

Impinj, Inc. Indy RS1000 FCC 15.207:2017 FCC 15.247:2017 RFID Transceiver

Report #7LAY0128





NVLAP Lab Code: 200629-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

More: https://www.bis.doc.gov/index.php/forms-documents/regulations-docs/14-commerce-country-chart/fileT

# **CERTIFICATE OF TEST**



### Last Date of Test: November 22, 2017 Impinj, Inc. Model: Indy RS1000

## **Radio Equipment Testing**

 Standards
 Method

 Specification
 Method

 FCC 15.207:2017
 ANSI C63.10:2013

Results

| Method<br>Clause | Test Description                    | Applied | Results | Comments                       |
|------------------|-------------------------------------|---------|---------|--------------------------------|
| 6.2              | Powerline Conducted Emissions       | Yes     | Pass    |                                |
| 6.5, 6.6         | Spurious Radiated Emissions         | Yes     | Pass    |                                |
| 7.5              | Duty Cycle                          | Yes     | N/A     |                                |
| 7.8.2            | Carrier Frequency Separation        | Yes     | Pass    |                                |
| 7.8.3            | Number of Hopping Frequencies       | Yes     | Pass    |                                |
| 7.8.4            | Dwell Time                          | Yes     | Pass    |                                |
| 7.8.5            | Output Power                        | Yes     | Pass    |                                |
| 7.8.6            | Band Edge Compliance                | Yes     | Pass    |                                |
| 7.8.6            | Band Edge Compliance - Hopping Mode | Yes     | Pass    |                                |
| 7.8.7            | Occupied Bandwidth                  | Yes     | Pass    |                                |
| 7.8.8            | Spurious Conducted Emissions        | Yes     | Pass    |                                |
| 11.10.2          | Power Spectral Density              | No      | N/A     | Not required for FHSS devices. |

### **Deviations From Test Standards**

None

**Approved By:** 

Rod Munro, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

# **REVISION HISTORY**



| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
| 00                 | None        |      |             |

## ACCREDITATIONS AND AUTHORIZATIONS



### **United States**

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

### Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

### European Union

European Commission – Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

### Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

### Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

### Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

**NCC** - Recognized by NCC as a CAB for the acceptance of test data.

### Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

#### Israel

**MOC** – Recognized by MOC as a CAB for the acceptance of test data.

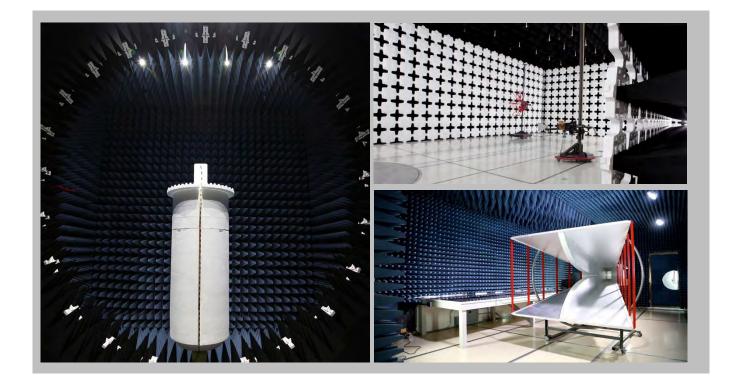
### Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

### Vietnam

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

### SCOPE


For details on the Scopes of our Accreditations, please visit: <u>http://portlandcustomer.element.com/ts/scope/scope.htm</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

# FACILITIES





| California<br>Labs OC01-17                                               | Minnesota<br>Labs MN01-08, MN10 | New York<br>Labs NY01-04 | Oregon<br>Labs EV01-12   | Texas<br>Labs TX01-09   | Washington                     |  |
|--------------------------------------------------------------------------|---------------------------------|--------------------------|--------------------------|-------------------------|--------------------------------|--|
| 41 Tesla                                                                 | 9349 W Broadway Ave.            | 4939 Jordan Rd.          | 22975 NW Evergreen Pkwy  |                         | 19201 120 <sup>th</sup> Ave NE |  |
| Irvine, CA 92618                                                         | Brooklyn Park, MN 55445         | Elbridge, NY 13060       | Hillsboro, OR 97124      | Plano, TX 75074         | Bothell, WA 98011              |  |
| (949) 861-8918                                                           | (612)-638-5136                  | (315) 554-8214           | (503) 844-4066           | (469) 304-5255          | (425)984-6600                  |  |
|                                                                          |                                 | NV                       | LAP                      |                         |                                |  |
| NVLAP Lab Code: 200676-0                                                 | NVLAP Lab Code: 200881-0        | NVLAP Lab Code: 200761-0 | NVLAP Lab Code: 200630-0 | NVLAP Lab Code:201049-0 | NVLAP Lab Code: 200629-0       |  |
|                                                                          | Innov                           | ation, Science and Eco   | nomic Development Can    | ada                     |                                |  |
| 2834B-1, 2834B-3                                                         | 2834E-1, 2834E-3                | N/A                      | 2834D-1, 2834D-2         | 2834G-1                 | 2834F-1                        |  |
|                                                                          |                                 | BS                       | MI                       |                         |                                |  |
| SL2-IN-E-1154R                                                           | SL2-IN-E-1152R                  | N/A                      | SL2-IN-E-1017            | SL2-IN-E-1158R          | SL2-IN-E-1153R                 |  |
|                                                                          |                                 | VC                       | CI                       |                         |                                |  |
| A-0029                                                                   | A-0109                          | N/A                      | A-0108                   | A-0201                  | A-0110                         |  |
| Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA |                                 |                          |                          |                         |                                |  |
| US0158                                                                   | US0175                          | N/A                      | US0017                   | US0191                  | US0157                         |  |
|                                                                          |                                 |                          | •                        |                         |                                |  |

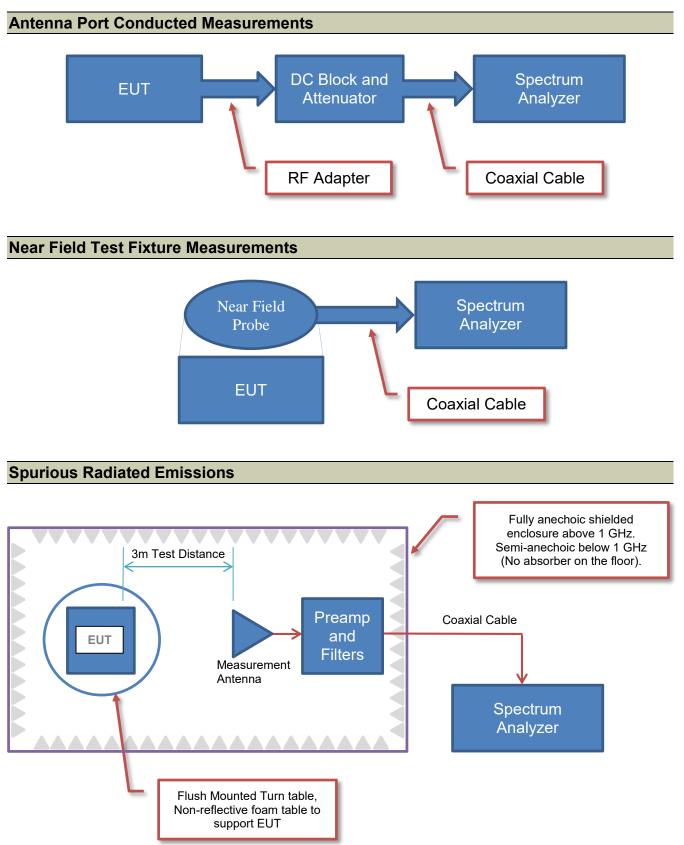


# **MEASUREMENT UNCERTAINTY**



### **Measurement Uncertainty**

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

| Test                                  | + MU    | - MU     |
|---------------------------------------|---------|----------|
| Frequency Accuracy (Hz)               | 0.0007% | -0.0007% |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB  |
| Conducted Power (dB)                  | 0.3 dB  | -0.3 dB  |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB  |
| Temperature (degrees C)               | 0.7°C   | -0.7°C   |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH |
| Voltage (AC)                          | 1.0%    | -1.0%    |
| Voltage (DC)                          | 0.7%    | -0.7%    |
| Field Strength (dB)                   | 0       | 0        |
| AC Powerline Conducted Emissions (dB) | 0       | 0        |

# **Test Setup Block Diagrams**





# **PRODUCT DESCRIPTION**



### **Client and Equipment Under Test (EUT) Information**

| Company Name:            | Impinj, Inc.       |
|--------------------------|--------------------|
| Address:                 | 400 Fairview Ave N |
| City, State, Zip:        | Seattle WA 90109   |
| Test Requested By:       | Bill Ashley        |
| Model:                   | Indy RS1000        |
| First Date of Test:      | November 21, 2017  |
| Last Date of Test:       | November 22, 2017  |
| Receipt Date of Samples: | November 21, 2017  |
| Equipment Design Stage:  | Production         |
| Equipment Condition:     | No Damage          |
| Purchase Authorization:  | Verified           |

### Information Provided by the Party Requesting the Test

### Functional Description of the EUT:

Indy RS1000 is a completely integrated surface-mount RAIN RFID reader module.

### Testing Objective:

Seeking to demonstrate compliance under FCC 15.247 for operation in the 902-928 MHz Band.

# **CONFIGURATIONS**



### Configuration 7LAY0128-1

| Software/Firmware Running during test |          |  |  |
|---------------------------------------|----------|--|--|
| Description                           | Version  |  |  |
| Indy Demo Tool                        | 1.6.8.14 |  |  |

| EUT                |              |                   |               |  |
|--------------------|--------------|-------------------|---------------|--|
| Description        | Manufacturer | Model/Part Number | Serial Number |  |
| RFID Reader Module | Impinj, Inc. | Indy RS1000       | 110121170091  |  |

| Peripherals in test setup boundary                       |                  |                  |     |  |  |
|----------------------------------------------------------|------------------|------------------|-----|--|--|
| Description Manufacturer Model/Part Number Serial Number |                  |                  |     |  |  |
| Laptop                                                   | Dell             | Latitude E7240   | N/A |  |  |
| AC Power Adapter                                         | ITE Power Supply | HK-AB-050A400-D5 | N/A |  |  |

| Cables     |        |            |         |                  |                    |
|------------|--------|------------|---------|------------------|--------------------|
| Cable Type | Shield | Length (m) | Ferrite | Connection 1     | Connection 2       |
| USB Cable  | No     | 1.0m       | No      | Laptop           | RFID Reader Module |
| DC Power   | No     | 1.2m       | Yes     | AC Power Adapter | RFID Reader Module |
| AC Power   | No     | 1.7m       | No      | AC Mains         | AC Power Adapter   |

# **CONFIGURATIONS**



### Configuration 7LAY0128-2

| Software/Firmware Running during test |          |  |  |
|---------------------------------------|----------|--|--|
| Description                           | Version  |  |  |
| Indy Demo Tool                        | 1.6.8.14 |  |  |

| EUT                |              |                   |               |  |
|--------------------|--------------|-------------------|---------------|--|
| Description        | Manufacturer | Model/Part Number | Serial Number |  |
| RFID Reader Module | Impinj, Inc. | Indy RS1000       | 110121170091  |  |

| Peripherals in test setup boundary |                  |                   |               |  |
|------------------------------------|------------------|-------------------|---------------|--|
| Description                        | Manufacturer     | Model/Part Number | Serial Number |  |
| Laptop                             | Dell             | Latitude E7240    | N/A           |  |
| AC Power Adapter                   | ITE Power Supply | HK-AB-050A400-D5  | N/A           |  |
| AC Power Adapter (Laptop)          | Dell             | LA55NM130         | N/A           |  |
| 9 dBic Panel Antenna               | Laird            | S9028PCLJ-IP1     | N/A           |  |

| Cables            |        |            |         |                              |                              |  |  |  |
|-------------------|--------|------------|---------|------------------------------|------------------------------|--|--|--|
| Cable Type        | Shield | Length (m) | Ferrite | Connection 1                 | Connection 2                 |  |  |  |
| USB Cable         | No     | 1.0m       | No      | Laptop                       | RFID Reader Module           |  |  |  |
| DC Power          | No     | 1.2m       | Yes     | AC Power Adapter             | RFID Reader Module           |  |  |  |
| AC Power          | No     | 1.7m       | No      | AC Mains                     | AC Power Adapter             |  |  |  |
| AC Power (Laptop) | No     | 0.9m       | No      | AC Mains                     | AC Power Adapter<br>(Laptop) |  |  |  |
| DC Power (Laptop) | No     | 1.9m       | No      | AC Power Adapter<br>(Laptop) | Laptop                       |  |  |  |
| RF Cable          | Yes    | 2.4m       | No      | RFID Reader Module           | Panel Antenna                |  |  |  |

# **CONFIGURATIONS**



### Configuration 7LAY0128-3

| Software/Firmware Running during test |          |  |  |  |
|---------------------------------------|----------|--|--|--|
| Description                           | Version  |  |  |  |
| Indy Demo Tool                        | 1.6.8.14 |  |  |  |

| EUT                |              |                   |               |  |  |  |
|--------------------|--------------|-------------------|---------------|--|--|--|
| Description        | Manufacturer | Model/Part Number | Serial Number |  |  |  |
| RFID Reader Module | Impinj, Inc. | Indy RS1000       | 110121170091  |  |  |  |

| Peripherals in test setup boundary                       |       |                |     |  |  |  |
|----------------------------------------------------------|-------|----------------|-----|--|--|--|
| Description Manufacturer Model/Part Number Serial Number |       |                |     |  |  |  |
| Laptop                                                   | Dell  | Latitude E7240 | N/A |  |  |  |
| 9 dBic Panel Antenna                                     | Laird | S9028PCLJ-IP1  | N/A |  |  |  |

| Cables     |        |            |         |                    |                    |  |  |  |
|------------|--------|------------|---------|--------------------|--------------------|--|--|--|
| Cable Type | Shield | Length (m) | Ferrite | Connection 1       | Connection 2       |  |  |  |
| USB Cable  | No     | 1.0m       | No      | Laptop             | RFID Reader Module |  |  |  |
| RF Cable   | Yes    | 2.4m       | No      | RFID Reader Module | Panel Antenna      |  |  |  |
| DC Power   | No     | 1.0m       | No      | DC Mains           | RFID Reader Module |  |  |  |

# **MODIFICATIONS**



### **Equipment Modifications**

| Item | Date       | Test                                      | Modification                               | Note                                                                      | Disposition of EUT                                |
|------|------------|-------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|
| 1    | 11/21/2017 | Carrier Frequency<br>Separation           | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 2    | 11/21/2017 | Number of<br>Hopping<br>Frequencies       | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 3    | 11/21/2017 | Dwell Time                                | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 4    | 11/21/2017 | Output Power                              | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 5    | 11/21/2017 | Band Edge<br>Compliance -<br>Hopping Mode | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 6    | 11/21/2017 | Band Edge<br>Compliance                   | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 7    | 11/21/2017 | Occupied<br>Bandwidth                     | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 8    | 11/21/2017 | Spurious<br>Conducted<br>Emissions        | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 9    | 11/22/2017 | Powerline<br>Conducted<br>Emissions       | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | EUT remained at<br>Element following<br>the test. |
| 10   | 11/22/2017 | Spurious<br>Radiated<br>Emissions         | Tested as<br>delivered to<br>Test Station. | No EMI suppression<br>devices were added or<br>modified during this test. | Scheduled testing was completed.                  |



### **TEST DESCRIPTION**

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

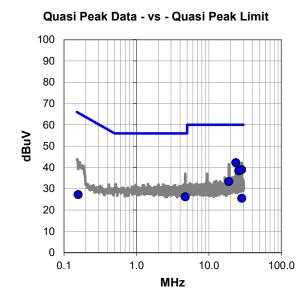
### **TEST EQUIPMENT**

| Description                      | Manufacturer      | Model            | ID   | Last Cal. | Cal. Due  |
|----------------------------------|-------------------|------------------|------|-----------|-----------|
| Receiver                         | Rohde & Schwarz   | ESCI             | ARE  | 8/23/2017 | 8/23/2018 |
| LISN                             | Solar Electronics | 9252-50-R-24-BNC | LIM  | 8/16/2017 | 8/16/2018 |
| Cable - Conducted Cable Assembly | Element           | NC4, HHF, TYL    | NC4A | 4/17/2017 | 4/17/2018 |

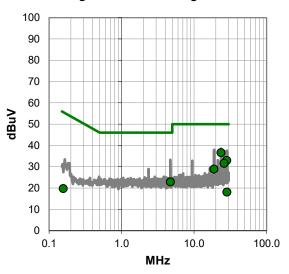
### **MEASUREMENT UNCERTAINTY**

| Description  |        |         |
|--------------|--------|---------|
| Expanded k=2 | 2.4 dB | -2.4 dB |
|              | ·      | •       |

### **CONFIGURATIONS INVESTIGATED**


7LAY0128-3

### **MODES INVESTIGATED**


Continuously Transmitting RFID at Default Power = 27 dBm, Very Fast Mode, Mid Channel 26, 915.25 MHz.



| EUT:                                                                                                  | Indy RS1000   | )           |               |             | Work Order:              | 7LAY0128   |  |  |
|-------------------------------------------------------------------------------------------------------|---------------|-------------|---------------|-------------|--------------------------|------------|--|--|
| Serial Number:                                                                                        | 1101211700    | 91          |               |             | Date:                    | 11/22/2017 |  |  |
| Customer:                                                                                             | Impinj, Inc.  |             |               |             | Temperature:             | 22°C       |  |  |
| Attendees:                                                                                            | Paul Archer   | Paul Archer |               |             | Relative Humidity:       | 58%        |  |  |
| Customer Project:                                                                                     | None          |             |               |             | Bar. Pressure:           | 1017 mb    |  |  |
| Tested By:                                                                                            | Richard Melli | roth        |               |             | Job Site:                | NC05       |  |  |
| Power:                                                                                                | 5 VDC         |             |               |             | Configuration:           | 7LAY0128-3 |  |  |
| TEST SPECIFIC                                                                                         | CATIONS       |             |               |             |                          |            |  |  |
| Specification:                                                                                        |               |             |               | Method:     |                          |            |  |  |
| FCC 15.207:2017                                                                                       |               |             |               | ANSI C63.10 | :2013                    |            |  |  |
| TEST PARAME                                                                                           | TERS          |             |               |             |                          |            |  |  |
| Run #: 1                                                                                              |               | Line:       | Positive Lead | A           | dd. Ext. Attenuation (dB | ): 0       |  |  |
| COMMENTS<br>None                                                                                      |               |             |               |             |                          |            |  |  |
|                                                                                                       |               |             |               |             |                          |            |  |  |
| EUT OPERATING MODES                                                                                   |               |             |               |             |                          |            |  |  |
| Continuously Transmitting RFID at Default Power = 27 dBm, Very Fast Mode, Mid Channel 26, 915.25 MHz. |               |             |               |             |                          |            |  |  |
| DEVIATIONS FROM TEST STANDARD                                                                         |               |             |               |             |                          |            |  |  |
| None                                                                                                  |               |             |               |             |                          |            |  |  |



Average Data - vs - Average Limit



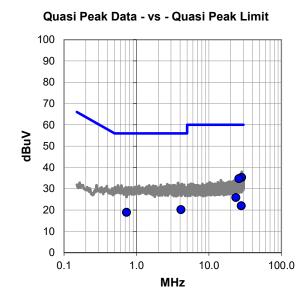


### **RESULTS - Run #1**

| Quasi Peak Data - vs - Quasi Peak Limit |                |                |                    |                          |                |  |  |
|-----------------------------------------|----------------|----------------|--------------------|--------------------------|----------------|--|--|
| Freq<br>(MHz)                           | Amp.<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Margin<br>(dB) |  |  |
| 23.592                                  | 20.2           | 22.0           | 42.2               | 60.0                     | -17.8          |  |  |
| 28.309                                  | 16.4           | 22.5           | 38.9               | 60.0                     | -21.1          |  |  |
| 25.947                                  | 16.1           | 22.3           | 38.4               | 60.0                     | -21.6          |  |  |
| 18.874                                  | 11.8           | 21.6           | 33.4               | 60.0                     | -26.6          |  |  |
| 4.718                                   | 5.7            | 20.5           | 26.2               | 56.0                     | -29.8          |  |  |
| 28.478                                  | 2.9            | 22.6           | 25.5               | 60.0                     | -34.5          |  |  |
| 0.157                                   | 6.9            | 20.3           | 27.2               | 65.6                     | -38.4          |  |  |

#### Average Data - vs - Average Limit

| Freq<br>(MHz) | Amp.<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Margin<br>(dB) |
|---------------|----------------|----------------|--------------------|--------------------------|----------------|
| 23.592        | 14.6           | 22.0           | 36.6               | 50.0                     | -13.4          |
| 28.309        | 10.4           | 22.5           | 32.9               | 50.0                     | -17.1          |
| 25.947        | 9.3            | 22.3           | 31.6               | 50.0                     | -18.4          |
| 18.874        | 7.3            | 21.6           | 28.9               | 50.0                     | -21.1          |
| 4.718         | 2.4            | 20.5           | 22.9               | 46.0                     | -23.1          |
| 28.478        | -4.5           | 22.6           | 18.1               | 50.0                     | -31.9          |
| 0.157         | -0.6           | 20.3           | 19.7               | 55.6                     | -35.9          |


### CONCLUSION

Pass

Tested By



| EUT:                                                                                                  | Indy RS1000  | )     |               |             | Work Order:              | 7LAY0128   |  |  |
|-------------------------------------------------------------------------------------------------------|--------------|-------|---------------|-------------|--------------------------|------------|--|--|
| Serial Number:                                                                                        | 1101211700   | 91    |               |             | Date:                    | 11/22/2017 |  |  |
| Customer:                                                                                             | Impinj, Inc. |       |               |             | Temperature:             | 22°C       |  |  |
| Attendees:                                                                                            | Paul Archer  |       |               |             | Relative Humidity:       | 58%        |  |  |
| Customer Project:                                                                                     | None         |       |               |             | Bar. Pressure:           | 1017 mb    |  |  |
| Tested By:                                                                                            | Richard Mell | roth  |               |             | Job Site:                | NC05       |  |  |
| Power:                                                                                                | 5 VDC        |       |               |             | Configuration:           | 7LAY0128-3 |  |  |
| TEST SPECIFIC                                                                                         | CATIONS      |       |               |             |                          |            |  |  |
| Specification:                                                                                        |              |       |               | Method:     |                          |            |  |  |
| FCC 15.207:2017                                                                                       |              |       |               | ANSI C63.10 | ):2013                   |            |  |  |
| TEST PARAME                                                                                           | TERS         |       |               |             |                          |            |  |  |
| Run #: 2                                                                                              |              | Line: | Negative Lead | А           | dd. Ext. Attenuation (dB | ): 0       |  |  |
| COMMENTS<br>None                                                                                      |              |       |               |             |                          |            |  |  |
| EUT OPERATING MODES                                                                                   |              |       |               |             |                          |            |  |  |
| Continuously Transmitting RFID at Default Power = 27 dBm, Very Fast Mode, Mid Channel 26, 915.25 MHz. |              |       |               |             |                          |            |  |  |
| DEVIATIONS FROM TEST STANDARD                                                                         |              |       |               |             |                          |            |  |  |
| None                                                                                                  |              |       |               |             |                          |            |  |  |



100 90 80 70 60 dBuV 50 40 30 100 20 Ö 10 0 0.1 1.0 10.0 100.0 MHz

Average Data - vs - Average Limit



### RESULTS - Run #2

| Q             | Quasi Peak Data - vs - Quasi Peak Limit |                |                    |                          |                |  |  |  |  |  |  |
|---------------|-----------------------------------------|----------------|--------------------|--------------------------|----------------|--|--|--|--|--|--|
| Freq<br>(MHz) | Amp.<br>(dBuV)                          | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Margin<br>(dB) |  |  |  |  |  |  |
| 28.315        | 12.8                                    | 22.5           | 35.3               | 60.0                     | -24.7          |  |  |  |  |  |  |
| 25.954        | 12.4                                    | 22.3           | 34.7               | 60.0                     | -25.3          |  |  |  |  |  |  |
| 23.585        | 3.9                                     | 22.0           | 25.9               | 60.0                     | -34.1          |  |  |  |  |  |  |
| 4.119         | -0.3                                    | 20.5           | 20.2               | 56.0                     | -35.8          |  |  |  |  |  |  |
| 0.729         | -1.3                                    | 20.2           | 18.9               | 56.0                     | -37.1          |  |  |  |  |  |  |
| 27.981        | -0.5                                    | 22.5           | 22.0               | 60.0                     | -38.0          |  |  |  |  |  |  |

### Average Data - vs - Average Limit

| Freq<br>(MHz) | Amp.<br>(dBuV) | Factor<br>(dB) | Adjusted<br>(dBuV) | Spec.<br>Limit<br>(dBuV) | Margin<br>(dB) |
|---------------|----------------|----------------|--------------------|--------------------------|----------------|
| 28.315        | 6.9            | 22.5           | 29.4               | 50.0                     | -20.6          |
| 25.954        | 6.9            | 22.3           | 29.2               | 50.0                     | -20.8          |
| 0.729         | -4.3           | 20.2           | 15.9               | 46.0                     | -30.1          |
| 4.119         | -4.9           | 20.5           | 15.6               | 46.0                     | -30.4          |
| 23.585        | -4.0           | 22.0           | 18.0               | 50.0                     | -32.0          |
| 27.981        | -5.0           | 22.5           | 17.5               | 50.0                     | -32.5          |

### CONCLUSION

Pass

Tested By

# SPURIOUS RADIATED EMISSIONS



PSA-ESCI 2017.09.18

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

### MODES OF OPERATION

| Dense Reader Mode, PR-ASK    |  |
|------------------------------|--|
| Very Fast Mode, DSB-ASK      |  |
| Very Sensitive Mode, DSB-ASK |  |

#### **CHANNELS TESTED**

Low Channel 1, 902.75 MHz Mid Channel 26, 915.25 MHz High Channel 50, 927.25 MHz

### POWER SETTINGS INVESTIGATED

5 VDC

### **CONFIGURATIONS INVESTIGATED**

7LAY0128 - 2

#### FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 12.4 GHz

### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

#### **TEST EQUIPMENT**

| Description                  | Manufacturer  | Model                    | ID  | Last Cal.   | Interval |
|------------------------------|---------------|--------------------------|-----|-------------|----------|
| Analyzer - Spectrum Analyzer | Agilent       | E4440A                   | AFE | 24-Jun-2017 | 12 mo    |
| Antenna - Biconilog          | Teseq         | CBL 6141B                | AYL | 11-Aug-2017 | 24 mo    |
| Antenna - Double Ridge       | EMCO          | 3115                     | AHM | 10-Jun-2016 | 24 mo    |
| Antenna - Standard Gain      | EMCO          | 3160-07                  | AHP | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier    | Miteq         | AM-1616-1000             | PAB | 11-Jul-2017 | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq         | AMF-3D-00100800-32-13P   | AVZ | 19-May-2017 | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq         | AMF-6F-08001200-30-10P   | AOK | 18-Aug-2017 | 12 mo    |
| Cable                        | Element       | Bilog Cables             | NC1 | 11-Jul-2017 | 12 mo    |
| Cable                        | Element       | 3115 Horn Cable          | NC2 | 19-May-2017 | 12 mo    |
| Cable                        | Element       | Standard Gain Horn Cable | NC3 | 19-May-2017 | 12 mo    |
| Filter - Low Pass            | Micro-Tronics | LPM50003                 | LFE | 19-Oct-2017 | 12 mo    |
| Filter - High Pass           | Micro-Tronics | HPM50114                 | HFN | 27-Dec-2016 | 12 mo    |
| Filter - Low Pass            | Micro-Tronics | LPM50004                 | LFF | 27-Dec-2016 | 12 mo    |
| Filter - Band Pass/Notch     | K&L Microwave | 3TNF-500/1000-N/N        | HHO | 17-Apr-2017 | 12 mo    |

### **MEASUREMENT BANDWIDTHS**

| Frequency Range | Peak Data | Quasi-Peak Data | Average Data |
|-----------------|-----------|-----------------|--------------|
| (MHz)           | (kHz)     | (kHz)           | (kHz)        |
| 0.01 - 0.15     | 1.0       | 0.2             | 0.2          |
| 0.15 - 30.0     | 10.0      | 9.0             | 9.0          |
| 30.0 - 1000     | 100.0     | 120.0           | 120.0        |
| Above 1000      | 1000.0    | N/A             | 1000.0       |

### **TEST DESCRIPTION**

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

## SPURIOUS RADIATED EMISSIONS



| Woi                                                                                                                                          | rk Order: |             | Y0128                    |        | Date:         | 22-No     |              | Q.        | 1 3        | 5               |          |       |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|--------------------------|--------|---------------|-----------|--------------|-----------|------------|-----------------|----------|-------|
|                                                                                                                                              | Project:  |             | one                      | Terr   | nperature:    | 22        | °C           | N         | US         | 11              |          |       |
|                                                                                                                                              | Job Site: |             | C01                      |        | Humidity:     | 53%       |              | P.        |            |                 |          |       |
| Serial                                                                                                                                       | Number:   |             | 1170091                  | Barome | tric Pres.:   | 1018      | mbar         | Te        | sted by:   | Richard Mel     | llroth   |       |
|                                                                                                                                              |           | Indy RS10   | 00                       |        |               |           |              |           |            |                 |          |       |
|                                                                                                                                              | guration: |             |                          |        |               |           |              |           |            |                 |          |       |
|                                                                                                                                              |           | Impinj, Inc |                          |        |               |           |              |           |            |                 |          |       |
|                                                                                                                                              |           | Paul Arch   | er                       |        |               |           |              |           |            |                 |          |       |
| EU.                                                                                                                                          | T Power:  |             |                          |        |               |           |              |           |            |                 |          |       |
| Operatin                                                                                                                                     | ng Mode:  |             | sly Transm<br>, and data |        | at Default Po | wer = 27  | dBm. See cor | nments ne | ext to dat | ta points for E | EUT chai | nnel, |
| De                                                                                                                                           | viations  | None        |                          |        |               |           |              |           |            |                 |          |       |
| Co                                                                                                                                           | omments   | None        |                          |        |               |           |              |           |            |                 |          |       |
| Fest Specif                                                                                                                                  | fications |             |                          |        |               |           | Test Method  |           |            |                 |          |       |
| CC 15.247                                                                                                                                    |           |             |                          |        |               |           | ANSI C63.10: | 2013      |            |                 |          |       |
|                                                                                                                                              |           |             |                          |        |               |           |              |           |            |                 |          |       |
| Run #                                                                                                                                        | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) | 1 t          | to 4(m)   |            | Results         | F        | Pass  |
| Run #                                                                                                                                        | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | eight(s)  | 1 t          | to 4(m)   |            | Results         | F        | Pass  |
|                                                                                                                                              | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) | 1 t          | to 4(m)   |            | Results         | F        | Pass  |
| <b>Run #</b><br>80                                                                                                                           | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) | 11           | to 4(m)   |            | Results         | F        | Pass  |
|                                                                                                                                              | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) | 11           | to 4(m)   |            | Results         | F        | Pass  |
| 80                                                                                                                                           | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) | 11           | to 4(m)   |            | Results         | F        | Pass  |
|                                                                                                                                              | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) | 11           | to 4(m)   |            | Results         | F        | Pass  |
| 80                                                                                                                                           | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) |              | to 4(m)   |            | Results         | F        | Pass  |
| 80                                                                                                                                           | 15        | Test Di     | stance (m                | ) 3    | Antenna H     | leight(s) | 1t           | to 4(m)   |            | Results         | F        | Pass  |
| 80                                                                                                                                           | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) |              | to 4(m)   |            | Results         |          | Pass  |
| 80                                                                                                                                           | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) |              | to 4(m)   |            | Results         | F        | Pass  |
| 80                                                                                                                                           | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) |              | to 4(m)   |            | Results         | F        | Pass  |
| 80                                                                                                                                           | 15        | Test Di     | stance (m                | ) 3    | Antenna H     | leight(s) |              | io 4(m)   |            | Results         | F        |       |
| 80                                                                                                                                           | 15        | Test Di     | stance (m)               | ) 3    | Antenna H     | leight(s) |              | io 4(m)   |            | Results         | F        |       |
| 80                                                                                                                                           |           |             | stance (m                |        | Antenna H     | leight(s) |              | io 4(m)   |            | Results         |          |       |
| 80                                                                                                                                           | 15        | Test Di     | stance (m)               |        | Antenna H     | leight(s) |              | to 4(m)   |            | Results         |          |       |
| 80<br>70<br>60<br>50<br><b>w/\ngp</b><br>40                                                                                                  | 15        | Test Di     | stance (m)               |        | Antenna H     | leight(s) |              | to 4(m)   |            | Results         | -        |       |
| 80                                                                                                                                           |           | Test Di     |                          |        | Antenna H     | leight(s) |              | to 4(m)   |            | Results         | F        |       |
| 80<br>70<br>60<br><b>w/Mgp</b><br>40                                                                                                         |           | Test Di     | stance (m)               |        | Antenna H     |           |              | to 4(m)   |            | Results         | -        |       |
| 80<br>70<br>60<br><b>m</b><br><b>M</b><br><b>M</b><br><b>M</b><br><b>M</b><br><b>B</b><br><b>D</b><br>30                                     |           |             | stance (m                |        | Antenna H     | leight(s) |              | io 4(m)   |            | Results         |          |       |
| 80<br>70<br>60<br><b>w/Mgp</b><br>40                                                                                                         |           | Test Di     | stance (m)               |        | Antenna H     | leight(s) |              | to 4(m)   |            | Results         | -        |       |
| 80<br>70<br>60<br><b>m</b><br><b>M</b><br><b>M</b><br><b>M</b><br><b>M</b><br><b>B</b><br><b>D</b><br>30                                     |           | Test Di     |                          |        | Antenna H     |           |              | to 4(m)   |            | Results         | -        |       |
| 80<br>70<br>60<br>50<br><b>W/Ng</b><br>40<br>30<br>20                                                                                        |           | Test Di     |                          |        | Antenna H     | leight(s) |              | to 4(m)   |            | Results         | F        |       |
| 80<br>70<br>60<br>50<br><b>W/MB</b><br>40<br>30                                                                                              |           |             |                          |        | Antenna H     |           |              | to 4(m)   |            | Results         | F        |       |
| 80<br>70<br>60<br>50<br><b>W/Ng</b><br>40<br>30<br>20                                                                                        |           |             |                          |        | Antenna H     | leight(s) |              | o 4(m)    |            |                 | F        |       |
| 80<br>70<br>60<br>50<br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b> |           | Test Dia    |                          |        | Antenna H     |           |              |           |            | Results         | F        |       |
| 80<br>70<br>60<br>50<br>40<br>30<br>20<br>10                                                                                                 |           | Test Di     |                          |        |               |           |              |           |            | Results         | F        | Pass  |
| 80<br>70<br>60<br>50<br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b><br><b>m</b> |           |             |                          |        | Antenna H     |           |              |           |            | Results         | F        |       |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna Height<br>(meters) | Azimuth<br>(degrees) | Test Distance<br>(meters) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) |                                  |
|---------------|---------------------|----------------|----------------------------|----------------------|---------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|----------------------------------|
|               |                     |                |                            |                      |                           |                                 |                                 |          |                                |                      |                         |                              | Comments                         |
| 1830.495      | 49.3                | -2.3           | 1.1                        | 45.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 47.0                 | 54.0                    | -7.0                         | Mid Ch, Dense Reader, EUT Horz   |
| 1830.510      | 49.2                | -2.3           | 1.1                        | 45.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 46.9                 | 54.0                    | -7.1                         | Mid Ch, Very Fast, EUT Horz      |
| 1830.510      | 48.9                | -2.3           | 1.2                        | 44.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 46.6                 | 54.0                    | -7.4                         | Mid Ch, Very Sensitive, EUT Horz |
| 1830.530      | 48.7                | -2.3           | 2.7                        | 44.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 46.4                 | 54.0                    | -7.6                         | Mid Ch, Very Fast, EUT Horz      |
| 1830.480      | 48.6                | -2.3           | 1.2                        | 51.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 46.3                 | 54.0                    | -7.7                         | Mid Ch, Very Fast, EUT Vert      |
| 1830.485      | 48.5                | -2.3           | 1.6                        | 57.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 46.2                 | 54.0                    | -7.8                         | Mid Ch, Very Fast, EUT Flat      |
| 1830.470      | 48.4                | -2.3           | 2.1                        | 29.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 46.1                 | 54.0                    | -7.9                         | Mid Ch, Very Fast, EUT Flat      |
| 1854.465      | 47.5                | -2.0           | 2.2                        | 64.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 45.5                 | 54.0                    | -8.5                         | High Ch, Very Fast, EUT Horz     |
| 1830.465      | 47.1                | -2.3           | 1.7                        | 148.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 44.8                 | 54.0                    | -9.2                         | Mid Ch, Very Fast, EUT Vert      |
| 1805.515      | 47.0                | -2.6           | 2.2                        | 57.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 44.4                 | 54.0                    | -9.6                         | Low Ch, Very Fast, EUT Horz      |
| 1854.490      | 45.8                | -2.0           | 2.2                        | 156.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 43.8                 | 54.0                    | -10.2                        | High Ch, Very Fast, EUT Horz     |
| 1805.510      | 46.3                | -2.6           | 1.0                        | 159.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 43.7                 | 54.0                    | -10.3                        | Low Ch, Very Fast, EUT Horz      |
| 7416.555      | 27.7                | 14.0           | 1.6                        | 329.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 41.7                 | 54.0                    | -12.3                        | High Ch, Very Fast, EUT Horz     |
| 7416.735      | 27.7                | 14.0           | 1.6                        | 129.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 41.7                 | 54.0                    | -12.3                        | High Ch, Very Fast, EUT Horz     |
| 7320.615      | 27.9                | 13.5           | 1.6                        | 89.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 41.4                 | 54.0                    | -12.6                        | Mid Ch, Very Fast, EUT Horz      |
| 7321.050      | 27.9                | 13.5           | 1.6                        | 87.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 41.4                 | 54.0                    | -12.6                        | Mid Ch, Very Fast, EUT Horz      |
| 5416.345      | 27.0                | 10.0           | 1.6                        | 324.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 37.0                 | 54.0                    | -17.0                        | Low Ch, Very Fast, EUT Horz      |
| 5415.895      | 27.0                | 10.0           | 1.6                        | 342.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 37.0                 | 54.0                    | -17.0                        | Low Ch, Very Fast, EUT Horz      |
| 3610.995      | 32.7                | 3.3            | 2.0                        | 181.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 36.0                 | 54.0                    | -18.0                        | Low Ch, Very Fast, EUT Horz      |
| 4576.080      | 27.6                | 7.4            | 1.6                        | 360.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 35.0                 | 54.0                    | -19.0                        | Mid Ch, Very Fast, EUT Horz      |
| 4576.680      | 27.6                | 7.4            | 2.6                        | 65.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 35.0                 | 54.0                    | -19.0                        | Mid Ch, Very Fast, EUT Horz      |
| 4635.050      | 27.4                | 7.6            | 1.6                        | 342.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 35.0                 | 54.0                    | -19.0                        | High Ch, Very Fast, EUT Horz     |
| 4635.535      | 27.4                | 7.6            | 1.6                        | 53.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 35.0                 | 54.0                    | -19.0                        | High Ch, Very Fast, EUT Horz     |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna Height<br>(meters) | Azimuth<br>(degrees) | Test Distance<br>(meters) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) | Comments                         |
|---------------|---------------------|----------------|----------------------------|----------------------|---------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|----------------------------------|
| 4512.705      | 27.5                | 7.3            | 1.6                        | 287.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 34.8                 | 54.0                    | -19.2                        | Low Ch, Very Fast, EUT Horz      |
| 4512.400      | 27.5                | 7.3            | 1.6                        | 337.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 34.8                 | 54.0                    | -19.2                        | Low Ch, Very Fast, EUT Horz      |
| 3661.045      | 30.3                | 3.7            | 1.6                        | 32.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 34.0                 | 54.0                    | -20.0                        | Mid Ch, Very Fast, EUT Horz      |
| 3708.980      | 30.1                | 3.9            | 1.6                        | 170.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 34.0                 | 54.0                    | -20.0                        | High Ch, Very Fast, EUT Horz     |
| 3660.980      | 30.0                | 3.7            | 1.6                        | 80.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 33.7                 | 54.0                    | -20.3                        | Mid Ch, Very Fast, EUT Horz      |
| 2781.745      | 33.7                | -0.1           | 2.0                        | 14.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 33.6                 | 54.0                    | -20.4                        | High Ch, Very Fast, EUT Horz     |
| 3610.995      | 30.2                | 3.3            | 1.6                        | 85.0                 | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 33.5                 | 54.0                    | -20.5                        | Low Ch, Very Fast, EUT Horz      |
| 3709.070      | 29.3                | 3.9            | 1.6                        | 97.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 33.2                 | 54.0                    | -20.8                        | High Ch, Very Fast, EUT Horz     |
| 7418.165      | 38.8                | 14.0           | 1.6                        | 129.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 52.8                 | 74.0                    | -21.2                        | High Ch, Very Fast, EUT Horz     |
| 7321.635      | 39.0                | 13.5           | 1.6                        | 89.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 52.5                 | 74.0                    | -21.5                        | Mid Ch, Very Fast, EUT Horz      |
| 7321.555      | 39.0                | 13.5           | 1.6                        | 87.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 52.5                 | 74.0                    | -21.5                        | Mid Ch, Very Fast, EUT Horz      |
| 7416.945      | 38.4                | 14.0           | 1.6                        | 329.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 52.4                 | 74.0                    | -21.6                        | High Ch, Very Fast, EUT Horz     |
| 2745.695      | 32.3                | -0.2           | 2.0                        | 3.0                  | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 32.1                 | 54.0                    | -21.9                        | Mid Ch, Very Fast, EUT Horz      |
| 2708.205      | 32.3                | -0.2           | 1.6                        | 343.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 32.1                 | 54.0                    | -21.9                        | Low Ch, Very Fast, EUT Horz      |
| 2781.840      | 29.9                | -0.1           | 1.6                        | 58.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 29.8                 | 54.0                    | -24.2                        | High Ch, Very Fast, EUT Horz     |
| 2745.700      | 29.6                | -0.2           | 3.5                        | 238.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 29.4                 | 54.0                    | -24.6                        | Mid Ch, Very Fast, EUT Horz      |
| 1830.600      | 51.3                | -2.3           | 1.1                        | 45.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 49.0                 | 74.0                    | -25.0                        | Mid Ch, Dense Reader, EUT Horz   |
| 2708.150      | 29.2                | -0.2           | 1.6                        | 33.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 29.0                 | 54.0                    | -25.0                        | Low Ch, Very Fast, EUT Horz      |
| 1830.485      | 51.2                | -2.3           | 1.1                        | 45.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 48.9                 | 74.0                    | -25.1                        | Mid Ch, Very Fast, EUT Horz      |
| 1830.350      | 50.9                | -2.3           | 1.2                        | 44.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 48.6                 | 74.0                    | -25.4                        | Mid Ch, Very Sensitive, EUT Horz |
| 1830.500      | 50.8                | -2.3           | 1.2                        | 51.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 48.5                 | 74.0                    | -25.5                        | Mid Ch, Very Fast, EUT Vert      |
| 1830.575      | 50.7                | -2.3           | 2.7                        | 44.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 48.4                 | 74.0                    | -25.6                        | Mid Ch, Very Fast, EUT Horz      |
| 1830.415      | 50.6                | -2.3           | 1.6                        | 57.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 48.3                 | 74.0                    | -25.7                        | Mid Ch, Very Fast, EUT Flat      |
| 1830.480      | 50.5                | -2.3           | 2.1                        | 29.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 48.2                 | 74.0                    | -25.8                        | Mid Ch, Very Fast, EUT Flat      |
| 5417.920      | 38.2                | 10.0           | 1.6                        | 324.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 48.2                 | 74.0                    | -25.8                        | Low Ch, Very Fast, EUT Horz      |
| 1854.575      | 49.8                | -2.0           | 2.2                        | 64.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 47.8                 | 74.0                    | -26.2                        | High Ch, Very Fast, EUT Horz     |
| 1830.520      | 49.7                | -2.3           | 1.7                        | 148.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 47.4                 | 74.0                    | -26.6                        | Mid Ch, Very Fast, EUT Vert      |
| 5417.880      | 37.4                | 10.0           | 1.6                        | 342.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 47.4                 | 74.0                    | -26.6                        | Low Ch, Very Fast, EUT Horz      |
| 4514.290      | 39.7                | 7.3            | 1.6                        | 337.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 47.0                 | 74.0                    | -27.0                        | Low Ch, Very Fast, EUT Horz      |
| 1805.425      | 49.4                | -2.6           | 2.2                        | 57.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 46.8                 | 74.0                    | -27.2                        | Low Ch, Very Fast, EUT Horz      |
| 4636.935      | 39.1                | 7.6            | 1.6                        | 342.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 46.7                 | 74.0                    | -27.3                        | High Ch, Very Fast, EUT Horz     |
| 1854.480      | 48.6                | -2.0           | 2.2                        | 156.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 46.6                 | 74.0                    | -27.4                        | High Ch, Very Fast, EUT Horz     |
| 1805.555      | 49.0                | -2.6           | 1.0                        | 159.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 46.4                 | 74.0                    | -27.6                        | Low Ch, Very Fast, EUT Horz      |
| 4576.195      | 39.0                | 7.4            | 2.6                        | 65.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 46.4                 | 74.0                    | -27.6                        | Mid Ch, Very Fast, EUT Horz      |
| 4636.950      | 38.8                | 7.6            | 1.6                        | 53.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 46.4                 | 74.0                    | -27.6                        | High Ch, Very Fast, EUT Horz     |
| 4576.515      | 38.4                | 7.4            | 1.6                        | 360.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 45.8                 | 74.0                    | -28.2                        | Mid Ch, Very Fast, EUT Horz      |
| 4513.400      | 38.4                | 7.3            | 1.6                        | 287.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 45.7                 | 74.0                    | -28.3                        | Low Ch, Very Fast, EUT Horz      |
| 3611.140      | 41.5                | 3.3            | 2.0                        | 181.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 44.8                 | 74.0                    | -29.2                        | Low Ch, Very Fast, EUT Horz      |
| 3661.190      | 40.9                | 3.7            | 1.6                        | 80.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 44.6                 | 74.0                    | -29.4                        | Mid Ch, Very Fast, EUT Horz      |
| 3660.635      | 40.8                | 3.7            | 1.6                        | 32.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 44.5                 | 74.0                    | -29.5                        | Mid Ch, Very Fast, EUT Horz      |
| 3708.495      | 40.6                | 3.9            | 1.6                        | 170.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 44.5                 | 74.0                    | -29.5                        | High Ch, Very Fast, EUT Horz     |
| 3709.305      | 40.2                | 3.9            | 1.6                        | 97.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 44.1                 | 74.0                    | -29.9                        | High Ch, Very Fast, EUT Horz     |
| 3611.240      | 40.4                | 3.3            | 1.6                        | 85.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 43.7                 | 74.0                    | -30.3                        | Low Ch, Very Fast, EUT Horz      |
| 2781.790      | 42.1                | -0.1           | 2.0                        | 14.0                 | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 42.0                 | 74.0                    | -32.0                        | High Ch, Very Fast, EUT Horz     |
| 2709.090      | 41.9                | -0.2           | 1.6                        | 343.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 41.7                 | 74.0                    | -32.3                        | Low Ch, Very Fast, EUT Horz      |
| 2745.300      | 41.0                | -0.2           | 2.0                        | 3.0                  | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 40.8                 | 74.0                    | -33.2                        | Mid Ch, Very Fast, EUT Horz      |
| 2782.075      | 40.6                | -0.1           | 1.6                        | 58.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 40.5                 | 74.0                    | -33.5                        | High Ch, Very Fast, EUT Horz     |
| 2744.735      | 40.4                | -0.2           | 3.5                        | 238.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 40.2                 | 74.0                    | -33.8                        | Mid Ch, Very Fast, EUT Horz      |
| 2708.365      | 40.0                | -0.2           | 1.6                        | 33.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 39.8                 | 74.0                    | -34.2                        | Low Ch, Very Fast, EUT Horz      |
|               |                     |                |                            |                      |                           |                                 |                                 |          |                                |                      |                         |                              |                                  |

## **DUTY CYCLE**



XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

#### **TEST DESCRIPTION**

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The test software provided for operation in a fixed, single channel mode allows the EUT to operate continuously at 100% Duty Cycle.



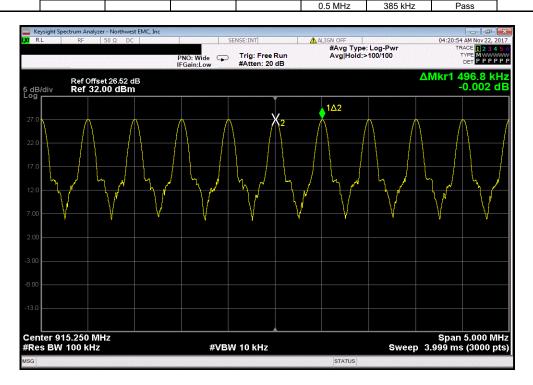
XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

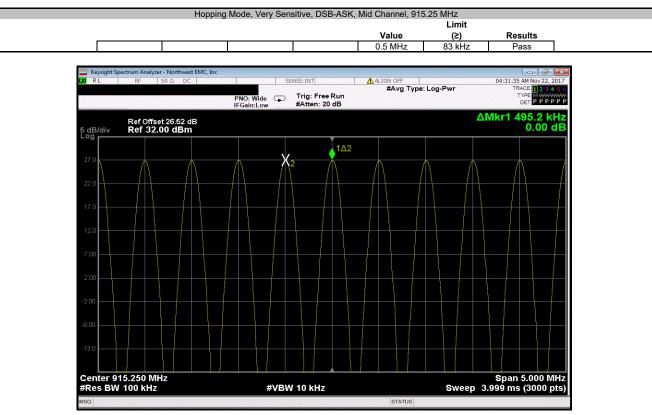
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

#### **TEST DESCRIPTION**


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The channel carrier frequencies in the 902-928 MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.



|                    |                                              |                   | NweTx 2016.09.14.2 | XMit 2017.09.21 |  |  |  |  |  |  |
|--------------------|----------------------------------------------|-------------------|--------------------|-----------------|--|--|--|--|--|--|
| EUT                | Indy RS1000                                  | Work Order:       | 7LAY0128           |                 |  |  |  |  |  |  |
| Serial Number      | 110121170091                                 | Date:             | 21-Nov-17          |                 |  |  |  |  |  |  |
| Customer           | Impinj, Inc.                                 | Temperature:      | 21.6 °C            |                 |  |  |  |  |  |  |
| Attendees          | Paul Archer                                  |                   | 41.2% RH           |                 |  |  |  |  |  |  |
| Project            |                                              | Barometric Pres.: | 1013 mbar          |                 |  |  |  |  |  |  |
|                    | Richard Mellroth Power: 5 VDC                | Job Site:         | NC02               |                 |  |  |  |  |  |  |
| TEST SPECIFICAT    | IONS Test Method                             |                   |                    |                 |  |  |  |  |  |  |
| FCC 15.247:2017    | ANSI C63.10:2013                             |                   |                    |                 |  |  |  |  |  |  |
|                    |                                              |                   |                    |                 |  |  |  |  |  |  |
| COMMENTS           |                                              |                   |                    |                 |  |  |  |  |  |  |
| Transmitting at De | Transmitting at Defaut Power Setting = 27dBm |                   |                    |                 |  |  |  |  |  |  |
| DEVIATIONS FRO     | M TEST STANDARD                              |                   |                    |                 |  |  |  |  |  |  |
| None               |                                              |                   |                    |                 |  |  |  |  |  |  |
| Configuration #    | 1 Signature                                  |                   |                    |                 |  |  |  |  |  |  |
|                    | · · · · · · · · · · · · · · · · · · ·        |                   | Limit              |                 |  |  |  |  |  |  |
|                    |                                              | Value             | (≥)                | Results         |  |  |  |  |  |  |
| Hopping Mode       |                                              |                   |                    |                 |  |  |  |  |  |  |
|                    | Dense Reader, PR-ASK                         |                   |                    |                 |  |  |  |  |  |  |
|                    | Mid Channel, 915.25 MHz                      | 0.5 MHz           | 45 kHz             | Pass            |  |  |  |  |  |  |
|                    | Very Fast, DSB-ASK                           |                   |                    |                 |  |  |  |  |  |  |
|                    | Mid Channel, 915.25 MHz                      | 0.5 MHz           | 385 kHz            | Pass            |  |  |  |  |  |  |
|                    | Very Sensitive, DSB-ASK                      |                   |                    |                 |  |  |  |  |  |  |
|                    | Mid Channel, 915.25 MHz                      | 0.5 MHz           | 83 kHz             | Pass            |  |  |  |  |  |  |




weTx 2016.09.14.2 XMit 2017.09.21 Hopping Mode, Dense Reader, PR-ASK, Mid Channel, 915.25 MHz Limit **(≥)** 45 kHz Value Results 0.5 MHz Pass Keysight ! R L 03:51:39 AM Nov 22, 2017 AL1 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P P P P P #Avg Type: Log-Pwr Avg|Hold:>100/100 PNO: Wide Trig: Free Run IFGain:Low #Atten: 20 dB ΔMkr1 501.8 kHz 0.000 dB Ref Offset 26.52 dB Ref 32.00 dBm 5 dB/div Log 1<u>Δ</u>2 X2 Center 915.250 MHz #Res BW 100 kHz Span 5.000 MHz Sweep 3.999 ms (3000 pts) #VBW 10 kHz STATUS Hopping Mode, Very Fast, DSB-ASK, Mid Channel, 915.25 MHz Limit Value (≥) Results





NweTx 2016.09.14.2 XMit 2017.09.21





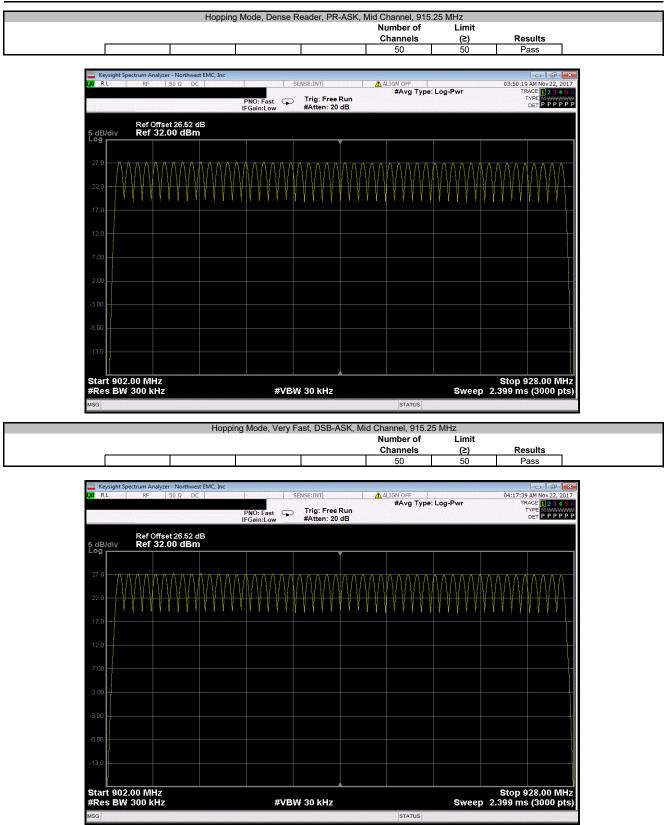
XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

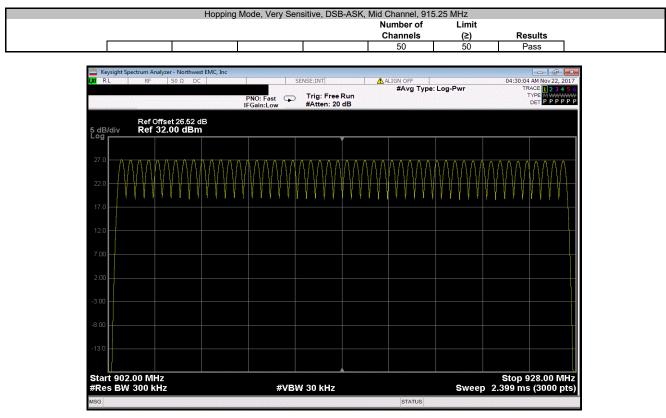
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

#### **TEST DESCRIPTION**


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The number of hopping frequencies was measured across the authorized band. The hopping function of the EUT was enabled.



|                    |                            |              |        |                  |                   | NweTx 2016.09.14.2 | XMit 2017.09.21 |
|--------------------|----------------------------|--------------|--------|------------------|-------------------|--------------------|-----------------|
|                    | Indy RS1000                |              |        |                  | Work Order:       |                    |                 |
| Serial Number      | : 110121170091             |              |        |                  |                   | 21-Nov-17          |                 |
| Customer           | Impinj, Inc.               |              |        |                  | Temperatures      | 21.6 °C            |                 |
|                    | Paul Archer                |              |        |                  | Humidity          | 41.2% RH           |                 |
| Project            |                            |              |        |                  | Barometric Pres.: |                    |                 |
|                    | Richard Mellroth           |              | Power: | 5 VDC            | Job Site:         | NC02               |                 |
| TEST SPECIFICAT    | TIONS                      |              |        | Test Method      |                   |                    |                 |
| FCC 15.247:2017    |                            |              |        | ANSI C63.10:2013 |                   |                    |                 |
|                    |                            |              |        |                  |                   |                    |                 |
| COMMENTS           |                            |              |        | •                |                   |                    |                 |
| Transmitting at De | efaut Power Setting = 27dE | 3m           |        |                  |                   |                    |                 |
| ······             |                            |              |        |                  |                   |                    |                 |
|                    |                            |              |        |                  |                   |                    |                 |
| DEVIATIONS FRO     | M TEST STANDARD            |              |        |                  |                   |                    |                 |
| None               |                            |              |        |                  |                   |                    |                 |
|                    |                            |              | n. n   |                  |                   |                    |                 |
| Configuration #    | 1                          |              | VIGI   |                  |                   |                    |                 |
| -                  |                            | Signature    | pre ic |                  |                   |                    |                 |
|                    |                            | <u>v</u>     |        |                  | Number of         | Limit              |                 |
|                    |                            |              |        |                  | Channels          | (≥)                | Results         |
| Hopping Mode       |                            |              |        |                  |                   |                    |                 |
|                    | Dense Reader, PR-ASK       |              |        |                  |                   |                    |                 |
|                    | Mid Channel                | , 915.25 MHz |        |                  | 50                | 50                 | Pass            |
|                    | Very Fast, DSB-ASK         |              |        |                  |                   |                    |                 |
|                    |                            | , 915.25 MHz |        |                  | 50                | 50                 | Pass            |
|                    | Very Sensitive, DSB-ASK    |              |        |                  |                   |                    |                 |
|                    |                            | , 915.25 MHz |        |                  | 50                | 50                 | Pass            |




NweTx 2016.09.14.2 XMit 2017.09.21





NweTx 2016.09.14.2 XMit 2017.09.21





XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The hopping function of the EUT was enabled.

The dwell time limit for frequency hopping systems in the 902-928 MHz band is determined by the 20 dB bandwidth of the hopping channel:

If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the average time of ocupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the average time of ocupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.



| CUT            | Indy RS1000                                                                                                 |           |                  |                       |           | Work Order: 7       | NweTx 2016.09.14.2 | 2 XMit 20         |
|----------------|-------------------------------------------------------------------------------------------------------------|-----------|------------------|-----------------------|-----------|---------------------|--------------------|-------------------|
|                | r: 110121170091                                                                                             |           |                  |                       |           |                     | 21-Nov-17          |                   |
|                | r: Impinj, Inc.                                                                                             |           |                  |                       |           | Temperature: 2      |                    |                   |
|                | : Paul Archer                                                                                               |           |                  |                       |           | Humidity: 4         |                    |                   |
|                | t: None                                                                                                     |           |                  |                       |           | Barometric Pres.: 1 |                    |                   |
|                | /: Richard Mellroth                                                                                         |           | Power: 5 VDC     |                       |           | Job Site:           |                    |                   |
| EST SPECIFICAT |                                                                                                             |           | Test Method      |                       |           | JOD Site. I         | 1002               |                   |
| C 15.247:2017  | 1015                                                                                                        |           | ANSI C63.10:2013 | )                     |           |                     |                    |                   |
| 0 15.247.2017  |                                                                                                             |           | ANSI 603.10.2013 | )                     |           |                     |                    |                   |
| OMMENTS        |                                                                                                             |           |                  |                       |           |                     |                    |                   |
|                | efaut Power Setting = 27dBm                                                                                 |           |                  |                       |           |                     |                    |                   |
| Ū              | ·                                                                                                           |           |                  |                       |           |                     |                    |                   |
|                | M TEST STANDARD                                                                                             |           |                  |                       |           |                     |                    |                   |
| one            | -                                                                                                           |           |                  |                       |           |                     |                    |                   |
| onfiguration # | 1                                                                                                           |           | 01.1             |                       |           |                     |                    |                   |
| ingulation #   |                                                                                                             | Signature | hisic            |                       |           |                     |                    |                   |
|                |                                                                                                             |           |                  | Pulse Width           | Number of | Total On Time       | Limit              | _                 |
|                |                                                                                                             |           |                  | (ms)                  | Pulses    | (ms)                | (ms)               | Results           |
| pping Mode     | Dense Reader, PR-ASK                                                                                        |           |                  |                       |           |                     |                    |                   |
|                | Single Pulse Width                                                                                          |           |                  | 196.8                 | N/A       | N/A                 | N/A                | N/A               |
|                | 1 Second Sweep                                                                                              |           |                  | N/A                   | 1         | N/A                 | N/A                | N/A               |
|                | 5 Second Sweep                                                                                              |           |                  | N/A                   | 1         | N/A                 | N/A                | N/A               |
|                | 10 Second Sweep                                                                                             |           |                  | N/A                   | 1         | N/A                 | N/A                | N/A               |
|                |                                                                                                             |           |                  |                       | 1         |                     |                    |                   |
|                | 20 Second Sweep                                                                                             |           |                  | N/A                   | 2         | N/A                 | N/A                | N/A               |
|                | Dwell Time Calculation<br>Very Fast, DSB-ASK                                                                | ก         |                  | 196.8                 | 2         | 393.6               | ≤ 400              | Pass              |
|                | Single Pulse Width                                                                                          |           |                  | 197,165               | N/A       | N/A                 | N/A                | N/A               |
|                | 1 Second Sweep                                                                                              |           |                  | N/A                   | 1         | N/A                 | N/A                | N/A               |
|                | 2 Second Sweep                                                                                              |           |                  | N/A                   | 1         | N/A                 | N/A                | N/A               |
|                | 5 Second Sweep                                                                                              |           |                  | N/A                   | 1         | N/A                 | N/A                | N/A               |
|                | 10 Second Sweep                                                                                             |           |                  | N/A                   | 1         | N/A                 | N/A                | N/A               |
|                |                                                                                                             |           |                  |                       | 1         | 197.165             | ≤ 400              | Pass              |
|                |                                                                                                             | ٦         |                  | 197.165               |           | 197,105             |                    |                   |
|                | Dwell Time Calculation                                                                                      | n         |                  | 197.165               | 1         | 197.165             | ≤ 400              | 1 455             |
|                |                                                                                                             | n         |                  | 197.165               | N/A       | N/A                 | ≤ 400<br>N/A       | N/A               |
|                | Dwell Time Calculation<br>Very Sensitive, DSB-ASK<br>Single Pulse Width                                     | n         |                  |                       |           |                     |                    |                   |
|                | Dwell Time Calculation<br>Very Sensitive, DSB-ASK<br>Single Pulse Width<br>1 Second Sweep                   | n         |                  | 196.765<br>N/A        |           | N/A<br>N/A          | N/A<br>N/A         | N/A<br>N/A        |
|                | Dwell Time Calculation<br>Very Sensitive, DSB-ASK<br>Single Pulse Width<br>1 Second Sweep<br>5 Second Sweep | n         |                  | 196.765<br>N/A<br>N/A |           | N/A<br>N/A<br>N/A   | N/A<br>N/A<br>N/A  | N/A<br>N/A<br>N/A |
|                | Dwell Time Calculation<br>Very Sensitive, DSB-ASK<br>Single Pulse Width<br>1 Second Sweep                   | n         |                  | 196.765<br>N/A        |           | N/A<br>N/A          | N/A<br>N/A         | N/A<br>N/A        |



|                 | Ho                                         | ppping Mode, Dense<br>Pulse Width       |                                 | Total On Time  |                      |                                                     |
|-----------------|--------------------------------------------|-----------------------------------------|---------------------------------|----------------|----------------------|-----------------------------------------------------|
|                 |                                            | (ms)                                    | Pulses                          | (ms)           | (ms)                 | Results                                             |
|                 |                                            | 196.8                                   | N/A                             | N/A            | N/A                  | N/A                                                 |
| _               |                                            |                                         |                                 |                |                      |                                                     |
| Keysight Spect  | rum Analyzer - Northwest EMC<br>RF 50 Ω DC |                                         | SENSE:INT                       | ALIGN OFF      |                      | 07:17:40 AM Nov 22, 2017                            |
|                 | 10 002 00                                  |                                         | Trig Delay-1.000 m              |                | : Log-Pwr            | TRACE 1 2 3 4 5 6                                   |
|                 |                                            | PNO: Wide ↔→<br>IFGain:Low              | #Atten: 20 dB                   |                |                      |                                                     |
|                 | Ref Offset 26.52 dB                        |                                         |                                 |                | L                    | Mkr1 196.8 ms                                       |
| 5 dB/div<br>Log | Ref 30.00 dBm                              | 1                                       |                                 | ▲1∆2           |                      | 0.90 dB                                             |
|                 |                                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                 |                |                      |                                                     |
| 25.0            | <u>↑</u> 3   P P                           |                                         |                                 |                |                      |                                                     |
| 20.0            |                                            |                                         |                                 |                |                      |                                                     |
|                 |                                            |                                         |                                 |                |                      |                                                     |
| 15.0            |                                            |                                         |                                 |                |                      |                                                     |
| 10.0            |                                            |                                         |                                 |                |                      |                                                     |
| 10.0            |                                            |                                         |                                 |                |                      |                                                     |
| 5.00            |                                            |                                         |                                 |                |                      |                                                     |
|                 |                                            |                                         |                                 |                |                      | TRIG LVL                                            |
| 0.00            |                                            |                                         |                                 |                |                      | MOLVE                                               |
| -5.00           |                                            |                                         |                                 |                |                      |                                                     |
|                 |                                            |                                         |                                 |                |                      |                                                     |
| -10.0           |                                            |                                         |                                 |                |                      |                                                     |
| -15.0           |                                            |                                         |                                 |                |                      |                                                     |
| -13.0           |                                            |                                         |                                 |                |                      |                                                     |
| Center 015      | .250000 MHz                                |                                         |                                 |                |                      | Span 0 Hz                                           |
| Res BW 10       |                                            | #VB                                     | W 10 kHz                        |                | Sweep 4              | 00.0 ms (3001 pts)                                  |
| MSG             |                                            |                                         |                                 | STATUS         |                      | -                                                   |
|                 |                                            | opping Mode, Dense                      | Poodor DD ASK N                 | Aid Channel 01 | 5 25 MH-             |                                                     |
|                 |                                            | Pulse Width                             |                                 | Total On Time  |                      |                                                     |
|                 |                                            | (ms)                                    | Pulses                          | (ms)           | (ms)                 | Results                                             |
|                 |                                            | N/A                                     | 1                               | N/A            | N/A                  | N/A                                                 |
| Keysight Spect  | rum Analyzer - Northwest EMC               | Inc                                     |                                 |                |                      |                                                     |
|                 | RF 50 Ω DC                                 |                                         | SENSE:INT<br>Trig Delay-50.00 m | ALIGN OFF      | e: Log-Pwr           | 07:22:57 AM Nov 22, 2017                            |
|                 |                                            | PNO: Wide 🔸                             | Trig: Video                     | s Avg Type     | E. LOG-F WI          | TRACE 1 2 3 4 5 6<br>TYPE WWWWWW<br>DET P N N N N N |
|                 |                                            | IFGain:Low                              | #Atten: 20 dB                   |                |                      |                                                     |
| 5 dB/div        | Ref Offset 26.52 dB<br>Ref 30.00 dBm       |                                         |                                 |                |                      |                                                     |
| 5 dB/div<br>Log |                                            |                                         |                                 |                |                      | \_1∆2                                               |
| 25.0            |                                            |                                         |                                 |                | ¥2 <sup>111</sup> 11 | чту-т-т <sup>а</sup> ций                            |
|                 |                                            |                                         |                                 |                |                      |                                                     |
| 20.0            |                                            |                                         |                                 |                |                      |                                                     |
| 15.0            |                                            |                                         |                                 |                |                      |                                                     |
| 15.0            |                                            |                                         |                                 |                |                      |                                                     |
| 10.0            |                                            |                                         |                                 |                |                      |                                                     |
| 10.0            |                                            |                                         |                                 |                |                      |                                                     |
|                 |                                            |                                         |                                 |                |                      |                                                     |
| 5.00            |                                            |                                         |                                 |                |                      |                                                     |

Center 915.250000 MHz Res BW 100 kHz

STATUS

#VBW 10 kHz

Span 0 Hz Sweep 1.000 s (3001 pts)



Hopping Mode, Dense Reader, PR-ASK, Mid Channel, 915.25 MHz Pulse Width Number of Total On Time Limit (ms) N/A (ms) Pulses (ms) Results N/A 1 N/A N/A 07:24:19 AM Nov 22, 2017 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N nalyzer - Northwest EMC, Inc Keysight S SENSE:INT ALIGN OFF Trig Delay-50.00 ms Avg Type: Log-Pwr PNO: Wide Trig: Video IFGain:Low #Atten: 20 dB Ref Offset 26.52 dB Ref 30.00 dBm 5 dB/div Center 915.250000 MHz Res BW 100 kHz Span 0 Hz Sweep 5.000 s (3001 pts) #VBW 10 kHz STATUS

|  | Hopping | Mode, Dense Re | eader, PR-ASK, | Mid Channel, 915 | .25 MHz |         |   |
|--|---------|----------------|----------------|------------------|---------|---------|---|
|  |         | Pulse Width    | Number of      | Total On Time    | Limit   |         |   |
|  |         | (ms)           | Pulses         | (ms)             | (ms)    | Results | _ |
|  |         | N/A            | 1              | N/A              | N/A     | N/A     |   |

| RL RL                  | rum Analyzer - Northwest EN<br>RF 50 Ω DC | ic, inc                  | CENCE JUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A ALICH OFF                    |                                            |
|------------------------|-------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|
| KL                     | RF 50 Ω DC                                |                          | SENSE:INT<br>Trig Delay-50.00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALIGN OFF<br>Avg Type: Log-Pwr | 07:24:47 AM Nov 22, 201<br>TRACE 1 2 3 4 5 |
|                        |                                           | PNO:Wide ←<br>IFGain:Low | (b) NCND (c) and compared and compared and compared with the compared of th | is Avg Type: Log-Pwr           | TYPE WWWWW<br>DET P NNN                    |
| dB/div                 | Ref Offset 26.52 dB<br>Ref 30.00 dBm      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
|                        |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | *                                          |
| 25.0                   |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
| 0.0                    |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
| 5.0                    |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
| ).0                    |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
|                        |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
| 00                     |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
| 00                     |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | TRIG L                                     |
|                        |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
|                        |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
| ).0                    |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
| 5.0                    |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                            |
|                        |                                           |                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                            |
| enter 915.<br>es BW 10 | .250000 MHz<br>0 kHz                      | #V                       | 'BW 10 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | Span 0 H<br>Sweep 10.00 s (3001 pt         |
| G                      |                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STATUS                         |                                            |



NweTx 2016.09.14.2 XMit 2017.09.21

|                                                 | Pulse Width   | Number of                    | Total On Time | Limit  |                                                |
|-------------------------------------------------|---------------|------------------------------|---------------|--------|------------------------------------------------|
| r                                               | (ms)          | Pulses                       | (ms)          | (ms)   | Results                                        |
|                                                 | N/A           | 2                            | N/A           | N/A    | N/A                                            |
|                                                 |               |                              |               |        |                                                |
| Keysight Spectrum Analyzer - Northwest EMC, Inc |               |                              |               |        | - 6 <b>-</b>                                   |
| KL RF 50Ω DC                                    | SE            | Trig Delay-50.00 n           | ALIGN OFF     | an Dum | 07:25:34 AM Nov 22, 2017                       |
|                                                 | PNO: Wide +++ | Trig: Video<br>#Atten: 20 dB | ns Avgrype.L  | og-rwi | TRACE 1 2 3 4 5 (<br>TYPE WWWWWW<br>DET P NNNN |
| Ref Offset 26.52 dB<br>5 dB/div Ref 30.00 dBm   |               |                              |               |        |                                                |
| Log                                             |               |                              |               |        |                                                |
| 25.0                                            |               |                              |               |        |                                                |
| 23.0                                            |               |                              |               |        |                                                |
| 20.0                                            |               |                              |               |        |                                                |
| 20.0                                            |               |                              |               |        |                                                |
| 15.0                                            |               |                              |               |        |                                                |
| 15.0                                            |               |                              |               |        |                                                |
|                                                 |               |                              |               |        |                                                |
| 10.0                                            |               |                              |               |        |                                                |
| 5.00                                            |               |                              |               |        |                                                |
| 5.00                                            |               |                              |               |        |                                                |
|                                                 |               |                              |               |        | TRIG LVL                                       |
| 0.00                                            |               |                              |               |        |                                                |
| -5.00                                           |               |                              |               |        |                                                |
| -5.00                                           |               |                              |               |        |                                                |
| -10.0                                           |               |                              |               |        |                                                |
| -10.0                                           |               |                              |               |        |                                                |
| 15.0                                            |               |                              |               |        |                                                |
| -15.0                                           |               |                              |               |        |                                                |
|                                                 |               | 1                            |               |        |                                                |
| Center 915.250000 MHz<br>Res BW 100 kHz         | #VBW          | / 10 kHz                     |               | Sweep  | Span 0 Hz<br>20.00 s (3001 pts)                |
| MSG                                             |               |                              | STATUS        |        |                                                |

|  | <br>Pulse Width | Number of | Total On Time |       |         |
|--|-----------------|-----------|---------------|-------|---------|
|  | (ms)            | Pulses    | (ms)          | (ms)  | Results |
|  | 196.8           | 2         | 393.6         | ≤ 400 | Pass    |

**Calculation Only** 

No Screen Capture Required



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Hoppin      | g Mode, Very<br>Pulse Width                           |                                                                         | Mid Channel, 915<br>Total On Time                |                        |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|-------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|------------------------|--------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                     |             | (ms)                                                  | Pulses                                                                  | (ms)                                             | (ms)                   | Results                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |             | 197.165                                               | N/A                                                                     | N/A                                              | N/A                    | N/A                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | trum Analyzer - Northwe               |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| (XI) RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RF 50 Ω D0                            |             |                                                       | SENSE:INT<br>Trig Delay-1.00                                            | ALIGN OFF<br>0 ms #Avg Typ                       | be: Log-Pwr            | 07:33:48 AM Nov 22, 2<br>TRACE 2 3 4                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |             | PNO: Wide ++<br>IFGain:Low                            | , Trig: Video<br>#Atten: 20 dB                                          |                                                  |                        | DET PPPP                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref Offset 26.52                      | зB          |                                                       |                                                                         |                                                  |                        | ΔMkr1 197.2 n<br>-1.36 c                                           |
| 5 dB/div<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref 30.00 dBn                         |             |                                                       |                                                                         |                                                  |                        | -1.00 C                                                            |
| 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | X           |                                                       | hill ou un thought it a                                                 |                                                  | ₩₩₩₩                   |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |             |                                                       |                                                                         |                                                  |                        | TRIG                                                               |
| -5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| -5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| -15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |             |                                                       |                                                                         |                                                  |                        |                                                                    |
| Center 915<br>Res BW 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.250000 MHz                          |             |                                                       | 3W 10 kHz                                                               | ······                                           | <b>.</b>               | Span 0<br>400.2 ms (3001 p                                         |
| NCS DW TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VV KITZ                               |             | #¥6                                                   |                                                                         |                                                  | oweeh                  | 400.2 ms (300 r p                                                  |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |             |                                                       |                                                                         | STATUS                                           |                        |                                                                    |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Honnin      | a Modo, Vonu                                          | East DSP ASK                                                            |                                                  | 25 MUz                 |                                                                    |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Hoppin      | Pulse Width                                           | n Number of                                                             | Mid Channel, 915<br>Total On Time                | e Limit                |                                                                    |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Hoppin      |                                                       |                                                                         | Mid Channel, 915<br>Total On Time<br>(ms)        | e Limit<br>(ms)        | Results<br>N/A                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |             | Pulse Width<br>(ms)                                   | n Number of<br>Pulses                                                   | Mid Channel, 915<br>Total On Time                | e Limit                | N/A                                                                |
| Keysight Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trum Analyzer - Northwe<br>RF 50 Ω DC | st EMC, Inc | Pulse Width<br>(ms)                                   | Number of<br>Pulses<br>1                                                | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| Keysight Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | st EMC, Inc | Pulse Width<br>(ms)<br>N/A                            | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)        | N/A                                                                |
| Keysight Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RF 50 Ω DC                            | st EMC, Inc | Pulse Width<br>(ms)<br>N/A                            | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0                | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| Keysight Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | st EMC, Inc | Pulse Width<br>(ms)<br>N/A                            | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| Keysight Spec<br>(X RL<br>5 dB}div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| Keysight Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| Keysight Spec<br>(X RL<br>5 dB}div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| E dB/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| Keysight Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| E dB/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| <b>Keysight Spec</b><br><b>5 dB/div</b><br>25.0<br>20.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| Keysight Spec           E         dB/div           25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A<br>07:34:31 AM Nov 22, 2<br>TRACE 234<br>TYPE WWW<br>DET P P P |
| <b>5 dB/div</b><br>25 0<br>20.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A                                                                |
| Keysight Spec           E         dB/div           25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A<br>07:34:31 AM Nov 22, 2<br>TRACE 234<br>TYPE WWW<br>DET P P P |
| Keysight Spec           Keysight Spec           J           B           J           B           J           B           J           B           J           B           J           B           J           B           J           B           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J           J <t< td=""><td>Ref Offset 26.52 c<br/>Ref 30.00 dBn</td><td>st EMC, Inc</td><td>Pulse Width<br/>(ms)<br/>N/A<br/>PNO: Wide<br/>IFGein:Low</td><td>Number of<br/>Pulses<br/>1<br/>SENSE:INT<br/>Trig Delay-50.0<br/>Trig: Video</td><td>Mid Channel, 915<br/>Total On Time<br/>(ms)<br/>N/A</td><td>e Limit<br/>(ms)<br/>N/A</td><td>N/A<br/>07:34:31 AM Nov 22, 2<br/>TRACE 234<br/>TYPE WWW<br/>DET P P P</td></t<> | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A<br>07:34:31 AM Nov 22, 2<br>TRACE 234<br>TYPE WWW<br>DET P P P |
| Keysight Spector           2         dB3/div           2         0           16.0         0           5.00         0           -5.00         0           -10.0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A<br>07:34:31 AM Nov 22, 2<br>TRACE 234<br>TYPE WWW<br>DET P P P |
| Keysight Spec           5         dB/div           225.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ref Offset 26.52 c<br>Ref 30.00 dBn   | st EMC, Inc | Pulse Width<br>(ms)<br>N/A<br>PNO: Wide<br>IFGein:Low | Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.0<br>Trig: Video | Mid Channel, 915<br>Total On Time<br>(ms)<br>N/A | e Limit<br>(ms)<br>N/A | N/A<br>07:34:31 AM Nov 22, 2<br>TRACE 234<br>TYPE WWW<br>DET P P P |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | пор                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very F<br>Pulse Width                                |                                                                                                   | Total On Time                                   | Limit                       |                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ms)                                                             | Pulses                                                                                            | (ms)                                            | (ms)                        | Results                                                                                              |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                              | 1                                                                                                 | N/A                                             | N/A                         | N/A                                                                                                  |
| Keysight Spectrum Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nalyzer - Northwest EMC, Inc<br>50 Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  | SENSE:INT                                                                                         | A ALICH OFF                                     |                             | 07:34:55 AM Nov 22, 201                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 X DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  | Trig Delay-50.00 ms                                                                               | ALIGN OFF<br>#Avg Type:                         | _og-Pwr                     | TRACE 1 2 3 4 5                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PNO: Wide +++<br>IFGain:Low                                      | #Atten: 20 dB                                                                                     |                                                 |                             | TYPE WWWWWW<br>DET P P P P                                                                           |
| Ref C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Offset 26.52 dB<br><b>30.00 dBm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| 5 dB/div Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             | TRIG LV                                                                                              |
| -5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
| -15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                   |                                                 |                             |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 1                                                                                                 |                                                 |                             |                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | ¥ '                                                                                               |                                                 |                             |                                                                                                      |
| Center 915.250<br>Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | łz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oping Mode, Very I                                               | W 10 kHz<br>Fast, DSB-ASK, Mic                                                                    |                                                 | MHz                         | Span 0 H<br>2.000 s (3001 pts                                                                        |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | łz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  | Fast, DSB-ASK, Mic                                                                                |                                                 |                             |                                                                                                      |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hz<br>Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pping Mode, Very F<br>Pulse Width<br>(ms)<br>N/A                 | Fast, DSB-ASK, Mic<br>Number of<br>Pulses                                                         | Channel, 915.25<br>Total On Time<br>(ms)        | MHz<br>Limit<br>(ms)        | 2.000 s (3001 pts<br>Results<br>N/A                                                                  |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | łz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pping Mode, Very F<br>Pulse Width<br>(ms)<br>N/A                 | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1                                                    | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201                                       |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12<br>Hop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pping Mode, Very F<br>Pulse Width<br>(ms)<br>N/A                 | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>5ense:inti<br>Trig Delay-50.00 ms               | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A                                                                  |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hop<br>halyzer - Northwest EMC, Inc<br>50 Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0.23 4 45<br>TRACE 0.23 4 45 |
| Res BW 100 kH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM NOV 22, 201<br>TRACE 0 28 4 54<br>TRACE 0 28 4 54 |
| Res         BWI         100 kH           MISG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM Nov 22, 201<br>TRACE 12 3 45<br>TYPE PP PP        |
| Res BW 100 kH           MSG           MSG | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM Nov 22, 201<br>TRACE 12 3 45<br>TYPE PP PP        |
| Res BW 100 kH           MSG           MSG           MSG           Keysight Spectrum Ar           MR           Ref C           5 dB/div           Ref C           25.0           20.0           10.0           5.00           0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM Nov 22, 201<br>TRACE 12 3 45<br>TYPE PP PP        |
| Res         BW         100 kH           MISG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IZ<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50Ω DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM Nov 22, 201<br>TRACE 12 3 45<br>TYPE PP PP        |
| Res         BWI 100 kH           MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12<br>Hop<br>nalyzer - Northwest EMC, Inc<br>50 Ω DC<br>50 Ω DC | pping Mode, Very I<br>Pulse Width<br>(ms)<br>N/A<br>PNO: Wide →→ | Fast, DSB-ASK, Mic<br>Number of<br>Pulses<br>1<br>SENSE:INT<br>Trig Delay-50.00 ms<br>Trig: Video | Channel, 915.25<br>Total On Time<br>(ms)<br>N/A | MHz<br>Limit<br>(ms)<br>N/A | 2.000 s (3001 pts<br>Results<br>N/A<br>07:35:15 AM Nov 22, 201<br>TRACE 12 3 45<br>TYPE PP PP        |



NweTx 2016.09.14.2 XMit 2017.09.21

|           |                      |                        | Pulse Width                | Number of                                          | Total On Time | Limit   |                                               |
|-----------|----------------------|------------------------|----------------------------|----------------------------------------------------|---------------|---------|-----------------------------------------------|
|           |                      |                        | (ms)                       | Pulses                                             | (ms)          | (ms)    | Results                                       |
|           |                      |                        | N/A                        | 1                                                  | N/A           | N/A     | N/A                                           |
|           |                      |                        |                            |                                                    |               |         |                                               |
|           |                      | r - Northwest EMC, Inc |                            |                                                    |               |         |                                               |
| LXI RL    | RF                   | 50 Ω DC                | SI                         | ENSE:INT                                           | ALIGN OFF     |         | 07:36:03 AM Nov 22, 2017                      |
|           |                      |                        | PNO: Wide ↔→<br>IFGain:Low | Trig Delay-50.00 r<br>Trig: Video<br>#Atten: 20 dB | ns #Avg Type: | Log-Pwr | TRACE 1 2 3 4 5 6<br>TYPE WWWWWW<br>DET PPPPP |
| 5 dB/div  | Ref Offse<br>Ref 30. | et 26.52 dB<br>00 dBm  |                            |                                                    |               |         |                                               |
| Log       |                      |                        |                            |                                                    |               |         |                                               |
| 25.0      |                      |                        |                            |                                                    |               |         |                                               |
| 20.0      |                      |                        |                            |                                                    |               |         |                                               |
| 20.0      |                      |                        |                            |                                                    |               |         |                                               |
| 20.0      |                      |                        |                            |                                                    |               |         |                                               |
|           |                      |                        |                            |                                                    |               |         |                                               |
| 15.0      |                      |                        |                            |                                                    |               |         |                                               |
|           |                      |                        |                            |                                                    |               |         |                                               |
| 10.0      |                      |                        |                            |                                                    |               |         |                                               |
|           |                      |                        |                            |                                                    |               |         |                                               |
| 5.00      |                      |                        |                            |                                                    |               |         |                                               |
|           |                      |                        |                            |                                                    |               |         | TRIG LVL                                      |
| 0.00      |                      |                        |                            |                                                    |               |         | TRIGLVL                                       |
|           |                      |                        |                            |                                                    |               |         |                                               |
| -5.00     |                      |                        |                            |                                                    |               |         |                                               |
|           |                      |                        |                            |                                                    |               |         |                                               |
| -10.0     |                      |                        |                            |                                                    |               |         |                                               |
|           |                      |                        |                            |                                                    |               |         |                                               |
| -15.0     |                      |                        |                            |                                                    |               |         |                                               |
|           |                      |                        |                            | 1                                                  |               |         |                                               |
| Center 91 | 5 25000              | MHz                    |                            | ↓ I                                                |               |         | Span 0 Hz                                     |
| Res BW 1  |                      |                        | #VBV                       | / 10 kHz                                           |               | Sween   | 10.00 s (3001 pts)                            |
| MSG       |                      |                        |                            |                                                    | STATUS        |         | P.•,                                          |
|           |                      |                        |                            |                                                    | PIAIDS        |         |                                               |

|  | торри | ng moue, very re | 131, DOD-AOIX, IVI |               |       |         |
|--|-------|------------------|--------------------|---------------|-------|---------|
|  |       | Pulse Width      | Number of          | Total On Time | Limit |         |
|  |       | (ms)             | Pulses             | (ms)          | (ms)  | Results |
|  |       | 197.165          | 1                  | 197.165       | ≤ 400 | Pass    |

**Calculation Only** 

No Screen Capture Required



Hopping Mode, Very Sensitive, DSB-ASK, Mid Channel, 915.25 MHz Pulse Width Number of Total On Time Limit **(ms)** 196.765 (ms) N/A Pulses (ms) Results N/A N/A N/A 07:29:20 AM Nov 22, 2017 TRACE 2 3 4 5 6 TYPE WWWWWW DET P P P P P P west EMC, In Keysight ! R L SENSE:INT ALIGN OFF Trig Delay-1.000 ms #Avg Type: Log-Pwr PNO: Wide →→ Trig: Video IFGain:Low #Atten: 20 dB ΔMkr1 196.8 ms 0.50 dB Ref Offset 26.52 dB Ref 30.00 dBm 5 dB/div **↓**1∆2 Xs.1.100 Latin 1.110 Latin Latin Latin Carton Center 915.250000 MHz Res BW 100 kHz Span 0 Hz Sweep 400.2 ms (3001 pts) #VBW 10 kHz STATUS

| Hopping | Mode, Very Sens | sitive, DSB-ASK, | Mid Channel, 915 | .25 MHz |         |  |
|---------|-----------------|------------------|------------------|---------|---------|--|
|         | Pulse Width     | Number of        | Total On Time    | Limit   |         |  |
|         | (ms)            | Pulses           | (ms)             | (ms)    | Results |  |
|         | N/A             | 1                | N/A              | N/A     | N/A     |  |

| Keysight Spectrum Analyzer - Northwest EMC,<br>RL RF 50 Ω DC |                            | SENSE:INT                    | ALIGN OFF           | 07:30:02 AM Nov 22, 201          |
|--------------------------------------------------------------|----------------------------|------------------------------|---------------------|----------------------------------|
| RL RF 50Ω DC                                                 |                            | Trig Delay-50.00 ms          | #Avg Type: Log-Pwr  | TRACE 1 2 3 4 5                  |
|                                                              | PNO: Wide ↔→<br>IFGain:Low | Trig: Video<br>#Atten: 20 dB | Wind Type. Logit Wi | TYPE WWWWW<br>DET P P P P P      |
| Ref Offset 26.52 dB<br>dB/div Ref 30.00 dBm                  |                            |                              |                     |                                  |
| og                                                           |                            | V                            |                     |                                  |
| 25.0                                                         |                            | ^ <b>12</b>                  |                     |                                  |
| 20.0                                                         |                            |                              |                     |                                  |
|                                                              |                            |                              |                     |                                  |
| 15.0                                                         |                            |                              |                     |                                  |
| 10.0                                                         |                            |                              |                     |                                  |
|                                                              |                            |                              |                     |                                  |
| 5.00                                                         |                            |                              |                     |                                  |
| ).00                                                         |                            |                              |                     | TRIG L                           |
| .00                                                          |                            |                              |                     |                                  |
| .00                                                          |                            |                              |                     |                                  |
| 0.0                                                          |                            |                              |                     |                                  |
| 5.0                                                          |                            |                              |                     |                                  |
|                                                              |                            |                              |                     |                                  |
| enter 915.250000 MHz<br>es BW 100 kHz                        | #VB                        | N 10 kHz                     | Swei                | Span 0 H<br>ep 1.000 s (3001 pts |
| G G                                                          | <i>"•</i> •••••            |                              | STATUS              | sp 11000 0 (0001 pt.             |



Hopping Mode, Very Sensitive, DSB-ASK, Mid Channel, 915.25 MHz Pulse Width Number of Total On Time Limit (ms) N/A (ms) Pulses (ms) Results N/A 1 N/A N/A 07:30:18 AM Nov 22, 2017 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P P P P P P m Analyzer - Northwest EMC, Inc Keysight Sj SENSE:INT ALIGN OFF Trig Delay-50.00 ms #Avg Type: Log-Pwr PNO: Wide →→ Trig: Video IFGain:Low #Atten: 20 dB Ref Offset 26.52 dB Ref 30.00 dBm 5 dB/div Log Center 915.250000 MHz Res BW 100 kHz Span 0 Hz Sweep 5.000 s (3001 pts) #VBW 10 kHz STATUS

| Hopping | Mode, Very Sens | sitive, DSB-ASK, | Mid Channel, 915 | 5.25 MHz |         |  |
|---------|-----------------|------------------|------------------|----------|---------|--|
|         | Pulse Width     | Number of        | Total On Time    | Limit    |         |  |
|         | (ms)            | Pulses           | (ms)             | (ms)     | Results |  |
|         | N/A             | 1                | N/A              | N/A      | N/A     |  |

| PNO: Wide         Trig Delay-50.00 ms         #Avg Type: Log-Pwr         Trace D234           Ref Offset 26.52 dB         Ref 30.00 dBm         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </th <th>Keysight Spectrum Analyzer - Northwest EMC, I</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Keysight Spectrum Analyzer - Northwest EMC, I |                       |                    |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|--------------------|-------------------------------------------|
| PN0: Wide<br>IFGain:Low     Trig: Video<br>#Atten: 20 dB     Trig: Video<br>#Atten: 20 dB       dB/div     Ref Offset 26.52 dB       dB/div     Ref 30.00 dBm       50     Image: Strategy of the set of                                                      | X RL RF 50Ω DC                                |                       |                    | 07:30:42 AM Nov 22, 2017                  |
| agy of 30.00 dBm         S.0       Image: Solution of the second seco |                                               | PNO: Wide Trig: Video | #Avg Type: Log-Pwr | TRACE 1 2 3 4 5<br>TYPE WWWWW<br>DET PPPP |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref Offset 26.52 dB<br>dB/div Ref 30.00 dBm   |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.0                                          |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.0                                          |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                          |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.0                                          |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00                                          |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                          |                       |                    | TRIG LY                                   |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .00                                           |                       |                    |                                           |
| 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                           |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                       |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                          | 1                     |                    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Center 915.250000 MHz<br>Res BW 100 kHz       |                       | Swee               | Span 0 H<br>p 10.00 s (3001 pts           |
| G STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sg                                            |                       |                    |                                           |



NweTx 2016.09.14.2 XMit 2017.09.21

|                                               | Pulse Width<br>(ms)        | Number of<br>Pulses          | Total On Time<br>(ms) | Limit       | Results                                       |
|-----------------------------------------------|----------------------------|------------------------------|-----------------------|-------------|-----------------------------------------------|
|                                               | N/A                        | 2                            | N/A                   | (ms)<br>N/A | N/A                                           |
|                                               | N/A                        | 2                            | IN/A                  | N/A         | 11/6                                          |
| Keysight Spectrum Analyzer - Northwest EMC, I |                            |                              |                       |             |                                               |
| XX RL RF 50Ω DC                               | SEI                        | Trig Delay-50.00 m           | ALIGN OFF             | Log-Pwr     | 07:31:17 AM Nov 22, 2017<br>TRACE 1 2 3 4 5 6 |
|                                               | PNO: Wide ↔→<br>IFGain:Low | Trig: Video<br>#Atten: 20 dB |                       | Logit       | TYPE WWWWWW<br>DET PPPPP                      |
| Ref Offset 26.52 dB<br>5 dB/div Ref 30.00 dBm |                            |                              |                       |             |                                               |
| LUG                                           |                            |                              |                       |             | - *                                           |
| 25.0                                          |                            |                              |                       |             |                                               |
|                                               |                            |                              |                       |             |                                               |
| 20.0                                          |                            |                              |                       |             |                                               |
|                                               |                            |                              |                       |             |                                               |
| 15.0                                          |                            |                              |                       |             |                                               |
| 10.0                                          |                            |                              |                       |             |                                               |
| 10.0                                          |                            |                              |                       |             |                                               |
| 5.00                                          |                            |                              |                       |             |                                               |
|                                               |                            |                              |                       |             |                                               |
| 0.00                                          |                            |                              |                       |             | TRIG LVL                                      |
|                                               |                            |                              |                       |             |                                               |
| -5.00                                         |                            |                              |                       |             |                                               |
|                                               |                            |                              |                       |             |                                               |
| -10.0                                         |                            |                              |                       |             |                                               |
| -15.0                                         |                            |                              |                       |             |                                               |
|                                               |                            |                              |                       |             |                                               |
| Center 915.250000 MHz<br>Res BW 100 kHz       | #VBW                       | 1<br>10 kHz                  |                       | Sweep       | Span 0 Hz<br>20.00 s (3001 pts)               |
| MSG                                           |                            |                              | STATUS                |             |                                               |
|                                               |                            |                              |                       |             |                                               |

|  | <br>Pulse Width | Number of | Total On Time | Limit |         |
|--|-----------------|-----------|---------------|-------|---------|
|  | (ms)            | Pulses    | (ms)          | (ms)  | Results |
|  | 196.765         | 2         | 393.53        | ≤ 400 | Pass    |

**Calculation Only** 

No Screen Capture Required



XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

The method found in ANSI C63.10:2013 Section 7.8.5 was used for a FHSS radio.

De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm.



|                    |                                                                                                                                                                                   |                                                                                                                                                      |        |                  |   |                                                                                                            | NweTx 2016.09.14.2                                                        | XMit 2017.09.21                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|---|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|
| EUT:               | Indy RS1000                                                                                                                                                                       |                                                                                                                                                      |        |                  |   | Work Order:                                                                                                | 7LAY0128                                                                  |                                                              |
| Serial Number:     | 110121170091                                                                                                                                                                      |                                                                                                                                                      |        |                  |   | Date: 2                                                                                                    | 21-Nov-17                                                                 |                                                              |
| Customer:          | Impinj, Inc.                                                                                                                                                                      |                                                                                                                                                      |        |                  |   | Temperature:                                                                                               | 21.5 °C                                                                   |                                                              |
| Attendees:         | Paul Archer                                                                                                                                                                       |                                                                                                                                                      |        |                  |   | Humidity: 4                                                                                                | 11.5% RH                                                                  |                                                              |
| Project:           | None                                                                                                                                                                              |                                                                                                                                                      |        |                  |   | Barometric Pres.:                                                                                          | 1013 mbar                                                                 |                                                              |
| Tested by:         | Richard Mellroth                                                                                                                                                                  |                                                                                                                                                      | Power: | 5 VDC            |   | Job Site:                                                                                                  | NC02                                                                      |                                                              |
| TEST SPECIFICAT    | IONS                                                                                                                                                                              |                                                                                                                                                      |        | Test Method      |   |                                                                                                            |                                                                           |                                                              |
| FCC 15.247:2017    |                                                                                                                                                                                   |                                                                                                                                                      |        | ANSI C63.10:2013 |   |                                                                                                            |                                                                           |                                                              |
|                    |                                                                                                                                                                                   |                                                                                                                                                      |        |                  |   |                                                                                                            |                                                                           |                                                              |
| COMMENTS           |                                                                                                                                                                                   |                                                                                                                                                      |        |                  |   |                                                                                                            |                                                                           |                                                              |
| Transmitting at De | faut Power Setting = 27dB                                                                                                                                                         | 3m                                                                                                                                                   |        |                  |   |                                                                                                            |                                                                           |                                                              |
|                    |                                                                                                                                                                                   |                                                                                                                                                      |        |                  |   |                                                                                                            |                                                                           |                                                              |
|                    |                                                                                                                                                                                   |                                                                                                                                                      |        |                  |   |                                                                                                            |                                                                           |                                                              |
|                    | M TEST STANDARD                                                                                                                                                                   |                                                                                                                                                      |        |                  |   |                                                                                                            |                                                                           |                                                              |
| None               |                                                                                                                                                                                   |                                                                                                                                                      |        |                  |   |                                                                                                            |                                                                           |                                                              |
|                    | 1                                                                                                                                                                                 |                                                                                                                                                      | 01 1   |                  |   |                                                                                                            |                                                                           |                                                              |
|                    |                                                                                                                                                                                   |                                                                                                                                                      |        |                  |   |                                                                                                            |                                                                           |                                                              |
| Configuration #    | '                                                                                                                                                                                 |                                                                                                                                                      | MAN    |                  |   |                                                                                                            |                                                                           |                                                              |
| comgulation #      | 1                                                                                                                                                                                 | Signature                                                                                                                                            | hren   |                  |   |                                                                                                            |                                                                           |                                                              |
| Comgutation #      | 1                                                                                                                                                                                 | Signature                                                                                                                                            | the in |                  |   |                                                                                                            | Limit                                                                     |                                                              |
| -                  |                                                                                                                                                                                   | Signature                                                                                                                                            | Men    |                  |   | Value                                                                                                      | Limit<br>(≤)                                                              | Result                                                       |
| Non-Hopping Mode   |                                                                                                                                                                                   | Signature                                                                                                                                            | KUEIL  |                  |   | Value                                                                                                      |                                                                           | Result                                                       |
| -                  | Dense Reader, PR-ASK                                                                                                                                                              |                                                                                                                                                      | ANE IL |                  |   |                                                                                                            | (≤)                                                                       |                                                              |
| -                  | Dense Reader, PR-ASK<br>Low Channel                                                                                                                                               | I 1, 902.75 MHz                                                                                                                                      | KUE IL |                  |   | 26.332 dBm                                                                                                 | <b>(≤)</b><br>30 dBm                                                      | Pass                                                         |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>Mid Channel                                                                                                                                | i 1, 902.75 MHz<br>26, 915.25 MHz                                                                                                                    | Men.   |                  | _ | 26.332 dBm<br>26.197 dBm                                                                                   | (≤)<br>30 dBm<br>30 dBm                                                   | Pass<br>Pass                                                 |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>Mid Channel<br>High Channel                                                                                                                | I 1, 902.75 MHz                                                                                                                                      | YUE IL |                  |   | 26.332 dBm                                                                                                 | <b>(≤)</b><br>30 dBm                                                      | Pass                                                         |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>High Channel<br>High Channel<br>Very Fast, DSB-ASK                                                                                         | l 1, 902.75 MHz<br>26, 915.25 MHz<br>al 50, 927.25 MHz                                                                                               | KUE IL |                  |   | 26.332 dBm<br>26.197 dBm<br>25.914 dBm                                                                     | (≤)<br>30 dBm<br>30 dBm<br>30 dBm                                         | Pass<br>Pass<br>Pass                                         |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>Mid Channel<br>High Channel<br>Very Fast, DSB-ASK<br>Low Channel                                                                           | I 1, 902.75 MHz<br>26, 915.25 MHz<br>al 50, 927.25 MHz<br>1 1, 902.75 MHz                                                                            | KNE IL |                  |   | 26.332 dBm<br>26.197 dBm<br>25.914 dBm<br>26.358 dBm                                                       | (≤)<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm                               | Pass<br>Pass<br>Pass<br>Pass                                 |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>Mid Channel<br>High Channel<br>Very Fast, DSB-ASK<br>Low Channel<br>Mid Channel                                                            | i 1, 902.75 MHz<br>26, 915.25 MHz<br>al 50, 927.25 MHz<br>I 1, 902.75 MHz<br>26, 915.25 MHz                                                          | VUE IL |                  |   | 26.332 dBm<br>26.197 dBm<br>25.914 dBm<br>26.358 dBm<br>26.62 dBm                                          | (≤)<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm                     | Pass<br>Pass<br>Pass<br>Pass<br>Pass                         |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>High Channel<br>Very Fast, DSB-ASK<br>Low Channel<br>Mid Channel<br>High Channe                                                            | I 1, 902.75 MHz<br>26, 915.25 MHz<br>al 50, 927.25 MHz<br>I 1, 902.75 MHz<br>26, 915.25 MHz<br>al 50, 927.25 MHz<br>al 50, 927.25 MHz                | VUE IL |                  |   | 26.332 dBm<br>26.197 dBm<br>25.914 dBm<br>26.358 dBm                                                       | (≤)<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm                               | Pass<br>Pass<br>Pass<br>Pass                                 |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>High Channel<br>Very Fast, DSB-ASK<br>Low Channel<br>Mid Channel<br>High Channel<br>High Channel                                           | I 1, 902.75 MHz<br>26, 915.25 MHz<br>al 50, 927.25 MHz<br>I 1, 902.75 MHz<br>26, 915.25 MHz<br>al 50, 927.25 MHz                                     | VUE IL |                  |   | 26.332 dBm<br>26.197 dBm<br>25.914 dBm<br>26.358 dBm<br>26.62 dBm<br>27.13 dBm                             | (≤)<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm                     | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass                 |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>High Channel<br>Very Fast, DSB-ASK<br>Low Channel<br>High Channel<br>Very Sensitive, DSB-ASK<br>Low Channel                                | I 1, 902.75 MHz<br>26, 915.25 MHz<br>8 50, 927.25 MHz<br>11, 902.75 MHz<br>26, 915.25 MHz<br>9 50, 927.25 MHz<br>11, 902.75 MHz                      | VUE IL |                  |   | 26.332 dBm<br>26.197 dBm<br>25.914 dBm<br>26.358 dBm<br>26.62 dBm<br>27.13 dBm<br>26.517 dBm               | (≤)<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>High Channel<br>Very Fast, DSB-ASK<br>Low Channel<br>High Channel<br>High Channel<br>Very Sensitive, DSB-ASK<br>Low Channel<br>Mid Channel | I 1, 902.75 MHz<br>26, 915.25 MHz<br>3 50, 927.25 MHz<br>26, 915.26 MHz<br>3 60, 927.25 MHz<br>3 60, 927.25 MHz<br>1 1, 902.75 MHz<br>26, 915.25 MHz | VUE IL |                  |   | 26.332 dBm<br>26.197 dBm<br>25.914 dBm<br>26.358 dBm<br>26.62 dBm<br>27.13 dBm<br>26.517 dBm<br>26.643 dBm | (≤)<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |
| -                  | Dense Reader, PR-ASK<br>Low Channel<br>High Channel<br>Very Fast, DSB-ASK<br>Low Channel<br>High Channel<br>High Channel<br>Very Sensitive, DSB-ASK<br>Low Channel<br>Mid Channel | I 1, 902.75 MHz<br>26, 915.25 MHz<br>8 50, 927.25 MHz<br>11, 902.75 MHz<br>26, 915.25 MHz<br>9 50, 927.25 MHz<br>11, 902.75 MHz                      | VUE IL |                  |   | 26.332 dBm<br>26.197 dBm<br>25.914 dBm<br>26.358 dBm<br>26.62 dBm<br>27.13 dBm<br>26.517 dBm               | (≤)<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm<br>30 dBm | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |



NweTx 2016 09 14 2 XMit 2017 09 21

|                                                                                                                                                                                                                                                                                                                   |                                     |                |                                              | Value                                                                 | Limit                                | Result                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                   |                                     |                |                                              | 26.332 dBm                                                            | (≤)<br>30 dBm                        | Pass                                                                               |
|                                                                                                                                                                                                                                                                                                                   |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| Keysight Spectrum Analyz                                                                                                                                                                                                                                                                                          | zer - Northwest EMC, Inc<br>50 Ω DC |                | SENSE:INT                                    | ALIGN OFF                                                             |                                      | 02:49:07 AM Nov 22, 2017                                                           |
|                                                                                                                                                                                                                                                                                                                   |                                     | PNO: Fast 🕞    | Trig: Free Run                               | #Avg Type:<br>Avg Hold:>1                                             | Log-Pwr<br>100/100                   | TRACE 1 2 3 4 5 6                                                                  |
|                                                                                                                                                                                                                                                                                                                   |                                     | IFGain:Low     | #Atten: 20 dB                                |                                                                       |                                      |                                                                                    |
| Ref Offs<br>5 dB/div Ref 31                                                                                                                                                                                                                                                                                       | set 26.52 dB<br>.00 dBm             |                |                                              |                                                                       | IVIKET                               | 902.744 5 MHz<br>26.332 dBm                                                        |
| 5 dB/div Ref 31                                                                                                                                                                                                                                                                                                   |                                     |                | 1                                            |                                                                       |                                      |                                                                                    |
| 26.0                                                                                                                                                                                                                                                                                                              |                                     |                | <b>↓</b> − − • • •                           |                                                                       |                                      |                                                                                    |
|                                                                                                                                                                                                                                                                                                                   |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| 21.0                                                                                                                                                                                                                                                                                                              |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| 16.0                                                                                                                                                                                                                                                                                                              |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| 11.0                                                                                                                                                                                                                                                                                                              |                                     |                |                                              |                                                                       |                                      |                                                                                    |
|                                                                                                                                                                                                                                                                                                                   |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| 6.00                                                                                                                                                                                                                                                                                                              |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| 1.00                                                                                                                                                                                                                                                                                                              |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| 1.00                                                                                                                                                                                                                                                                                                              |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| -4.00                                                                                                                                                                                                                                                                                                             |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| -9.00                                                                                                                                                                                                                                                                                                             |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| -14.0                                                                                                                                                                                                                                                                                                             |                                     |                |                                              |                                                                       |                                      |                                                                                    |
|                                                                                                                                                                                                                                                                                                                   |                                     |                |                                              |                                                                       |                                      |                                                                                    |
| Center 902.7500                                                                                                                                                                                                                                                                                                   |                                     |                |                                              |                                                                       |                                      | Span 1.000 MHz                                                                     |
| #Res BW 510 kHz                                                                                                                                                                                                                                                                                                   | 4                                   | #VE            | 3W 1.5 MHz                                   |                                                                       | Sweep 1                              | .066 ms (1000 pts)                                                                 |
| MSG                                                                                                                                                                                                                                                                                                               | Non-Hoppin                          | ig Mode, Densi | e Reader, PR-ASK                             | STATUS                                                                | 915.25 MHz                           |                                                                                    |
| MSG                                                                                                                                                                                                                                                                                                               | Non-Hoppin                          | ig Mode, Densi | e Reader, PR-ASK                             |                                                                       | -                                    | Result<br>Pass                                                                     |
|                                                                                                                                                                                                                                                                                                                   |                                     | ig Mode, Denso | e Reader, PR-ASK                             | , Mid Channel 26, 9<br>Value                                          | 015.25 MHz<br>Limit<br>(≤)           | Pass                                                                               |
| Keysight Spectrum Analyz                                                                                                                                                                                                                                                                                          |                                     | ig Mode, Densi | e Reader, PR-ASK                             | , Mid Channel 26, 9<br>Value<br>26.197 dBm                            | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass                                                                               |
| Keysight Spectrum Analyz                                                                                                                                                                                                                                                                                          | zer - Northwest EMC, Inc            | PNO: Fast      | SENSE:INT                                    | , Mid Channel 26, 9<br>Value<br>26.197 dBm                            | 015.25 MHz<br>Limit<br>(≤)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23 4 5 5                                 |
| Keysight Spectrum Analyz                                                                                                                                                                                                                                                                                          | zer - Northwest EMC, Inc<br>50 Ω DC |                | SENSE:INT                                    | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23 45 G<br>TYPE M<br>DET P P P P P       |
| Keysight Spectrum Analyz                                                                                                                                                                                                                                                                                          | zer - Northwest EMC, Inc            | PNO: Fast      | SENSE:INT                                    | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23 4 5 5                                 |
| Keysight Spectrum Analyz                                                                                                                                                                                                                                                                                          | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT                                    | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz                                                                                                                                                                                                                                                                                          | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>R RL RF<br>S dB/div Ref Offs<br>Log                                                                                                                                                                                                                                                   | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>RE RF<br>5 dB/div Ref 31<br>26.0<br>21.0                                                                                                                                                                                                                                              | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>R RL RF<br>S dB/div Ref Offs<br>Log                                                                                                                                                                                                                                                   | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>RE RF<br>5 dB/div Ref 31<br>26.0<br>21.0                                                                                                                                                                                                                                              | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>R RL RF<br>S dB/div Ref 31<br>26.0<br>21.0<br>16.0<br>11.0                                                                                                                                                                                                                            | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>X RL RF<br>5 dB/div Ref Offs<br>26.0<br>21.0<br>16.0                                                                                                                                                                                                                                  | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>R RL RF<br>S dB/div Ref 31<br>26.0<br>21.0<br>16.0<br>11.0                                                                                                                                                                                                                            | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>RL RF<br>S dB/div Ref 31<br>26.0<br>21.0<br>16.0<br>11.0<br>6.00                                                                                                                                                                                                                      | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz           Keysight Spectrum Analyz           Ref Offs           dB/div         Ref Offs           26.0         21.0           16.0         11.0           1.00         1.00           -4.00         1.00                                                                                 | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz<br>Keysight Spectrum Analyz<br>RL RF<br>5 dB/div Ref 0ffs<br>26.0<br>21.0<br>16.0<br>1.00                                                                                                                                                                                                | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz           Keysight Spectrum Analyz           Ref Offs           dB/div         Ref Offs           26.0         21.0           16.0         11.0           1.00         1.00           -4.00         1.00                                                                                 | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |
| Keysight Spectrum Analyz           Ref Offs           5 dB/div         Ref Offs           26.0         21.0           11.0         26.0           11.0         21.0           11.0         21.0           11.0         21.0           11.0         21.0           11.00         21.0           11.00         21.0 | zer - Northwest EMC, Inc<br>50 Ω DC | PNO: Fast      | SENSE:INT<br>Trig: Free Run<br>#Atten: 20 dB | , Mid Channel 26, 9<br>Value<br>26.197 dBm<br>ALIGN OFF<br>#Avg Type: | 015.25 MHz<br>Limit<br>(S)<br>30 dBm | Pass<br>02:53:35 AM Nov 22, 2017<br>TRACE 23:4 5 o<br>TYPE MUMPPP<br>915.242 5 MHz |

MSG



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Non-H                                                                                                                                     | lopping Mode, Dense Reader, PR-AS                                                                                            | K, High Channel 50,                         |                                    |                                                                                                          |                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                              | Value                                       | Limit<br>(≤)                       | Result                                                                                                   |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                              | 25.914 dBm                                  | 30 dBm                             | Pass                                                                                                     |                                                                                         |
| Keysight Spectru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ım Analyzer - Northwest EMC                                                                                                               | C, Inc                                                                                                                       |                                             |                                    |                                                                                                          | ×                                                                                       |
| X/RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RF 50 Ω DC                                                                                                                                | SENSE:INT                                                                                                                    | ALIGN OFF<br>#Avg Type:                     | Log-Pwr                            | 02:58:07 AM Nov 22, 2<br>TRACE 1 2 3 4<br>TYPE MWWW<br>DET P P P F                                       | 017<br>5 6                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           | PNO: Fast Trig: Free Run<br>IFGain:Low #Atten: 20 dB                                                                         | Avg Hold:>                                  |                                    |                                                                                                          | and the second second                                                                   |
| R<br>5 dB/div R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tef Offset 26.52 dB<br>Ref 31.00 dBm                                                                                                      |                                                                                                                              |                                             | Mkr1                               | 927.241 5 M<br>25.914 dE                                                                                 |                                                                                         |
| 5 dB/div R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           | × 1                                                                                                                          |                                             |                                    |                                                                                                          |                                                                                         |
| 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| 10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| -4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| -9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| -14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| Center 927.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                           |                                                                                                                              |                                             |                                    | Span 1.000 M                                                                                             |                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           |                                                                                                                              |                                             |                                    |                                                                                                          |                                                                                         |
| #Res BW 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 KHz                                                                                                                                     | #VBW 1.5 MHz<br>-Hopping Mode, Very Fast, DSB-ASH                                                                            |                                             | 2.75 MHz<br>Limit                  | .066 ms (1000 p                                                                                          | iHz<br>its)                                                                             |
| #Res BW 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 KHz                                                                                                                                     |                                                                                                                              |                                             | 2.75 MHz                           | Result<br>Pass                                                                                           | Hz<br>its)                                                                              |
| #Res BW 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 kHz<br>Non                                                                                                                              | n-Hopping Mode, Very Fast, DSB-ASH                                                                                           | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)           | 066 ms (1000 p<br>Result<br>Pass                                                                         | ots)                                                                                    |
| #Res BW 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 kHz<br>Non                                                                                                                              | n-Hopping Mode, Very Fast, DSB-ASF<br>                                                                                       | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:31 AM Nov 22,<br>TRACE                                         | ets)                                                                                    |
| #Res BW 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 kHz<br>Non<br>Im Analyzer - Northwest EMC<br>RF 50 Ω DC                                                                                 | n-Hopping Mode, Very Fast, DSB-ASk                                                                                           | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | •ts)<br>•2017<br>•566<br>•PP                                                            |
| #Res BW 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 kHz<br>Non                                                                                                                              | n-Hopping Mode, Very Fast, DSB-ASF<br>                                                                                       | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:31 AM Nov 22,<br>TRACE 123<br>TYPE MWW<br>DET P P P            | ets)                                                                                    |
| Keysight Spectru<br>Keysight Spectru<br>RL<br>5 dB/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASF<br>                                                                                       | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | 155)<br>1017<br>566<br>177<br>177<br>177<br>177<br>177<br>177<br>177<br>177<br>177<br>1 |
| Keysight Spectru<br>Keysight Spectru<br>Keysig | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | 2017<br>5 6<br>9 P P                                                                    |
| Keysight Spectru<br>Keysight Spectru<br>RL<br>5 dB/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | 2017<br>5 6<br>9 P P                                                                    |
| Keysight Spectru<br>Keysight Spectru<br>Keysig | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | x<br>017<br>P P<br>Hz                                                                   |
| Keysight Spectru<br>Keysight Spectru<br>RL<br>5 dB/div<br>26.0<br>21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | x<br>017<br>P P<br>Hz                                                                   |
| #Res BW 51           //sg           //sg <td>0 kHz<br/>Non<br/>im Analyzer - Northwest EMC<br/>RF 50 2 DC 1<br/>Ref Offset 26.52 dB</td> <td>n-Hopping Mode, Very Fast, DSB-ASł<br/>C,Inc<br/>C,Inc<br/>SENSE:INT<br/>PNO: Fast →→ Trig: Free Run<br/>IFGain:Low #Atten: 20 dB</td> <td>K, Low Channel 1, 90<br/>Value<br/>26.358 dBm</td> <td>2.75 MHz<br/>Limit<br/>(≤)<br/>30 dBm</td> <td>066 ms (1000 p<br/>Result<br/>Pass<br/>03:06:11 AM Nov 22,<br/>TRACE 23<br/>TYPE M<br/>OT P P P<br/>902.735 7 M</td> <td>x<br/>017<br/>P P<br/>Hz</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | x<br>017<br>P P<br>Hz                                                                   |
| #Res BW 51           //SG           //SG <td>0 kHz<br/>Non<br/>im Analyzer - Northwest EMC<br/>RF 50 2 DC 1<br/>Ref Offset 26.52 dB</td> <td>n-Hopping Mode, Very Fast, DSB-ASł<br/>C,Inc<br/>C,Inc<br/>SENSE:INT<br/>PNO: Fast →→ Trig: Free Run<br/>IFGain:Low #Atten: 20 dB</td> <td>K, Low Channel 1, 90<br/>Value<br/>26.358 dBm</td> <td>2.75 MHz<br/>Limit<br/>(≤)<br/>30 dBm</td> <td>066 ms (1000 p<br/>Result<br/>Pass<br/>03:06:11 AM Nov 22,<br/>TRACE 23<br/>TYPE M<br/>OT P P P<br/>902.735 7 M</td> <td>x<br/>017<br/>P P<br/>Hz</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | x<br>017<br>P P<br>Hz                                                                   |
| #Res BW 51           //sg           //sg <td>0 kHz<br/>Non<br/>im Analyzer - Northwest EMC<br/>RF 50 2 DC 1<br/>Ref Offset 26.52 dB</td> <td>n-Hopping Mode, Very Fast, DSB-ASł<br/>C,Inc<br/>C,Inc<br/>SENSE:INT<br/>PNO: Fast →→ Trig: Free Run<br/>IFGain:Low #Atten: 20 dB</td> <td>K, Low Channel 1, 90<br/>Value<br/>26.358 dBm</td> <td>2.75 MHz<br/>Limit<br/>(≤)<br/>30 dBm</td> <td>066 ms (1000 p<br/>Result<br/>Pass<br/>03:06:11 AM Nov 22,<br/>TRACE 23<br/>TYPE M<br/>OT P P P<br/>902.735 7 M</td> <td>2017<br/>5 6<br/>9 P P</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | 2017<br>5 6<br>9 P P                                                                    |
| #Res BW 51           //SG           //SG <td>0 kHz<br/>Non<br/>im Analyzer - Northwest EMC<br/>RF 50 2 DC 1<br/>Ref Offset 26.52 dB</td> <td>n-Hopping Mode, Very Fast, DSB-ASł<br/>C,Inc<br/>C,Inc<br/>SENSE:INT<br/>PNO: Fast →→ Trig: Free Run<br/>IFGain:Low #Atten: 20 dB</td> <td>K, Low Channel 1, 90<br/>Value<br/>26.358 dBm</td> <td>2.75 MHz<br/>Limit<br/>(≤)<br/>30 dBm</td> <td>066 ms (1000 p<br/>Result<br/>Pass<br/>03:06:11 AM Nov 22,<br/>TRACE 23<br/>TYPE M<br/>OT P P P<br/>902.735 7 M</td> <td>15)<br/>1017<br/>5 6<br/>9 P P</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | 15)<br>1017<br>5 6<br>9 P P                                                             |
| Keysight Spectru           Keysight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | ets)                                                                                    |
| #Res BW 51           //sg           //sg <td>0 kHz<br/>Non<br/>im Analyzer - Northwest EMC<br/>RF 50 2 DC 1<br/>Ref Offset 26.52 dB</td> <td>n-Hopping Mode, Very Fast, DSB-ASł<br/>C,Inc<br/>C,Inc<br/>SENSE:INT<br/>PNO: Fast →→ Trig: Free Run<br/>IFGain:Low #Atten: 20 dB</td> <td>K, Low Channel 1, 90<br/>Value<br/>26.358 dBm</td> <td>2.75 MHz<br/>Limit<br/>(≤)<br/>30 dBm</td> <td>066 ms (1000 p<br/>Result<br/>Pass<br/>03:06:11 AM Nov 22,<br/>TRACE 23<br/>TYPE M<br/>OT P P P<br/>902.735 7 M</td> <td>•ts)<br/>•2017<br/>•566<br/>•PP</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | •ts)<br>•2017<br>•566<br>•PP                                                            |
| Keysight Spectru           5 dB/div         R           26.0         21.0           16.0         11.0           6.00         4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 kHz<br>Non<br>im Analyzer - Northwest EMC<br>RF 50 2 DC 1<br>Ref Offset 26.52 dB                                                        | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(≤)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | 15)<br>1017<br>5 6<br>1017                                                              |
| Keysight Spectru           5 dB/div         R           26.0         21.0           16.0         11.0           6.00         4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 kHz<br>Non<br>m Analyzer - Northwest EMC<br>RF 50 Ω DC<br>tef 0ffset 26.52 dB<br>tef 31.00 dBm<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | n-Hopping Mode, Very Fast, DSB-ASł<br>C,Inc<br>C,Inc<br>SENSE:INT<br>PNO: Fast →→ Trig: Free Run<br>IFGain:Low #Atten: 20 dB | K, Low Channel 1, 90<br>Value<br>26.358 dBm | 2.75 MHz<br>Limit<br>(S)<br>30 dBm | 066 ms (1000 p<br>Result<br>Pass<br>03:06:11 AM Nov 22,<br>TRACE 23<br>TYPE M<br>OT P P P<br>902.735 7 M | its)<br>1017<br>HZ<br>HZ                                                                |



NweTx 2016.09.14.2 XMit 2017.09.21 Non-Hopping Mode, Very Fast, DSB-ASK, Mid Channel 26, 915.25 MHz Limit **(≤)** 30 dBm Value Result 26.62 dBm Pass est EMC, In 03:11:00 AM Nov 22, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P Keysight ! ALIGN O #Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast ++ Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 915.229 7 MHz 26.620 dBm Ref Offset 26.52 dB Ref 32.00 dBm 5 dB/div 1 Center 915.2500 MHz #Res BW 1.0 MHz Span 1.500 MHz Sweep 1.066 ms (1000 pts) #VBW 3.0 MHz STATUS Non-Hopping Mode, Very Fast, DSB-ASK, High Channel 50, 927.25 MHz Limit Value Result (≤) 27.13 dBm 30 dBm Pass

| Keysight Spectrum Analyzer - Northwest EMC, Inc |                                                      |                                                      |                                                                               |
|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|
| X RL RF 50Ω DC                                  | PNO: Fast Trig: Free Run<br>IFGain:Low #Atten: 20 dB | ALIGN OFF<br>#Avg Type: Log-Pwr<br>Avg Hold: 100/100 | 03:16:43 AM Nov 22, 2017<br>TRACE 1 2 3 4 5 6<br>TYPE M WWWW<br>DET P P P P P |
| Ref Offset 26.52 dB                             |                                                      | Mk                                                   | r1 927.247 7 MHz<br>27.130 dBm                                                |
| 27.0                                            | 1                                                    |                                                      |                                                                               |
| 22.0                                            |                                                      |                                                      |                                                                               |
| 17.0                                            |                                                      |                                                      |                                                                               |
| 12.0                                            |                                                      |                                                      |                                                                               |
| 7.00                                            |                                                      |                                                      |                                                                               |
| 2.00                                            |                                                      |                                                      |                                                                               |
| 3.00                                            |                                                      |                                                      |                                                                               |
| 3.00                                            |                                                      |                                                      |                                                                               |
| 13.0                                            |                                                      |                                                      |                                                                               |
| Center 927.2500 MHz<br>#Res BW 1.0 MHz          | #VBW 3.0 MHz                                         | Sweep                                                | Span 1.500 MH<br>1.066 ms (1000 pts                                           |
| ISG                                             |                                                      | STATUS                                               |                                                                               |



NweTx 2016.09.14.2 XMit 2017.09.21 Non-Hopping Mode, Very Sensitive, DSB-ASK, Low Channel 1, 902.75 MHz Limit **(≤)** 30 dBm Value Result 26.517 dBm Pass est EMC, In Keysight S 03:22:04 AM Nov 22, 2017 ALIGN O #Avg Type: Log-Pwr Avg|Hold: 100/100 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P PNO: Fast ++ Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 902.745 5 MHz 26.517 dBm Ref Offset 26.52 dB Ref 31.00 dBm 5 dB/div 1 Center 902.7500 MHz #Res BW 510 kHz Span 1.000 MHz Sweep 1.066 ms (1000 pts) #VBW 1.5 MHz STATUS Non-Hopping Mode, Very Sensitive, DSB-ASK, Mid Channel 26, 915.25 MHz Limit Value Result (≤) 26.643 dBm 30 dBm Pass Keysight Spectrum Analyzer - Northwest EMC, Inc. 

| RL     | RF 50 Ω DC                           |               | SENSE:INT                       | ALIGN OFF                               | 03:26:37 AM Nov 22, 2017               |
|--------|--------------------------------------|---------------|---------------------------------|-----------------------------------------|----------------------------------------|
|        |                                      | PNO: Fast +++ | Trig: Free Run<br>#Atten: 20 dB | #Avg Type: Log-Pwr<br>Avg Hold: 100/100 | TRACE 12345<br>TYPE MWWWW<br>DET PPPPP |
| dB/div | Ref Offset 26.52 dB<br>Ref 31.00 dBm |               |                                 | MI                                      | kr1 915.245 5 MH<br>26.643 dBn         |
| _      |                                      |               | 1                               |                                         |                                        |
| 26.0   |                                      |               |                                 |                                         |                                        |
| 16.0   |                                      |               |                                 |                                         |                                        |
| 11.0   |                                      |               |                                 |                                         |                                        |
| 6.00   |                                      |               |                                 |                                         |                                        |
| .00    |                                      |               |                                 |                                         |                                        |
| .00    |                                      |               |                                 |                                         |                                        |
| .00    |                                      |               |                                 |                                         |                                        |
| 4.0    |                                      |               |                                 |                                         |                                        |
|        |                                      |               |                                 |                                         |                                        |
|        | 5.2500 MHz<br>510 kHz                | #VB           | W 1.5 MHz                       | Swee                                    | Span 1.000 MH<br>1.066 ms (1000 pts    |
| SG     |                                      |               |                                 | STATUS                                  |                                        |



Non-Hopping Mode, Very Sensitive, DSB-ASK, High Channel 50, 927.25 MHz Limit **(≤)** 30 dBm Value Result 26.692 dBm Pass vest EMC, Inc 03:30:22 AM Nov 22, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P alyzer - Norti Keysight Sj ALIGN O #Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast ++ Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 927.247 5 MHz 26.692 dBm Ref Offset 26.52 dB Ref 32.00 dBm 5 dB/div 1 Center 927.2500 MHz #Res BW 510 kHz Span 1.000 MHz Sweep 1.066 ms (1000 pts) #VBW 1.5 MHz STATUS



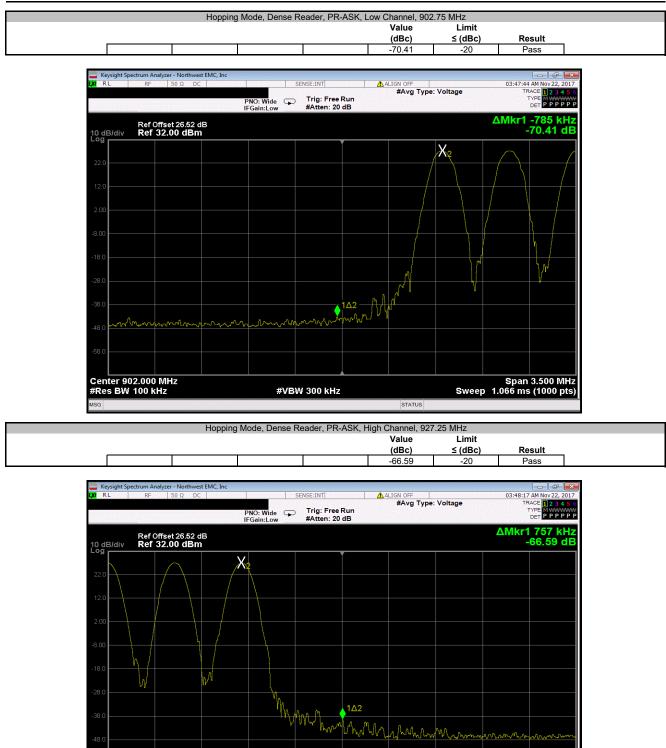
XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

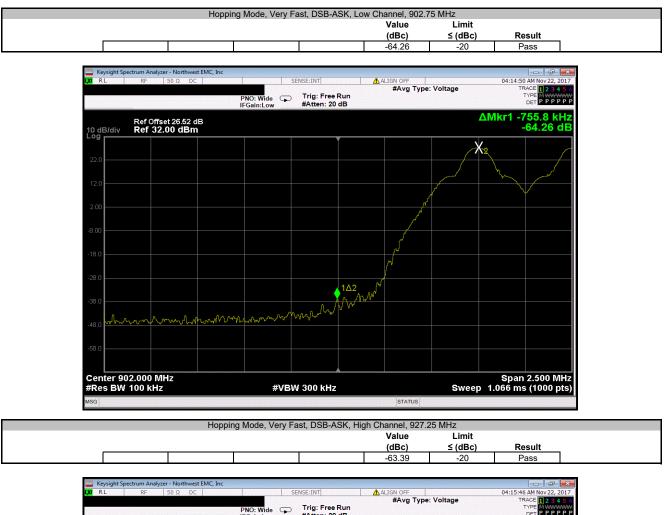
#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

#### **TEST DESCRIPTION**


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudo-random hopping sequence. The EUT was transmitting at the data rate(s) listed in the datasheet.

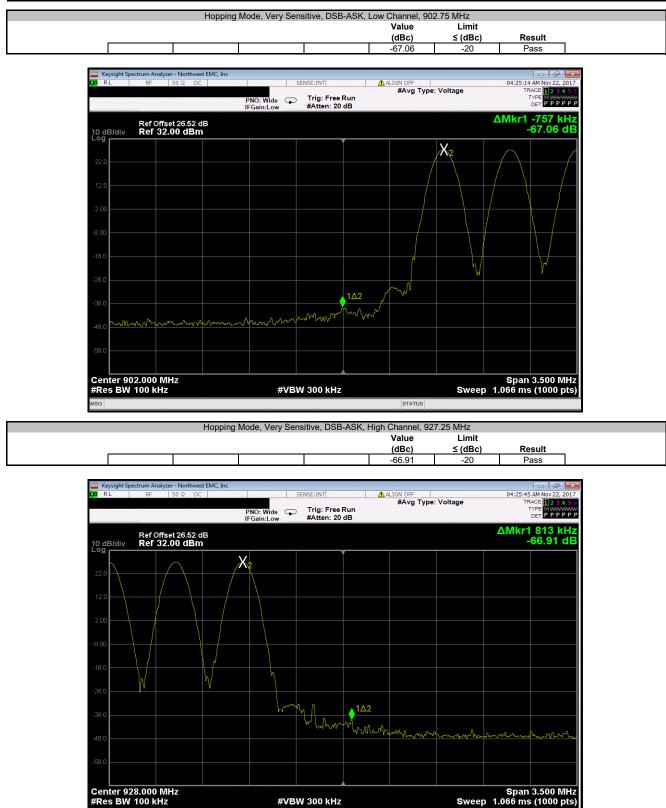
The spectrum was scanned below the lower band edge and above the higher band edge.




|                   |                                  |                   | NweTx 2016.09.14.2 | XMit 2017.09.21 |
|-------------------|----------------------------------|-------------------|--------------------|-----------------|
|                   | Indy RS1000                      | Work Order:       |                    |                 |
|                   | r: 110121170091                  |                   | 21-Nov-17          |                 |
|                   | r: Impinj, Inc.                  | Temperature:      |                    |                 |
|                   | : Paul Archer                    | Humidity:         |                    |                 |
|                   | t: None                          | Barometric Pres.: |                    |                 |
|                   | r: Richard Mellroth Power: 5 VDC | Job Site:         | NC02               |                 |
| TEST SPECIFICA    |                                  |                   |                    |                 |
| FCC 15.247:2017   | ANSI C63.10:2013                 |                   |                    |                 |
|                   |                                  |                   |                    |                 |
| COMMENTS          |                                  |                   |                    |                 |
| Transmitting at D | efaut Power Setting = 27dBm      |                   |                    |                 |
| -                 | -                                |                   |                    |                 |
|                   |                                  |                   |                    |                 |
| DEVIATIONS FRC    | OM TEST STANDARD                 |                   |                    |                 |
| None              |                                  |                   |                    |                 |
|                   |                                  |                   |                    |                 |
| Configuration #   |                                  |                   |                    |                 |
|                   | Signature                        |                   |                    |                 |
|                   |                                  | Value             | Limit              |                 |
|                   |                                  | (dBc)             | ≤ (dBc)            | Result          |
| Hopping Mode      |                                  |                   |                    |                 |
|                   | Dense Reader, PR-ASK             |                   |                    |                 |
|                   | Low Channel, 902.75 MHz          | -70.41            | -20                | Pass            |
|                   | High Channel, 927.25 MHz         | -66.59            | -20                | Pass            |
|                   | Very Fast, DSB-ASK               |                   |                    |                 |
|                   | Low Channel, 902.75 MHz          | -64.26            | -20                | Pass            |
|                   | High Channel, 927.25 MHz         | -63.39            | -20                | Pass            |
|                   | Very Sensitive, DSB-ASK          |                   |                    |                 |
|                   | Low Channel, 902.75 MHz          | -67.06            | -20                | Pass            |
|                   | High Channel, 927.25 MHz         | -66.91            | -20                | Pass            |














NweTx 2016.09.14.2 XMit 2017.09.21



STATUS



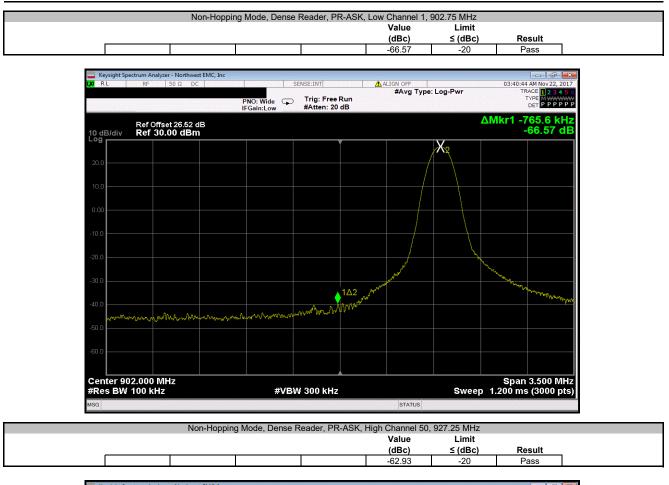
XMit 2017.09.21

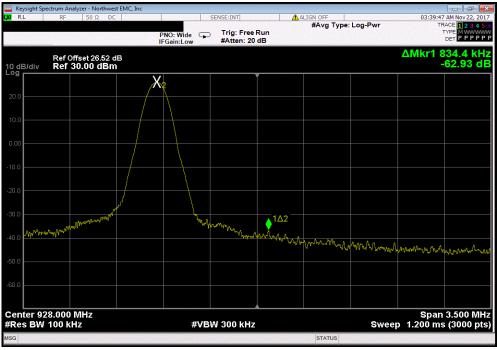
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

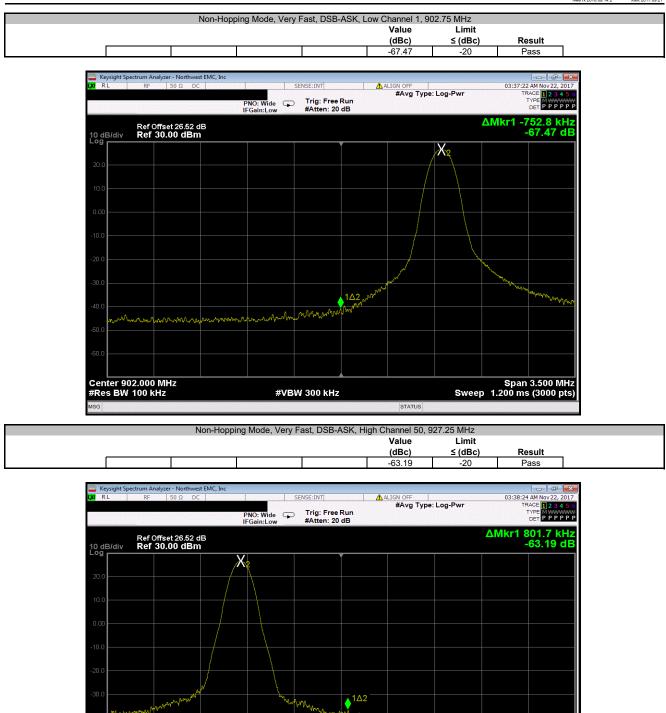
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

#### **TEST DESCRIPTION**


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet in a no hop mode. The channels closest to the band edges were selected.

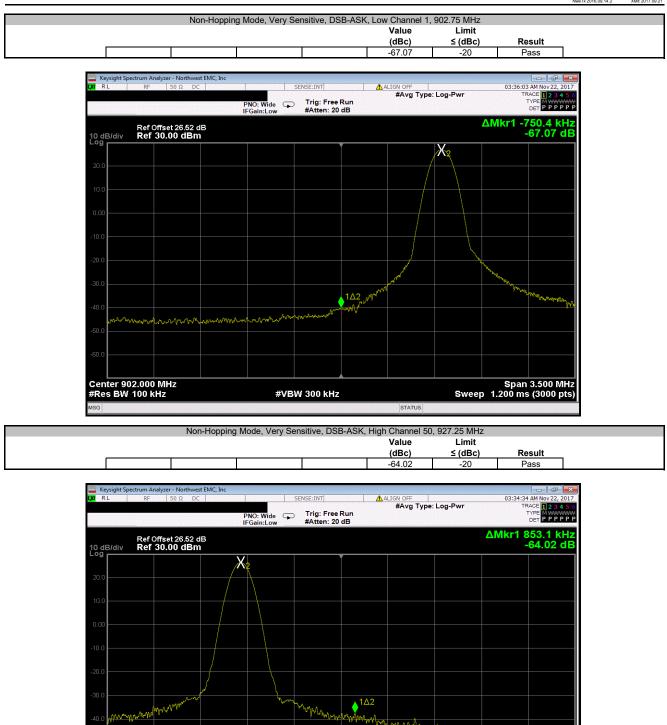

The spectrum was scanned below the lower band edge and above the higher band edge.




| EUT               |                                                                                                                                               |                                                                            |             |                  |                            |                                  | Nwe1x 2016.09.14.2                  | XMit 2017.09.21              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|------------------|----------------------------|----------------------------------|-------------------------------------|------------------------------|
|                   | Indy RS1000                                                                                                                                   |                                                                            |             |                  | W                          | ork Order: 7                     |                                     |                              |
| Serial Numbe      | r: 110121170091                                                                                                                               |                                                                            |             |                  |                            | Date: 2                          | 1-Nov-17                            |                              |
|                   | r: Impinj, Inc.                                                                                                                               |                                                                            |             |                  | Tei                        | mperature: 2                     |                                     |                              |
| Attendees         | : Paul Archer                                                                                                                                 |                                                                            |             |                  |                            | Humidity: 4                      | 1.4% RH                             |                              |
| Projec            | t: None                                                                                                                                       |                                                                            |             |                  | Barom                      | etric Pres.: 1                   | 013 mbar                            |                              |
|                   | : Richard Mellroth                                                                                                                            |                                                                            | Power:      |                  |                            | Job Site: N                      | C02                                 |                              |
| TEST SPECIFICA    | TIONS                                                                                                                                         |                                                                            |             | Test Method      |                            |                                  |                                     |                              |
| FCC 15.247:2017   |                                                                                                                                               |                                                                            |             | ANSI C63.10:2013 |                            |                                  |                                     |                              |
|                   |                                                                                                                                               |                                                                            |             |                  |                            |                                  |                                     |                              |
| COMMENTS          |                                                                                                                                               |                                                                            |             |                  |                            |                                  |                                     |                              |
| Transmitting at D | efaut Power Setting = 27dE                                                                                                                    | Bm                                                                         |             |                  |                            |                                  |                                     |                              |
|                   | <b>j</b>                                                                                                                                      |                                                                            |             |                  |                            |                                  |                                     |                              |
|                   |                                                                                                                                               |                                                                            |             |                  |                            |                                  |                                     |                              |
| DEVIATIONS FRO    | DM TEST STANDARD                                                                                                                              |                                                                            |             |                  |                            |                                  |                                     |                              |
| None              |                                                                                                                                               |                                                                            |             |                  |                            |                                  |                                     |                              |
|                   |                                                                                                                                               | 5                                                                          | 21 1        |                  |                            |                                  |                                     |                              |
| Configuration #   | 1                                                                                                                                             |                                                                            | VIAN        |                  |                            |                                  |                                     |                              |
|                   |                                                                                                                                               |                                                                            |             |                  |                            |                                  |                                     |                              |
|                   |                                                                                                                                               | Signature                                                                  | har in      |                  |                            |                                  |                                     |                              |
|                   |                                                                                                                                               | Signature                                                                  | protecte    |                  |                            | /alue                            | Limit                               |                              |
|                   |                                                                                                                                               | Signature                                                                  | province in |                  |                            | /alue<br>dBc)                    | Limit<br>≤ (dBc)                    | Result                       |
| Non-Hopping Mod   |                                                                                                                                               | Signature                                                                  | protection  |                  |                            |                                  |                                     | Result                       |
| Non-Hopping Mod   | Dense Reader, PR-ASK                                                                                                                          | · · ·                                                                      | protection  |                  | (                          | dBc)                             | ≤ (dBc)                             |                              |
| Non-Hopping Mod   | Dense Reader, PR-ASK<br>Low Channe                                                                                                            | I 1, 902.75 MHz                                                            | parte       |                  | )<br>                      | dBc)<br>66.57                    | <b>≤ (dBc)</b><br>-20               | Pass                         |
| Non-Hopping Mod   | Dense Reader, PR-ASK<br>Low Channe<br>High Channe                                                                                             | · · ·                                                                      | pac ic      |                  | )<br>                      | dBc)                             | ≤ (dBc)                             |                              |
| Non-Hopping Mod   | Dense Reader, PR-ASK<br>Low Channe<br>High Channe<br>Very Fast, DSB-ASK                                                                       | i 1, 902.75 MHz<br>I 50, 927.25 MHz                                        | protecte    |                  | )<br><br>-                 | dBc)<br>66.57<br>62.93           | <b>≤ (dBc)</b><br>-20<br>-20        | Pass<br>Pass                 |
| Non-Hopping Mod   | Dense Reader, PR-ASK<br>Low Channe<br>High Channe<br>Very Fast, DSB-ASK<br>Low Channe                                                         | I 1, 902.75 MHz<br>I 50, 927.25 MHz<br>I 1, 902.75 MHz                     | protic      |                  | )<br>-<br>-<br>-           | dBc)<br>66.57<br>62.93<br>67.47  | ≤ (dBc)<br>-20<br>-20<br>-20        | Pass<br>Pass<br>Pass         |
| Non-Hopping Mod   | Dense Reader, PR-ASK<br>Low Channe<br>High Channe<br>Very Fast, DSB-ASK<br>Low Channe<br>High Channe                                          | I 1, 902.75 MHz<br>I 50, 927.25 MHz<br>I 1, 902.75 MHz<br>I 50, 927.25 MHz | pac ic      |                  | )<br>-<br>-<br>-           | dBc)<br>66.57<br>62.93           | <b>≤ (dBc)</b><br>-20<br>-20        | Pass<br>Pass                 |
| Non-Hopping Mod   | Dense Reader, PR-ASK<br>Low Channe<br>High Channe<br>Very Fast, DSB-ASK<br>Low Channe<br>High Channe<br>Very Sensitive, DSB-ASK               | i 1, 902.75 MHz<br>9 50, 927.25 MHz<br>1 1, 902.75 MHz<br>9 50, 927.25 MHz | paere       |                  | )<br>-<br>-<br>-<br>-      | 66.57<br>62.93<br>67.47<br>63.19 | ≤ (dBc)<br>-20<br>-20<br>-20<br>-20 | Pass<br>Pass<br>Pass<br>Pass |
| Non-Hopping Mod   | Dense Reader, PR-ASK<br>Low Channe<br>High Channe<br>Very Fast, DSB-ASK<br>Low Channe<br>High Channe<br>Very Sensitive, DSB-ASK<br>Low Channe | I 1, 902.75 MHz<br>I 50, 927.25 MHz<br>I 1, 902.75 MHz<br>I 30, 927.25 MHz | paere       |                  | )<br>-<br>-<br>-<br>-<br>- | dBc)<br>66.57<br>62.93<br>67.47  | ≤ (dBc)<br>-20<br>-20<br>-20        | Pass<br>Pass<br>Pass         |






















XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

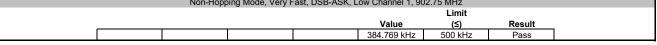
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

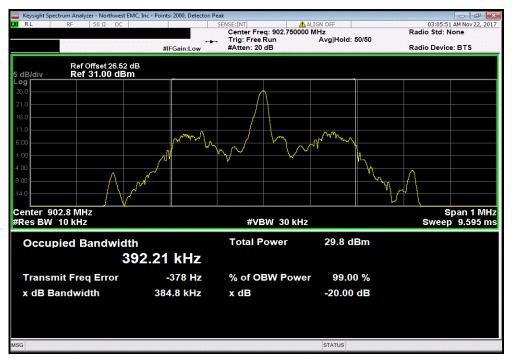
#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The 20 dB occupied bandwidth was measured with the EUT set to low, medium and high transmit frequencies in the band. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode.



|                     |                           |                  |        |                  |                   | NweTx 2016.09.14.2 | XMit 2017.09.21 |
|---------------------|---------------------------|------------------|--------|------------------|-------------------|--------------------|-----------------|
| EUT:                | Indy RS1000               |                  |        |                  | Work Order:       |                    |                 |
| Serial Number:      | 110121170091              |                  |        |                  | Date:             | 21-Nov-17          |                 |
| Customer:           | Impinj, Inc.              |                  |        |                  | Temperature:      | 21.6 °C            |                 |
| Attendees:          | Paul Archer               |                  |        |                  | Humidity:         | 41.1% RH           |                 |
| Project:            | None                      |                  |        |                  | Barometric Pres.: | 1013 mbar          |                 |
| Tested by:          | Richard Mellroth          |                  | Power: | 5 VDC            | Job Site:         | NC02               |                 |
| TEST SPECIFICATI    | IONS                      |                  |        | Test Method      |                   |                    |                 |
| FCC 15.247:2017     |                           |                  |        | ANSI C63.10:2013 |                   |                    |                 |
|                     |                           |                  |        |                  |                   |                    |                 |
| COMMENTS            |                           |                  |        |                  |                   |                    |                 |
| Transmitting at Def | faut Power Setting = 27dB | m                |        |                  |                   |                    |                 |
| -                   |                           |                  |        |                  |                   |                    |                 |
|                     |                           |                  |        |                  |                   |                    |                 |
|                     | I TEST STANDARD           |                  |        |                  |                   |                    |                 |
| None                |                           |                  |        |                  |                   |                    |                 |
|                     |                           |                  | 01 1   |                  |                   |                    |                 |
| Configuration #     | 1                         |                  | VUGIL  |                  |                   |                    |                 |
|                     |                           | Signature        | 1-     |                  |                   |                    |                 |
|                     |                           |                  |        |                  |                   | Limit              |                 |
|                     |                           |                  |        |                  | Value             | (≤)                | Result          |
| Non-Hopping Mode    |                           |                  |        |                  |                   |                    |                 |
|                     | Dense Reader, PR-ASK      |                  |        |                  |                   |                    | -               |
|                     |                           | 1, 902.75 MHz    |        |                  | 44.958 kHz        | 500 kHz            | Pass            |
|                     |                           | 26, 915.25 MHz   |        |                  | 44.065 kHz        | 500 kHz            | Pass            |
|                     |                           | I 50, 927.25 MHz |        |                  | 44.091 kHz        | 500 kHz            | Pass            |
|                     | Very Fast, DSB-ASK        | 1 000 75 MU      |        |                  | 004 700 141-      | 500 HIL-           | Deer            |
|                     |                           | 1, 902.75 MHz    |        |                  | 384.769 kHz       | 500 kHz            | Pass            |
|                     |                           | 26, 915.25 MHz   |        |                  | 381.319 kHz       | 500 kHz            | Pass            |
|                     |                           | I 50, 927.25 MHz |        |                  | 384.339 kHz       | 500 kHz            | Pass            |
|                     | Very Sensitive, DSB-ASK   | 1 000 75 MU      |        |                  | 82.655 kHz        | 500 kHz            | Pass            |
|                     |                           | 1, 902.75 MHz    |        |                  |                   |                    |                 |
|                     |                           | 26, 915.25 MHz   |        |                  | 82.276 kHz        | 500 kHz            | Pass            |
|                     | High Channel              | I 50, 927.25 MHz |        |                  | 82.5 kHz          | 500 kHz            | Pass            |
|                     |                           |                  |        |                  |                   |                    |                 |

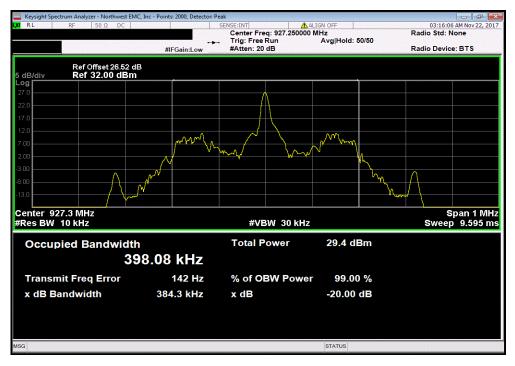




(Mit 2017.09.21 Non-Hopping Mode, Dense Reader, PR-ASK, Low Channel 1, 902.75 MHz Limit **(≤)** 500 kHz Value Result 44.958 kHz Pass NSE:INT ALIGN OFF Center Freq: 902.750000 MHz Trig: Free Run Avg|Hold: 50/50 #Atten: 20 dB 02:47:29 AM Nov 22, 2017 RL Radio Std: None ----Radio Device: BTS #IFGain:Low dBid Ref 31.00 dBm M M  $\mathcal{M}$ Span 100 kHz Sweep 95.69 ms Center 902.8 MHz #Res BW 1 kHz #VBW 3 kHz Total Power 30.5 dBm **Occupied Bandwidth** 55.101 kHz -1.034 kHz Transmit Freq Error % of OBW Power 99.00 % x dB Bandwidth 44.96 kHz x dB -20.00 dB STATUS Non-Hopping Mode, Dense Reader, PR-ASK, Mid Channel 26, 915.25 MHz Limit Value (≤) Result



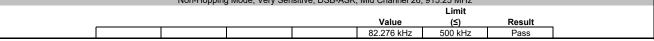


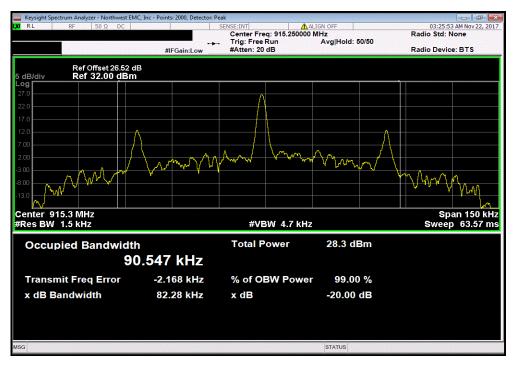
veTx 2016.09.14.2 XMit 2017.09.21 Non-Hopping Mode, Dense Reader, PR-ASK, High Channel 50, 927.25 MHz Limit Value Result (≤) 44.091 kHz 500 kHz Pass NSE:INT ALIGN OFF Center Freq: 927.250000 MHz Trig: Free Run Avg|Hold: 50/50 #Atten: 20 dB 02:57:05 AM Nov 22, 2017 RL Radio Std: None ----Radio Device: BTS #IFGain:Low Ref Offset 26.52 dB Ref 31.00 dBm dBid WY Center 927.3 MHz #Res BW 1 kHz Span 100 kHz Sweep 95.69 ms #VBW 3 kHz Total Power 30.2 dBm **Occupied Bandwidth** 54.473 kHz -1.254 kHz Transmit Freq Error % of OBW Power 99.00 % x dB Bandwidth 44.09 kHz x dB -20.00 dB STATUS Non-Hopping Mode, Very Fast, DSB-ASK, Low Channel 1, 902.75 MHz Limit



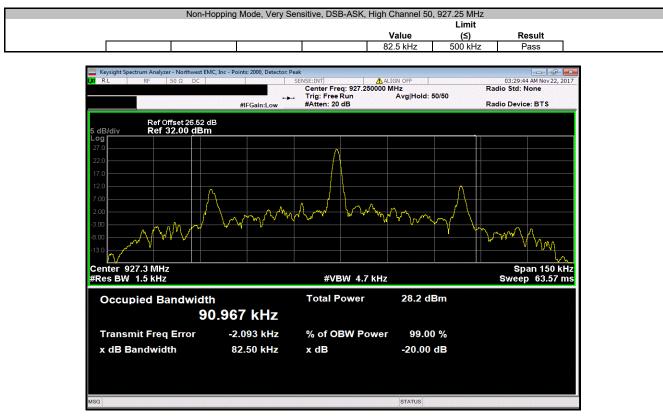






XMit 2017.09.21 Non-Hopping Mode, Very Fast, DSB-ASK, Mid Channel 26, 915.25 MHz Limit **(≤)** 500 kHz Value Result 381.319 kHz Pass NSE:INT ALIGN OFF Center Freq: 915.250000 MHz Trig: Free Run Avg|Hold: 50/50 #Atten: 20 dB 03:10:19 AM Nov 22, 2017 RL Radio Std: None ----Radio Device: BTS #IFGain:Low Ref Offset 26.52 dB Ref 32.00 dBm dB/d mm Center 915.3 MHz #Res BW 10 kHz Span 1 MHz Sweep 9.595 ms #VBW 30 kHz Total Power 29.1 dBm **Occupied Bandwidth** 403.85 kHz -1.085 kHz Transmit Freq Error % of OBW Power 99.00 % x dB Bandwidth 381.3 kHz x dB -20.00 dB STATUS


|  | Non-Hopp | ing wode, very F | ast, DSB-ASK, HI | ign Channel 50, 9 | 27.25 MHZ |        |
|--|----------|------------------|------------------|-------------------|-----------|--------|
|  |          |                  |                  |                   | Limit     |        |
|  |          |                  |                  | Value             | (≤)       | Result |
|  |          |                  |                  | 384.339 kHz       | 500 kHz   | Pass   |






XMit 2017.09.21 Non-Hopping Mode, Very Sensitive, DSB-ASK, Low Channel 1, 902.75 MHz Limit Value Result (≤) 82.655 kHz 500 kHz Pass NSE:INT ALIGN OFF Center Freq: 902.750000 MHz Trig: Free Run Avg|Hold: 50/50 #Atten: 20 dB 03:21:12 AM Nov 22, 2017 RL Radio Std: None ----Radio Device: BTS #IFGain:Low Ref Offset 26.52 dB Ref 31.00 dBm dBid  $\mathcal{W}$ w north mr Center 902.8 MHz #Res BW 1.5 kHz Span 150 kHz Sweep 63.57 ms #VBW 4.7 kHz Total Power 28.7 dBm **Occupied Bandwidth** 89.003 kHz 215 Hz Transmit Freq Error % of OBW Power 99.00 % x dB Bandwidth 82.66 kHz x dB -20.00 dB STATUS Non-Hopping Mode, Very Sensitive, DSB-ASK, Mid Channel 26, 915.25 MHz











XMit 2017.09.21

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

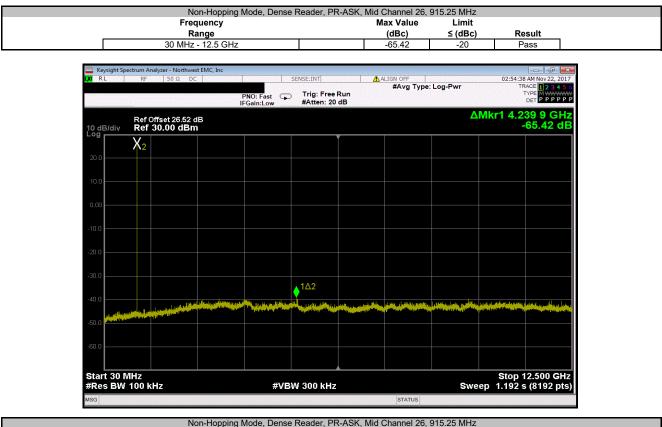
| Let Eden ment                |                    |                       |     |           |           |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFO | 19-May-17 | 19-May-18 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | NCS | 20-Apr-17 | 20-Apr-18 |
| Attenuator                   | Weinschel          | 54A-6                 | TYQ | 25-Oct-17 | 25-Oct-18 |
| Attenuator                   | Fairview Microwave | SA4014-20             | TKV | 9-Mar-17  | 9-Mar-18  |
| Block - DC                   | Fairview Microwave | SD3379                | AMU | 20-Apr-17 | 20-Apr-18 |
| Generator - Signal           | Agilent            | N5183A                | TIA | 6-Apr-16  | 6-Apr-18  |

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



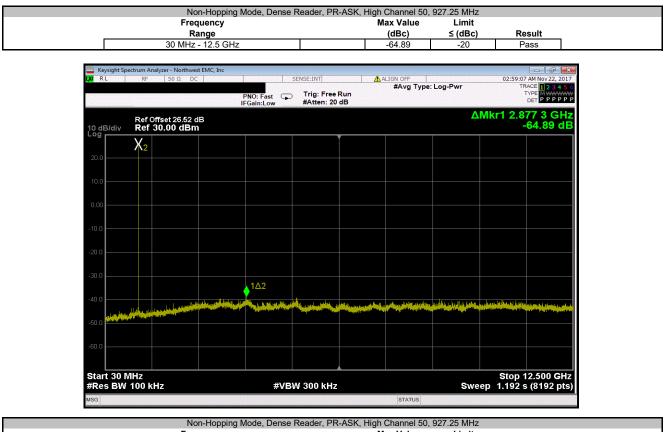
|                      | dy RS1000                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     | Work Order:                                                                                               | NweTx 2016.09.14.2                                                 | XMit                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| Serial Number: 11    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                           | 21-Nov-17                                                          |                                                              |
| Customer: In         |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     | Temperature:                                                                                              |                                                                    |                                                              |
| Attendees: Pa        |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     | Humidity:                                                                                                 |                                                                    |                                                              |
| Project: N           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     | Barometric Pres.:                                                                                         |                                                                    |                                                              |
|                      | ichard Mellroth                                                                                                                                                                                                                                                                                                           | Power: 5 VDC                                                                                                                                                                                                                        | Job Site:                                                                                                 |                                                                    |                                                              |
| EST SPECIFICATION    |                                                                                                                                                                                                                                                                                                                           | Test Method                                                                                                                                                                                                                         |                                                                                                           |                                                                    |                                                              |
| CC 15.247:2017       |                                                                                                                                                                                                                                                                                                                           | ANSI C63.10:2013                                                                                                                                                                                                                    |                                                                                                           |                                                                    |                                                              |
|                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
| COMMENTS             |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
| ransmitting at Defau | t Power Setting = 27dBm                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
|                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
|                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
| DEVIATIONS FROM T    | EST STANDARD                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
| lone                 |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
|                      |                                                                                                                                                                                                                                                                                                                           | 01 10                                                                                                                                                                                                                               |                                                                                                           |                                                                    |                                                              |
| Configuration #      | 1                                                                                                                                                                                                                                                                                                                         | VASIL                                                                                                                                                                                                                               |                                                                                                           |                                                                    |                                                              |
|                      | Signature                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                   |                                                                                                           |                                                                    |                                                              |
|                      |                                                                                                                                                                                                                                                                                                                           | Frequency                                                                                                                                                                                                                           | Max Value                                                                                                 | Limit                                                              |                                                              |
|                      |                                                                                                                                                                                                                                                                                                                           | Range                                                                                                                                                                                                                               | (dBc)                                                                                                     | ≤ (dBc)                                                            | Resu                                                         |
| Non-Hopping Mode     | and Deader DD 4014                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
| D                    | ense Reader, PR-ASK                                                                                                                                                                                                                                                                                                       | 20 MU (0 5 OU                                                                                                                                                                                                                       | 05.0                                                                                                      |                                                                    |                                                              |
|                      | Low Channel 1, 902.75 MHz                                                                                                                                                                                                                                                                                                 | 30 MHz - 12.5 GHz                                                                                                                                                                                                                   | -65.8                                                                                                     | -20                                                                | Pass                                                         |
|                      | Low Channel 1, 902.75 MHz                                                                                                                                                                                                                                                                                                 | 12.5 GHz - 25 GHz                                                                                                                                                                                                                   | -62.96                                                                                                    | -20                                                                | Pass                                                         |
|                      | Mid Channel 26, 915.25 MHz                                                                                                                                                                                                                                                                                                | 30 MHz - 12.5 GHz                                                                                                                                                                                                                   | -65.42                                                                                                    | -20                                                                | Pass                                                         |
|                      | Mid Channel 26, 915.25 MHz                                                                                                                                                                                                                                                                                                | 12.5 GHz - 25 GHz                                                                                                                                                                                                                   | -63                                                                                                       | -20                                                                | Pass                                                         |
|                      |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                           |                                                                    |                                                              |
|                      | High Channel 50, 927.25 MHz                                                                                                                                                                                                                                                                                               | 30 MHz - 12.5 GHz                                                                                                                                                                                                                   | -64.89                                                                                                    | -20                                                                |                                                              |
| _                    | High Channel 50, 927.25 MHz                                                                                                                                                                                                                                                                                               | 30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz                                                                                                                                                                                              | -64.89<br>-62.55                                                                                          | -20<br>-20                                                         |                                                              |
| V                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK                                                                                                                                                                                                                                                                          | 12.5 GHz - 25 GHz                                                                                                                                                                                                                   | -62.55                                                                                                    | -20                                                                | Pass                                                         |
| V                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz                                                                                                                                                                                                                                             | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz                                                                                                                                                                                              | -62.55<br>-65.17                                                                                          | -20<br>-20                                                         | Pass                                                         |
| V                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz                                                                                                                                                                                                                | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz                                                                                                                                                                         | -62.55<br>-65.17<br>-63.01                                                                                | -20<br>-20<br>-20                                                  | Pass<br>Pass<br>Pass                                         |
| V                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz                                                                                                                                                                                  | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz                                                                                                                                                    | -62.55<br>-65.17<br>-63.01<br>-66.4                                                                       | -20<br>-20<br>-20<br>-20                                           | Pass<br>Pass<br>Pass<br>Pass                                 |
| V                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz<br>Mid Channel 26, 915.25 MHz                                                                                                                                                    | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>12.5 GHz - 25 GHz                                                                                                          | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-63.54                                                             | -20<br>-20<br>-20<br>-20<br>-20                                    | Pass<br>Pass<br>Pass<br>Pass<br>Pass                         |
| V                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz                                                                                                                                                                                  | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz                                                                                                                                                    | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-63.54<br>-66.42                                                   | -20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20                      | Pass<br>Pass<br>Pass<br>Pass<br>Pass                         |
| V                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz<br>Mid Channel 26, 915.25 MHz                                                                                                                                                    | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>12.5 GHz - 25 GHz                                                                                                          | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-63.54                                                             | -20<br>-20<br>-20<br>-20<br>-20                                    | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |
| _                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz<br>Mid Channel 26, 915.25 MHz<br>High Channel 50, 927.25 MHz                                                                                                                     | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>30 MHz - 12.5 GHz                                                                                     | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-63.54<br>-66.42                                                   | -20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20                      | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |
| _                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz<br>Mid Channel 26, 915.25 MHz<br>High Channel 50, 927.25 MHz<br>High Channel 50, 927.25 MHz                                                                                      | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>30 MHz - 12.5 GHz                                                                                     | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-63.54<br>-66.42                                                   | -20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20                      | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass         |
| _                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz<br>Mid Channel 26, 915.25 MHz<br>High Channel 50, 927.25 MHz<br>High Channel 50, 927.25 MHz<br>High Channel 50, 927.25 MHz<br>High Channel 50, 927.25 MHz                        | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz                                                                                     | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-63.54<br>-66.42<br>-62.82                                         | -20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20                      | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |
| _                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz<br>Mid Channel 26, 915.25 MHz<br>High Channel 50, 927.25 MHz<br>High Channel 50, 927.25 MHz<br>ery Sensitive, DSB-ASK<br>Low Channel 1, 902.75 MHz                               | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>30 MHz - 12.5 GHz<br>30 MHz - 12.5 GHz                                                                | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-63.54<br>-66.42<br>-62.82<br>-62.82<br>-65.79                     | -20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20        | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |
| _                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz<br>Mid Channel 26, 915.25 MHz<br>High Channel 50, 927.25 MHz<br>High Channel 50, 927.25 MHz<br>ery Sensitive, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>30 MHz - 12.5 GHz<br>30 MHz - 12.5 GHz<br>30 MHz - 12.5 GHz | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-63.54<br>-66.42<br>-62.82<br>-62.82<br>-65.79<br>-62.33<br>-65.91 | -20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |
| _                    | High Channel 50, 927.25 MHz<br>ery Fast, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz<br>Mid Channel 26, 915.25 MHz<br>Mid Channel 26, 915.25 MHz<br>High Channel 50, 927.25 MHz<br>ery Sensitive, DSB-ASK<br>Low Channel 1, 902.75 MHz<br>Low Channel 1, 902.75 MHz                                 | 12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz                      | -62.55<br>-65.17<br>-63.01<br>-66.4<br>-66.42<br>-66.42<br>-62.82<br>-65.79<br>-65.79<br>-62.33           | -20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20 | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |




|                                      | quency     |                         | Max Value                    | Limit                             |                                                 |
|--------------------------------------|------------|-------------------------|------------------------------|-----------------------------------|-------------------------------------------------|
|                                      | ange       |                         | (dBc)                        | ≤ (dBc)                           | Result                                          |
| 30 MHz                               | - 12.5 GHz |                         | -65.8                        | -20                               | Pass                                            |
|                                      |            |                         |                              |                                   |                                                 |
| Keysight Spectrum Analyzer - Northwe |            |                         |                              |                                   |                                                 |
| <mark>(X)</mark> RL RF 50Ω D         |            | SENSE:INT               | ALIGN OFF<br>#Avg Type       | : Log-Pwr                         | 02:50:07 AM Nov 22, 201<br>TRACE 2 3 4 5        |
|                                      | PNO: Fast  | Trig: Free Run          |                              |                                   | TRACE 1 2 3 4 5<br>TYPE M WWWW<br>DET P P P P P |
|                                      | IFGain:Low | #Atten: 20 dB           |                              |                                   |                                                 |
| Ref Offset 26.52                     | dB         |                         |                              | ΔMk                               | r1 4.096 8 GH                                   |
| 10 dB/div Ref 30.00 dBr              | n          |                         |                              |                                   | -65.80 dl                                       |
| X <sub>2</sub>                       |            |                         |                              |                                   |                                                 |
| 20.0                                 |            |                         |                              |                                   |                                                 |
|                                      |            |                         |                              |                                   |                                                 |
| 10.0                                 |            |                         |                              |                                   |                                                 |
| 10.0                                 |            |                         |                              |                                   |                                                 |
| 0.00                                 |            |                         |                              |                                   |                                                 |
| 0,00                                 |            |                         |                              |                                   |                                                 |
| 10.0                                 |            |                         |                              |                                   |                                                 |
| -10.0                                |            |                         |                              |                                   |                                                 |
| -20.0                                |            |                         |                              |                                   |                                                 |
| -20.0                                |            |                         |                              |                                   |                                                 |
| -30.0                                |            |                         |                              |                                   |                                                 |
| -30.0                                |            | 1Δ2                     |                              |                                   |                                                 |
| -40.0                                |            | ♥                       |                              |                                   |                                                 |
|                                      |            | الماليس والمراجع ويتحاج | Building strend films inter- | وفوالبو ويتأخلون والتقليم والقاني | والبابانة لايوسيل بالتجوية أأتنا                |
| -50.0                                |            |                         |                              |                                   |                                                 |
|                                      |            |                         |                              |                                   |                                                 |
| -60.0                                |            |                         |                              |                                   |                                                 |
|                                      |            |                         |                              |                                   |                                                 |
|                                      |            |                         |                              |                                   |                                                 |
| Start 30 MHz                         |            |                         |                              |                                   | Stop 12.500 GH                                  |
| #Res BW 100 kHz                      | #VI        | 300 kHz                 |                              | Sweep                             | 1.192 s (8192 pts                               |
| MSG                                  |            |                         | STATUS                       |                                   |                                                 |

| Non-nopping wode, Dense r | Reader, PR-ASK, | Low Channel 1, | 902.75 WITZ |        |
|---------------------------|-----------------|----------------|-------------|--------|
| Frequency                 |                 | Max Value      | Limit       |        |
| Range                     |                 | (dBc)          | ≤ (dBc)     | Result |
| 12.5 GHz - 25 GHz         |                 | -62.96         | -20         | Pass   |

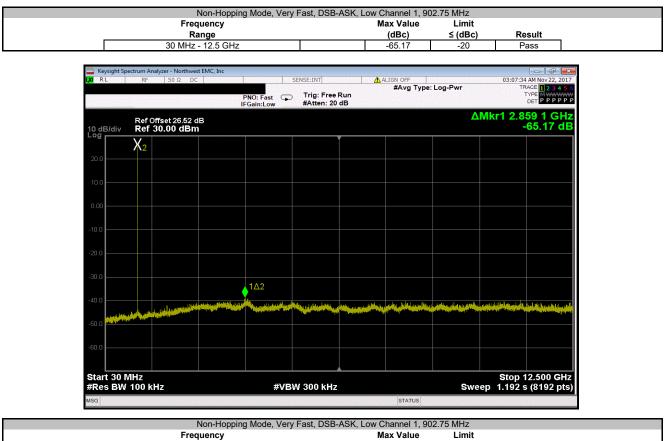
| RL            | Spectrum Analyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 Ω DC               |   |                                                                                                                | SENSE:INT                | A A | LIGN OFF   |         | 02:51:06             | AM Nov 22, 20                               |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|----------------------------------------------------------------------------------------------------------------|--------------------------|-----|------------|---------|----------------------|---------------------------------------------|
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | F | PNO: Fast 🖵                                                                                                    | Trig: Free<br>#Atten: 20 | Run | #Avg Type: | Log-Pwr | 1000                 | ACE 1 2 3 4 S<br>TYPE M WWWW<br>DET P P P P |
| dB/div        | Ref Offso<br>Ref 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | et 26.52 dE<br>00 dBm | 3 |                                                                                                                |                          |     |            | Ν       | /kr1 23.6<br>-36     | 60 1 GF<br>6.78 dBi                         |
| <sup>og</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          | Ĭ   |            |         |                      |                                             |
| 0.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
| D.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
| .00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
| 0.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
| 0.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
| ).0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      | 1                                           |
| ).0<br>(      | in the state of th |                       |   | a di kana ta di katala kat |                          |     |            |         |                      |                                             |
| ).0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
| D.O           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   |                                                                                                                |                          |     |            |         |                      |                                             |
|               | 2.500 GHz<br>W 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |   | #VB                                                                                                            | W 300 kHz                |     |            | Swe     | Stop 2<br>ep 1.195 s | 25.000 GH                                   |
| G             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |   | <i>"</i> •D                                                                                                    |                          |     | STATUS     | - Ome   | -op-11130 s          | Action 2 pr                                 |






| Non-Hopping Mode, Dense Reader, PR-ASK, Mid Channel 26, 915.25 MHz |   |           |         |        |  |  |  |  |  |
|--------------------------------------------------------------------|---|-----------|---------|--------|--|--|--|--|--|
| Frequency                                                          | M | lax Value | Limit   |        |  |  |  |  |  |
| Range                                                              |   | (dBc)     | ≤ (dBc) | Result |  |  |  |  |  |
| 12.5 GHz - 25 GHz                                                  |   | -63       | -20     | Pass   |  |  |  |  |  |

| RL    | R                    | F 5                 | Ω 0           | DC        |   |                       | S            | ENSE:INT                   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LIGN OFF                   |                                                                                                                  | 02:55                                                                                                          | 35 AM Nov 22, 201                               |
|-------|----------------------|---------------------|---------------|-----------|---|-----------------------|--------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|       |                      |                     |               |           | 1 | PNO: Fast<br>Gain:Low | Ģ            | Trig: Free I<br>#Atten: 20 | Run<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #Avg Type                  | Log-Pwr                                                                                                          |                                                                                                                | TRACE 1 2 3 4 5<br>TYPE M WWWM<br>DET P P P P P |
| 0 dB/ | Re<br>div <b>R</b> e | f Offset<br>ef 30.0 | 26.52<br>0 dB | 2 dB<br>m |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  | Mkr1 24.                                                                                                       | 906 9 GH<br>36.92 dBr                           |
| °g    |                      |                     |               |           |   |                       |              |                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                  |                                                                                                                |                                                 |
| 20.0  |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
| 10.0  |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
|       |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
| 0.00  |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
| 0.0   |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
|       |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
| 0.0   |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
| 0.0   |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
| 0.0   |                      |                     |               |           |   |                       |              | that o                     | ىر ئىشىرىي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | والمراجع والمراجع والمراجع | Construction of the last                                                                                         | Hillion attact to broth                                                                                        | Proceeding on the second                        |
|       |                      |                     |               |           |   |                       |              |                            | had a set of the set o | an Mathematica and         | and the second | And I and A state of the second s |                                                 |
| i0.0  |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
| 60.0  |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
|       |                      |                     |               |           |   |                       |              |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                  |                                                                                                                |                                                 |
|       | 12.500 0<br>BW 100   |                     |               |           |   |                       | VBV          | V 300 kHz                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | <br>Sv                                                                                                           | Stop                                                                                                           | 25.000 GH<br>s (8192 pt                         |
| G     | 544 100              | -111/2              |               |           |   | "                     | <b>V D</b> V | - 500 MIZ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                     |                                                                                                                  | Asep 11190                                                                                                     | 5 (0152 pt                                      |






| Non-Hopping Mode, Dense Reader, PR-ASK, High Channel 50, 927.25 MHz |  |           |         |        |  |  |  |
|---------------------------------------------------------------------|--|-----------|---------|--------|--|--|--|
| Frequency                                                           |  | Max Value | Limit   |        |  |  |  |
| Range                                                               |  | (dBc)     | ≤ (dBc) | Result |  |  |  |
| 12.5 GHz - 25 GHz                                                   |  | -62.55    | -20     | Pass   |  |  |  |

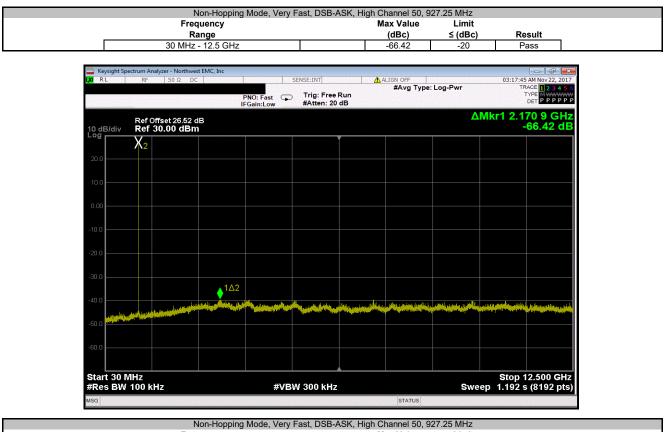
| Keysight Spectrum Analyzer - Northwest E      |                                                                                                                 | SENSE:INT  | ALIGN OFF          | 03:00:04 AM Nov 22, 201                       |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|--------------------|-----------------------------------------------|
|                                               | PNO: Fast G<br>IFGain:Low                                                                                       |            | #Avg Type: Log-Pwr | TRACE 1 2 3 4 5<br>TYPE MWWW<br>DET P P P P P |
| Ref Offset 26.52 dB<br>0 dB/div Ref 30.00 dBm |                                                                                                                 |            |                    | Mkr1 24.023 3 GH<br>-36.80 dBr                |
| °g                                            |                                                                                                                 | Ť          |                    |                                               |
| 20.0                                          |                                                                                                                 |            |                    |                                               |
| 10.0                                          |                                                                                                                 |            |                    |                                               |
|                                               |                                                                                                                 |            |                    |                                               |
| ).00                                          |                                                                                                                 |            |                    |                                               |
| 10.0                                          |                                                                                                                 |            |                    |                                               |
| 20.0                                          |                                                                                                                 |            |                    |                                               |
|                                               |                                                                                                                 |            |                    |                                               |
| 30.0                                          |                                                                                                                 |            |                    | 1                                             |
| 0.0                                           | arinda                                                                                                          |            |                    |                                               |
| io.o                                          | and a second product of the second descent of the second descent of the second descent of the second descent de |            |                    |                                               |
|                                               |                                                                                                                 |            |                    |                                               |
| 60.0                                          |                                                                                                                 |            |                    |                                               |
| tart 12.500 GHz<br>Res BW 100 kHz             | #V                                                                                                              | BW 300 kHz |                    | Stop 25.000 GH<br>Sweep 1.195 s (8192 pt      |
| G                                             |                                                                                                                 |            | STATUS             | Shoop into a land pa                          |





| rien riepping mede, renj r | <br>      | 2       |        |
|----------------------------|-----------|---------|--------|
| Frequency                  | Max Value | Limit   |        |
| Range                      | (dBc)     | ≤ (dBc) | Result |
| 12.5 GHz - 25 GHz          | -63.01    | -20     | Pass   |

| Keysight Spectrum Analyzer - Northwest EMG<br>RL RF 50 Ω DC                                                      |             | SENSE:INT                       | ALIGN OFF                                                                | 03:08:35 AM Nov 22, 201                    |
|------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                  | PNO: Fast G | Trig: Free Run<br>#Atten: 20 dB | #Avg Type: Log-P                                                         | TRACE 2 3 4 5<br>TYPE M WWW<br>DET P P P P |
| Ref Offset 26.52 dB<br>0 dB/div Ref 30.00 dBm                                                                    |             |                                 |                                                                          | Mkr1 24.682 6 GH<br>-36.95 dBr             |
| og                                                                                                               |             | Ť                               |                                                                          |                                            |
| 0.0                                                                                                              |             |                                 |                                                                          |                                            |
| 0.0                                                                                                              |             |                                 |                                                                          |                                            |
| .00                                                                                                              |             |                                 |                                                                          |                                            |
|                                                                                                                  |             |                                 |                                                                          |                                            |
| 0.0                                                                                                              |             |                                 |                                                                          |                                            |
| 0.0                                                                                                              |             |                                 |                                                                          |                                            |
| 0.0                                                                                                              |             |                                 |                                                                          |                                            |
| 0.0                                                                                                              |             | يسانانه ما أفسه سرح مريا        |                                                                          |                                            |
| and the second |             |                                 | سىم (ماة 1943)، المطلقة (يا الله عن المكلك من أنه من أناف المراجع عن الم |                                            |
| 0.0                                                                                                              |             |                                 |                                                                          |                                            |
| 0.0                                                                                                              |             |                                 |                                                                          |                                            |
| tart 12.500 GHz<br>Res BW 100 kHz                                                                                | #VB         | W 300 kHz                       |                                                                          | Stop 25.000 GH<br>Sweep 1.195 s (8192 pt   |
| 3G                                                                                                               |             |                                 | STATUS                                                                   | · · ·                                      |




| Frequ                                                            |                                                                                                                 |                                       | Max Value<br>(dBc) | Limit<br>≤ (dBc) | Result                |              |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|------------------|-----------------------|--------------|
| 30 MHz -                                                         | 196                                                                                                             |                                       | -66.4              | -20              | Pass                  | 1            |
| 30 WHZ -                                                         | 12.5 0112                                                                                                       | 1                                     | -00.4              | -20              | 1 833                 | 4            |
| Keysight Spectrum Analyzer - Northwest                           | EMC Inc                                                                                                         |                                       |                    |                  |                       | 57           |
| CX RL RF 50 Ω DC                                                 |                                                                                                                 | SENSE:INT                             | ALIGN OFF          |                  | 03:12:07 AM Nov 22, 2 | 2017         |
|                                                                  |                                                                                                                 | Trig: Free Run                        | #Avg Type          | : Log-Pwr        | TRACE 1 2 3 4         | <b>1 5 6</b> |
|                                                                  | PNO: Fast                                                                                                       | #Atten: 20 dB                         |                    |                  | TYPE MWWW<br>DET PPPP | P P P        |
| Ref Offset 26.52 dE                                              | 1                                                                                                               |                                       |                    | ΔMk              | r1 2.920 0 GI         |              |
| 10 dB/div Ref 30.00 dBm                                          | ,                                                                                                               |                                       |                    |                  | -66.40 c              | dB           |
| Log X2                                                           |                                                                                                                 | Ť Ť                                   |                    |                  |                       |              |
| 20.0                                                             |                                                                                                                 |                                       |                    |                  |                       |              |
| 20.0                                                             |                                                                                                                 |                                       |                    |                  |                       |              |
| 10.0                                                             |                                                                                                                 |                                       |                    |                  |                       |              |
|                                                                  |                                                                                                                 |                                       |                    |                  |                       |              |
| 0.00                                                             |                                                                                                                 |                                       |                    |                  |                       |              |
|                                                                  |                                                                                                                 |                                       |                    |                  |                       |              |
| -10.0                                                            |                                                                                                                 |                                       |                    |                  |                       |              |
|                                                                  |                                                                                                                 |                                       |                    |                  |                       |              |
| -20.0                                                            |                                                                                                                 |                                       |                    |                  |                       |              |
| -30.0                                                            |                                                                                                                 |                                       |                    |                  |                       |              |
| -50.0                                                            | 1Δ2                                                                                                             |                                       |                    |                  |                       |              |
| -40.0                                                            | and the state of the |                                       |                    |                  |                       |              |
| المجامعة والمعالية والمعالم والمعالم والمعالي والمحالي والمحالية |                                                                                                                 |                                       |                    |                  |                       |              |
| -50.0                                                            |                                                                                                                 |                                       |                    |                  |                       |              |
|                                                                  |                                                                                                                 |                                       |                    |                  |                       |              |
| -60.0                                                            |                                                                                                                 |                                       |                    |                  |                       |              |
|                                                                  |                                                                                                                 |                                       |                    |                  |                       |              |
| Start 30 MHz                                                     |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                    |                  | Stop 12.500 G         | Hz           |
| #Res BW 100 kHz                                                  | #VB                                                                                                             | W 300 kHz                             |                    | Sweep            | 1.192 s (8192 p       | ots)         |
| MSG                                                              |                                                                                                                 |                                       | STATUS             |                  |                       | a de la      |

| Non-Hopping Mode, Very F | ast, DSB-ASK, N | 1id Channel 26, 9 | 15.25 MHz |        |
|--------------------------|-----------------|-------------------|-----------|--------|
| Frequency                |                 | Max Value         | Limit     |        |
| Range                    |                 | (dBc)             | ≤ (dBc)   | Result |
| 12.5 GHz - 25 GHz        |                 | -63.54            | -20       | Pass   |

| RL              | ectrum Analyzer - Nort<br>RF 50 Ω |                        |                            | SENSE:INT |                        | IGN OFF                                                                                                        |                                                                                                                | 03:13:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 AM Nov 22, 20                         |
|-----------------|-----------------------------------|------------------------|----------------------------|-----------|------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                 |                                   |                        | PNO: Fast G                |           | un                     | #Avg Type                                                                                                      | Log-Pwr                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RACE 1 2 3 4 5<br>TYPE MWWW<br>DET PPPP |
|                 | Ref Offset 26.                    | 52 dB                  |                            |           |                        |                                                                                                                |                                                                                                                | Mkr1 23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73 0 GH<br>7.10 dBi                     |
| ) dB/div        | Ref 30.00 d                       | Bm                     |                            |           |                        |                                                                                                                |                                                                                                                | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.10 UB                                 |
|                 |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 0.0             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|                 |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 0.0             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|                 |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| .00             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|                 |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 0.0             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|                 |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 0.0             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| ~ ~             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 0.0             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                       |
| 0.0             |                                   |                        |                            |           | control alternation    | tanta mala sala sala sala                                                                                      | للاستفاق والمسا                                                                                                | فالبلادين والمساغاتين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lindstated and the                      |
| A MARINE MARINE | And Provident Autom               | enteri dina di sultari | فتغط ويراد احتلوهم التبعظم |           | alist of all the state | and a loss of the second s | and a second | and the second se | designment of the last                  |
| 0.0             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|                 |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| 0.0             |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|                 |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| tart 12.5       |                                   |                        |                            |           |                        |                                                                                                                |                                                                                                                | Ston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.000 GH                               |
|                 | 100 kHz                           |                        | #VE                        | 300 kHz   |                        |                                                                                                                | Sv                                                                                                             | veep 1.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s (8192 <u>pt</u>                       |
| G               |                                   |                        |                            |           |                        | STATUS                                                                                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |





| Non-hopping mode, very Fast, DSD-ASK, high Channel 50, 927.25 MHz |  |           |         |        |  |  |  |
|-------------------------------------------------------------------|--|-----------|---------|--------|--|--|--|
| Frequency                                                         |  | Max Value | Limit   |        |  |  |  |
| Range                                                             |  | (dBc)     | ≤ (dBc) | Result |  |  |  |
| 12.5 GHz - 25 GHz                                                 |  | -62.82    | -20     | Pass   |  |  |  |

| RL                     | trum Analyzer - North<br>RF 50 Ω                                                                                | DC                                                                                                             |                                                                                                                  | SENSE:INT                                   | A                   | ALIGN OFF |                         | 03:18:4            | 5 AM Nov 22, 20                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|-----------|-------------------------|--------------------|---------------------------------------|
|                        |                                                                                                                 |                                                                                                                | PNO: Fast G                                                                                                      |                                             | Run                 | #Avg Type | : Log-Pwr               |                    | RACE 1234<br>TYPE MWWW<br>DET P P P P |
| ) dB/div               | Ref Offset 26.5<br>Ref 30.00 dE                                                                                 | 2 dB<br>3m                                                                                                     |                                                                                                                  |                                             |                     |           |                         | Mkr1 23.7<br>-3    | ′22 7 GF<br>6.00 dBi                  |
| °g                     |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             | Ĭ                   |           |                         |                    |                                       |
| 0.0                    |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
| 0.0                    |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
|                        |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
| .00                    |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
| 0.0                    |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
| 0.0                    |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
|                        |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
| 0.0                    |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    | ¢1                                    |
| 0.0                    |                                                                                                                 | و قرار در بار از بر بر منظمات بر زمی                                                                           | المحقق والديناة المعر الالتقريبة                                                                                 |                                             | li data para series |           | an aid an bear a binner |                    |                                       |
| 0.0                    | A CONTRACTOR OF | the second s | and the second | فتعاليه فالمتلا والمتحر والمتحر والتحرير ال |                     |           |                         |                    |                                       |
|                        |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
| 0.0                    |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     |           |                         |                    |                                       |
| tart 12.50<br>Res BW 1 |                                                                                                                 |                                                                                                                | #VE                                                                                                              | 3W 300 kHz                                  |                     |           | Sw                      | Stop<br>/eep 1.195 | 25.000 GF<br>s (8192 pt               |
| G                      |                                                                                                                 |                                                                                                                |                                                                                                                  |                                             |                     | STATUS    |                         |                    |                                       |



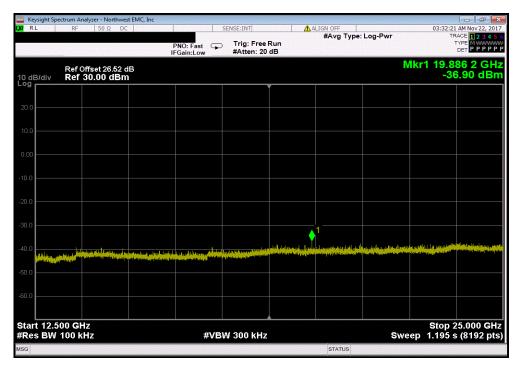
| Range<br>30 MHz - 12.5 GH:                      |                                                                   |                        | < (dBc)                  | Result                                        |
|-------------------------------------------------|-------------------------------------------------------------------|------------------------|--------------------------|-----------------------------------------------|
| 00 WITZ - 12.0 OT 1                             | 7                                                                 | (dBc)<br>-65.79        | ≤ (dBc)<br>-20           | Pass                                          |
|                                                 |                                                                   | -00.75                 | -20                      | 1 435                                         |
| Keysight Spectrum Analyzer - Northwest EMC, Inc |                                                                   |                        |                          |                                               |
| X RL RF 50 Ω DC                                 | SENSE:INT                                                         | ALIGN OFF<br>#Avg Type | · Log-Pwr                | 03:23:05 AM Nov 22, 2017<br>TRACE 1 2 3 4 5 ( |
|                                                 | PNO: Fast Trig: Free Ru<br>IFGain:Low #Atten: 20 dB               |                        |                          |                                               |
| Ref Offset 26.52 dB                             |                                                                   |                        | ΔMk                      | r1 9.854 5 GHz                                |
| 10 dB/div Ref 30.00 dBm                         |                                                                   |                        | 1                        | -65.79 dE                                     |
| Χ2                                              |                                                                   |                        |                          |                                               |
| 20.0                                            |                                                                   |                        |                          |                                               |
|                                                 |                                                                   |                        |                          |                                               |
| 10.0                                            |                                                                   |                        |                          |                                               |
| 0.00                                            |                                                                   |                        |                          |                                               |
| 0.00                                            |                                                                   |                        |                          |                                               |
| -10.0                                           |                                                                   |                        |                          |                                               |
|                                                 |                                                                   |                        |                          |                                               |
| -20.0                                           |                                                                   |                        |                          |                                               |
|                                                 |                                                                   |                        |                          |                                               |
| -30.0                                           |                                                                   |                        |                          | ▲1∆2                                          |
| -40.0                                           |                                                                   |                        | the second second second |                                               |
| -50 0                                           | والمالين والتلاحية العربية المتعاجل والمتعاجل والمتعاجب والمتعاجب |                        |                          |                                               |
| -50.0                                           |                                                                   |                        |                          |                                               |
|                                                 |                                                                   |                        |                          |                                               |
| -60.0                                           |                                                                   |                        |                          |                                               |
|                                                 |                                                                   |                        |                          |                                               |
| Start 30 MHz<br>#Res BW 100 kHz                 | #VBW 300 kHz                                                      |                        | Surcon                   | Stop 12.500 GHz                               |
| #Res BW 100 KHZ                                 | #VEW 300 KHZ                                                      | STATUS                 | Sweep                    | 1.192 s (8192 pts)                            |

| Non-Hopping Mode, Very Ser | nsitive, DSB-ASK, Low Channel | 1, 902.75 MHz |        |
|----------------------------|-------------------------------|---------------|--------|
| Frequency                  | Max Value                     | Limit         |        |
| Range                      | (dBc)                         | ≤ (dBc)       | Result |
| 12.5 GHz - 25 GHz          | -62.33                        | -20           | Pass   |

| RL                 | ectrum Analyzer - North<br>RF 50 Ω | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | SENSE:INT  | 1                    | ALIGN OFF |                   | 03:24:4         | 7 AM Nov 22, 20                    |
|--------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|----------------------|-----------|-------------------|-----------------|------------------------------------|
|                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PNO: Fast G                          |            | Run                  | #Avg Type | : Log-Pwr         |                 | RACE 1234<br>TYPE MWWW<br>DET PPPP |
| 0 dB/div           | Ref Offset 26.5<br>Ref 30.00 df    | 2 dB<br>3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |            |                      |           |                   | Mkr1 23.8<br>-3 | 840 2 GH<br>6.17 dBi               |
| <sup>og</sup>      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            | Y                    |           |                   |                 |                                    |
|                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| 20.0               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| 10.0               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| 10.0               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| ).00               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
|                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| 0.0                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
|                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| 20.0               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
|                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| 0.0                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 | 1                                  |
|                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           | المقالمين والمقار |                 |                                    |
| 40.0 <b>متعداد</b> |                                    | personal and a second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | المترجع المحمد المتقاد               |            | to be Detrided to be |           |                   |                 |                                    |
| 50.0               | o bela superior                    | and a second date of a second s | an te a se address a straf filme a s |            |                      |           |                   |                 |                                    |
|                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| 50.0               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
|                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   |                 |                                    |
| tart 12.5          | 00 GHz                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      |           |                   | Stop            | 25.000 GH                          |
| Res BW             | 100 kHz                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #V                                   | BW 300 kHz |                      |           | Sw                | eep 1.195       | s (8192 pt                         |
| G                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |            |                      | STATUS    |                   |                 |                                    |



|                                               | luency<br>ange                          |                                  | Max Value<br>(dBc)        | Limit<br>≤ (dBc)                  | Result                                           |
|-----------------------------------------------|-----------------------------------------|----------------------------------|---------------------------|-----------------------------------|--------------------------------------------------|
|                                               | - 12.5 GHz                              |                                  | -65.91                    | -20                               | Pass                                             |
| Keysight Spectrum Analyzer - Northwes         |                                         | •                                |                           | -                                 |                                                  |
| RL RF 50Ω DC                                  |                                         | SENSE:INT                        | ALIGN OFF                 |                                   | 03:27:44 AM Nov 22, 2017                         |
|                                               | PNO: Fast 🕞<br>IFGain:Low               | Trig: Free Run<br>#Atten: 20 dB  | #Avg Type:                | Log-Pwr                           | TRACE 1 2 3 4 5<br>TYPE M WWWWW<br>DET P P P P P |
| Ref Offset 26.52 d<br>10 dB/div Ref 30.00 dBm |                                         |                                  |                           | ΔΜκ                               | 1 9.260 8 GHz<br>-65.91 dE                       |
| Log X <sub>2</sub>                            |                                         | Y Y                              |                           |                                   |                                                  |
| 20.0                                          |                                         |                                  |                           |                                   |                                                  |
|                                               |                                         |                                  |                           |                                   |                                                  |
| 10.0                                          |                                         |                                  |                           |                                   |                                                  |
|                                               |                                         |                                  |                           |                                   |                                                  |
| 0.00                                          |                                         |                                  |                           |                                   |                                                  |
| -10.0                                         |                                         |                                  |                           |                                   |                                                  |
| -10.0                                         |                                         |                                  |                           |                                   |                                                  |
| -20.0                                         |                                         |                                  |                           |                                   |                                                  |
|                                               |                                         |                                  |                           |                                   |                                                  |
| -30.0                                         |                                         |                                  |                           |                                   |                                                  |
|                                               |                                         |                                  |                           | ↓ <sup>1</sup> /                  |                                                  |
|                                               | فيالمونين وإيرامه والمتعادين والمتقادين | And a start of the second second | ووالالاوة الفرور الطريبية | والمالح والأطري والمتعاد والمتعاد | وروابي التقالير والفلا ومتالين الطقار            |
| -50.0                                         |                                         |                                  |                           |                                   |                                                  |
|                                               |                                         |                                  |                           |                                   |                                                  |
| -60.0                                         |                                         |                                  |                           |                                   |                                                  |
|                                               |                                         |                                  |                           |                                   |                                                  |
| Start 30 MHz                                  | II.                                     | A                                |                           |                                   | Stop 12.500 GHz                                  |
| #Res BW 100 kHz                               | #VB                                     | W 300 kHz                        |                           | Sweep                             | 1.192 s (8192 pts                                |
| MSG                                           |                                         |                                  | STATUS                    |                                   |                                                  |


| Non-hopping wode, very sen | Silive, DSD-ASK, IVIU Chann | ei 20, 915.25 ivin | Z        |
|----------------------------|-----------------------------|--------------------|----------|
| Frequency                  | Max Val                     | ue Limit           |          |
| Range                      | (dBc)                       | ≤ (dBc             | ) Result |
| 12.5 GHz - 25 GHz          | -62.99                      | -20                | Pass     |

| RL       |                          | Northwest EMC, Inc                           |                                                                                                                | SENSE:INT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALIGN OFF |         | 03:28:49                | AM Nov 22, 20                                |
|----------|--------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-------------------------|----------------------------------------------|
|          |                          |                                              | PNO: Fast G                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #Avg Type | Log-Pwr | TR                      | ACE 1 2 3 4 5<br>TYPE M WWW<br>DET P P P P F |
| ) dB/div | Ref Offset:<br>Ref 30.00 | 26.52 dB<br>) dBm                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | /lkr1 23.6<br>-36       | 95 2 GH<br>6.56 dBi                          |
| °g       |                          |                                              |                                                                                                                | T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |                         |                                              |
| 0.0      |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
|          |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
| 0.0      |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
| ~        |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
| .00      |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
| D.O      |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
|          |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
| 0.0      |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
| 0.0      |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
|          |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | •                       | 1                                            |
| 0.0      | ulto be the line shafed  | ور . رسار فالالتشريق واروان                  | الألفان المحمد والمالية وليتعفيه والمت                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         | الخليب العسرة سافي اويا | Constant of the section of                   |
|          |                          | States and a state of the state of the state | and a second | and the second difference of the second differ |           |         |                         |                                              |
| 0.0      |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
| 0.0      |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
|          |                          |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                         |                                              |
|          | 500 GHz<br>/ 100 kHz     |                                              |                                                                                                                | BW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 0       | Stop 2<br>eep 1.195 s   | 25.000 GF                                    |
| Kes DW   |                          |                                              | #V                                                                                                             | BW JUU KHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STATUS    | SWO     | eep 1.195 s             | to la shr                                    |



|                                                           | iency<br>1ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | Max Value<br>(dBc)     | Limit<br>≤ (dBc)                | Result                                        |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|---------------------------------|-----------------------------------------------|
| 30 MHz -                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                               | -65.34                 | -20                             | Pass                                          |
| 50 WHZ -                                                  | 12.5 6112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | -00.04                 | -20                             | 1 435                                         |
| Keysight Spectrum Analyzer - Northwest                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 | - 8 -                                         |
| LX/ RL RF 50 Ω DC                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ENSE:INT                        | ALIGN OFF<br>#Avg Type | Log-Pwr                         | 03:31:24 AM Nov 22, 2017<br>TRACE 1 2 3 4 5 6 |
|                                                           | PNO: Fast 😱<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trig: Free Run<br>#Atten: 20 dB | #109 ijpe              | . Log i mi                      | TYPE MWWWW<br>DET PPPPP                       |
| Ref Offset 26.52 dE<br>10 dB/div Ref 30.00 dBm            | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                        | ΔMki                            | 1 2.889 5 GHz<br>-65.34 dB                    |
| Log X2                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ť                               |                        |                                 |                                               |
| 20.0                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
| 10.0                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
| 0.00                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
| -10.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
| 20.0                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
| -20.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
| -30.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
|                                                           | 1Δ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                        |                                 |                                               |
| -40.0                                                     | الاستادانية أورادين المتحج المحاجة الترجيلية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | ent la mais de la mais | Index the configuration and the |                                               |
| المعالية معاقلها بالماج ومطالعه والمأسولة ومعاليا والمالي | A REAL PROPERTY AND A REAL |                                 |                        |                                 |                                               |
| -50.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
| -60.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                                 |                                               |
| Start 30 MHz<br>#Res BW 100 kHz                           | #VBV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V 300 kHz                       |                        | Sweep                           | Stop 12.500 GHz<br>1.192 s (8192 pts)         |
| MSG                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | STATUS                 |                                 |                                               |

|                   |           | ,       |        |
|-------------------|-----------|---------|--------|
| Frequency         | Max Value | Limit   |        |
| Range             | (dBc)     | ≤ (dBc) | Result |
| 12.5 GHz - 25 GHz | -63.25    | -20     | Pass   |

