Impinj Inc.

TEST REPORT FOR

Impinj R700 RAIN RFID Reader Model: IPJ-R700-343

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)
15.207 \& 15.247
(FHSS 902-928 MHz)

Report No.: 107695-1

Date of issue: December 5, 2022

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

Test Certificate \# 803.01

TABLE OF CONTENTS

Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Modifications During Testing 5
Conditions During Testing 5
Equipment Under Test 6
General Product Information 6
FCC Part 15 Subpart C 11
15.247(b)(2) Output Power 11
15.247(d) Radiated Emissions \& Band Edge 17
15.207 AC Conducted Emissions 32
Supplemental Information 43
Measurement Uncertainty 43
Emissions Test Details 43

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Impinj Inc.
400 Fairview Ave N, Suite 1200
Seattle, WA 98109

Representative: Greg Robinson
Customer Reference Number: P015900

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Lisa Bevington
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 107695

November 17, 2022
November 17-18, 22-23, 2022

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
Canyon Park
22116 23rd Drive S.E., Suite A
Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03 .20

Site Registration \& Accreditation Information

Location	*NIST CB \#	FCC	Canada	Japan
Canyon Park, Bothell, WA	USO103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: https://standards.gov/cabs/designations.html LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C-15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
$15.247(\mathrm{a})(1)(\mathrm{i})$	Occupied Bandwidth	NA	NP
$15.247(\mathrm{a})(1)$	Carrier Separation	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Number of Hopping Channels	NA	NP
$15.247(\mathrm{a})(1)(\mathrm{i})$	Average Time of Occupancy	NA	NP
$15.247(\mathrm{~b})(2)$	Output Power	NA	Pass
$15.247(\mathrm{~d})$	RF Conducted Emissions \& Band Edge	NA	NP
$15.247(\mathrm{~d})$	Radiated Emissions \& Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable
NP = CKC Laboratories, Inc. was not contracted to preform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing
This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Impinj R700 RAIN RFID Reader	Impinj, Inc.	IPJ-R700-343	37022360274

Support Equipment:

Device	Manufacturer	Model \#	S/N
Antenna	Times-7	A5010	0016246
PoE Injector	Phihong	POE29U-1AT(PL)	NA
Laptop	HP	EliteBook 840 G2	NA
AC Adapter (for Laptop)	HP	PPP009D	NA
Router	TP-Link	ER605	NA
AC Adapter (for Router)	TP-Link	T1200100-2B1	NA

General Product Information:

$\left.\begin{array}{|c|c|}\hline \text { Product Information } & \text { Manufacturer-Provided Details } \\ \hline \text { Equipment Type: } & \text { Stand-Alone Equipment } \\ \hline \text { Type of Wideband System: } & \text { FHSS } \\ \hline \text { Operating Frequency Range: } & 902.75-927.25 \mathrm{MHz} \\ \hline \text { Number of Hopping Channels: } & 50 \\ \hline \text { Receiver Bandwidth and } \\ \text { Synchronization: }\end{array} \quad \begin{array}{c}\text { The manufacturer declares the receiver input bandwidth matches } \\ \text { the transmit channel bandwidth and shifts frequencies in } \\ \text { synchronization with the transmitter. }\end{array}\right]$ ASK

The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.

EUT Photos)

Support Equipment Photos)

Antenna

Laptop and Switch

PoE Injector

Block Diagram of Test Setup(s)

Test Setup Block Diagram

AC Conducted Test Setup

Test Setup Block Diagram

Radiated Test Setup

FCC Part 15 Subpart C

15.247(b)(2) Output Power

Test Setup/Conditions			
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson
Test Method:	ANSI C63.10 (2013)	Test Date(s):	$11 / 18 / 2022$
Configuration:	1	EUT is continuously transmitting through the antenna port connector and is attached to the spectrum analyzer through appropriate cables and attenuation. Test Setup:Per manufacturer the AC voltage is varied to the PoE injector.	

Test Data Summary - Voltage Variations						
Frequency $(\mathbf{M H z})$	Modulation / Ant Port	$\mathbf{V}_{\text {Minimum }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Nominal }}$ $(\mathbf{d B m})$	$\mathbf{V}_{\text {Maximum }}$ $(\mathbf{d B m})$	Max Deviation from $\mathbf{V}_{\text {Nominal }}(\mathbf{d B})$	
902.75	ASK/Port 1	29.5	29.5	29.5	0.0	
914.75	ASK/Port 1	29.7	29.7	29.7	0.0	
927.25	ASK/Port 1	29.8	29.8	29.8	0.0	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal $\pm 15 \%$.

Parameter	Value
V Nominal	115
V Minimum:	97
V Maximum:	132

Test Data Summary - RF Conducted Measurement

Test Data Summary - RF Conducted Measurement						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results	
902.75	ASK	Circular Polarized $/$ $+8.5 d B i C ~$	29.5	≤ 30	Pass	
914.75	ASK	Circular Polarized $/$ $+8.5 d B i C ~$	29.7	≤ 30	Pass	
927.25	ASK	Circular Polarized $/$ $+8.5 d B i C ~$	29.8	≤ 30	Pass	

LABORATORIES, INC.

Plot Data

Low Channel

Middle Channel

High Channel

Test Data

Test Location:	62
Customer:	Impinj, Inc.
Specification:	15.247(b) Power Output (902-928 MHz FHSS >50 Channels)
Work Order \#:	107695 Date: 11/18/2022
Test Type:	Conducted Emissions Time: 09:13:14
Tested By:	Michael Atkinson Sequence\#: 3
Software:	EMITest 5.03.20 115V 60Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Environmental Conditions:
Temperature: $20^{\circ} \mathrm{C}$
Humidity: 31%
Pressure: 103.1 kPa

Test Method: ANSI 63.10 (2013)
Frequency Range: 902-928 MHz
Frequency tested: 902.75, 914.75, 927.25
Firmware power setting; Max Power (with manufacturer declared 3dB of cable loss accounted for)
Setup: The EUT is set up for conducted measurements, the EUT is continuously transmitting with modulation.
Unit is connected to PoE injector via Cat5e cable, the POE injector is connected to a Switch which is connected to the support laptop.

Impinj, Inc. WO\#: 107695 Sequence\#: 3 Date: 11/18/2022
15.247 (b) Power Output ($902-928 \mathrm{MHz}$ FHSS >50 Channels) Test Lead: 115 V 60 Hz Antenna Port 1

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP07638	Attenuator	$47-20-34$	$5 / 3 / 2022$	$5 / 3 / 2024$
T2	ANP06452	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANManuf Cab Loss	Cable	Multiple	No Cal Required	No Cal Required

Measu	ement Data:	Reading listed by margin.					Test Lead: Antenna Port 1				
\#	Freq MHz	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	927.253M	119.3	+19.7	+0.8	+3.0		+0.0	136.8	137.0	-0.2	Anten
2	914.730 M	119.2	+19.7	+0.8	+3.0		+0.0	136.7	137.0	-0.3	Anten
3	902.748M	119.1	+19.7	+0.7	+3.0		+0.0	136.5	137.0	-0.5	Anten

LABORATORIES, INC.

15.247(d) Radiated Emissions \& Band Edge

Test Data

Test Location: CKC Labs • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362

Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

Impinj, Inc.
15.247(d) / 15.209 Radiated Spurious Emissions
107695 Date: 11/23/2022

Maximized Emissions
Michael Atkinson
EMITest 5.03.20

Time: 12:38:27
Sequence\#: 6

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 32\%
Pressure: 103.0 kPa
Frequency Range: 9 kHz to 10 GHz
Frequency tested: 902.75, 914.75, 927.25

Antenna type: Circular Polarized
Antenna Gain: +8.5 dBiC
Antenna in X, Y \& Z axis investigated
Duty Cycle: 100\%
Test Method: ANSI 63.10 (2013)

Setup: The EUT is set on a foam test table.
The antenna is connected to antenna port 1 via cable with declared 3 dB of loss per manufacturer.
USB ports and GPIO (investigated with and without wires) terminated per manufacturer with cables and connectors An unshielded Ethernet cable is run from the EUT to a POE injector which is connected to a switch which is connected to the support laptop all located outside the chamber.

Horizontal and Vertical polarities investigated above 30 MHz , worst case report. Below $30 \mathrm{MHz}, 3 \mathrm{x}$ orthogonal axes investigated, worst case reported.

Impinj. Inc. WO\#: 107695 Sequence\#: 6 Date: 11/23/2022
15.247 (d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

O Peak Readings

* Average Readings

Software Version: 5.03.20

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T2	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T3	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T4	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T5	AN03628	Biconilog Antenna	$3142 E$	$6 / 3 / 2021$	$6 / 3 / 2023$
T6	AN00052	Loop Antenna	6502	$5 / 11 / 2022$	$5 / 11 / 2024$
T7	AN03170	High Pass Filter	HM1155-11SS	$9 / 16 / 2021$	$9 / 16 / 2023$
T8	AN03540	Preamp	83017A	$5 / 14 / 2021$	$5 / 14 / 2023$
T9	ANP07504	Cable	CLU40-KMKM-	$1 / 26 / 2021$	$1 / 26 / 2023$
			02.00F		
T10	AN02374ANSI	Horn Antenna	RGA-60	$5 / 25 / 2021$	$5 / 25 / 2023$

Measurement Data:	Reading listed by margin.				Test Distance: 3 Meters					
\# Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		T5	T6	T7	T8					
	$\mathrm{dB} \mu \mathrm{V}$	T9 dB	$\begin{gathered} \mathrm{T} 10 \\ \mathrm{~dB} \end{gathered}$	dB			$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dBu} \mathrm{V} /$	dB	Ant
13709.000 MAve	47.4	+0.0	+0.6	+3.3	+0.0	+0.0	50.0	54.0	-4.0	Horiz
		+0.0	+0.0	+0.2	-33.8			927.25		
		+0.3	+32.0							
$\wedge 3709.015 \mathrm{M}$	53.4	+0.0	+0.6	+3.3	+0.0	+0.0	56.0	54.0	+2.0	Horiz
		+0.0	+0.0	+0.2	-33.8			927.25		
		+0.3	+32.0							
3 249.200M	19.6	+0.0	+0.2	+0.8	+1.1	+0.0	39.8	46.0	-6.2	Horiz
		+18.1	+0.0	+0.0	+0.0					
		+0.0	+0.0							
43659.035 M	45.4	+0.0	+0.6	+3.3	+0.0	+0.0	47.8	54.0	-6.2	Vert
		+0.0	+0.0	+0.2	-33.8			914.75		
		+0.4	+31.7							
$\begin{aligned} & 5 \text { 3659.065M } \\ & \text { Ave } \end{aligned}$	45.4	+0.0	+0.6	+3.3	+0.0	+0.0	47.8	54.0	-6.2	Horiz
		+0.0	+0.0	+0.2	-33.8			914.75		
		+0.4	+31.7							
$\wedge 3659.065 \mathrm{M}$	51.1	+0.0	+0.6	+3.3	+0.0	+0.0	53.5	54.0	-0.5	Horiz
		+0.0	+0.0	+0.2	-33.8			914.75		
		+0.4	+31.7							
75416.530 M	40.8	+0.0	+0.8	+4.0	+0.0	+0.0	47.7	54.0	-6.3	Vert
		+0.0	+0.0	+0.4	-33.6			902.75		
		+0.6	+34.7							
83610.985 M	45.3	+0.0	+0.5	+3.2	+0.0	+0.0	47.6	54.0	-6.4	Horiz
		+0.0	+0.0	+0.3	-33.8			902.75		
		+0.4	+31.7							
93611.030 M	44.4	+0.0	+0.5	+3.2	+0.0	+0.0	46.7	54.0	-7.3	Vert
		+0.0	+0.0	+0.3	-33.8			902.75		
		+0.4	+31.7							
$10 \quad 2781.810 \mathrm{M}$	47.2	+0.0	+0.5	+2.7	+0.0	+0.0	46.4	54.0	-7.6	Vert
		+0.0	+0.0	+0.3	-34.1			927.25		
		+0.5	+29.3							
11 2744.275M	46.7	+0.0	+0.5	+2.7	+0.0	+0.0	45.9	54.0	-8.1	Horiz
		+0.0	+0.0	+0.3	-34.1			914.75		
		+0.5	+29.3							
$\begin{aligned} & 123709.000 \mathrm{M} \\ & \text { Ave } \end{aligned}$	42.4	+0.0	+0.6	+3.3	+0.0	+0.0	45.0	54.0	-9.0	Vert
		+0.0	+0.0	+0.2	-33.8			927.25		
		+0.3	+32.0							
^ 3709.060M	48.3	+0.0	+0.6	+3.3	+0.0	+0.0	50.9	54.0	-3.1	Vert
		+0.0	+0.0	+0.2	-33.8			927.25		
		+0.3	+32.0							
14 4573.815M	41.4	+0.0	+0.6	+3.5	+0.0	+0.0	45.0	54.0	-9.0	Horiz
		+0.0	+0.0	+0.5	-33.6			914.75		
		+0.4	+32.2							
15 4513.825M	41.1	+0.0	+0.6	+3.5	+0.0	+0.0	44.6	54.0	-9.4	Horiz
		+0.0	+0.0	+0.5	-33.6			902.75		
		+0.3	+32.2							

$\begin{aligned} & 165416.500 \mathrm{M} \\ & \text { Ave } \end{aligned}$	37.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +34.7 \end{array}$	$\begin{aligned} & +4.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \end{array}$	$+0.0$	44.3	$\begin{array}{r} 54.0 \\ 902.75 \end{array}$	-9.7	Horiz
$\wedge 5416.530 \mathrm{M}$	44.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +34.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+4.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \end{array}$	$+0.0$	51.8	$\begin{array}{r} 54.0 \\ 902.75 \end{array}$	-2.2	Horiz
18 2708.235M	44.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +29.5 \end{array}$	$\begin{aligned} & +2.7 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \end{array}$	+0.0	43.7	$\begin{array}{r} 54.0 \\ 902.75 \end{array}$	-10.3	Horiz
$\begin{aligned} & 19 \text { 2781.750M } \\ & \text { Ave } \end{aligned}$	44.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +29.3 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \end{array}$	$+0.0$		$\begin{gathered} 54.0 \\ 927.25 \end{gathered}$	-10.4	Horiz
$\wedge 2781.745 \mathrm{M}$	50.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +29.3 \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \end{array}$	+0.0	50.1	$\begin{gathered} \hline 54.0 \\ 927.25 \end{gathered}$	-3.9	Horiz
21 2744.310M	42.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +29.3 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \end{array}$	$+0.0$	41.8	$\begin{array}{r} 54.0 \\ 914.75 \end{array}$	-12.2	Vert
22 4636.265M	37.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.6 \\ +0.0 \\ +32.4 \\ \hline \end{array}$	$\begin{aligned} & +3.6 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \end{array}$	$+0.0$	41.4	$\begin{gathered} 54.0 \\ 927.25 \end{gathered}$	-12.6	Horiz
23 2708.280M	39.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +0.0 \\ +29.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \end{array}$	$+0.0$	38.9	$\begin{gathered} 54.0 \\ 902.75 \end{gathered}$	-15.1	Vert
$24 \quad 939.900 \mathrm{M}$	24.7	$\begin{array}{r} +0.0 \\ +31.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	+0.0	60.1	111.0	-50.9	Vert
25 5488.575M	45.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +34.7 \\ \hline \end{array}$	$\begin{aligned} & +4.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \end{array}$	+0.0	52.7	$\begin{gathered} 111.0 \\ 914.75 \end{gathered}$	-58.3	Horiz
265563.520 M	45.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +34.5 \\ \hline \end{array}$	$\begin{aligned} & +4.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \end{array}$	$+0.0$		$\begin{gathered} 111.0 \\ 927.25 \end{gathered}$	-59.3	Horiz
275563.560 M	43.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +34.5 \\ \hline \end{array}$	$\begin{aligned} & +4.0 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \end{array}$	$+0.0$	50.4	$\begin{gathered} 1111.0 \\ 927.25 \end{gathered}$	-60.6	Vert
28 5488.545M	43.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.8 \\ +0.0 \\ +34.7 \\ \hline \end{array}$	$\begin{aligned} & +4.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.6 \end{array}$	$+0.0$	50.2	$\begin{aligned} & 1111.0 \\ & 914.75 \end{aligned}$	-60.8	Vert
291854.670 M	48.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +27.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \end{array}$	$+0.0$	44.5	$\begin{gathered} 1111.0 \\ 927.25 \end{gathered}$	-66.5	Horiz
$30 \quad 39.700 \mathrm{M}$	26.8	$\begin{array}{r} +0.0 \\ +16.1 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	+0.0	43.8	111.0	-67.2	Vert
$31 \quad 1829.545 \mathrm{M}$	45.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +27.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \end{array}$	$+0.0$	41.2	$\begin{gathered} 111.0 \\ 914.75 \end{gathered}$	-69.8	Horiz
32 1805.345M	44.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.0 \\ +27.3 \\ \hline \end{array}$	$\begin{aligned} & +2.1 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.7 \end{array}$	$+0.0$	40.7	$\begin{gathered} 111.0 \\ 902.75 \end{gathered}$	-70.3	Horiz

33	45.500 M	24.9	$\begin{array}{r} +0.0 \\ +13.5 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$+0.0$	39.3	111.0	-71.7	Vert
34	78.500 M	23.0	$\begin{array}{r} +0.0 \\ +12.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	+0.0	36.7	111.0	-74.3	Vert
35	78.500 M	20.6	$\begin{array}{r} +0.0 \\ +12.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \end{aligned}$	+0.0	34.3	111.0	-76.7	Horiz
36	10.802M	15.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +8.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-15.4	111.0	-126.4	Para
37	18.023M	14.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +7.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	-40.0	-17.8	111.0	-128.8	Perp
38	28.637M	14.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +4.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-21.4	111.0	-132.4	Para

LABORATORIES, INC.

Band Edge

Band Edge Summary

Operating Mode: Single Channel (Low and High)

Frequency $\mathbf{(M H z)}$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Limit $(\mathbf{d B u V} / \mathbf{m} @ 3 m)$	Results
614	ASK	Circular Polarized	38.7	<46	Pass
960	ASK	Circular Polarized	42.9	<54	Pass
902	ASK	Circular Polarized	73.2	<111	Pass
928	ASK	Circular Polarized	75.5	<111	Pass

Band Edge Summary					
Operating Mode: Hopping					
Frequency $(\mathbf{M H z})$	Modulation	Ant. Type	Field Strength $(\mathbf{d B u V} / \mathbf{m}$ @3m)	Limit (dBuV/m @3m)	Results
614	ASK	Circular Polarized	38.8	<46	Pass
960	ASK	Circular Polarized	43.0	<54	Pass
902	ASK	Circular Polarized	74.0	<111	Pass
928	ASK	Circular Polarized	75.9	<111	Pass

Band Edge Plots

Test Data

Test Location:	CKC Labs •22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362		
Customer:	Impinj, Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurious Emissions		
Work Order \#:	107695	Date:	11/18/2022
Test Type:	Maximized Emissions	Time:	$11: 12: 26$
Tested By:	Michael Atkinson	Sequence\#:	5
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model \#	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:
Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 32\%
Pressure: 103.0 kPa
Frequency Range: Band Edge
Frequency tested: 902.75, 927.25
Antenna type: Circular Polarized
Antenna Gain: +8.5 dBiC
Antenna in X, Y \& Z axis investigated
Duty Cycle: 100\%

Test Method: ANSI 63.10 (2013)
Setup: The EUT is set on a foam test table.
The antenna is connected to antenna port 1 via cable with declared 3 dB of loss per manufacturer.
USB ports and GPIO terminated per manufacturer with cables and connectors
An unshielded Ethernet cable is run from the EUT to a POE injector which is connected to a switch which is connected to the support laptop all located outside the chamber.

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	ANP06540	Cable	Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP05305	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05360	Cable	RG214	$2 / 4 / 2022$	$2 / 4 / 2024$
T4	AN03628	Biconilog Antenna	3142 E	$6 / 3 / 2021$	$6 / 3 / 2023$

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Investigate GPIO

Below 1 GHz (0.08 m)

Above 1 GHz (1.5m)

X Axis

Y Axis

Z Axis

LABORATORIES, INC.

15.207 AC Conducted Emissions

Test Data

Customer:
Specification: Work Order \#: Test Type:
Tested By:
Software:

Test Location: CKC Labs • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362
CKC Labs • 22116 23rd Dr SE • Bothell, WA 98021 • 800-500-4362
Impinj, Inc.
15.207 AC Mains - Average

107695
Conducted Emissions
Michael Atkinson
EMITest 5.03.20

Date: 11/23/2022
Time: 16:19:07
Sequence\#: 34
120 V 60 Hz

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 42\%
Pressure: 102.7 kPa
Frequency Range: $0.15-30 \mathrm{MHz}$
Test Method: ANSI C63.10 (2013)

Setup: The EUT is set on a foam test table.
USB ports and GPIO terminated per manufacturer with cables and connectors
Unshielded between EUT and POE injector which is connected to a switch which is connected to the support laptop all located outside the chamber.

Antenna connected, the unit was investigated in standby mode as well as inventory mode with the radio transmitting, worst case reported

US-CAN Unit

Impinj. Inc, WO\#: 107695 Sequence\#f: 34 Date: 11/23/2022
15.207 AC Mains - Average Test Lead: 120 V 60 Hz Line

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANO2872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	AN02611	High Pass Filter	HE9615-150K- 50-720B	$1 / 5 / 2022$	$1 / 5 / 2024$
			Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP06540	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05305	Cable	Attenuator	$768-10$	$3 / 23 / 2022$
T4	ANP06219	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 23 / 2022$	$2 / 23 / 2024$
T5	AN01311	50uH LISN-Line2	$3816 / 2$	$2 / 23 / 2022$	$2 / 23 / 2024$
	AN01311	(N)			

	$19.886 \mathrm{M}$	28.8	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	38.4	50.0	-11.6	Line
\wedge	19.886M	40.8	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	+0.0	50.4	50.0	+0.4	Line
	$\begin{aligned} & \text { 20.220M } \\ & \text { ve } \end{aligned}$	28.7	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	38.3	50.0	-11.7	Line
\wedge	20.220 M	41.1	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	50.7	50.0	+0.7	Line
	19.949M	28.7	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	38.3	50.0	-11.7	Line
\wedge	19.949M	40.7	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	50.3	50.0	+0.3	Line
	$\begin{aligned} & 20.058 \mathrm{M} \\ & \text { ve } \\ & \hline \end{aligned}$	28.7	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	38.3	50.0	-11.7	Line
\wedge	20.058 M	40.3	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	49.9	50.0	-0.1	Line
	$18.292 \mathrm{M}$	28.7	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	38.3	50.0	-11.7	Line
\wedge	18.292M	41.6	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	51.2	50.0	+1.2	Line
	$20.139 \mathrm{M}$ ve	28.6	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	38.2	50.0	-11.8	Line
\wedge	20.139M	40.8	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	50.4	50.0	+0.4	Line
	$20.274 \mathrm{M}$ ve	28.6	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	38.2	50.0	-11.8	Line
\wedge	20.274M	40.5	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	50.1	50.0	+0.1	Line
	$18.256 \mathrm{M}$	28.5	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	+0.0	38.1	50.0	-11.9	Line
\wedge	18.256M	41.2	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	50.8	50.0	+0.8	Line
	$\begin{aligned} & \text { 20.607M } \\ & \text { ve } \end{aligned}$	28.4	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	38.0	50.0	-12.0	Line
\wedge	20.607 M	41.7	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	+0.0	51.3	50.0	+1.3	Line
	$\begin{aligned} & \text { 20.634M } \\ & \text { ve } \end{aligned}$	28.4	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	38.0	50.0	-12.0	Line
\wedge	20.634 M	40.0	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	+0.0	49.6	50.0	-0.4	Line
	$\begin{aligned} & \text { 20.832M } \\ & \text { ve } \end{aligned}$	28.3	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	37.9	50.0	-12.1	Line
\wedge	20.832M	39.9	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	49.5	50.0	-0.5	Line
	$\begin{aligned} & \text { 20.769M } \\ & \text { ve } \end{aligned}$	28.2	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	37.8	50.0	-12.2	Line
\wedge	20.769M	40.0	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	$+0.0$	49.6	50.0	-0.4	Line
	$20.931 \mathrm{M}$	28.0	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	37.6	50.0	-12.4	Line
\wedge	20.931M	40.1	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	$+0.1$	+0.2	+9.1	$+0.0$	49.7	50.0	-0.3	Line

Page 35 of 44

	$21.148 \mathrm{M}$	27.7	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	37.3	50.0	-12.7	Line
\wedge	21.148M	40.4	+0.1	+0.1	+0.2	+9.1	+0.0	50.0	50.0	+0.0	Line
			+0.1								
51	154.821k	27.4	+0.7	+0.1	+0.0	+9.1	+0.0	37.4	55.7	-18.3	Line
Ave			+0.1								
52	151.048k	26.5	+1.5	+0.1	+0.0	+9.1	+0.0	37.3	55.9	-18.6	Line
Ave			+0.1								
\wedge	151.047k	46.5	+1.5	+0.1	+0.0	+9.1	+0.0	57.3	55.9	+1.4	Line
			+0.1								
54	158.069k	27.0	+0.6	+0.1	+0.0	+9.1	+0.0	36.9	55.6	-18.7	Line
Ave			+0.1								
\wedge	158.069k	48.0	+0.6	+0.1	+0.0	+9.1	+0.0	57.9	55.6	+2.3	Line
			+0.1								
154.820k		48.0	+0.7	+0.1	+0.0	+9.1	+0.0	58.0	55.7	+2.3	Line
			+0.1								
57	167.606k	25.5	+0.3	+0.1	+0.0	+9.1	+0.0	35.1	55.1	-20.0	Line
Ave			+0.1								
58	169.283 k	25.2	+0.3	+0.1	+0.0	+9.1	+0.0	34.8	55.0	-20.2	Line
Ave			+0.1								
\wedge	167.606k	45.7	+0.3	+0.1	+0.0	+9.1	+0.0	55.3	55.1	+0.2	Line
			+0.1								
\wedge	169.282 k	45.0	+0.3	+0.1	+0.0	+9.1	+0.0	54.6	55.0	-0.4	Line
			+0.1								

LABORATORIES, INC.

Test Location:	CKC Labs • 22116 23 rd Dr SE • Bethel, WA 98021 • 800-500-4362		
Customer:	Impinj, Inc.		
Specification:	15.207 AC Mains - Average		
Work Order \#:	$\mathbf{1 0 7 6 9 5}$	Date:	$11 / 23 / 2022$
Test Type:	Conducted Emissions	Time:	16:31:11
Tested By:	Michael Atkinson	Sequence\#:	35
Software:	EMITest 5.03.20	120 V 60 Hz	

Equipment Tested:

Device	Manufacturer	Model \#
Configuration 1		S/N

Support Equipment:

Device	Manufacturer	Model \#
Configuration 1		S/N

Test Conditions / Notes:

Environmental Conditions:
Temperature: $21^{\circ} \mathrm{C}$
Humidity: 42\%
Pressure: 102.7 kPa
Frequency Range: $0.15-30 \mathrm{MHz}$
Test Method: ANSI C63.10 (2013)
Setup: The EUT is set on a foam test table.
USB ports and GPIO terminated per manufacturer with cables and connectors
Unshielded between EUT and POE injector which is connected to a switch which is connected to the support laptop all located outside the chamber.

Antenna connected, the unit was investigated in standby mode as well as inventory mode with the radio transmitting, worst case reported.

US-CAN Unit

Impinj. Inc, WO\#: 107695 Sequence\#: 35 Date: 11/23/2022
15.207 AC Mains - Average Test Lead: 120 V 60 Hz Neutral

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	$11 / 29 / 2021$	$11 / 29 / 2023$
T1	AN02611	High Pass Filter	HE9615-150K- 50-720B	$1 / 5 / 2022$	$1 / 5 / 2024$
			Heliax	$1 / 17 / 2022$	$1 / 17 / 2024$
T2	ANP06540	Cable	ETSI-50T	$9 / 15 / 2021$	$9 / 15 / 2023$
T3	ANP05305	Cable	Attenuator	$768-10$	$3 / 23 / 2022$
T4	ANP06219	50uH LISN-Line1 (L)	$3816 / 2$	$2 / 23 / 2022$	$2 / 23 / 2024$
	AN01311	50uH LISN-Line2	$3816 / 2$	$2 / 23 / 2022$	$2 / 23 / 2024$
T5	AN01311	(N)			

	$20.481 \mathrm{M}$ ve	28.5	$\begin{aligned} & +0.1 \\ & +0.0 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	38.0	50.0	-12.0	Neutr
\wedge	20.481M	40.4	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	49.9	50.0	-0.1	Neutr
	$20.346 \mathrm{M}$ ve	28.5	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	38.0	50.0	-12.0	Neutr
\wedge	20.346M	41.0	$\begin{aligned} & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	+0.1	+0.2	+9.1	+0.0	50.5	50.0	$+0.5$	Neutr
27	$1.358 \mathrm{M}$	24.2	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	33.7	46.0	-12.3	Neutr
\wedge	1.358 M	34.6	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	44.1	46.0	-1.9	Neutr
	$1.315 \mathrm{M}$ ve	24.1	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	33.6	46.0	-12.4	Neutr
\wedge	1.315M	34.6	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	44.1	46.0	-1.9	Neutr
	$\mathrm{ve}^{1.515 \mathrm{M}}$	23.9	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	33.4	46.0	-12.6	Neutr
\wedge	1.515 M	34.6	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	44.1	46.0	-1.9	Neutr
	$867.196 \mathrm{k}$ ve	23.4	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	32.8	46.0	-13.2	Neutr
\wedge	867.196k	35.5	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	44.9	46.0	-1.1	Neutr
	$\begin{aligned} & 21.328 \mathrm{M} \\ & \mathrm{ve} \end{aligned}$	27.0	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	36.6	50.0	-13.4	Neutr
\wedge	21.328 M	40.4	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	50.0	50.0	+0.0	Neutr
	$\mathrm{ve}^{1.625 \mathrm{M}}$	22.4	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.1	+9.1	+0.0	31.9	46.0	-14.1	Neutr
\wedge	1.625 M	34.6	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	44.1	46.0	-1.9	Neutr
	$\begin{aligned} & 21.859 \mathrm{M} \\ & \text { ve } \end{aligned}$	26.2	$\begin{aligned} & +0.1 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	35.9	50.0	-14.1	Neutr
\wedge	21.859M	39.3	$\begin{aligned} & \hline+0.1 \\ & +0.2 \end{aligned}$	+0.1	+0.2	+9.1	+0.0	49.0	50.0	-1.0	Neutr
	$\mathrm{ve}^{1.202 \mathrm{M}}$	21.3	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	30.8	46.0	-15.2	Neutr
\wedge	1.202 M	34.7	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.1	+9.1	+0.0	44.2	46.0	-1.8	Neutr
	$154.086 \mathrm{k}$ ve	26.8	$\begin{aligned} & +0.7 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	36.8	55.8	-19.0	Neutr
\wedge	154.086k	47.1	$\begin{aligned} & \hline+0.7 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	57.1	55.8	+1.3	Neutr
	$161.736 \mathrm{k}$ ve	26.1	$\begin{aligned} & +0.5 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	35.9	55.4	-19.5	Neutr
\wedge	161.736k	48.5	$\begin{aligned} & +0.5 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	58.3	55.4	+2.9	Neutr
	$\begin{aligned} & 167.395 \mathrm{k} \\ & \mathrm{ve} \end{aligned}$	25.1	$\begin{array}{r} +0.4 \\ +0.1 \\ \hline \end{array}$	+0.1	+0.0	+9.1	+0.0	34.8	55.1	-20.3	Neutr
\wedge	167.395k	46.8	$\begin{array}{r} +0.4 \\ +0.1 \\ \hline \end{array}$	$+0.1$	+0.0	+9.1	+0.0	56.5	55.1	+1.4	Neutr

Page 40 of 44

49	$\begin{aligned} & 173.998 \mathrm{k} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	23.4	$\begin{aligned} & \hline+0.3 \\ & +0.1 \end{aligned}$	+0.1	$+0.0$	+9.1	+0.0	33.0	54.8	-21.8	Neutr
	$\begin{aligned} & 173.369 \mathrm{k} \\ & \mathrm{ve} \end{aligned}$	23.2	$\begin{aligned} & \hline+0.3 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	32.8	54.8	-22.0	Neutr
51	$\begin{aligned} & 175.570 \mathrm{k} \\ & \mathrm{ve} \end{aligned}$	22.8	$\begin{aligned} & \hline+0.3 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	32.4	54.7	-22.3	Neutr
\wedge	173.368k	45.8	$\begin{aligned} & \hline+0.3 \\ & +0.1 \end{aligned}$	+0.1	$+0.0$	+9.1	$+0.0$	55.4	54.8	+0.6	Neutr
\wedge	173.997k	44.7	$\begin{aligned} & +0.3 \\ & +0.1 \\ & \hline \end{aligned}$	+0.1	$+0.0$	+9.1	+0.0	54.3	54.8	-0.5	Neutr
\wedge	175.569k	44.6	$\begin{aligned} & \hline+0.3 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	54.2	54.7	-0.5	Neutr
	$188.250 \mathrm{k}$ ve	20.8	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	$+0.0$	+9.1	$+0.0$	30.2	54.1	-23.9	Neutr
\wedge	188.250k	43.0	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	$+0.0$	+9.1	$+0.0$	52.4	54.1	-1.7	Neutr
	$\begin{aligned} & 193.909 \mathrm{k} \\ & \mathrm{ve} \\ & \hline \end{aligned}$	19.9	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	$+0.0$	+9.1	+0.0	29.3	53.9	-24.6	Neutr
\wedge	193.909k	43.0	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	52.4	53.9	-1.5	Neutr
	$199.673 \mathrm{k}$ ve	19.2	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	28.6	53.6	-25.0	Neutr
\wedge	199.673k	43.2	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+0.0	+9.1	+0.0	52.6	53.6	-1.0	Neutr

Test Setup Photo(s)

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	$(\mathrm{dB} / \mathrm{m})$	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

