Vert
	1000 0003 7	40.4	+27.6	+0.6	+9.8	+0.0	0.0	45.0	Mid	<i></i>	** .
22	1829.390M	40.4	-35.1	+0.4	+1.0	+2.3	+0.0	47.0	111.0	-64.0	Horiz
			+27.6	+0.6	+9.8	+0.0			Mid		

Page 45 of 98 Report No.: 108693-1_Vol.1

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 108693 Date: 7/21/2023
Test Type: Maximized Emissions Time: 17:19:53
Tested By: Michael Atkinson Sequence#: 29

Software: EMITest 5.03.20

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 9				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 9				

Test Conditions / Notes:

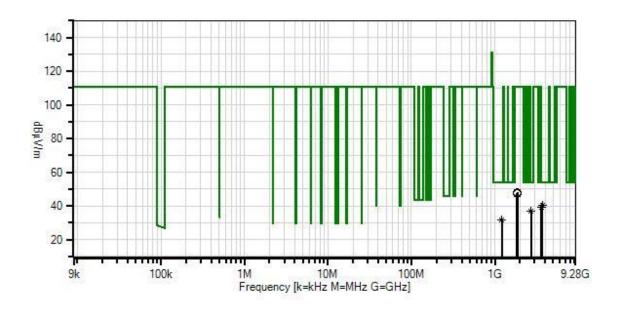
Test Environment Conditions:

Temperature: 24°C Humidity: 41% Pressure: 101.9kPa

Method: ANSI C63.10 (2013)

Frequency: 1GHz-10GHz

Firmware Setting: 30dBm as worst case.


Test Setup:

Unit is on foam table. Horizontal and Vertical antenna polarities investigated, worst case reported, unit is continuously transmitting with modulation. X, Y, Z EUT and antenna orientations investigated, worst case reported. Low, Mid, and High channels investigated.

Page 46 of 98 Report No.: 108693-1_Vol.1

Impinj Inc. WO#: 108693 Sequence#: 29 Date: 7/21/2023 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 QP Readings

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.20

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03803	Spectrum Analyzer	E4440A	2/23/2022	2/23/2024
T2	AN03540	Preamp	83017A	3/24/2023	3/24/2025
T3	ANP07504	Cable	CLU40-KMKM-	1/24/2023	1/24/2025
			02.00F		
T4	ANP06454	Cable	Heliax	1/25/2022	1/25/2024
T5	ANP06515	Cable	Heliax	3/1/2023	3/1/2025
T6	AN02374ANSI	Horn Antenna	RGA-60	5/26/2023	5/26/2025
T7	AN03170	High Pass Filter	HM1155-11SS	9/16/2021	9/16/2023
T8	ANP06243	Attenuator	54A-10	2/13/2023	2/13/2025

Page 47 of 98 Report No.: 108693-1_Vol.1

Measi	ırement Data:	Re	eading lis	ted by ma	argin.		Те	est Distanc	e: 3 Meters	3	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\muV/m$	dB	Ant
1	3709.000M	26.6	+0.0	-33.9	+0.8	+1.4	+0.0	40.2	54.0	-13.8	Vert
	Ave		+3.6	+31.6	+0.2	+9.9			High		
^	3708.920M	38.3	+0.0	-33.9	+0.8	+1.4	+0.0	51.9	54.0	-2.1	Vert
			+3.6	+31.6	+0.2	+9.9			High		
3	3659.000M	26.0	+0.0	-34.0	+0.9	+1.4	+0.0	39.4	54.0	-14.6	Vert
	Ave		+3.7	+31.4	+0.2	+9.8			Mid		
^	3658.960M	38.0	+0.0	-34.0	+0.9	+1.4	+0.0	51.4	54.0	-2.6	Vert
			+3.7	+31.4	+0.2	+9.8			Mid		
5	3610.940M	26.1	+0.0	-34.0	+1.0	+1.3	+0.0	39.4	54.0	-14.6	Vert
	Ave		+3.7	+31.3	+0.3	+9.7			Low		
^	3610.940M	37.3	+0.0	-34.0	+1.0	+1.3	+0.0	50.6	54.0	-3.4	Vert
			+3.7	+31.3	+0.3	+9.7			Low		
7	2708.150M	27.1	+0.0	-34.5	+0.5	+1.2	+0.0	36.6	54.0	-17.4	Vert
	Ave		+3.0	+29.3	+0.2	+9.8			Low		
^	2708.150M	42.6	+0.0	-34.5	+0.5	+1.2	+0.0	52.1	54.0	-1.9	Vert
			+3.0	+29.3	+0.2	+9.8			Low		
9	1204.000M	29.4	+0.0	-36.4	+0.4	+0.8	+0.0	31.9	54.0	-22.1	Horiz
	Ave		+1.9	+25.2	+0.9	+9.7					
^	1204.000M	43.8	+0.0	-36.4	+0.4	+0.8	+0.0	46.3	54.0	-7.7	Horiz
			+1.9	+25.2	+0.9	+9.7					
11	1210.000M	29.3	+0.0	-36.4	+0.4	+0.8	+0.0	31.7	54.0	-22.3	Vert
	Ave		+1.9	+25.2	+0.8	+9.7					
^	1210.000M	42.0	+0.0	-36.4	+0.4	+0.8	+0.0	44.4	54.0	-9.6	Vert
			+1.9	+25.2	+0.8	+9.7					
13	1854.460M	41.2	+0.0	-35.0	+0.4	+1.0	+0.0	48.1	111.0	-62.9	Horiz
			+2.3	+27.8	+0.6	+9.8			High		
14	1829.460M	40.8	+0.0	-35.1	+0.4	+1.0	+0.0	47.4	111.0	-63.6	Horiz
1			+2.3	+27.6	+0.6	+9.8			Mid		

Page 48 of 98 Report No.: 108693-1_Vol.1

Band Edge

	Band Edge Summary									
Configuration	Configuration 1									
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results				
614	Single Channel	ASK	Patch	42.1 QP	<46	Pass				
902	Single Channel	ASK	Patch	68.0	<111	Pass				
928	Single Channel	ASK	Patch	68.9	<111	Pass				
960	Single Channel	ASK	Patch	46.8 QP	<54	Pass				
614	Hopping	ASK	Patch	41.9 QP	<46	Pass				
902	Hopping	ASK	Patch	66.7	<111	Pass				
928	Hopping	ASK	Patch	67.8	<111	Pass				
960	Hopping	ASK	Patch	46.6	<54	Pass				

	Band Edge Summary								
Configuration 2									
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results			
614	Single Channel	ASK	Patch	41.9 QP	<46	Pass			
902	Single Channel	ASK	Patch	68.4	<111	Pass			
928	Single Channel	ASK	Patch	67.9	<111	Pass			
960	Single Channel	ASK	Patch	46.8 QP	<54	Pass			
614	Hopping	ASK	Patch	41.9 QP	<46	Pass			
902	Hopping	ASK	Patch	69.8	<111	Pass			
928	Hopping	ASK	Patch	68.3	<111	Pass			
960	Hopping	ASK	Patch	46.7 QP	<54	Pass			

Page 49 of 98 Report No.: 108693-1_Vol.1

	Band Edge Summary									
Configuration	Configuration 3									
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results				
614	Single Channel	ASK	Patch	42.0 QP	<46	Pass				
902	Single Channel	ASK	Patch	71.6	<111	Pass				
928	Single Channel	ASK	Patch	71.4	<111	Pass				
960	Single Channel	ASK	Patch	46.7 QP	<54	Pass				
614	Hopping	ASK	Patch	41.9 QP	<46	Pass				
902	Hopping	ASK	Patch	72.2	<111	Pass				
928	Hopping	ASK	Patch	71.3	<111	Pass				
960	Hopping	ASK	Patch	46.6 QP	<54	Pass				

	Band Edge Summary									
Configuration	Configuration 4									
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results				
614	Single Channel	ASK	Patch	41.9 QP	<46	Pass				
902	Single Channel	ASK	Patch	69.3	<111	Pass				
928	Single Channel	ASK	Patch	70.7	<111	Pass				
960	Single Channel	ASK	Patch	46.5 QP	<54	Pass				
614	Hopping	ASK	Patch	41.9 QP	<46	Pass				
902	Hopping	ASK	Patch	63.1	<111	Pass				
928	Hopping	ASK	Patch	66.3	<111	Pass				
960	Hopping	ASK	Patch	46.7 QP	<54	Pass				

Page 50 of 98 Report No.: 108693-1_Vol.1

	Band Edge Summary									
Configuration	Configuration 5									
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results				
614	Single Channel	ASK	Patch	41.9	<46	Pass				
902	Single Channel	ASK	Patch	69.5	<111	Pass				
928	Single Channel	ASK	Patch	68.9	<111	Pass				
960	Single Channel	ASK	Patch	47.1 QP	<54	Pass				
614	Hopping	ASK	Patch	41.9 QP	<46	Pass				
902	Hopping	ASK	Patch	65.5	<111	Pass				
928	Hopping	ASK	Patch	66.8	<111	Pass				
960	Hopping	ASK	Patch	46.5 QP	<54	Pass				

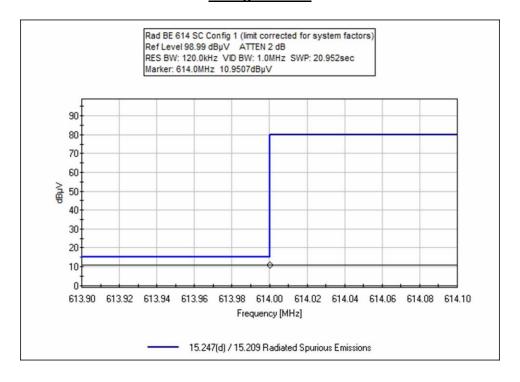
	Band Edge Summary									
Configuration	Configuration 6									
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results				
614	Single Channel	ASK	Patch	42.1 QP	<46	Pass				
902	Single Channel	ASK	Patch	73.2	<111	Pass				
928	Single Channel	ASK	Patch	72.7	<111	Pass				
960	Single Channel	ASK	Patch	46.6 QP	<54	Pass				
614	Hopping	ASK	Patch	41.9 QP	<46	Pass				
902	Hopping	ASK	Patch	70.6	<111	Pass				
928	Hopping	ASK	Patch	71.0	<111	Pass				
960	Hopping	ASK	Patch	46.6 QP	<54	Pass				

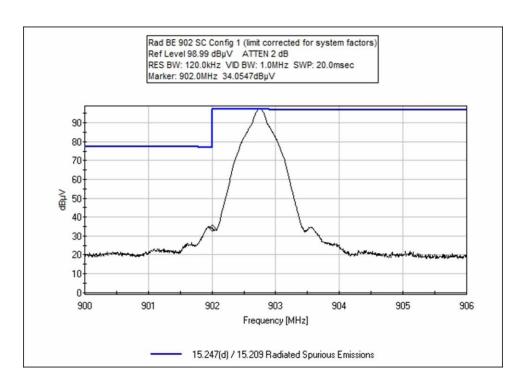
Page 51 of 98 Report No.: 108693-1_Vol.1

	Band Edge Summary									
Configuration	Configuration 7									
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results				
614	Single Channel	ASK	Patch	42.1 QP	<46	Pass				
902	Single Channel	ASK	Patch	70.4	<111	Pass				
928	Single Channel	ASK	Patch	69.3	<111	Pass				
960	Single Channel	ASK	Patch	46.9 QP	<54	Pass				
614	Hopping	ASK	Patch	42.0 QP	<46	Pass				
902	Hopping	ASK	Patch	67.6	<111	Pass				
928	Hopping	ASK	Patch	65.6	<111	Pass				
960	Hopping	ASK	Patch	47.0 QP	<54	Pass				

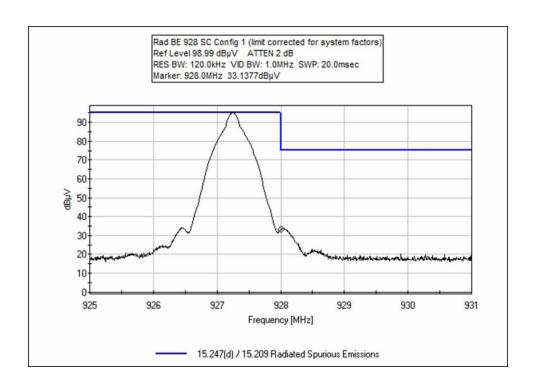
	Band Edge Summary								
Configuration 8									
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results			
614	Single Channel	ASK	Patch	42.5 QP	<46	Pass			
902	Single Channel	ASK	Patch	69.7	<111	Pass			
928	Single Channel	ASK	Patch	67.4	<111	Pass			
960	Single Channel	ASK	Patch	47.8 QP	<54	Pass			
614	Hopping	ASK	Patch	42.4 QP	<46	Pass			
902	Hopping	ASK	Patch	68.6	<111	Pass			
928	Hopping	ASK	Patch	66.6	<111	Pass			
960	Hopping	ASK	Patch	47.9 QP	<54	Pass			

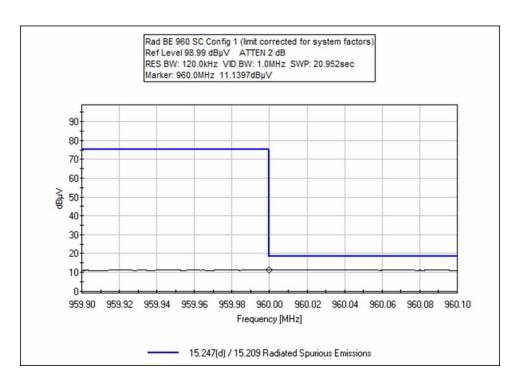
Page 52 of 98 Report No.: 108693-1_Vol.1


	Band Edge Summary									
Configuration 9										
Frequency (MHz)	Operating Mode	Modulation	Ant. Type	Field Strength (dBµV/m @3m)	Limit (dBuV/m @3m)	Results				
614	Single Channel	ASK	Patch	42.2 QP	<46	Pass				
902	Single Channel	ASK	Patch	72.6	<111	Pass				
928	Single Channel	ASK	Patch	70.1	<111	Pass				
960	Single Channel	ASK	Patch	47.1 QP	<54	Pass				
614	Hopping	ASK	Patch	42.2 QP	<46	Pass				
902	Hopping	ASK	Patch	68.7	<111	Pass				
928	Hopping	ASK	Patch	68.9	<111	Pass				
960	Hopping	ASK	Patch	47.2 QP	<54	Pass				

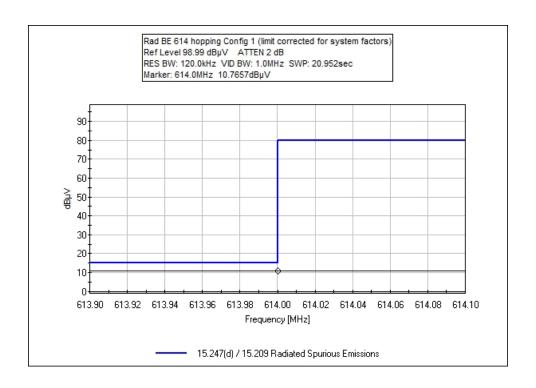

Page 53 of 98 Report No.: 108693-1_Vol.1

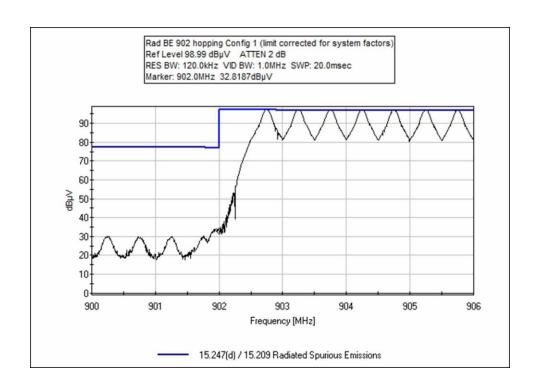
Band Edge Plots

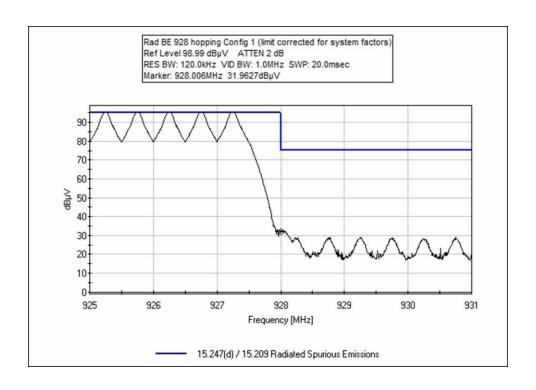

Configuration 1

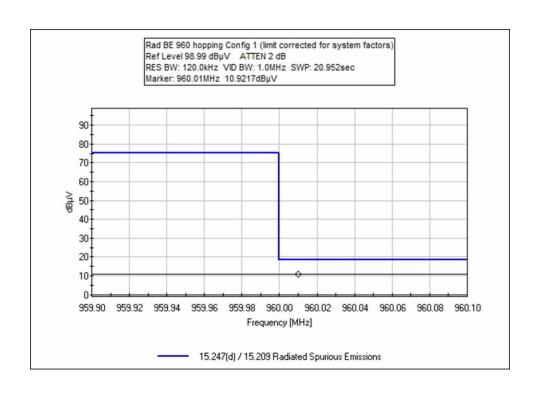


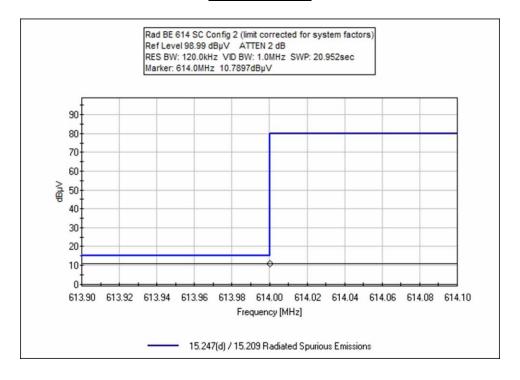
Page 54 of 98 Report No.: 108693-1_Vol.1

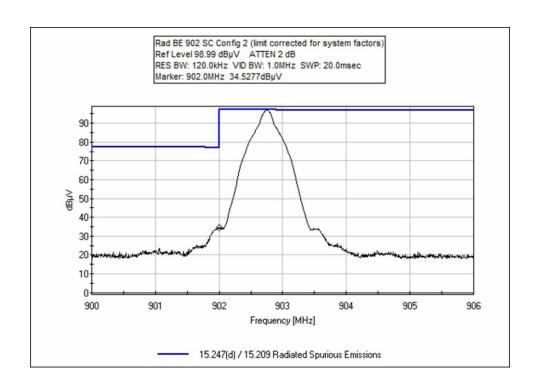


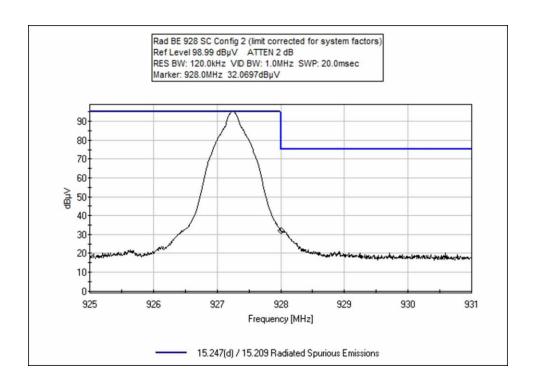


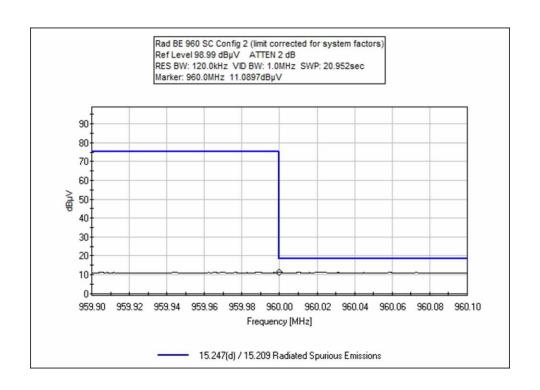

Page 55 of 98 Report No.: 108693-1_Vol.1

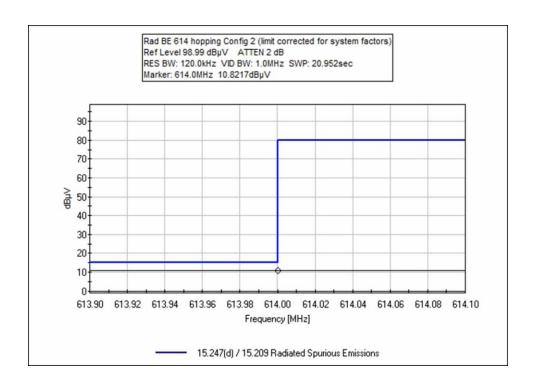


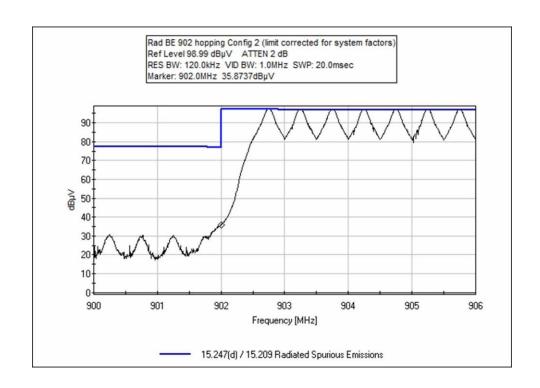


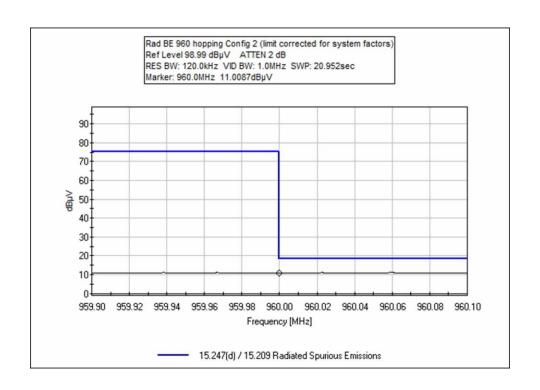



Configuration 2

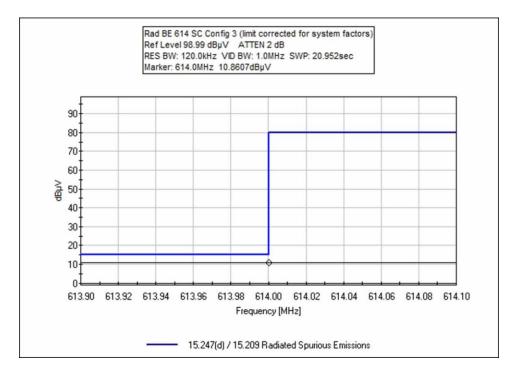


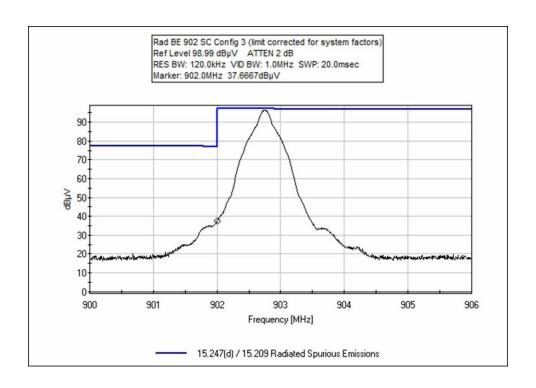

Page 58 of 98 Report No.: 108693-1_Vol.1

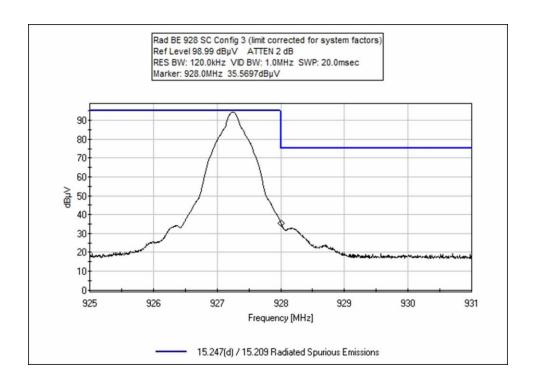


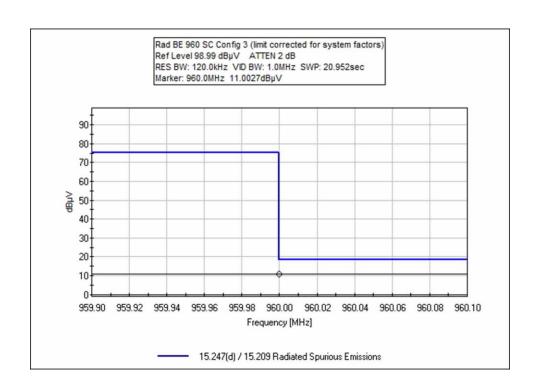


Page 60 of 98 Report No.: 108693-1_Vol.1

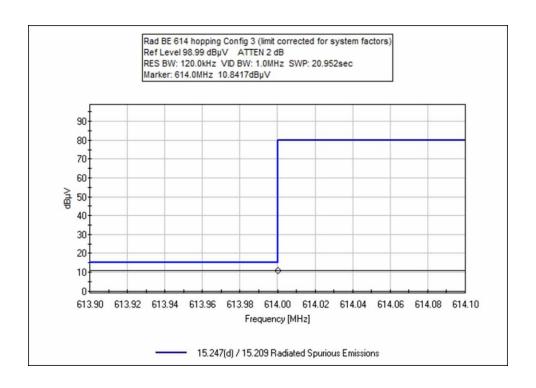


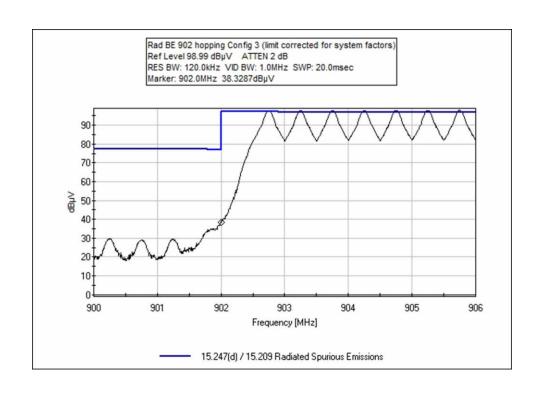



Configuration 3

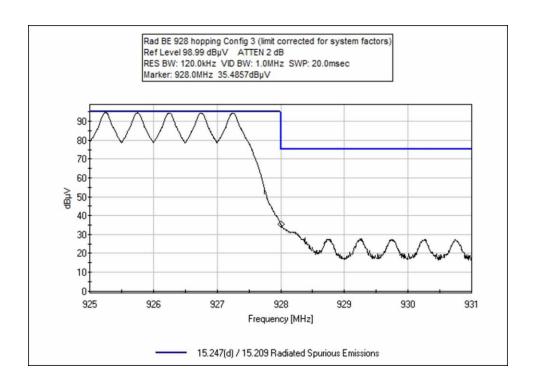


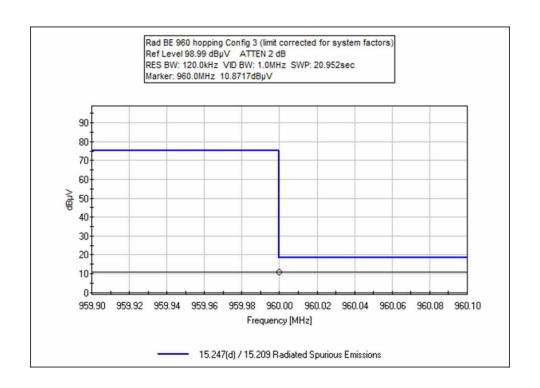
Page 62 of 98 Report No.: 108693-1_Vol.1



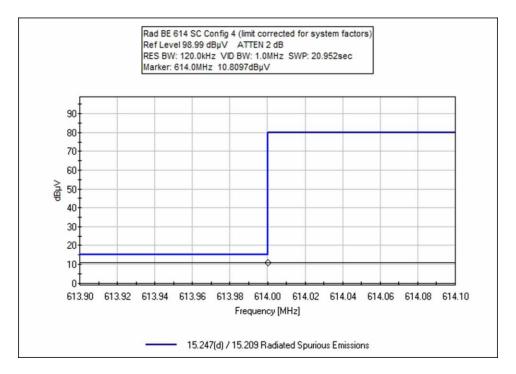


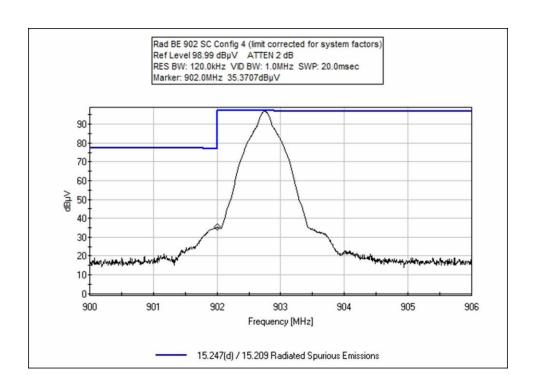
Page 63 of 98 Report No.: 108693-1_Vol.1

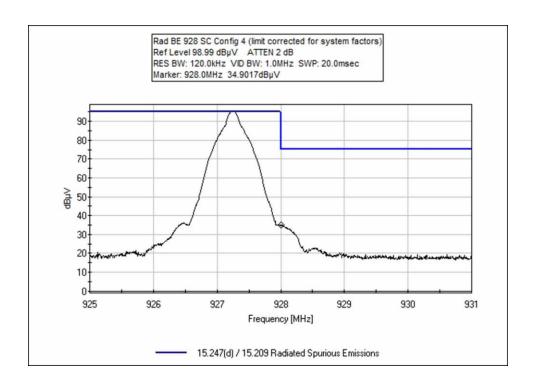


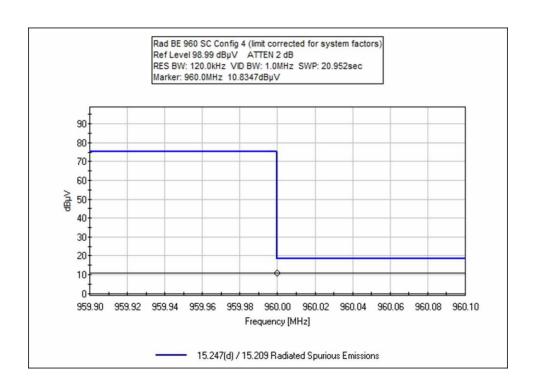


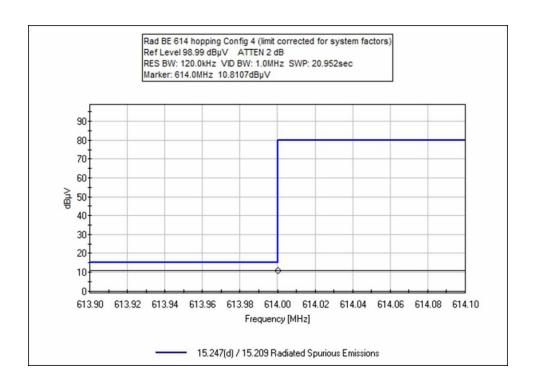
Page 64 of 98 Report No.: 108693-1_Vol.1

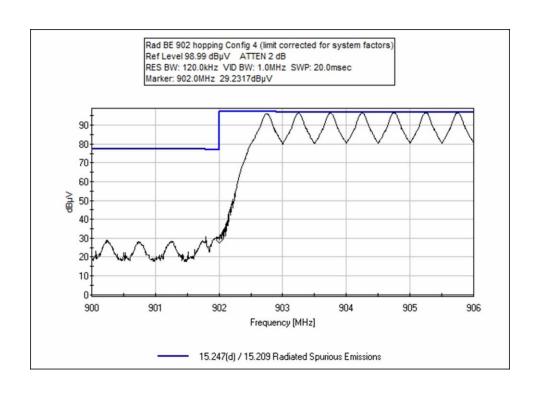


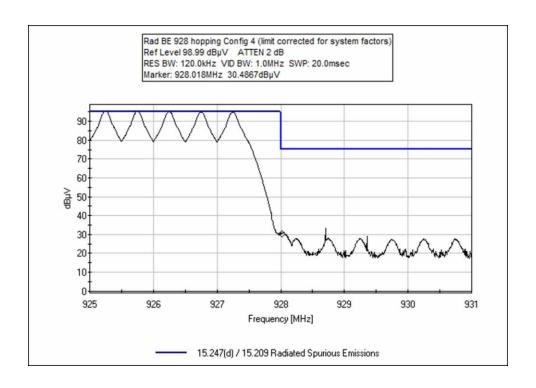


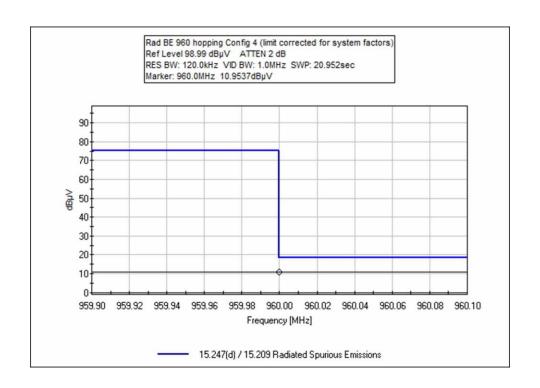

Configuration 4




Page 66 of 98 Report No.: 108693-1_Vol.1



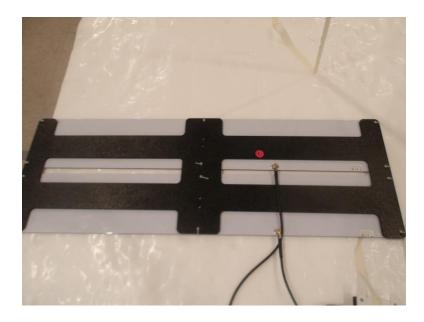




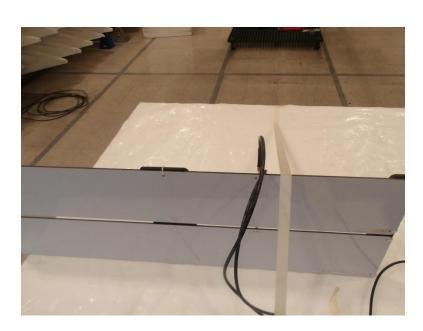
Page 68 of 98 Report No.: 108693-1_Vol.1

Test Setup Photo(s)

Configuration 1



Below 1GHz



Above 1GHz



X-Axis

Y-Axis

Z-Axis

Below 1GHz

Above 1GHz

X-Axis

Y-Axis

Z-Axis

Page 75 of 98 Report No.: 108693-1_Vol.1

Below 1GHz

Above 1GHz

X-Axis

Y-Axis

Z-Axis

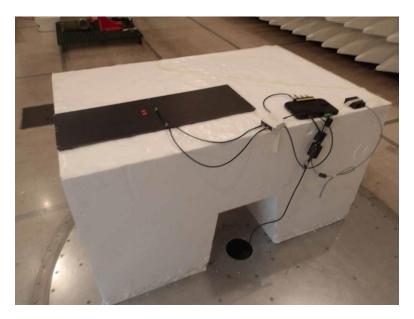
Page 78 of 98 Report No.: 108693-1_Vol.1

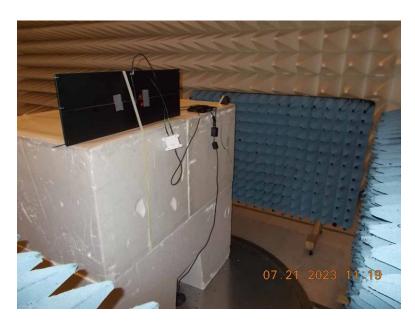
Below 1GHz

Above 1GHz

X-Axis

Y-Axis




Z-Axis

Page 81 of 98 Report No.: 108693-1_Vol.1

Below 1GHz

Above 1GHz

X-Axis

Y-Axis

Z-Axis

Page 84 of 98 Report No.: 108693-1_Vol.1

Below 1GHz

Above 1GHz

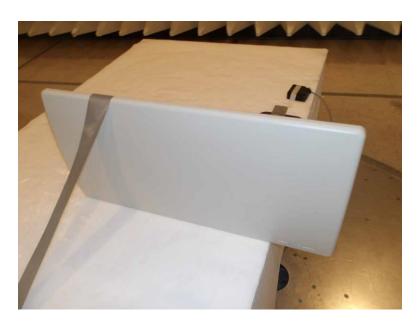
X-Axis

Y-Axis

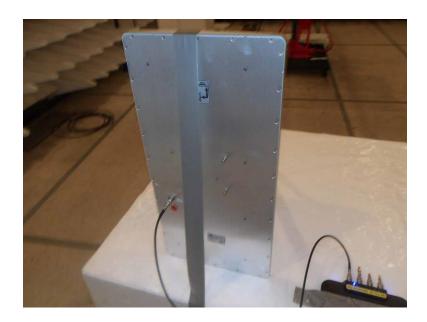
Z-Axis

Page 87 of 98 Report No.: 108693-1_Vol.1

Below 1GHz



Above 1GHz



X-Axis

Y-Axis

Z-Axis

Page 90 of 98 Report No.: 108693-1_Vol.1

Below 1GHz

Above 1GHz

X-Axis

Y-Axis

Z-Axis

Page 93 of 98 Report No.: 108693-1_Vol.1

Below 1GHz

Above 1GHz

X-Axis

Y-Axis

Z-Axis

Page 96 of 98 Report No.: 108693-1_Vol.1

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter	
4.73 dB	Radiated Emissions	
3.34 dB	Mains Conducted Emissions	
3.30 dB	Disturbance Power	

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBμV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBμV/m)		

Page 97 of 98

Report No.: 108693-1_Vol.1

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE				
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING	
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz	
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz	
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz	
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz	

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 98 of 98 Report No.: 108693-1_Vol.1