Impinj, Inc.

ADDENDUM TEST REPORT FOR 93909-18

Impinj IPJ-RS500 23dBm Reader SIP Model: IPJ-RS500GX

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.247
\&
RSS-210 Issue 8

Report No.: 93909-18B

Date of issue: Feburary 7, 2014

Testing Certificates: 803.01,803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Conditions During Testing 5
Equipment Under Test 6
Peripheral Devices 6
FCC Part 15 Subpart C 7
15.207 AC Conducted Emissions 7
20dB \& 99\% Occupied Bandwidth 14
15.247(a)(1) Carrier Frequency Separation 20
15.247(a)(1) Channel Separation / Hopping 23
15.247(a)(1)(i) Average time of occupancy 26
15.247(b)(2) RF Power Output 34
15.247(d) / RSS-210 Conducted Spurious Emissions 38
15.247(d) / RSS-210 Radiated Spurious Emissions 45
Supplemental Information 97
Measurement Uncertainty 97
Emissions Test Details. 97

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Impinj, Inc.
701 N. 34th Street
Seattle, WA 98103

REPRESENTATIVE: Mike Thomas
Customer Reference Number: 111063-1

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Morgan Tramontin
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 93909

July 16, 2013
July 16 - November 8, 2013

Revision History

Original: Testing of the Impinj IPJ-RS500 23dBm Reader SIP, IPJ-RS500GX to FCC Part 15 Subpart C Sections 15.247 \& RSS-210 Issue 8.
Addendum A: To add Conducted Emissions, Conducted Band Edge, Carrier frequency Separation, Channel Separation / Hopping and Time of Occupancy sections and data to the report. To replace RF Power Output data with updated data.
Addendum B: Corrected Conducted Emissions test equipment.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00 .14
Immunity	5.00 .07

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Bothell	US0081	SL2-IN-E-1145R	$3082 \mathrm{C}-1$	318736	A-0148

LABORATORIES, INC.

SUMMARY OF RESULTS
Standard / Specification: FCC Part 15.247 \& RSS-210 Issue 8

Description	Test Procedure/Method	Results		
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / DA 00-705	Pass		
		FCC Part 15 Subpart C Section 15.247(a)(1)(I) / DA 00-705 RSS-210		
20dB \& 99\% Occupied Bandwidth		Pass		
	FCC Part 15 Subpart C Section 15.247(a)(1) / DA 00-705	Pass		
Carrier Frequency Separation		Pass		
	FCC Part 15 Subpart C Section 15.247(a)(1 / DA 00-705	Pass		
Channel Separation / Hopping	FCC Part 15 Subpart C Section 15.247 (a)(1)(i) / DA 00-705	Pass		
Average Time of Occupancy	FCC Part 15 Subpart C Section 15.247 (b)(2) / DA 00-705	Pass		
		FCC Part 15 Subpart C Section15.247(d) / DA 00-705 RSS-210		
RF Power Output		Pass		
Band Edge			\quad	FCC Part 15 Subpart C Section15.247(d) / DA 00-705
:---				

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Impinj IPJ-RS500 23dBm Reader SIP

Manuf: Impinj Inc.
Model: IPJ-RS500GX
Serial: IMPH12000100051210

Mini Guardrail Antenna

Manuf: Impinj, Inc.
Model: IMP-A0303-000
Serial: None

Impinj IPJ-RS500 23dBm Reader SIP
Manuf: Impinj Inc.
Model: IPJ-RS500GX
Serial: 010137130071

Antenna

Manuf: Laird Technologies
Model: S9025PR
Serial: None

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Development Platform

Manuf: Impinj, Inc.
Model: IPJ-E4000 Rev 2.01
Serial: None

Battery Pack

Manuf: Tenergy
Model: TN270
Serial: None

Laptop

Manuf: Dell
Model: Latitude D610
Serial: CN-0M7181-48643-662-2613

Battery

Manuf: Tenergy
Model: 18650
Serial: None

Battery

Manuf: Tenergy
Model: 18650
Serial: None

DC Power Supply
Manuf: Agilent
Model: E3631A
Serial: None
-ABORATORIES, INC.

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj Inc.
Specification:
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:
93909

Impinj Inc.
IPJ-RS500GX
010137130071
15.207 AC Mains - Average

Conducted Emissions
Impinj IPJ-RS500 23dBm Reader SIP

Date: 11/8/2013
Time: 11:34:17
Sequence\#: 12
Tested By: Steven Pittsford 120 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T2	ANP05546	Cable	Heliax	$3 / 27 / 2013$	$3 / 27 / 2015$
T3	ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$
T4	AN01311	50uH LISN-Line	$3816 / 2$	$12 / 9 / 2011$	$12 / 9 / 2013$
	AN01311	50uH LISN-Neutral	$3816 / 2$	$12 / 9 / 2011$	$12 / 9 / 2013$
	AN02871	Spectrum Analyzer	E4440A	$4 / 11 / 2013$	$4 / 11 / 2015$
T5	AN02611	High Pass Filter	HE9615-150K-	$4 / 18 / 2012$	$4 / 18 / 2014$
			$50-720 B$		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm	Impinj Inc.	IPJ-RS500GX	010137130071
Reader SIP*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	
Laptop	Dell	Latitude D610	CN-0M7181-48643-662-
			2613
DC Power Supply	Agilent	E3631A	

Test Conditions / Notes:
The EUT seeking modular approval is placed in the center of the turntable on a table 80 cm above the ground plane, installed on a support host PCB as intended for final installation.
A laptop located inside the chamber sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.
EUT is powered by a power supply connected to the mains network.
Emission profile of the EUT rotated along three orthogonal axes was investigated. Recorded data represent worse case emission.

Test method in accordance with FCC document: DA 00-705
Temperature: $23^{\circ} \mathrm{C}$
Pressure: 102.4 kPa
Humidity: 37\%
Freq: $0.15-30 \mathrm{MHz}$
Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { T3 } \\ \text { dB } \end{gathered}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
	$12.037 \mathrm{M}$ ve	37.8	$\begin{aligned} & +9.0 \\ & +0.0 \end{aligned}$	+0.1	+0.1	+0.4	+0.0	47.4	50.0	-2.6	Line
\wedge	12.040M	40.9	$\begin{aligned} & \hline+9.0 \\ & +0.0 \end{aligned}$	+0.1	+0.1	+0.4	+0.0	50.5	50.0	+0.5	Line
3	24.066M	32.8	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.7	+0.0	42.8	50.0	-7.2	Line
4	27.074M	27.9	$\begin{aligned} & \hline+9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.1	+0.8	+0.0	38.1	50.0	-11.9	Line
5	27.184M	25.4	$\begin{aligned} & \hline+9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.1	+0.8	+0.0	35.6	50.0	-14.4	Line
6	26.965M	25.0	$\begin{aligned} & \hline+9.1 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.8	+0.0	35.1	50.0	-14.9	Line
7	27.170M	23.2	$\begin{aligned} & \hline+9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.1	+0.8	+0.0	33.4	50.0	-16.6	Line
8	27.115M	23.1	$\begin{aligned} & \hline+9.1 \\ & +0.2 \end{aligned}$	+0.0	+0.1	+0.8	+0.0	33.3	50.0	-16.7	Line
9	2.799M	19.2	$\begin{aligned} & +9.0 \\ & +0.2 \end{aligned}$	+0.0	+0.1	+0.1	+0.0	28.6	46.0	-17.4	Line
10	4.011M	18.8	$\begin{aligned} & +9.0 \\ & +0.1 \end{aligned}$	+0.0	+0.1	+0.2	+0.0	28.2	46.0	-17.8	Line
11	1.864M	18.7	$\begin{aligned} & +9.0 \\ & +0.2 \end{aligned}$	+0.0	+0.1	+0.1	+0.0	28.1	46.0	-17.9	Line
12	1.651 M	18.6	$\begin{aligned} & +9.0 \\ & +0.2 \end{aligned}$	+0.0	+0.1	+0.1	+0.0	28.0	46.0	-18.0	Line

13	27.766 M	21.4	+9.1 +0.2	+0.1	+0.1	+0.8	+0.0	31.7	50.0	-18.3	Line
14	26.074 M	20.9	+9.1	+0.0	+0.1	+0.8	+0.0	31.0	50.0	-19.0	Line
15	2.480 M	17.4	+9.0	+0.0	+0.1	+0.1	+0.0	26.8	46.0	-19.2	Line
16	$27.259 M$	20.2	+9.1	+0.0	+0.1	+0.8	+0.0	30.4	50.0	-19.6	Line

CKC Laboratories, Inc. Date: 11/8/2013 Time: 11:34:17 Impinj Inc. WO\#: 93909 Test Lead: Line 120 V 60 Hz Sequence\#: 12 Line Impinj Inc. Impinj IPJ-RS500 23dBm Reader SIP P/N: IPJ-RS500GX

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	$\mathbf{1 5 . 2 0 7}$ AC Mains - Average		
Work Order \#:	93909	Date:	11/8/2013
Test Type:	Conducted Emissions	Time:	11:40:20
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Sequence\#:	13
Manufacturer:	Impinj Inc.	Tested By:	Steven Pittsford
Model:	IPJ-RS500GX		120 V 60 Hz
S/N:	010137130071		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP05435	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T2	ANP05546	Cable	Heliax	$3 / 27 / 2013$	$3 / 27 / 2015$
T3	ANP05547	Cable	Heliax	$9 / 7 / 2012$	$9 / 7 / 2014$
	AN01311	50uH LISN-Line	$3816 / 2$	$12 / 9 / 2011$	$12 / 9 / 2013$
T4	AN01311	50uH LISN-Neutral	$3816 / 2$	$12 / 9 / 2011$	$12 / 9 / 2013$
T5	AN02871	Spectrum Analyzer	E4440A	$4 / 11 / 2013$	$4 / 11 / 2015$
T6	AN02611	High Pass Filter	HE9615-150K-	$4 / 18 / 2012$	$4 / 18 / 2014$
			$50-720 B$		

Equipment Under Test $(*=$ EST):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm	Impinj Inc.	IPJ-RS500GX	010137130071
Reader SIP*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	
Laptop	Dell	Latitude D610	CN-0M7181-48643-662-
			2613
DC Power Supply	Agilent	E3631A	

Test Conditions / Notes:

The EUT seeking modular apporval is placed in the center of the turntable on a table 80 cm above the ground plane, installed on a support host PCB as intended for final installation.
A laptop located inside the chamber sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.
EUT is powered by a power supply connected to the mains network.
Emission profile of the EUT rotated along three orthogonal axes was investigated. Recorded data represent worse case emission.

Test method in accordance with FCC document: DA 00-705

Temperature: $23^{\circ} \mathrm{C}$
Pressure: 102.4 kPa
Humidity: 37\%
Freq: $0.15-30 \mathrm{MHz}$

Ext Attn: 0 dB

asur	ment Data	Reading listed by margin.				Test Lead: Neutral					
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			$\begin{aligned} & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \text { T6 } \\ & \text { dB } \end{aligned}$	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	dB $\mu \mathrm{V}$	dB	Ant
1	12.040M	38.7	+9.0	+0.1	+0.1	+0.4	+0.0	48.3	50.0	-1.7	Neutr
Ave			+0.0	+0.0							
\wedge	12.040 M	41.6	+9.0	+0.1	+0.1	+0.4	+0.0	51.2	50.0	+1.2	Neutr
			+0.0	+0.0							
3	24.080M	33.6	+9.1	+0.0	+0.1	+0.7	+0.0	43.6	50.0	-6.4	Neutr
			+0.0	+0.1							
4	27.074M	26.8	+9.1	+0.0	+0.1	+0.8	+0.0	37.0	50.0	-13.0	Neutr
			+0.0	+0.2							
5	27.184M	25.2	+9.1	+0.0	+0.1	+0.8	+0.0	35.4	50.0	-14.6	Neutr
			+0.0	+0.2							
6	26.971M	24.2	+9.1	+0.0	+0.1	+0.8	+0.0	34.3	50.0	-15.7	Neutr
			+0.0	+0.1							
7	1.860M	19.9	+9.0	+0.0	+0.1	+0.1	+0.0	29.3	46.0	-16.7	Neutr
			+0.0	+0.2							
8	26.889M	22.8	+9.1	+0.0	+0.1	+0.8	+0.0	32.9	50.0	-17.1	Neutr
			+0.0	+0.1							
9	2.795M	19.5	+9.0	+0.0	+0.1	+0.1	+0.0	28.9	46.0	-17.1	Neutr
			+0.0	+0.2							
10	3.727M	18.5	+9.0	+0.0	+0.1	+0.2	+0.0	27.9	46.0	-18.1	Neutr
			+0.0	+0.1							
11	2.008 M	18.4	+9.0	+0.0	+0.1	+0.1	+0.0	27.8	46.0	-18.2	Neutr
			+0.0	+0.2							
12	26.225M	21.6	+9.1	+0.0	+0.1	+0.8	+0.0	31.7	50.0	-18.3	Neutr
			+0.0	+0.1							
13	4.016M	18.3	+9.0	+0.0	+0.1	+0.2	+0.0	27.7	46.0	-18.3	Neutr
			+0.0	+0.1							
14	1.651 M	18.1	+9.0	+0.0	+0.1	+0.1	+0.0	27.5	46.0	-18.5	Neutr
			+0.0	+0.2							
15	2.889 M	18.0	+9.0	+0.0	+0.1	+0.1	+0.0	27.4	46.0	-18.6	Neutr
			+0.0	+0.2							
16	27.766M	21.0	+9.1	+0.1	+0.1	+0.8	+0.0	31.3	50.0	-18.7	Neutr
			+0.0	+0.2							

CKC Laboratories, Inc. Date: 11/8/2013 Time: 11:40:20 Impinj Inc. WO\#: 93909 Test Lead: Neutral 120V 60Hz Sequence\#: 13 Neutral Impinj Inc. Impinj IPJ-RS500 23dBm Reader SIP P/N: IPJ-RS500GX

Sweep Data	
\quad Peak Readings	\times Readings
* \quad Average Readings Readings	
	1-15.207 AC Mains - Average

Test Setup Photos

LABORATORIES, INC.

20dB \& 99\% Occupied Bandwidth

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717
Customer: Impinj Inc.
Specification: FCC15.247-20dB Bandwidth.

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
SN:

93909
Conducted Emissions
Impinj IPJ-RS500 23dBm Reader SIP
Impinj Inc.
IPJ-RS500GX
IMPH12000100051210

Date: 7/16/2013
Time: 09:02:21
Sequence\#: 1
Tested By: Steven Pittsford
3.7 VDC

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANP06130	Attenuator	$18 N 20 W-10$	$8 / 18 / 2011$	$8 / 18 / 2013$
ANP06217	Attenuator	$768-10$	$3 / 22 / 2012$	$3 / 22 / 2014$	
	AN03227	Cable	$32026-29080-$	$3 / 29 / 2013$	$3 / 29 / 2015$
		$29080-84$			
	Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$	

Equipment Under Test (* (EXT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm Reader SIP*	Impinj Inc.	IPJ-RS500GX	IMPH12000100051210

Support Devices:

Function	Manufacturer	Model \#	SaN
Laptop	Dell	CN-0M7181-48643-662- 2613	
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	
Battery Pack	Tenergy	TN270	
Battery	Tenergy	18650	
Battery	Tenergy	18650	

Summary

Channel	OBW -20dB	$\mathbf{9 9 \%} \mathbf{\text { OBW }}$
Low	81.4 kHz	79.0 kHz
Mid	82.2 kHz	79.7 kHz
High	81.0 kHz	79.0 kHz

Test Conditions / Notes:
The EUT is seeking modular approval and is placed on the test bench, installed on a support host PCB. The laptop sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.

Transmit Frequencies: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$
Emission profile evaluated at the antenna port.
Test method in accordance with FCC document: DA 00-705.
15.31(e) compliance: a freshly charged battery is installed.

Temperature: $23^{\circ} \mathrm{C}$
Pressure: 101.6 kPa
Humidity: 38\%

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	RSS-210 99\% Bandwidth.		
Work Order \#:	93909	Date:	7/16/2013
Test Type:	Conducted Emissions	Time:	$09: 02: 21$
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Sequence\#:	1
Manufacturer:	Impinj Inc.	Tested By:	Steven Pittsford
Model:	IPJ-RS500GX		3.7VDC
S/N:	IMPH12000100051210		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANP06130	Attenuator	$18 N 20 \mathrm{~W}-10$	$8 / 18 / 2011$	$8 / 18 / 2013$
ANP06217	Attenuator	$768-10$	$3 / 22 / 2012$	$3 / 22 / 2014$	
AN03227	Cable	$32026-29080-$	$3 / 29 / 2013$	$3 / 29 / 2015$	
		$29080-84$			
	Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$	

Equipment Under Test $(*=$ EUT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm Reader SIP*	Impinj Inc.	IPJ-RS500GX	IMPH12000100051210

Support Devices:

| Function | Manufacturer | Model \# | Satitude D610 |
| :--- | :--- | :--- | :--- | | CN-0M7181-48643-662- |
| :--- |
| Laptop | Dell | | IPJ-E4000 Rev 2.01 | |
| :--- | :--- | :--- |
| Development platform | Impinj, Inc. | TN270 |
| Battery Pack | Tenergy | 18650 |
| Battery | Tenergy | 18650 |
| Battery | Tenergy | |

Summary

Channel	OBW -20dB	99\% OBW
Low	81.4 kHz	79.0 kHz
Mid	82.2 kHz	79.7 kHz
High	81.0 kHz	79.0 kHz

Test Conditions / Notes:

The EUT is seeking modular approval and is placed on the test bench, installed on a support host PCB. The laptop sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.

Transmit Frequencies: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$
Emission profile evaluated at the antenna port.
Test method in accordance with FCC document: DA 00-705.
15.31(e) compliance: a freshly charged battery is installed.

Temperature: $23^{\circ} \mathrm{C}$
Pressure: 101.6 kPa
Humidity: 38\%

Test Plots

Low Channel

Mid Channel

High Channel

Test Setup Photos

15.247(a)(1) Carrier Frequency Separation

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	15.247(a)(1)		Date:
Work Order \#:	93909	Time:	09:02:21
Test Type:	Conducted Emissions	Sequence\#:	1
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Tested By:	Steven Pittsford
Manufacturer:	Impinj Inc.		3.7VDC
Model:	IPJ-RS500GX		
S/N:	IMPH12000100051210		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANP06130	Attenuator	$18 N 20 W-10$	$8 / 18 / 2011$	$8 / 18 / 2013$
ANP06217	Attenuator	$768-10$	$3 / 22 / 2012$	$3 / 22 / 2014$	
AN03227	Cable	$32026-29080-$	$3 / 29 / 2013$	$3 / 29 / 2015$	
		$29080-84$			
	Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm Reader SIP*	Impinj Inc.	IPJ-RS500GX	IMPH12000100051210

Support Devices:

| Function | Manufacturer | Model \# | Satitude D610 |
| :--- | :--- | :--- | :--- | | CN-0M7181-48643-662- |
| :--- |
| Laptop | Dell | | | IPJ-E4000 Rev 2.01 |
| :--- | :--- | :--- |

Test Conditions / Notes:

The EUT seeking modular approval is placed on the test bench, installed on a support host PCB. A laptop sends test command to the EUT via the support host PCB.
Frequency: 902-928MHz, Firmware setting = 23dBm
Emission profile evaluated at the antenna port.
Test method in accordance with FCC document: DA 00-705
15.31(e) compliance: a freshly charged battery is installed

Temperature: $24^{\circ} \mathrm{C}$, Pressure: 101.5 kPa , Humidity: 38%
15.247(a)(1) For frequency hopping systems operating in the $902-928 \mathrm{MHz}$ band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz , the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz .

Test Data

Frequency Separation, Channel Separation $=500 \mathrm{kHz}$

Test Setup Photos

15.247(a)(1) Channel Separation / Hopping

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717
Customer: Impinj Inc.
Specification: 15.247(a)(1)

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:

93909
Conducted Emissions
Impinj IPJ-RS500 23dBm Reader SIP
Impinj Inc.
IPJ-RS500GX
IMPH12000100051210

Date: 7/16/2012
Time: 09:02:21
Sequence\#: 1
Tested By: Steven Pittsford
3.7VDC

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANP06130	Attenuator	$18 N 20 W-10$	$8 / 18 / 2011$	$8 / 18 / 2013$
ANP06217	Attenuator	$768-10$	$3 / 22 / 2012$	$3 / 22 / 2014$	
AN03227	Cable	$32026-29080-29080-84$	$3 / 29 / 2013$	$3 / 29 / 2015$	
AN02673	Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$	

Equipment Under Test (* (EUT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm Reader SIP*	Impinj Inc.	IPJ-RS500GX	IMPH12000100051210

Support Devices:

| Function | Manufacturer | Model \# | Satitude D610 |
| :--- | :--- | :--- | :--- | | CN-0M7181-48643-662- |
| :--- |
| Laptop | Dell | | | IPJ-E4000 Rev 2.01 |
| :--- | :--- | :--- |
| Development platform | Impinj, Inc. | TN270 |
| Battery Pack | Tenergy | 18650 |
| Battery | Tenergy | 18650 |
| Battery | Tenergy | |

Test Conditions / Notes:

The EUT seeking modular approval is placed on the test bench, installed on a support host PCB. A laptop sends test command to the EUT via the support host PCB.
Frequency: 902-928MHz Firmware setting = 23dBm
Emission profile evaluated at the antenna port. Test method in accordance with FCC document: DA 00-705.
15.31(e) compliance: a freshly charged battery is installed

Temperature: $24^{\circ} \mathrm{C}$, Pressure: 101.5 kPa , Humidity: 38%
15.247(a)(1) For frequency hopping systems operating in the $902-928 \mathrm{MHz}$ band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz , the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz .

Test Data

Total number of hopping channel $=50$

Test Setup Photos

LABORATORIES, INC.

15.247(a)(1)(i) Average Time of Occupancy

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	15.247(a)(1)(i)		Date:
Work Order \#:	93909	Time:	09:02:21
Test Type:	Conducted Emissions	Sequence\#:	1
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Tested By:	Steven Pittsford
Manufacturer:	Impinj Inc.		3.7VDC
Model:	IPJ-RS500GX		
S/N:	IMPH12000100051210		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
ANP06130	Attenuator	$18 N 20 \mathrm{~W}-10$	$8 / 18 / 2011$	$8 / 18 / 2013$	
ANP06217	Attenuator	$768-10$	$3 / 22 / 2012$	$3 / 22 / 2014$	
AN03227	Cable	$32026-29080-$	$3 / 29 / 2013$	$3 / 29 / 2015$	
		Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$
AN02673	ANA				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm Reader SIP*	Impinj Inc.	IPJ-RS500GX	IMPH12000100051210

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Latitude D610	CN-0M7181-48643-662- 2613
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	
Battery Pack	Tenergy	TN270	
Battery	Tenergy	18650	
Battery	Tenergy	18650	

Test Conditions / Notes:

The EUT is seeking modular approval and is placed on the test bench, installed on a support host PCB. The laptop sends test command to the EUT via the support host PCB.

Frequency: $902-928 \mathrm{MHz}$
Firmware setting $=23 \mathrm{dBm}$
Emission profile evaluated at the antenna port.
Test method in accordance with FCC document: DA 00-705.
15.31(e) compliance: a freshly charged battery is installed.

Temperature: $24^{\circ} \mathrm{C}$
Pressure: 101.5 kPa
Humidity: 38\%
15.247(a)(1) For frequency hopping systems operating in the $902-928 \mathrm{MHz}$ band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz , the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz .

Test Data

Average Time of Occupancy
Event duration $=198 \mathrm{~ms}$

Figure 1: Number of events in 20sec

Figure 2: Number of events in 20sec

Figure 3: Number of events in 20sec

Figure 4: Number of events in 20sec

Figure 5: Number of events in 20sec

Limit: On time shall not exceed 0.4 second, per 20sec interval

Five separate sweeps at 20 second were acquired, averaging 2 events per 20 second sweep.

Each events on time $=198 \mathrm{~ms}$,

$$
\text { Ave Time of occupancy }=\frac{0.198 \mathrm{sec}}{\text { event }} * \frac{2 \text { evnets }}{20 \text { sec interval }}=\frac{0.396 \mathrm{sec}}{20 \mathrm{sec} \text { interval }}
$$

Test Setup Photos

15.247(b)(2) RF Power Output

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717
Customer: Impinj Inc.

Specification: 15.247(b)(2) RF Output power
Work Order \#: 9309
Test Type:
Equipment:
Manufacturer:
Model:
Conducted Emissions
Impinj IPJ-RS500 23dBm Reader SIP
Date: 11/8/2013
Time: 09:02:21
Sequence\#: 1
Tested By: Steven Pittsford
3.7VDC

S/N: 010137130071
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN03181	Attenuator	PE7015-20	$1 / 4 / 2012$	$1 / 4 / 2014$
ANP05749	Attenuator	PE7010-20	$1 / 4 / 2012$	$1 / 4 / 2014$	
	AN03227	Cable	$32026-29080-$	$3 / 29 / 2013$	$3 / 29 / 2015$
		29080-84			
	An0ctrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$	

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm	Impinj Inc.	IPJ-RS500GX	010137130071
Reader SIP*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	Latitude D610	CN-0M7181-48643-662- 2613
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	
DC Power Supply	Agilent	E3631A	

Summary: No change in power while varying supply voltage from 85% to 115% of the nominal rated supply voltage.

	Power (dBm)	Power (Watts)
Low channel	23.0 dBm	0.200 W
Mid channel	23.0 dBm	0.200 W
High channel	22.4 dBm	0.174 W

Test Conditions / Notes:

The EUT seeking modular approval is placed on the test bench, installed on a support host PCB. A laptop sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.

Transmit Frequencies: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$
Emission profile evaluated at the antenna port.
Evaluated per 15.31(e): supply voltage varied between 85% and 115% of the nominal rated supply voltage.
Test method in accordance with FCC document: DA 00-705

Temperature: $23^{\circ} \mathrm{C}$
Pressure: 102.4 kPa
Humidity: 35\%

Test Plots

Low

Mid

High

Test Setup Photos

LABORATORIES, INC.

15.247(d) / RSS-210 Conducted Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	FCC Part 15.247(d) \& RSS-210 Conducted		
Spurious emission.			
Work Order \#:	93909	Date:	7/16/2013
Test Type:	Conducted Emissions	Time:	09:02:21
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Sequence\#:	1
Manufacturer:	Impinj Inc.	Tested By:	Steven Pittsford
Model:	IPJ-RS500GX	3.7VDC	
S/N:	IMPH12000100051210		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	ANP06130	Attenuator	$18 N 20 \mathrm{~W}-10$	$8 / 18 / 2011$	$8 / 18 / 2013$
ANP06217	Attenuator	$768-10$	$3 / 22 / 2012$	$3 / 22 / 2014$	
AN03227	Cable	$32026-29080-$	$3 / 29 / 2013$	$3 / 29 / 2015$	
		Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$
	AN02673	Spl			

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm	Impinj Inc.	IPJ-RS500GX	IMPH12000100051210
Reader SIP*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop	Dell	CN-0M7181-48643-662- 2613	
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	
Battery Pack	Tenergy	TN270	
Battery	Tenergy	18650	
Battery	Tenergy	18650	

Test Conditions / Notes:

The EUT is seeking modular approval and is placed on the test bench, installed on a support host PCB. The laptop sends test command to the EUT via the support host PCB.

Frequency: 9kHz-9.28GHz: RBW=100k VBW=300k
Transmit Frequencies evaluated: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$ \& All channels hopping.
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$
Emission profile evaluated at the antenna port.
Test method in accordance with FCC document: DA 00-705.
15.31(e) compliance: a freshly charged battery is installed.

Temperature: $24^{\circ} \mathrm{C}$
Pressure: 101.5 kPa
Humidity: 38\%

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	Band Edge Compliance FCC Part 15.247 \& RSS-210		
Work Order \#:	93909	Date:	11/8/2013
Test Type:	Conducted Emissions	Time:	10:56:00
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Sequence\#:	1
Manufacturer:	Impinj Inc.	Tested By:	Steven Pittsford
Model:	IPJ-RS500GX		3.7VDC
S/N:	010137130071		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN03181	Attenuator	PE7015-20	$1 / 4 / 2012$	$1 / 4 / 2014$
ANP05749	Attenuator	PE7010-20	$1 / 4 / 2012$	$1 / 4 / 2014$	
AN03227	Cable	$32026-29080-$	$3 / 29 / 2013$	$3 / 29 / 2015$	
		Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$
	AN02673				

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Impinj IPJ-RS500 23dBm	Impinj Inc.	IPJ-RS500GX	010137130071
Reader SIP*			

Support Devices:

Test Conditions / Notes:

The EUT seeking modular approval is placed on the test bench, installed on a support host PCB. A laptop sends test command to the EUT via the support host PCB.

Frequency: $9 \mathrm{kHz}-9.28 \mathrm{GHz}:$ RBW=100k VBW=300k
Transmit Frequencies evaluated: All channels hopping
Emission profile evaluated at the antenna port.
Test method in accordance with FCC document: DA 00-705

Evaluated per 15.31(e): supply voltage varied between 85% and 115% of the nominal rated supply voltage.
Temperature: $23^{\circ} \mathrm{C}$
Pressure: 102.4 kPa
Humidity: 36\%
$-1 W_{\text {Testing the Future }}$
LABORATORIES, INC.

Test Plots

Conducted Spurs Hopping

Low Channel

Mid Channel

High Channel

Conducted Band Edge Hopping

Low Band Edge

High Band Edge

Test Setup Photos

Overall Test Setup Photo

Conducted Band Edge

LABORATORIES, INC.

15.247(d) / RSS-210 Radiated Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717
Customer: Impinj Inc.
Specification: 15.247(d) / 15.209 Radiated Spurious Emissions
Work Order \#:
Test Type:
Equipment:
Manufacturer:

93909
Maximized Emissions
Impinj IPJ-RS500 23dBm Reader SIP
Impinj Inc. IPJ-RS500GX

Model:
S/N:
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02308	Preamp	8447D	$4 / 3 / 2012$	$4 / 3 / 2014$
T2	AN01996	Biconilog Antenna	CBL6111C	$3 / 2 / 2012$	$3 / 2 / 2014$
T3	ANP05360	Cable	RG214	$12 / 3 / 2012$	$12 / 3 / 2014$
T4	ANP05366	Cable	RG-214	$10 / 14 / 2011$	$10 / 14 / 2013$
T5	AN02673	Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$
T6	ANP05435	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T7	ANP05546	Cable	Heliax	$3 / 27 / 2013$	$3 / 27 / 2015$
T8	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	$10 / 19 / 2011$	$10 / 19 / 2013$
T9	AN03123	Cable	$32026-2-29801-$	$10 / 14 / 2011$	$10 / 14 / 2013$
			12		
T10	ANP05965	Cable	Various	$8 / 26 / 2011$	$8 / 26 / 2013$
T11	AN03170	High Pass Filter	HM1155-11SS	$9 / 6 / 2011$	$9 / 6 / 2013$
T12	AN02115	Preamp	$83051 A$	$11 / 12 / 2012$	$11 / 12 / 2014$
T13	AN00052	Loop Antenna	6502	$5 / 16 / 2012$	$5 / 16 / 2014$

Equipment Under Test (* = EUT):

| Function
 Impinj IPJ-RS500 23dBm
 Reader SIP* | Manufacturer | Impinj Inc. | Model \# |
| :--- | :--- | :--- | :--- |\quad S/N

Support Devices:

Function	Manufacturer	Model \#	S/N
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	
Battery	Tenergy	18650	
Battery Pack	Tenergy	TN270	
Battery	Tenergy	18650	

Test Conditions / Notes:
The EUT is seeking modular approval and is placed in the center of the turntable on a Styrofoam table 80cm above the ground plane, installed on a support host PCB as intended for final installation. The laptop located outside the chamber sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.

Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Measured Power= $23.0 \mathrm{dBm}, 23.0 \mathrm{dBm}, 22.6 \mathrm{dBm}$
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$
Emission profile evaluated with Laird Antenna 5.5 dBi with a 30 cm cable between EUT and the antenna.
Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kHz}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}=\mathrm{VBW}$
$150 \mathrm{kHz}-30 \mathrm{MHz} ;$ RBW=9 kHz=VBW
$30 \mathrm{MHz}-1000 \mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}=\mathrm{VBWz}$,
$1000 \mathrm{MHz}-10,000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}=\mathrm{VBW}$
15.31(e) compliance: a freshly charged battery is installed.

Emission profile of the EUT rotated along three orthogonal axes was investigated. Recorded data represent worse case emission.

Test method in accordance with FCC document: DA 00-705
Temperature: $24^{\circ} \mathrm{C}$
Pressure: 101.5 kPa
Humidity: 37\%
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\#	Freq		Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar	
			T5	T6	T7	T8							
			T9	T10	T11	T12							
		MHz		$\mathrm{dB} \mu \mathrm{V}$	$\begin{gathered} \mathrm{T} 13 \\ \mathrm{~dB} \end{gathered}$	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
	1	928.000M		34.2	-27.3	+23.0	+2.1	+2.3	+0.0	44.7	46.0	-1.3	$\begin{gathered} \hline \text { Vert } \\ 150 \end{gathered}$
	QP		+0.0		+9.6	+0.8	+0.0	360	X-Axis				
			+0.0		+0.0	+0.0	+0.0						
			+0.0										
\wedge		928.000M	38.5	+0.0	+0.0	+0.0	+0.0	+0.0	40.4	$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-5.6	$\begin{aligned} & \hline \text { Vert } \\ & 131 \end{aligned}$	
		+0.0		+0.0	+0.8	+0.0							
		+0.0		+1.1	+0.0	+0.0							
		+0.0											
			336.420M	42.1	-27.3	+14.3	+1.1	+1.2	+0.0	41.5	46.0	-4.5	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
			QP		+0.0	+9.7	+0.4	+0.0	360		Z-Axis		
					+0.0	+0.0	+0.0	+0.0					
		+0.0											
	\wedge	336.420M	48.8	-27.3	+14.3	+1.1	+1.2	+0.0	48.2	46.0	+2.2	Horiz	
				+0.0	+9.7	+0.4	+0.0	360		Z-Axis		100	
				+0.0	+0.0	+0.0	+0.0						
				+0.0									

5	642.800M	35.2	$\begin{array}{r} \hline-28.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +20.3 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.7 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 255 \end{aligned}$	41.0	$\begin{array}{r} \hline 46.0 \\ \text { X-Axis } \end{array}$	-5.0	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
6	3614.650M	47.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.4 \\ +0.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.3 \\ -33.3 \end{array}$	$\begin{gathered} \hline+0.0 \\ 360 \end{gathered}$	48.2	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-5.8	$\begin{array}{r} \hline \text { Vert } \\ 118 \end{array}$
7	8344.840M	35.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.8 \\ & +3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 376 \end{aligned}$	48.0	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-6.0	$\begin{array}{r} \hline \text { Vert } \\ 124 \end{array}$
8	$\begin{aligned} & \text { 341.700M } \\ & \text { QP } \end{aligned}$	40.3	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +14.5 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline+0.0 \\ 360 \end{gathered}$	39.9	$\begin{gathered} 46.0 \\ \text { Z-Axis } \end{gathered}$	-6.1	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
\wedge	341.700M	45.3	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +14.5 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 41 \end{aligned}$	44.9	$\begin{gathered} \hline 46.0 \\ \text { Z-Axis } \end{gathered}$	-1.1	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
10	8128.895M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.3 \end{array}$	+0.0	47.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-6.1	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
11	3610.660M	47.2	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.3 \\ -33.3 \end{array}$	+0.0	47.8	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-6.2	$\begin{gathered} \text { Horiz } \\ 118 \end{gathered}$
12	7417.290M	35.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.4 \end{array}$	$\begin{gathered} \hline+0.0 \\ 264 \end{gathered}$	47.8	54.0 High Z-Axis	-6.2	$\begin{array}{r} \hline \text { Vert } \\ 124 \end{array}$
13	9273.030M	35.0	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.8 \\ -31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 376 \end{aligned}$	47.6	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-6.4	$\begin{gathered} \hline \text { Horiz } \\ 124 \end{gathered}$
14	$\begin{aligned} & \text { 336.200M } \\ & \text { QP } \end{aligned}$	40.2	$\begin{array}{r} -27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.3 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 44 \end{aligned}$	39.6	$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-6.4	$\begin{gathered} \text { Horiz } \\ 105 \end{gathered}$
\wedge	336.200M	46.5	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.3 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 43 \end{aligned}$	45.9	$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-0.1	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
16	8345.045M	34.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.9 \\ +0.9 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 370 \end{aligned}$	47.3	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-6.7	$\begin{gathered} \text { Horiz } \\ 124 \end{gathered}$
17	991.800M	35.0	$\begin{array}{r} -27.1 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +24.2 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 375 \end{aligned}$	47.3	$\begin{array}{r} 54.0 \\ \text { Z-Axis } \end{array}$	-6.7	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$

44 6491.185M	33.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.4 \\ -31.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 129 \end{aligned}$	42.9	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-11.1	$\begin{array}{r} \hline \text { Vert } \\ 115 \end{array}$
$\begin{aligned} & 45 \text { 5416.500M } \\ & \text { Ave } \end{aligned}$	35.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.2 \\ -32.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 237 \end{aligned}$	42.7	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-11.3	$\begin{array}{r} \hline \text { Vert } \\ 118 \end{array}$
$\wedge 5416.500 \mathrm{M}$	45.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.2 \\ -32.2 \end{array}$	+0.0	52.8	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-1.2	$\begin{array}{r} \hline \text { Vert } \\ 118 \end{array}$
$47 \quad 123.000 \mathrm{M}$	37.4	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.7 \\ +9.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 23 \end{aligned}$	32.1	$\begin{array}{r} 43.5 \\ \text { Y-Axis } \end{array}$	-11.4	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
48 9151.099M	29.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.4 \end{array}$	+0.0	42.4	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-11.6	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
49 9031.645M	28.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.9 \\ -31.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 85 \end{aligned}$	42.2	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-11.8	Horiz 111
$\begin{gathered} 50964.600 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	30.5	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +23.7 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	41.9	$\begin{array}{r} 54.0 \\ \text { X-Axis } \end{array}$	-12.1	$\begin{gathered} \hline \text { Vert } \\ 150 \end{gathered}$
$\wedge 964.600 \mathrm{M}$	35.3	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.7 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	46.7	$\begin{array}{r} 54.0 \\ \text { X-Axis } \end{array}$	-7.3	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
52 7419.180M	29.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 239 \end{aligned}$	41.9	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-12.1	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
53 5563.960M	34.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.5 \\ -32.1 \end{array}$	+0.0	41.6	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-12.4	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
54 7321.763M	29.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.9 \\ -31.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 239 \end{aligned}$	41.3	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-12.7	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
55 7321.170M	29.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.9 \\ -31.4 \end{array}$	$\begin{gathered} \hline+0.0 \\ 8 \end{gathered}$	41.1	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-12.9	$\begin{gathered} \hline \text { Horiz } \\ 120 \end{gathered}$
56 8344.560M	28.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 341 \end{aligned}$	41.1	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-12.9	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$

57	7221.920M	29.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.7 \\ -31.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 214 \end{aligned}$	41.0	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-13.0	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
58	5562.635M	33.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.5 \\ -32.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & -16 \end{aligned}$	41.0	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-13.0	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
59	7220.140M	29.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.6 \\ -31.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 190 \end{aligned}$	41.0	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-13.0	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
60	7226.145M	29.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.7 \\ -31.5 \end{array}$	$\begin{gathered} +0.0 \\ 267 \end{gathered}$	40.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.1	$\begin{gathered} \text { Horiz } \\ 111 \end{gathered}$
61	9151.549M	27.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.4 \end{array}$	+0.0	40.7	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-13.3	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
62	6491.210M	31.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.4 \\ -31.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 52 \end{aligned}$	40.6	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-13.4	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
63	6405.868M	31.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.4 \\ -31.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 129 \end{aligned}$	40.6	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-13.4	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
64	8125.030M	27.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.4	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-13.6	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
65	7226.145M	28.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.7 \\ -31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 349 \end{aligned}$	40.4	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.6	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
66	8122.810M	27.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-13.9	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
67	9151.690M	26.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 73 \end{aligned}$	39.9	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-14.1	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
68	4514.000M	36.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.9 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.2 \\ -32.8 \end{array}$	+0.0	39.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-14.1	$\begin{gathered} \text { Horiz } \\ 118 \end{gathered}$
69	9272.440M	27.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.8 \\ -31.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	39.8	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-14.2	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$

96	1805.900M	41.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.7 \\ -34.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.5	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-18.5	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
97	4575.308M	31.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.4 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.2	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-18.8	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
98	4575.512M	31.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.4 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-18.8	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
99	4575.188M	31.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.4 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.1	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-18.9	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
100	3660.588M	34.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.4 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.1	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-18.9	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
101	3659.620M	34.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.4 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.0	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-19.0	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
102	5416.750M	27.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.2 \\ -32.2 \end{array}$	+0.0	34.4	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-19.6	$\begin{gathered} \text { Horiz } \\ 104 \end{gathered}$
103	3659.938M	33.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.4 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	34.0	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-20.0	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
104	1805.500M	39.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.7 \\ -34.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	33.4	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-20.6	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
105	2744.766M	34.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.3 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 341 \end{aligned}$	33.0	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-21.0	$\begin{array}{r} \hline \text { Vert } \\ 112 \end{array}$
106	2744.691M	33.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.3 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	32.7	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-21.3	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
107	2745.453M	33.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.3 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	32.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-21.8	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
108	3612.560M	31.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.3 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	32.2	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-21.8	$\begin{gathered} \text { Horiz } \\ 121 \end{gathered}$

109	3612.730M	31.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.3 \\ -33.3 \end{array}$	$\begin{gathered} +0.0 \\ 164 \end{gathered}$	32.0	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-22.0	$\begin{gathered} \hline \text { Vert } \\ 194 \end{gathered}$
110	2705.900M	32.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.1 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 92 \end{aligned}$	31.3	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-22.7	$\begin{array}{r} \hline \text { Vert } \\ 110 \end{array}$
111	1854.335M	36.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.2 \\ -33.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	31.1	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-22.9	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
112	2707.085M	31.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.1 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 295 \end{aligned}$	30.5	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-23.5	$\begin{array}{r} \hline \text { Vert } \\ 283 \end{array}$
113	4511.690M	27.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.2 \\ -32.8 \end{array}$	+0.0	30.5	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-23.5	$\begin{gathered} \hline \text { Horiz } \\ 112 \end{gathered}$
114	1855.655M	35.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.2 \\ -33.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 272 \end{aligned}$	30.3	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-23.7	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
115	4514.000M	26.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.2 \\ -32.8 \end{array}$	+0.0	30.0	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-24.0	Horiz 121
116	1828.815M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \\ -34.1 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	29.7	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-24.3	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
117	1829.966M	34.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \\ -34.1 \end{array}$	$\begin{aligned} & +0.0 \\ & 218 \end{aligned}$	28.8	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-25.2	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
118	1805.570M	34.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.7 \\ -34.3 \end{array}$	+0.0	28.2	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-25.8	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
119	1854.675M	33.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.2 \\ -33.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	28.2	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-25.8	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
120	1830.203M	33.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \\ -34.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 41 \end{aligned}$	27.9	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-26.1	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
121	1803.950M	21.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.7 \\ -34.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	15.0	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-39.0	$\begin{gathered} \text { Horiz } \\ 400 \end{gathered}$

122	150.000k	45.0	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.0 \\ +9.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-25.5	24.1	-49.6	$\begin{gathered} \text { Perpe } \\ 123 \end{gathered}$
123	150.000k	40.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +9.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-30.0	24.1	-54.1	$\begin{array}{r} \hline \text { Paral } \\ 123 \end{array}$
124	24.980 M	9.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +5.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 360 \end{aligned}$	-24.7	29.5	-54.2	$\begin{array}{r} \text { Paral } \\ 123 \end{array}$
125	21.925k	43.8	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +11.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-24.4	40.8	-65.2	$\begin{array}{r} \text { Paral } \\ 123 \end{array}$
126	12.525k	42.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +15.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-22.5	45.6	-68.1	Perpe 123
127	912.000M	36.3	$\begin{array}{r} \hline-27.4 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+22.6 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & +2.1 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline+0.0 \\ 360 \end{gathered}$	46.2	$\begin{array}{r} 125.2 \\ \text { X-Axis } \end{array}$	-79.0	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
128	911.900M	34.8	$\begin{array}{r} -27.4 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +22.6 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	${ }^{+0.0}$	44.7	$\begin{array}{r} 125.2 \\ \text { Y-Axis } \end{array}$	-80.5	$\begin{array}{r} \hline \text { Vert } \\ 126 \end{array}$
129	911.900M	32.1	$\begin{array}{r} -27.4 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+22.6 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 28 \end{aligned}$	42.0	$\begin{array}{r} 125.2 \\ \text { Y-Axis } \end{array}$	-83.2	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$

CKC Laboratories, Inc. Date: 7/17/2013 Time: 10:57:55 Impinj Inc. WO\#: 93909 Test Distance: 3 Meters Sequence\#: 11 Horiz Impinj Inc. Impinj IPJ-RS500 23dBm Reader SIP P/N: IPJ-RS500GX

[^0]O Peak Readings

* Average Reading
_ 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	15.247(d)/15.209 Radiated Spurious Emissions		
Work Order \#:	93909	Date:	7/17/2013
Test Type:	Maximized Emissions	Time:	10:56:25
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Sequence\#:	10
Manufacturer:	Impinj Inc.	Tested By:	Steven Pittsford
Model:	IPJ-RS500GX		
S/N:	IMPH12000100051210		

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02308	Preamp	8447D	$4 / 3 / 2012$	$4 / 3 / 2014$
T2	AN01996	Biconilog Antenna	CBL6111C	$3 / 2 / 2012$	$3 / 2 / 2014$
T3	ANP05360	Cable	RG214	$12 / 3 / 2012$	$12 / 3 / 2014$
T4	ANP05366	Cable	RG-214	$10 / 14 / 2011$	$10 / 14 / 2013$
T5	AN02673	Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$
T6	ANP05546	Cable	Heliax	$3 / 27 / 2013$	$3 / 27 / 2015$
T7	AN02115	Preamp	$83051 A$	$11 / 12 / 2012$	$11 / 12 / 2014$
T8	AN01467	Horn Antenna-ANSI	3115	$10 / 19 / 2011$	$10 / 19 / 2013$
		C63.5 Calibration			
T9	AN03123	Cable	$32026-2-29801-$	$10 / 14 / 2011$	$10 / 14 / 2013$
			12	$8 / 26 / 2011$	$8 / 26 / 2013$
T10	ANP05965	Cable	Various	$5 / 16 / 2012$	$5 / 16 / 2014$
T11	AN00052	Loop Antenna	6502	5	

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S / N
Mini Guardrail Antenna	Impinj, Inc.	IMP-A0303-000	
Impinj IPJ-RS500 23dBm Impinj Inc. IPJ-RS500GX Reader SIP			

Support Devices:

Function	Manufacturer	Model \#	S / N
Battery	Tenergy	18650	
Battery Pack	Tenergy	TN270	
Battery	Tenergy	18650	
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	

Test Conditions / Notes:
The EUT is seeking modular approval and is placed in the center of the turntable on a Styrofoam table 80cm above the ground plane, installed on a support host PCB as intended for final installation. The laptop located outside the chamber sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.

Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Measured Power $=23.0 \mathrm{dBm}, 23.0 \mathrm{dBm}, 22.6 \mathrm{dBm}$
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$

Emission profile evaluated with Mini Guardrail Antenna -20dBi with a 30cm cable between EUT and the antenna.
Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kHz}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}=\mathrm{VBW}$
$150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}=\mathrm{VBW}$
$30 \mathrm{MHz}-1000 \mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}=\mathrm{VBWz}$,
$1000 \mathrm{MHz}-10,000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}=\mathrm{VBW}$
15.31(e) compliance: a freshly charged battery is installed

Emission profile of the EUT rotated along three orthogonal axes was investigated. Recorded data represent worse case emission.
Test method in accordance with FCC document: DA 00-705.
Temperature: $24^{\circ} \mathrm{C}$
Pressure: 101.5 kPa
Humidity: 37\%
Ext Attn: 0 dB

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Measurement Data: \& \multicolumn{4}{|r|}{Reading listed by margin.} \& \multicolumn{6}{|c|}{Test Distance: 3 Meters}

\hline \# Freq \& Rdng \& T1 \& T2 \& T3 \& T4 \& Dist \& Corr \& Spec \& Margin \& Polar

\hline \multirow[t]{3}{*}{Freq

MHz} \& \& T5 \& T6 \& T7 \& T8 \& \& \& \& \&

\hline \& \& T9 \& $$
\mathrm{T} 10
$$ \& T11 \& \& \& \& \& \&

\hline \& $\mathrm{dB} \mu \mathrm{V}$ \& dB \& \& \& dB \& Table \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$ \& dB \& Ant

\hline \multirow[t]{3}{*}{1338.420 M
QP} \& \multirow[t]{3}{*}{50.7} \& -27.3 \& +14.4 \& +1.1 \& +1.2 \& +0.0 \& 40.5 \& 46.0 \& -5.5 \& Horiz

\hline \& \& +0.0 \& +0.4 \& +0.0 \& +0.0 \& 44 \& \& X-Axis \& \& 99

\hline \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 338.420 \mathrm{M}$} \& \multirow[t]{3}{*}{55.4} \& -27.3 \& +14.4 \& +1.1 \& +1.2 \& +0.0 \& 45.2 \& 46.0 \& -0.8 \& Horiz

\hline \& \& +0.0 \& +0.4 \& +0.0 \& +0.0 \& 138 \& \& X-Axis \& \& 99

\hline \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{3 394.800M} \& \multirow[t]{3}{*}{48.3} \& -27.8 \& +16.1 \& +1.3 \& +1.4 \& +0.0 \& 39.8 \& 46.0 \& -6.2 \& Horiz

\hline \& \& +0.0 \& +0.5 \& +0.0 \& +0.0 \& \& \& Z-Axis \& \& 100

\hline \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline 4 344.320M \& \multirow[t]{3}{*}{48.8} \& -27.4 \& +14.6 \& +1.1 \& +1.2 \& +0.0 \& 38.7 \& 46.0 \& -7.3 \& Horiz

\hline \multirow[t]{2}{*}{QP} \& \& +0.0 \& +0.4 \& +0.0 \& +0.0 \& \& \& Z-Axis \& \& 100

\hline \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 344.300 \mathrm{M}$} \& \multirow[t]{3}{*}{55.0} \& -27.4 \& +14.6 \& +1.1 \& +1.2 \& +0.0 \& 44.9 \& 46.0 \& -1.1 \& Horiz

\hline \& \& +0.0 \& +0.4 \& +0.0 \& +0.0 \& \& \& Z-Axis \& \& 100

\hline \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{$6 \quad 406.400 \mathrm{M}$} \& \multirow[t]{3}{*}{46.6} \& -27.9 \& +16.3 \& +1.3 \& +1.4 \& +0.0 \& 38.2 \& 46.0 \& -7.8 \& Horiz

\hline \& \& +0.0 \& +0.5 \& +0.0 \& +0.0 \& 287 \& \& Y-Axis \& \& 100

\hline \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline 7 338.920M \& \multirow[t]{3}{*}{48.3} \& -27.3 \& +14.4 \& +1.1 \& +1.2 \& +0.0 \& 38.1 \& 46.0 \& -7.9 \& Horiz

\hline \multirow[t]{2}{*}{QP} \& \& +0.0 \& +0.4 \& +0.0 \& +0.0 \& 5 \& \& Y-Axis \& \& 99

\hline \& \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline
\end{tabular}

\wedge	338.900M	53.5	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.4 \\ +0.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 355 \end{aligned}$	43.3	$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-2.7	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
9	124.600M	48.6	-27.8	+11.7	+0.7	+0.6	+0.0	34.0	43.5	-9.5	Horiz
			+0.0	+0.2	+0.0	+0.0	288		Z-Axis		99
			+0.0	+0.0	+0.0						
10	122.680M	47.8	-27.8	+11.7	+0.7	+0.6	+0.0	33.2	43.5	-10.3	Horiz
			+0.0	+0.2	+0.0	+0.0	360		X-Axis		152
			+0.0	+0.0	+0.0						
11	339.100 M	45.7	-27.3	+14.4	+1.1	+1.2	+0.0	35.5	46.0	-10.5	Vert
			+0.0	+0.4	+0.0	+0.0	89		Y-Axis		100
			+0.0	+0.0	+0.0						
12	129.700M	46.9	-27.8	+11.7	+0.7	+0.6	+0.0	32.4	43.5	-11.1	Horiz
			+0.0	+0.3	+0.0	+0.0	360		Y-Axis		99
			+0.0	+0.0	+0.0						
13	9272.505M	30.3	+0.0	+0.0	+0.0	+0.0	+0.0	42.7	54.0	-11.3	Horiz
			+0.0	+3.3	-31.5	+35.8	360		High Y-Axis		121
			+0.8	+4.0	+0.0						
14	8345.780M	29.8	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	54.0	-11.4	Vert
			+0.0	+3.0	-31.3	+36.4	360		High Z-Axis		121
			+0.9	+3.8	+0.0						
15	8345.620M	29.6	+0.0	+0.0	+0.0	+0.0	+0.0	42.4	54.0	-11.6	Horiz
			+0.0	+3.0	-31.3	+36.4	290		High Y-Axis		115
			+0.9	+3.8	+0.0						
16	9026.790M	29.0	+0.0	+0.0	+0.0	+0.0	+0.0	42.3	54.0	-11.7	Horiz
			+0.0	+3.0	-31.4	+37.0	360		Low Y-Axis		119
			+0.8	+3.9	+0.0						
17	9273.640M	29.9	+0.0	+0.0	+0.0	+0.0	$+0.0$	42.3	54.0	-11.7	Horiz
			+0.0	+3.3	-31.5	+35.8			High Z-Axis		121
			+0.8	+4.0	+0.0						
18	8346.505M	29.1	+0.0	+0.0	+0.0	+0.0	+0.0	41.9	54.0	-12.1	Horiz
			+0.0	+3.0	-31.3	+36.4	262		High X-Axis		114
			+0.9	+3.8	+0.0						
19	7418.120M	29.7	+0.0	+0.0	+0.0	+0.0	+0.0	41.7	54.0	-12.3	Horiz
			+0.0	+3.2	-31.4	+36.0	360		High Y-Axis		115
			+0.6	+3.6	+0.0						
20	7416.520M	29.5	+0.0	+0.0	+0.0	+0.0	+0.0	41.5	54.0	-12.5	Vert
			+0.0	+3.2	-31.4	+36.0	360		High Z-Axis		121
			+0.6	+3.6	+0.0						
21	9152.040M	28.5	+0.0	+0.0	+0.0	+0.0	+0.0	41.3	54.0	-12.7	Horiz
			+0.0	+3.1	-31.4	+36.4	360		Mid Z-Axis		119
			+0.8	+3.9	+0.0						
22	9271.825M	28.8	+0.0	+0.0	+0.0	+0.0	+0.0	41.3	54.0	-12.7	Horiz
			+0.0	+3.3	-31.5	+35.8	335		High X-Axis		114
			+0.9	+4.0	+0.0						
23	342.600M	43.3	-27.3	+14.5	+1.1	+1.2	+0.0	33.2	46.0	-12.8	Vert
			+0.0	+0.4	+0.0	+0.0	358		Z-Axis		102
			+0.0	+0.0	+0.0						
24	9152.515M	28.4	+0.0	+0.0	+0.0	+0.0	+0.0	41.2	54.0	-12.8	Vert
			+0.0	+3.1	-31.4	+36.4	105		Mid X-Axis		121
			+0.8	+3.9	+0.0						

25	165.800M	46.2	$\begin{array}{r} \hline-27.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +10.0 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	30.6	$\begin{array}{r} 43.5 \\ \mathrm{X} \text {-Axis } \end{array}$	-12.9	$\begin{gathered} \text { Horiz } \\ 152 \end{gathered}$
26	7418.600M	29.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +3.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	+0.0	41.0	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-13.0	$\begin{gathered} \hline \text { Vert } \\ 124 \end{gathered}$
27	7222.380M	29.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +3.6 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -31.5 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 108 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-13.0	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
28	9151.215M	28.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	41.0	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-13.0	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
29	7322.540M	29.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \end{array}$	+0.0	40.9	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-13.1	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
30	9026.115M	27.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +3.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	+0.0	40.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.1	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
31	8237.265M	28.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +3.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 268 \end{aligned}$	40.8	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-13.2	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
32	8236.000M	28.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	+0.0	40.7	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-13.3	$\begin{gathered} \text { Horiz } \\ 121 \end{gathered}$
33	7222.410M	29.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.7 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.4	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
34	9026.775M	27.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.0 \\ +3.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.5	54.0 Low Z-axis	-13.5	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
35	7222.480M	29.0	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.6 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.4	54.0 Low Z-axis	-13.6	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
36	8125.525M	28.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +3.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	+0.0	40.3	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.7	Horiz 123
37	8237.225M	27.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-13.8	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
38	8126.040M	27.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +3.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { Low Z-axis } \end{gathered}$	-13.8	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
39	7321.130M	28.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +3.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \end{array}$	+0.0	40.1	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-13.9	$\begin{array}{r} \hline \text { Vert } \\ 121 \end{array}$
40	7321.665M	28.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-14.1	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
41	397.900M	39.3	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.1 \\ +0.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	30.8	$\begin{array}{r} 46.0 \\ \text { Z-Axis } \end{array}$	-15.2	$\begin{array}{r} \hline \text { Vert } \\ 102 \end{array}$

42 8124.040M	26.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +3.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.7	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-15.3	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
43 6492.080M	29.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0	38.0	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-16.0	$\begin{array}{r} \hline \text { Vert } \\ 124 \end{array}$
44 5415.280M	31.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 268 \end{aligned}$	38.0	54.0 Low Z-axis	-16.0	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
45 343.900M	40.0	$\begin{array}{r} -27.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.6 \\ +0.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 228 \end{aligned}$	29.9	$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-16.1	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
46 5416.250M	31.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.2 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	+0.0	37.9	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-16.1	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
$47 \quad 164.400 \mathrm{M}$	42.7	$\begin{array}{r} -27.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.1 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	27.2	$\begin{array}{r} 43.5 \\ \text { Z-Axis } \end{array}$	-16.3	Horiz 99
48 5563.795M	30.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +33.5 \end{array}$	+0.0	37.2	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-16.8	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
49 5416.360M	30.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	+0.0	37.2	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-16.8	Horiz 123
50 5490.445M	30.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	+0.0	37.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-16.8	$\begin{gathered} \hline \text { Horiz } \\ 117 \end{gathered}$
51 5564.040M	30.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.5 \end{array}$	+0.0	37.2	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-16.8	$\begin{array}{r} \hline \text { Vert } \\ 126 \end{array}$
52 6405.455M	28.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-16.9	$\begin{array}{r} \hline \text { Vert } \\ 121 \end{array}$
53 6489.270M	28.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0	37.1	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-16.9	$\begin{gathered} \text { Horiz } \\ 126 \end{gathered}$
$54 \quad 221.170 \mathrm{M}$	43.5	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.6 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 136 \end{aligned}$		$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-17.0	Horiz 121
55 5491.365M	30.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	+0.0	37.0	$\begin{gathered} \hline 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-17.0	$\begin{gathered} \hline \text { Horiz } \\ 114 \end{gathered}$
56 6405.960M	28.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 248 \end{aligned}$	36.9	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-17.1	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
57 6319.000M	28.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.3 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	36.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-17.1	$\begin{gathered} \hline \text { Vert } \\ 123 \end{gathered}$
58 6407.180M	28.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.3 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0	36.9	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-17.1	$\begin{gathered} \text { Horiz } \\ 114 \end{gathered}$

59	128.000M	40.8	-27.8	+11.7	+0.7	+0.6	+0.0	26.3	43.5	-17.2	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+0.0	+0.3	+0.0	+0.0	195	Y-Axis			
			+0.0	+0.0	+0.0						
60	6318.435M	27.9	+0.0	+0.0	+0.0	+0.0	+0.0	36.8		-17.2	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
			+0.0	+2.4	-31.8	+34.5	360		Low Z-axis		
			+0.5	+3.3	+0.0						
61	162.500M	41.4	-27.5	+10.3	+0.8	+0.8	+0.0	26.1	43.5	-17.4	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$
			+0.0	+0.3	+0.0	+0.0	244		Y-Axis		
			+0.0	+0.0	+0.0						
62	5563.480M	29.5	+0.0	+0.0	+0.0	+0.0	+0.0	36.6	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-17.4	$\begin{gathered} \hline \text { Horiz } \\ 115 \end{gathered}$
			+0.0	+2.4	-32.1	+33.5					
			+0.4	+2.9	+0.0						
63	5490.745M	29.6	+0.0	+0.0	+0.0	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	$+0.0$	36.5	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-17.5	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
			+0.0	+2.4	-32.1						
			+0.4	+2.9	+0.0						
64	6318.890M	27.5	+0.0	+0.0	+0.0	+0.0+34.5	+0.0	36.4	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-17.6	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
			+0.0	+2.4	-31.8						
			+0.5	+3.3	+0.0						
65	4515.205M	32.9	+0.0	+0.0	+0.0	+0.0	+0.0	36.1	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-17.9	$\begin{gathered} \hline \text { Horiz } \\ 119 \end{gathered}$
			+0.0	+1.9	-32.8	+31.2					
			+0.3	+2.6	+0.0						
66	4637.335M	32.5	+0.0	+0.0	+0.0	$\begin{array}{r} +0.0 \\ +31.5 \end{array}$	+0.0	36.1	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-17.9	$\begin{gathered} \text { Horiz } \\ 118 \end{gathered}$
			+0.0	+2.0	-32.6						
			+0.1	+2.6	+0.0						
67	4637.435M	32.4	+0.0	+0.0	+0.0	$\begin{array}{r} +0.0 \\ +31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 219 \end{aligned}$	36.0	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-18.0	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
			+0.0	+2.0	-32.6						
			+0.1	+2.6	+0.0						
68	6406.405M	27.0	+0.0	+0.0	+0.0	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$+0.0$	35.9	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-18.1	$\begin{gathered} \hline \text { Horiz } \\ 119 \end{gathered}$
			+0.0	+2.4	-31.7						
			+0.5	+3.3	+0.0						
69	3612.445M	35.4	+0.0	+0.0	+0.0	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 297 \end{aligned}$	35.7	$\begin{gathered} \hline 54.0 \\ \text { Low Z-axis } \end{gathered}$	-18.3	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
			+0.0	+1.7	-33.3						
			+0.4	+2.2	+0.0						
70	4512.995M	32.5	+0.0	+0.0	+0.0	$\begin{array}{r} +0.0 \\ +31.2 \end{array}$	+0.0	35.7	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-18.3	$\begin{gathered} \hline \text { Horiz } \\ 119 \end{gathered}$
			+0.0	+1.9	-32.8						
			+0.3	+2.6	+0.0						
71	855.400M	28.1	-27.6	+22.2	+2.0	+2.2	+0.0	27.6	$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-18.4	$\begin{gathered} \hline \text { Horiz } \\ 101 \end{gathered}$
			+0.0	+0.7	+0.0	+0.0	323				
			+0.0	+0.0	+0.0						
72	4577.055M	32.1	+0.0	+0.0	+0.0	$\begin{array}{r} +0.0 \\ +31.4 \end{array}$	+0.0	35.5	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-18.5	$\begin{gathered} \hline \text { Vert } \\ 114 \end{gathered}$
			+0.0	+2.0	-32.7						
			+0.1	+2.6	+0.0						
73	4577.250M	32.0	+0.0	+0.0	+0.0	+0.0	+0.0	35.4	54.0 Mid Z-Axis	-18.6	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
			+0.0	+2.0	-32.7	+31.4	2				
			+0.1	+2.6	+0.0						
74	872.700M	27.6	-27.5	+22.3	+2.0	+2.2	+0.0	27.3	46.0	-18.7	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
			+0.0	+0.7	+0.0	+0.0	79		X-Axis		
			+0.0	+0.0	+0.0						
75	3610.400M	35.0	+0.0	+0.0	+0.0	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	35.3	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-18.7	Horiz 119
			+0.0	+1.7	-33.3						
			+0.4	+2.2	+0.0						

76	6490.730M	26.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 342 \end{aligned}$	35.3	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-18.7	$\begin{array}{r} \hline \text { Vert } \\ 115 \end{array}$
77	4576.215M	31.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +2.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +31.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 32 \end{aligned}$	35.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-18.8	$\begin{gathered} \text { Horiz } \\ 117 \end{gathered}$
78	4575.320M	31.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +2.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +31.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 227 \end{aligned}$	35.2	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-18.8	Horiz 124
79	4637.325M	31.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +2.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 99 \end{aligned}$	35.2	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-18.8	$\begin{array}{r} \hline \text { Vert } \\ 115 \end{array}$
80	4514.190M	31.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.2 \end{array}$	+0.0	35.1	54.0 Low Z-axis	-18.9	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
81	3610.745M	34.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	+0.0	35.1	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-18.9	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
82	4637.100M	31.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.5 \end{array}$	+0.0	35.0	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-19.0	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
83	3609.775M	34.6	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.4 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	34.9	54.0 Low Z-axis	-19.1	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
84	3661.545M	34.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 297 \end{aligned}$	34.7	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-19.3	$\begin{gathered} \text { Horiz } \\ 124 \end{gathered}$
85	3660.360M	34.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 220 \end{aligned}$	34.7	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-19.3	$\begin{array}{r} \text { Vert } \\ 117 \end{array}$
86	3707.885M	34.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{aligned} & +0.0 \\ & 353 \end{aligned}$	34.6	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-19.4	$\begin{array}{r} \hline \text { Vert } \\ 112 \end{array}$
87	221.300 M	41.0	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.6 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-19.5	Horiz 99
88	3708.525M	33.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-19.7	Horiz 118
89	3709.200M	33.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{gathered} \hline+0.0 \\ 9 \end{gathered}$		$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-19.8	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
90	218.000 M	40.7	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.4 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{array}{r} 46.0 \\ \text { Z-Axis } \end{array}$	-20.0	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
91	3709.570M	33.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{aligned} & +0.0 \\ & 324 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-20.0	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
92	2745.830M	35.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -32.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +27.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	33.8	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-20.2	$\begin{gathered} \text { Horiz } \\ 121 \end{gathered}$

110	162.500M	35.1	$\begin{array}{r} -27.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.3 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 322 \end{aligned}$	19.8	$\begin{array}{r} 43.5 \\ \text { Y-Axis } \end{array}$	-23.7	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
111	1831.330M	36.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +1.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +24.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	29.9	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-24.1	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
112	1806.100M	36.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +24.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	29.6	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-24.4	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
113	973.700M	27.7	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+23.8 \\ +0.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 168 \end{aligned}$	29.6	$\begin{array}{r} 54.0 \\ \text { X-Axis } \end{array}$	-24.4	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
114	127.900M	33.5	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.7 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 42 \end{aligned}$	19.0	$\begin{array}{r} 43.5 \\ \text { X-Axis } \end{array}$	-24.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
115	1854.420M	33.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +25.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	27.9	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-26.1	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
116	1805.285M	33.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +24.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	26.6	54.0 Low Z-axis	-27.4	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
117	71.720M	31.8	$\begin{array}{r} \hline-28.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.1 \\ & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	11.0	$\begin{array}{r} 40.0 \\ \text { X-Axis } \end{array}$	-29.0	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
118	200.000k	40.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +9.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-30.5	21.6	-52.1	Paral 123
119	23.280 M	8.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +6.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 360 \end{aligned}$	-25.2	29.5	-54.7	Paral 123
120	24.030 M	8.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 360 \end{aligned}$	-25.2	29.5	-54.7	$\begin{gathered} \hline \text { Perpe } \\ 123 \end{gathered}$
121	150.000k	39.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +9.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-30.6	24.1	-54.7	$\begin{gathered} \hline \text { Perpe } \\ 123 \end{gathered}$
122	20.985k	44.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +12.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-23.9	41.2	-65.1	Paral 123
123	17.695k	44.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +13.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 230 \end{aligned}$	-22.6	42.6	-65.2	$\begin{gathered} \hline \text { Perpe } \\ 123 \end{gathered}$

CKC Laboratories, Inc. Date: 7/17/2013 Time: 10:56:25 Impinj Inc. WO\#: 93909 Test Distance: 3 Meters Sequence\#: 10 Perpendicular Impinj Inc. Impinj IPJ-RS500 23dBm Reader SIP P/N: IPJ-RS500GX

[^1]O Peak Readings

* Average Readings
_1-15.247(d) / 15.209 Radiated Spurious Emissions

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	RSS-210 Radiated Spurious Emissions		Date:
Work Order \#:	93909	Time:	10:57:55
Test Type:	Maximized Emissions	Sequence\#:	11
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Tested By:	Steven Pittsford
Manufacturer:	Impinj Inc.		
Model:	IPJ-RS500GX		

S/N:
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02308	Preamp	8447D	$4 / 3 / 2012$	$4 / 3 / 2014$
T2	AN01996	Biconilog Antenna	CBL6111C	$3 / 2 / 2012$	$3 / 2 / 2014$
T3	ANP05360	Cable	RG214	$12 / 3 / 2012$	$12 / 3 / 2014$
T4	ANP05366	Cable	RG-214	$10 / 14 / 2011$	$10 / 14 / 2013$
T5	AN02673	Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$
T6	ANP05435	Attenuator	PE7015-10	$10 / 5 / 2012$	$10 / 5 / 2014$
T7	ANP05546	Cable	Heliax	$3 / 27 / 2013$	$3 / 27 / 2015$
T8	AN01467	Horn Antenna-ANSI	3115	$10 / 19 / 2011$	$10 / 19 / 2013$
		C63.5 Calibration			
T9	AN03123	Cable	$32026-2-29801-$	$10 / 14 / 2011$	$10 / 14 / 2013$
			12		
T10	ANP05965	Cable	Various	$8 / 26 / 2011$	$8 / 26 / 2013$
T11	AN03170	High Pass Filter	HM1155-11SS	$9 / 6 / 2011$	$9 / 6 / 2013$
T12	AN02115	Preamp	$83051 A$	$11 / 12 / 2012$	$11 / 12 / 2014$
T13	AN00052	Loop Antenna	6502	$5 / 16 / 2012$	$5 / 16 / 2014$

Equipment Under Test (* $=$ EUT):

Function Manufacturer Model \# Impinj IPJ-RS500 23dBm Reader SIP*	Impinj Inc.	IPJ-RS500GX	
Antenna	Laird Technologies	S9025PR	
Support Devices:			
Function Manufacturer Model \# Development platform Impinj, Inc. IPJ-E4000 Rev 2.01 Battery Tenergy 18650 Battery Pack Tenergy TN270 Battery Tenergy 18650			

Test Conditions / Notes:

The EUT is seeking modular approval is placed in the center of the turntable on a Styrofoam table 80cm above the ground plane , installed on a support host PCB as intended for final installation. The laptop located outside the chamber sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.

Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Measured Power $=23.0 \mathrm{dBm}, 23.0 \mathrm{dBm}, 22.6 \mathrm{dBm}$
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$
Emission profile evaluated with Laird Antenna 5.5 dBi with a 30 cm cable between EUT and the antenna
Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kHz}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}=\mathrm{VBW}$
$150 \mathrm{kHz}-30 \mathrm{MHz} ;$ RBW=9 kHz=VBW
$30 \mathrm{MHz}-1000 \mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}=\mathrm{VBWz}$,
$1000 \mathrm{MHz}-10,000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}=\mathrm{VBW}$
15.31(e) compliance: a freshly charged battery is installed

Emission profile of the EUT rotated along three orthogonal axes was investigated. Recorded data represent worse case emission.
Test method in accordance with FCC document: DA 00-705

Temperature: $24^{\circ} \mathrm{C}$
Pressure: 101.5kPa
Humidity: 37\%
Ext Attn: 0 dB

$\wedge 678.400 \mathrm{M}$	35.7	$\begin{array}{r} -28.2 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +20.6 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.7 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 375 \end{aligned}$		$\begin{gathered} 46.0 \\ \text { Z-Axis } \end{gathered}$	-4.0	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
20 9273.140M	34.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.8 \\ -31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 376 \end{aligned}$	47.2	$\begin{gathered} \hline 54.0 \\ \text { High Z-Axis } \end{gathered}$	-6.8	$\begin{gathered} \text { Horiz } \\ 124 \end{gathered}$
21 7418.310M	34.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ +31.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 376 \end{aligned}$	46.8	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-7.2	$\begin{gathered} \hline \text { Vert } \\ 124 \end{gathered}$
22 517.500M	34.9	$\begin{array}{r} -28.2 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+18.4 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.5 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	38.4	$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-7.6	$\begin{array}{r} \hline \text { Vert } \\ 126 \end{array}$
$\begin{gathered} 23 \text { 334.765M } \\ \text { QP } \end{gathered}$	38.9	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.3 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	38.3	$\begin{gathered} \hline 46.0 \\ \text { Z-Axis } \end{gathered}$	-7.7	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
$\wedge 334.820 \mathrm{M}$	46.4	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +14.3 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	45.8	$\begin{gathered} 46.0 \\ \text { Z-Axis } \end{gathered}$	-0.2	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
$\wedge 334.700 \mathrm{M}$	43.5	$\begin{array}{r} -27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +14.3 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 23 \end{aligned}$	42.9	$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-3.1	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
$\begin{gathered} 26 \text { 381.500M } \\ \text { QP } \end{gathered}$	37.6	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +15.7 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.2 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	38.2	$\begin{gathered} 46.0 \\ \text { Z-Axis } \end{gathered}$	-7.8	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
$\wedge 381.500 \mathrm{M}$	43.1	$\begin{array}{r} \hline-27.7 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.7 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & +1.2 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 41 \end{aligned}$	43.7	$\begin{gathered} 46.0 \\ \text { Z-Axis } \end{gathered}$	-2.3	$\begin{gathered} \text { Horiz } \\ 100 \end{gathered}$
$\begin{gathered} 28343.200 \mathrm{M} \\ \text { QP } \end{gathered}$	37.6	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.5 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline+0.0 \\ 360 \end{gathered}$	37.2	$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-8.8	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
$\wedge 343.200 \mathrm{M}$	42.8	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.5 \\ +9.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 23 \end{aligned}$	42.4	$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-3.6	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
308128.895 M	32.6	$\begin{array}{r} +0.0 \\ \hline+0.0 \\ +0.7 \\ +0.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.3 \end{array}$	$+0.0$	45.1	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-8.9	$\begin{gathered} \text { Horiz } \\ 114 \end{gathered}$
31 9025.380M	31.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +37.0 \\ +31.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	44.8	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-9.2	$\begin{gathered} \hline \text { Horiz } \\ 112 \end{gathered}$

$\begin{aligned} & 45 \text { 5416.500M } \\ & \text { Ave } \end{aligned}$	35.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.2 \\ -32.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 237 \end{aligned}$	42.7	54.0 Low X-Axis	-11.3	$\begin{array}{r} \hline \text { Vert } \\ 118 \end{array}$
$\wedge 5416.500 \mathrm{M}$	45.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.2 \\ -32.2 \end{array}$	+0.0	52.8	$\overline{54.0}$ Low X-Axis	-1.2	$\begin{array}{r} \hline \text { Vert } \\ 118 \end{array}$
$47 \quad 123.000 \mathrm{M}$	37.4	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.7 \\ +9.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 23 \end{aligned}$	32.1	$\begin{array}{r} 43.5 \\ \text { Y-Axis } \end{array}$	-11.4	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
48 9151.099M	29.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.4 \end{array}$	+0.0	42.4	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-11.6	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
49 9031.645M	28.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.9 \\ -31.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 85 \end{aligned}$	42.2	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-11.8	Horiz 111
$\begin{gathered} \hline 50964.600 \mathrm{M} \\ \mathrm{QP} \end{gathered}$	30.5	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+23.7 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	41.9	$\begin{array}{r} 54.0 \\ \text { X-Axis } \end{array}$	-12.1	$\begin{array}{r} \hline \text { Vert } \\ 150 \end{array}$
$\wedge 964.600 \mathrm{M}$	35.3	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.7 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & +2.1 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	46.7	$\begin{array}{r} 54.0 \\ \text { X-Axis } \end{array}$	-7.3	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
52 7419.180M	29.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 239 \end{aligned}$	41.9	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-12.1	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
53 5563.960M	34.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.5 \\ -32.1 \end{array}$	+0.0	41.6	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-12.4	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
547321.763 M	29.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.9 \\ -31.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 239 \end{aligned}$	41.3	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-12.7	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
55 7321.170M	29.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.9 \\ -31.4 \end{array}$	$\begin{gathered} +0.0 \\ 8 \end{gathered}$	41.1	$\begin{gathered} \hline 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-12.9	$\begin{gathered} \hline \text { Horiz } \\ 120 \end{gathered}$
568344.560 M	28.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 341 \end{aligned}$	41.1	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-12.9	Horiz 119
57 7221.920M	29.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.7 \\ -31.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 214 \end{aligned}$	41.0	54.0 Low Z-Axis	-13.0	Horiz 116

58	5562.635M	33.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.5 \\ -32.1 \end{array}$	$\begin{aligned} & +0.0 \\ & -16 \end{aligned}$	41.0	54.0 High Z-Axis	-13.0	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
59	7220.140M	29.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.6 \\ -31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 190 \end{aligned}$	41.0	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-13.0	Horiz 116
60	7226.145M	29.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.7 \\ -31.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 267 \end{aligned}$	40.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.1	Horiz 111
61	9151.549M	27.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.4 \end{array}$	+0.0	40.7	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-13.3	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
62	6491.210M	31.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.4 \\ -31.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 52 \end{aligned}$	40.6	54.0 High Y-Axis	-13.4	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
63	6405.868M	31.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.4 \\ -31.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 129 \end{aligned}$	40.6	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-13.4	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
64	8125.030M	27.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.4	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-13.6	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
65	7226.145M	28.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.7 \\ -31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 349 \end{aligned}$	40.4	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.6	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
66	8122.810M	27.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.0 \\ -31.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.1	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-13.9	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
67	9151.690M	26.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.4 \\ -31.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 73 \end{aligned}$	39.9	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-14.1	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
68	4514.000M	36.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.2 \\ -32.8 \end{array}$	+0.0	39.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-14.1	$\begin{gathered} \text { Horiz } \\ 118 \end{gathered}$
69	9272.440M	27.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +4.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +35.8 \\ -31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	39.8	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-14.2	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
70	8235.813M	27.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.2 \\ -31.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 120 \end{aligned}$	39.8	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-14.2	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$

71 8236.440M	27.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.2 \\ -31.3 \end{array}$	+0.0	39.7	$\begin{gathered} \hline 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-14.3	$\begin{gathered} \hline \text { Vert } \\ 116 \end{gathered}$
72 6406.807M	30.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.4 \\ -31.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	39.7	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-14.3	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
73 5563.245M	32.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.5 \\ -32.1 \end{array}$	+0.0	39.6	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-14.4	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
74 2723.400M	40.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.2 \\ -32.7 \end{array}$	+0.0	39.6	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-14.4	$\begin{gathered} \hline \text { Horiz } \\ 113 \end{gathered}$
75 4636.080M	35.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.5 \\ -32.6 \end{array}$	+0.0	39.5	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-14.5	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
76 2708.650M	40.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.1 \\ -32.7 \end{array}$	+0.0	39.4	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-14.6	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
77 8237.340M	26.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +36.2 \\ -31.3 \end{array}$	+0.0	39.1	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-14.9	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
78 6323.395M	29.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.5 \\ -31.8 \end{array}$	$\begin{aligned} & +0.0 \\ & 70 \end{aligned}$	38.8	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-15.2	$\begin{gathered} \hline \text { Horiz } \\ 111 \end{gathered}$
79 6319.965M	29.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.5 \\ -31.8 \end{array}$	$\begin{gathered} \hline+0.0 \\ 8 \end{gathered}$	38.8	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-15.2	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
80 4637.705M	34.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.5 \\ -32.6 \end{array}$	$\begin{aligned} & +0.0 \\ & 27 \end{aligned}$	38.7	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-15.3	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
81 6405.814M	29.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.4 \\ -31.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.7	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-15.3	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
82 5492.307M	31.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.3 \\ -32.1 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.6	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-15.4	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
83 3708.720M	37.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.6 \\ -33.2 \end{array}$	+0.0	38.6	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-15.4	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$

84	6319.410M	29.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +34.5 \\ -31.8 \end{array}$	+0.0	38.5	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-15.5	$\begin{array}{r} \hline \text { Vert } \\ 104 \end{array}$
85	4636.150M	34.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.5 \\ -32.6 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & -16 \end{aligned}$	38.4	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-15.6	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
86	3707.935M	37.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.6 \\ -33.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & -16 \end{aligned}$	38.2	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-15.8	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
87	5491.288M	30.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.3 \\ -32.1 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.1	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-15.9	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
88	5490.567M	30.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.3 \\ -32.1 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.1	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-15.9	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
89	3708.980M	36.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.6 \\ -33.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 226 \end{aligned}$	37.8	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-16.2	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
90	162.800M	33.0	$\begin{array}{r} -27.5 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.2 \\ +9.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 23 \end{aligned}$	27.0	$\begin{array}{r} 43.5 \\ \text { Y-Axis } \end{array}$	-16.5	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
91	2781.155M	37.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.5 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.4 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	36.7	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-17.3	$\begin{gathered} \hline \text { Horiz } \\ 115 \end{gathered}$
92	2782.990M	37.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.5 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.4 \\ -32.7 \end{array}$	+0.0	36.7	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-17.3	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
93	5416.180M	29.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.2 \\ -32.2 \end{array}$	+0.0	36.5	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-17.5	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
94	61.800M	34.8	$\begin{array}{r} -28.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+5.4 \\ & +9.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 362 \end{gathered}$	22.5	$\begin{array}{r} 40.0 \\ \text { Y-Axis } \end{array}$	-17.5	$\begin{array}{r} \hline \text { Vert } \\ 295 \end{array}$
95	2782.005M	37.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.5 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.4 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & -14 \end{aligned}$	36.5	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-17.5	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
96	1805.900M	41.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.7 \\ -34.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	35.5	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-18.5	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$

97	4575.308M	31.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.4 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	35.2	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-18.8	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
98	4575.512M	31.5	$\begin{aligned} & +0.0 \\ & \hline+0.0 \\ & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.4 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	35.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-18.8	$\begin{gathered} \hline \text { Horiz } \\ 120 \end{gathered}$
99	4575.188M	31.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.4 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	35.1	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-18.9	$\begin{gathered} \hline \text { Horiz } \\ 116 \end{gathered}$
100	3660.588M	34.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.4 \\ -33.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	35.1	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-18.9	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
101	3659.620M	34.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.4 \\ -33.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	35.0	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-19.0	$\begin{gathered} \hline \text { Horiz } \\ 120 \end{gathered}$
102	5416.750M	27.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +33.2 \\ -32.2 \end{array}$	$+0.0$	34.4	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-19.6	$\begin{gathered} \hline \text { Horiz } \\ 104 \end{gathered}$
103	3659.938M	33.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.4 \\ -33.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	34.0	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-20.0	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
104	1805.500M	39.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.7 \\ -34.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	33.4	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-20.6	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
105	2744.766M	34.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.3 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 341 \end{aligned}$	33.0	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-21.0	$\begin{array}{r} \hline \text { Vert } \\ 112 \end{array}$
106	2744.691M	33.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.3 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	32.7	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-21.3	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
107	2745.453M	33.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.3 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	32.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-21.8	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
108	3612.560 M	31.6	$\begin{aligned} & +0.0 \\ & \hline+0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.3 \\ -33.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	32.2	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-21.8	$\begin{gathered} \hline \text { Horiz } \\ 121 \end{gathered}$
109	3612.730M	31.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +29.3 \\ -33.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 164 \end{aligned}$	32.0	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-22.0	$\begin{array}{r} \hline \text { Vert } \\ 194 \end{array}$

110	2705.900M	32.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.1 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 92 \end{aligned}$	31.3	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-22.7	$\begin{array}{r} \hline \text { Vert } \\ 110 \end{array}$
111	1854.335M	36.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.2 \\ -33.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	31.1	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-22.9	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
112	2707.085M	31.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +27.1 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 295 \end{aligned}$	30.5	$\begin{gathered} 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-23.5	$\begin{array}{r} \hline \text { Vert } \\ 283 \end{array}$
113	4511.690M	27.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.2 \\ -32.8 \end{array}$	+0.0	30.5	$\begin{gathered} \hline 54.0 \\ \text { Low Z-Axis } \end{gathered}$	-23.5	$\begin{gathered} \text { Horiz } \\ 112 \end{gathered}$
114	1855.655M	35.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.2 \\ -33.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 272 \end{aligned}$	30.3	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-23.7	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
115	4514.000M	26.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ +31.2 \\ -32.8 \end{array}$	+0.0	30.0	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-24.0	$\begin{gathered} \text { Horiz } \\ 121 \end{gathered}$
116	1828.815M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \\ -34.1 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	29.7	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-24.3	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
117	1829.966M	34.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \\ -34.1 \end{array}$	$\begin{aligned} & +0.0 \\ & 218 \end{aligned}$	28.8	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-25.2	$\begin{gathered} \hline \text { Horiz } \\ 116 \end{gathered}$
118	1805.570M	34.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.7 \\ -34.3 \end{array}$	+0.0	28.2	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-25.8	$\begin{gathered} \hline \text { Vert } \\ 103 \end{gathered}$
119	1854.675M	33.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +25.2 \\ -33.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	28.2	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-25.8	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
120	1830.203M	33.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.9 \\ -34.1 \end{array}$	$\begin{aligned} & +0.0 \\ & 41 \end{aligned}$	27.9	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-26.1	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
121	1803.950M	21.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +0.0 \\ +24.7 \\ -34.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	15.0	54.0 Low Z-Axis	-39.0	$\begin{gathered} \text { Horiz } \\ 400 \end{gathered}$
122	150.000k	45.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +9.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-25.5	24.1	-49.6	$\begin{gathered} \text { Perpe } \\ 123 \end{gathered}$

123	150.000k	40.5	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +9.5 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-30.0	24.1	-54.1	$\begin{array}{r} \hline \text { Paral } \\ 123 \end{array}$
124	24.980 M	9.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +0.0 \\ +5.8 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 360 \end{aligned}$	-24.7	29.5	-54.2	$\begin{array}{r} \hline \text { Paral } \\ 123 \end{array}$
125	21.925k	43.8	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.0 \\ +11.8 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-24.4	40.8	-65.2	$\begin{array}{r} \hline \text { Paral } \\ 123 \end{array}$
126	12.525k	42.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.0 \\ +15.2 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-22.5	45.6	-68.1	$\begin{gathered} \hline \text { Perpe } \\ 123 \end{gathered}$
127	912.000M	36.3	$\begin{array}{r} \hline-27.4 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+22.6 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline+0.0 \\ 360 \end{gathered}$		$\begin{array}{r} 125.2 \\ \text { X-Axis } \end{array}$	-79.0	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
128	911.900M	34.8	$\begin{array}{r} \hline-27.4 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +22.6 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	44.7	$\begin{array}{r} 125.2 \\ \text { Y-Axis } \end{array}$	-80.5	$\begin{array}{r} \hline \text { Vert } \\ 126 \end{array}$
129	911.900M	32.1	$\begin{array}{r} -27.4 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +22.6 \\ +9.6 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +2.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 28 \end{aligned}$	42.0	$\begin{array}{r} 125.2 \\ \text { Y-Axis } \end{array}$	-83.2	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$

CKC Laboratories, Inc. Date: 7/17/2013 Time: 10:57:55 Impinj Inc. WO\#: 93909 Test Distance: 3 Meters Sequence\#: 11 Horiz Impinj Inc. Impinj IPJ-RS500 23dBm Reader SIP P/N: IPJ-RS500GX

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bethel, WA 98021 • (425) 402-1717
Customer: Impinj Inc.
Specification: RSS-210 Radiated Spurious Emissions

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
S/N:

Date: 7/17/2013
Time: 10:56:25
Sequence\#: 10
Tested By: Steven Pittsford

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02308	Preamp	8447D	$4 / 3 / 2012$	$4 / 3 / 2014$
T2	AN01996	Biconilog Antenna	CBL6111C	$3 / 2 / 2012$	$3 / 2 / 2014$
T3	ANP05360	Cable	RG214	$12 / 3 / 2012$	$12 / 3 / 2014$
T4	ANP05366	Cable	RG-214	$10 / 14 / 2011$	$10 / 14 / 2013$
T5	AN02673	Spectrum Analyzer	E4446A	$5 / 11 / 2012$	$5 / 11 / 2014$
T6	ANP05546	Cable	Heliax	$3 / 27 / 2013$	$3 / 27 / 2015$
T7	AN02115	Preamp	$83051 A$	$11 / 12 / 2012$	$11 / 12 / 2014$
T8	AN01467	Horn Antenna-ANSI	3115	$10 / 19 / 2011$	$10 / 19 / 2013$
		C63.5 Calibration			
T9	AN03123	Cable	$32026-2-29801-$	$10 / 14 / 2011$	$10 / 14 / 2013$
			12	$8 / 26 / 2011$	$8 / 26 / 2013$
T10	ANP05965	Cable	Various	$5 / 16 / 2012$	$5 / 16 / 2014$
T11	AN00052	Loop Antenna	6502		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S / N
Mini Guardrail Antenna	Impinj, Inc.	IMP-A0303-000	
Impinj IPJ-RS500 23dBm Impinj Inc. IPJ-RS500GX Reader SIP \mathbf{l}			

Support Devices:

Function	Manufacturer	Model \#	SN
Battery	Tenergy	18650	
Battery Pack	Tenergy	TN270	
Battery	Tenergy	18650	
Development platform	Impinj, Inc.	IPJ-E4000 Rev 2.01	

Test Conditions / Notes:
The EUT is seeking modular approval and is placed in the center of the turntable on a Styrofoam table 80cm above the ground plane, installed on a support host PCB as intended for final installation. The laptop located outside the chamber sends test command to the EUT via the support host PCB. The EUT is set in constant transmit mode.

Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Measured Power $=23.0 \mathrm{dBm}, 23.0 \mathrm{dBm}, 22.6 \mathrm{dBm}$
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$
Emission profile evaluated with Mini Guardrail Antenna -20dBi with a 30cm cable between EUT and the antenna.
Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kHz}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}=\mathrm{VBW}$
$150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}=\mathrm{VBW}$
$30 \mathrm{MHz}-1000 \mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}=\mathrm{VBWz}$,
$1000 \mathrm{MHz}-10,000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}=\mathrm{VBW}$
15.31(e) compliance: a freshly charged battery is installed.

Emission profile of the EUT rotated along three orthogonal axes was investigated. Recorded data represent worse case emission.

Test method in accordance with FCC document: DA 00-705.
Temperature: $24^{\circ} \mathrm{C}$
Pressure: 101.5 kPa
Humidity: 37\%
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

	$\begin{aligned} & \text { 338.920M } \\ & \text { QP } \end{aligned}$	48.3	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+14.4 \\ +0.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 5 \end{gathered}$	38.1	$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-7.9	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
\wedge	338.900M	53.5	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+14.4 \\ +0.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 355 \end{aligned}$	43.3	$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-2.7	Horiz 100
9	124.600 M	48.6	$\begin{gathered} -27.8 \\ +0.0 \\ +0.0 \end{gathered}$	$\begin{array}{r} +11.7 \\ +0.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 288 \end{aligned}$	34.0	$\begin{array}{r} 43.5 \\ \text { Z-Axis } \end{array}$	-9.5	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
10	122.680 M	47.8	$\begin{gathered} -27.8 \\ +0.0 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+11.7 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	33.2	$\begin{array}{r} 43.5 \\ \text { X-Axis } \end{array}$	-10.3	$\begin{gathered} \hline \text { Horiz } \\ 152 \end{gathered}$
11	339.100M	45.7	$\begin{array}{r} -27.3 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+14.4 \\ +0.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 89 \end{aligned}$	35.5	$\begin{gathered} 46.0 \\ \text { Y-Axis } \end{gathered}$	-10.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
12	129.700M	46.9	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +11.7 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	32.4	$\begin{array}{r} 43.5 \\ \text { Y-Axis } \end{array}$	-11.1	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
13	9272.505M	30.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.5 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	42.7	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-11.3	$\begin{gathered} \text { Horiz } \\ 121 \end{gathered}$
14	8345.780M	29.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +3.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	42.6	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-11.4	$\begin{array}{r} \hline \text { Vert } \\ 121 \end{array}$
15	8345.620M	29.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +3.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 290 \end{aligned}$	42.4	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-11.6	$\begin{gathered} \text { Horiz } \\ 115 \end{gathered}$
16	9026.790M	29.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +3.9 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	42.3	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-11.7	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
17	9273.640M	29.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.5 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.8 \end{array}$			$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-11.7	Horiz 121
18	8346.505M	29.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.0 \\ & +3.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 262 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-12.1	$\begin{gathered} \hline \text { Horiz } \\ 114 \end{gathered}$
19	7418.120M	29.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +3.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	41.7	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-12.3	$\begin{gathered} \text { Horiz } \\ 115 \end{gathered}$
20	7416.520M	29.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +3.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	41.5	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-12.5	$\begin{array}{r} \hline \text { Vert } \\ 121 \end{array}$
21	9152.040M	28.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +3.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	41.3	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-12.7	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
22	9271.825M	28.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.3 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.5 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.8 \end{array}$	$\begin{aligned} & +0.0 \\ & 335 \end{aligned}$	41.3	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-12.7	$\begin{gathered} \text { Horiz } \\ 114 \end{gathered}$
23	342.600M	43.3	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} +14.5 \\ +0.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 358 \end{aligned}$	33.2	$\begin{gathered} 46.0 \\ \text { Z-Axis } \end{gathered}$	-12.8	$\begin{gathered} \hline \text { Vert } \\ 102 \end{gathered}$

24	9152.515M	28.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 105 \end{aligned}$	41.2	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-12.8	$\begin{array}{r} \hline \text { Vert } \\ 121 \end{array}$
25	165.800M	46.2	$\begin{array}{r} -27.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.0 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	30.6	$\begin{array}{r} 43.5 \\ \text { X-Axis } \end{array}$	-12.9	Horiz 152
26	7222.380M	29.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 108 \end{aligned}$	41.0	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-13.0	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
27	7418.600M	29.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-13.0	$\begin{array}{r} \hline \text { Vert } \\ 124 \end{array}$
28	9151.215M	28.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	41.0	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-13.0	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
29	7322.540M	29.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \end{array}$	+0.0	40.9	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-13.1	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
30	9026.115M	27.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.0 \\ +3.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	+0.0	40.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.1	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
31	8237.265M	28.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +3.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 268 \end{aligned}$	40.8	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-13.2	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
32	8236.000M	28.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	+0.0	40.7	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-13.3	Horiz 121
33	7222.410M	29.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.5 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.7 \end{array}$	+0.0	40.6	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.4	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
34	9026.775M	27.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.0 \\ +3.9 \end{array}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +37.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.5	54.0 Low Z-axis	-13.5	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
35	7222.480M	29.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.0 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.4	54.0 Low Z-axis	-13.6	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
36	8125.525M	28.0	$\begin{array}{r} \hline+0.0 \\ +0.0 \\ +0.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +3.7 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -31.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	+0.0	40.3	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-13.7	Horiz 123
37	8126.040M	27.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +3.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.2	$\begin{gathered} \hline 54.0 \\ \text { Low Z-axis } \end{gathered}$	-13.8	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
38	8237.225M	27.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +3.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +36.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-13.8	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
39	7321.130M	28.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -31.4 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \end{array}$	+0.0	40.1	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-13.9	$\begin{gathered} \hline \text { Vert } \\ 121 \end{gathered}$
40	7321.665M	28.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +3.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.4 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +35.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	39.9	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-14.1	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$

41	397.900M	39.3	$\begin{array}{r} -27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.1 \\ +0.5 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	30.8	$\begin{array}{r} \hline 46.0 \\ \text { Z-Axis } \end{array}$	-15.2	$\begin{array}{r} \hline \text { Vert } \\ 102 \end{array}$
42	8124.040M	26.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +3.7 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.3 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +36.0 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.7	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-15.3	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
43	6492.080M	29.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0	38.0	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-16.0	$\begin{array}{r} \hline \text { Vert } \\ 124 \end{array}$
44	5415.280M	31.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.2 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 268 \end{aligned}$	38.0	54.0 Low Z-axis	-16.0	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
45	5416.250M	31.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.2 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	+0.0	37.9	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-16.1	Horiz 119
46	343.900 M	40.0	$\begin{array}{r} \hline-27.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+14.6 \\ +0.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 228 \end{aligned}$	29.9	$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-16.1	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
47	164.400M	42.7	$\begin{array}{r} \hline-27.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.1 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	27.2	$\begin{array}{r} 43.5 \\ \text { Z-Axis } \end{array}$	-16.3	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
48	5416.360M	30.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.2 \end{array}$	+0.0	37.2	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-16.8	$\begin{gathered} \text { Horiz } \\ 123 \end{gathered}$
49	5564.040M	30.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +33.5 \end{array}$	+0.0	37.2	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-16.8	$\begin{array}{r} \hline \text { Vert } \\ 126 \end{array}$
50	5490.445M	30.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	+0.0	37.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-16.8	$\begin{gathered} \text { Horiz } \\ 117 \end{gathered}$
51	5563.795M	30.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.5 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-16.8	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
52	6489.270M	28.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0	37.1	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-16.9	$\begin{gathered} \text { Horiz } \\ 126 \end{gathered}$
53	6405.455M	28.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +3.3 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-16.9	$\begin{array}{r} \hline \text { Vert } \\ 121 \end{array}$
54	221.170M	43.5	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.6 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 136 \end{aligned}$		$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-17.0	Horiz 121
55	5491.365M	30.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +2.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-17.0	$\begin{gathered} \hline \text { Horiz } \\ 114 \end{gathered}$
56	6405.960M	28.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +3.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 248 \end{aligned}$	36.9	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-17.1	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
57	6319.000M	28.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.8 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	36.9	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-17.1	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$

58	6407.180M	28.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0	36.9	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-17.1	$\begin{gathered} \hline \text { Horiz } \\ 114 \end{gathered}$
59	6318.435M	27.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.8 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	36.8	54.0 Low Z-axis	-17.2	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
60	128.000 M	40.8	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.7 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 195 \end{aligned}$		$\begin{array}{r} 43.5 \\ \text { Y-Axis } \end{array}$	-17.2	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
61	5563.480M	29.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +2.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +33.5 \end{array}$	+0.0	36.6	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-17.4	Horiz 115
62	162.500 M	41.4	$\begin{array}{r} \hline-27.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.3 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 244 \end{aligned}$	26.1	$\begin{array}{r} 43.5 \\ \text { Y-Axis } \end{array}$	-17.4	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
63	5490.745M	29.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +2.9 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +33.3 \end{array}$	+0.0	36.5	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-17.5	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
64	6318.890M	27.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.4 \\ & +3.3 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.5 \end{array}$	+0.0	36.4	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-17.6	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
65	4637.335M	32.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.5 \end{array}$	+0.0	36.1	$\begin{gathered} \hline 54.0 \\ \text { High Z-Axis } \end{gathered}$	-17.9	$\begin{gathered} \text { Horiz } \\ 118 \end{gathered}$
66	4515.205M	32.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.9 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.2 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-17.9	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
67	4637.435M	32.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.5 \end{array}$	$\begin{aligned} & +0.0 \\ & 219 \end{aligned}$	36.0	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-18.0	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
68	6406.405M	27.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.3 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	+0.0	35.9	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-18.1	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
69	3612.445M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 297 \end{aligned}$	35.7	54.0 Low Z-axis	-18.3	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
70	4512.995M	32.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.2 \end{array}$	+0.0		$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-18.3	Horiz 119
71	855.400M	28.1	$\begin{array}{r} \hline-27.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+22.2 \\ +0.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 323 \end{aligned}$	27.6	$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-18.4	$\begin{gathered} \text { Horiz } \\ 101 \end{gathered}$
72	4577.055M	32.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +2.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +31.4 \end{array}$	+0.0	35.5	$\begin{gathered} 54.0 \\ \text { Mid X-Axis } \end{gathered}$	-18.5	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
73	4577.250M	32.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.4 \end{array}$	$\begin{gathered} +0.0 \\ 2 \end{gathered}$	35.4	$\begin{gathered} \hline 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-18.6	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
74	872.700M	27.6	$\begin{array}{r} \hline-27.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+22.3 \\ +0.7 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 79 \end{aligned}$	27.3	$\begin{array}{r} 46.0 \\ \text { X-Axis } \end{array}$	-18.7	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$

75	3610.400M	35.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.3	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-18.7	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
76	6490.730M	26.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.4 \\ & +3.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ -31.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 342 \end{aligned}$	35.3	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-18.7	$\begin{array}{r} \hline \text { Vert } \\ 115 \end{array}$
77	4637.325M	31.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +2.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.6 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +31.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 99 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-18.8	$\begin{array}{r} \hline \text { Vert } \\ 115 \end{array}$
78	4576.215M	31.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +2.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.7 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +31.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 32 \end{aligned}$	35.2	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-18.8	Horiz 117
79	4575.320M	31.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 227 \end{aligned}$	35.2	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-18.8	$\begin{gathered} \text { Horiz } \\ 124 \end{gathered}$
80	4514.190M	31.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.9 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.2 \end{array}$	+0.0		54.0 Low Z-axis	-18.9	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
81	3610.745M	34.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +2.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	+0.0	35.1	$\begin{gathered} 54.0 \\ \text { Low Y-Axis } \end{gathered}$	-18.9	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
82	4637.100M	31.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +2.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +31.5 \end{array}$	+0.0	35.0	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-19.0	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
83	3609.775M	34.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +2.2 \end{aligned}$	$\begin{gathered} +0.0 \\ -33.3 \\ +0.0 \end{gathered}$	$\begin{array}{r} +0.0 \\ +29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		54.0 Low Z-axis	-19.1	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
84	3661.545M	34.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 297 \end{aligned}$	34.7	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-19.3	$\begin{gathered} \text { Horiz } \\ 124 \end{gathered}$
85	3660.360M	34.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -33.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.4 \end{array}$	$\begin{aligned} & +0.0 \\ & 220 \end{aligned}$	34.7	$\begin{gathered} 54.0 \\ \text { Mid Y-Axis } \end{gathered}$	-19.3	$\begin{array}{r} \hline \text { Vert } \\ 117 \end{array}$
86	3707.885M	34.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{aligned} & +0.0 \\ & 353 \end{aligned}$	34.6	$\begin{gathered} 54.0 \\ \text { High Y-Axis } \end{gathered}$	-19.4	$\begin{array}{r} \hline \text { Vert } \\ 112 \end{array}$
87	221.300M	41.0	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.6 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$		$\begin{array}{r} 46.0 \\ \text { Y-Axis } \end{array}$	-19.5	Horiz 99
88	3708.525M	33.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +2.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$			54.0 High Z-Axis	-19.7	$\begin{gathered} \text { Horiz } \\ 118 \end{gathered}$
89	3709.200M	33.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +2.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.2 \\ +0.0 \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{gathered} \hline+0.0 \\ 9 \end{gathered}$	34.2	$\begin{gathered} 54.0 \\ \text { High X-Axis } \end{gathered}$	-19.8	$\begin{gathered} \hline \text { Vert } \\ 120 \end{gathered}$
90	3709.570M	33.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +2.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +29.6 \end{array}$	$\begin{aligned} & +0.0 \\ & 324 \end{aligned}$		$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-20.0	$\begin{array}{r} \hline \text { Vert } \\ 120 \end{array}$
91	218.000M	40.7	$\begin{array}{r} \hline-27.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.4 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	26.0	$\begin{array}{r} 46.0 \\ \text { Z-Axis } \end{array}$	-20.0	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$

109	124.600M	34.7	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.7 \\ +0.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	20.1	$\begin{array}{r} 43.5 \\ \text { Z-Axis } \end{array}$	-23.4	$\begin{array}{r} \hline \text { Vert } \\ 102 \end{array}$
110	162.500M	35.1	$\begin{array}{r} -27.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+10.3 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 322 \end{aligned}$	19.8	$\begin{array}{r} 43.5 \\ \text { Y-Axis } \end{array}$	-23.7	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
111	1831.330M	36.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.2 \\ & +1.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +24.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	29.9	$\begin{gathered} 54.0 \\ \text { Mid Z-Axis } \end{gathered}$	-24.1	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
112	973.700M	27.7	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.8 \\ +0.8 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+2.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 168 \end{aligned}$	29.6	$\begin{array}{r} 54.0 \\ \text { X-Axis } \end{array}$	-24.4	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
113	1806.100M	36.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.2 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +24.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	29.6	$\begin{gathered} 54.0 \\ \text { Low X-Axis } \end{gathered}$	-24.4	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
114	127.900M	33.5	$\begin{array}{r} \hline-27.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.7 \\ +0.3 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 42 \end{aligned}$	19.0	$\begin{array}{r} 43.5 \\ \text { X-Axis } \end{array}$	-24.5	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
115	1854.420M	33.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +25.2 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	27.9	$\begin{gathered} 54.0 \\ \text { High Z-Axis } \end{gathered}$	-26.1	$\begin{gathered} \text { Horiz } \\ 120 \end{gathered}$
116	1805.285M	33.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.2 \\ & +1.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -34.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +24.7 \end{array}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	26.6	54.0 Low Z-axis	-27.4	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
117	71.720 M	31.8	$\begin{array}{r} \hline-28.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.1 \\ & +0.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	11.0	$\begin{array}{r} 40.0 \\ \text { X-Axis } \end{array}$	-29.0	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
118	200.000k	40.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 360 \end{aligned}$	-30.5	21.6	-52.1	Paral 123
119	24.030 M	8.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -40.0 \\ & 360 \end{aligned}$	-25.2	29.5	-54.7	$\begin{gathered} \text { Perpe } \\ 123 \end{gathered}$
120	23.280M	8.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +6.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 360 \end{aligned}$	-25.2	29.5	-54.7	$\begin{array}{r} \text { Paral } \\ 123 \end{array}$
121	150.000k	39.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-30.6	24.1	-54.7	Perpe 123
122	20.985k	44.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +12.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-23.9	41.2	-65.1	$\begin{gathered} \text { Paral } \\ 123 \end{gathered}$
123	17.695k	44.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.0 \\ +13.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 230 \end{aligned}$	-22.6	42.6	-65.2	$\begin{gathered} \hline \text { Perpe } \\ 123 \end{gathered}$

CKC Laboratories, Inc. Date: 7/17/2013 Time: 10:56:25 Impinj Inc. WO\#: 93909 Test Distance: 3 Meters Sequence\#: 10 Perpendicular Impinj Inc. Impinj IPJ-RS500 23dBm Reader SIP P/N: IPJ-RS500GX

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer:	Impinj Inc.		
Specification:	Band Edge Compliance FCC Part 15.247 \& RSS-210		
Work Order \#:	93909	Date:	7/16/2013
Test Type:	Maximized Emissions	Time:	11:32:01
Equipment:	Impinj IPJ-RS500 23dBm Reader SIP	Sequence\#:	5
Manufacturer:	Impinj Inc.	Tested By:	Steven Pittsford
Model:	IPJ-RS500GX		
S/N:	IMPH12000100051210		

Test Conditions / Notes:

The EUT is seeking modular approval is placed in the center of the turntable on a Styrofoam table 80cm above the ground plane, installed on a support host PCB as intended for final installation. The laptop located outside the chamber sends test command to the EUT via the support host PCB.

Frequency: $902-928 \mathrm{MHz}$
Freq: $902.75 \mathrm{MHz}, 915.25 \mathrm{MHz}, 927.25 \mathrm{MHz}$
Firmware setting $=23 \mathrm{dBm}, 23 \mathrm{dBm}, 23 \mathrm{dBm}$
Emission profile evaluated with Laird Antenna 5.5 dBi and Mini Guardrail Antenna with a 30cm cable between EUT and the antenna.

30MHz-1000 MHz;RBW=120 kHz,VBW=120 kHz
15.31(e) compliance: a freshly charged battery is installed.

Emission profile of the EUT rotated along three orthogonal axes was investigated. Recorded data represent worse case emission.

Test method in accordance with FCC document: DA 00-705.
Temperature: $24^{\circ} \mathrm{C}$
Pressure: 101.5 kPa
Humidity: 37\%
$1 W_{\text {Testing the Future }}$
LABORATORIES, INC.

Test Plots

Low 5.5dBi Band Edge

High 5.5dBi Band Edge

Low -20dBi Band Edge

High -20dBi Band Edge

Test Setup Photos

$5.5 \mathrm{dBi}, \mathrm{X}$-Axis

$5.5 \mathrm{dBi}, \mathrm{Y}$-Axis

$5.5 \mathrm{dBi}, \mathrm{Z}$-Axis

-20dBi, X-Axis

-20dBi, Y-Axis

(17.718.2013 19: 08
-20dBi, Z-Axis

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot (" \wedge ") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: - Readings
 \times QP Readings
 - QP Reading

[^1]: - Readings
 \times QP Readings
 - Ambient

