Impinj Inc.

TEST REPORT FOR

Speedway Revolution IPJ-REV-R220

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928 MHz)

Report No.: 101403-2

Date of issue: August 16, 2018

Test Certificate # 803.05

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 34 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	8
15.247(d) Radiated Emissions & Band Edge	8
Supplemental Information	33
Measurement Uncertainty	33
Emissions Test Details	33

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Impinj Inc. 400 Fairview Ave. N Suite 1200 Seattle, WA 98109

Representative: Greg Robinson Customer Reference Number: 701820

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: **REPORT PREPARED BY:**

Terri Rayle CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 101403

August 11, 2018 August 11, 2018

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve 7 Be

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Canyon Park Bothell, WA	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	NP
15.247(a)(1)	Carrier Separation	NA	NP
15.247(a)(1)(i)	Number of Hopping Channels	NA	NP
15.247(a)(1)(i)	Average Time of Occupancy	NA	NP
15.247(b)(2)	Output Power	NA	NP
15.247(d)	RF Conducted Emissions & Band Edge	NA	NP
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	NP

NA = Not Applicable

NP = CKC Laboratories was not contracted to perform test.

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Manufacturer	Model #	S/N	
Impinj Inc.	IPJ-REV-R220	37016201091	
CUI, Inc.	SDI50-24-U	NA	
Times-7	SlimLine - A5010	0008640	
	Impinj Inc. CUI, Inc.	Impinj Inc.IPJ-REV-R220CUI, Inc.SDI50-24-U	Impinj Inc. IPJ-REV-R220 37016201091 CUI, Inc. SDI50-24-U NA

Support Equipment:								
Device	Manufacturer	Model #	S/N					
Laptop	Dell	Latitude E7240	NA					
8-Port Gigabit Desktop Switch with 8-Port PoE	TP-Link	TL-SG1008PE	2159470000322					
AC Adaptor	Dell	LA65NM130	NA					

Configuration 2

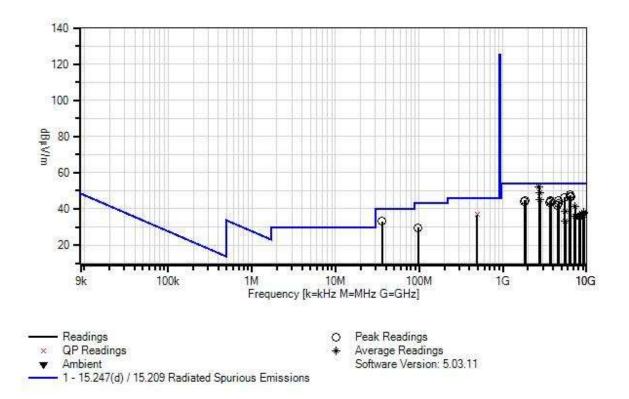
Equipment Tested:									
Device	Manufacturer	Model #	S/N						
Speedway Revolution	Impinj Inc.	IPJ-REV-R220	37016201091						
AC Adaptor	CUI, Inc.	SDI50-24-U	NA						
Circular Polarized UHF Antenna	Times-7	SlimLine - A5020	NA						

Support Equipment:								
Device	Manufacturer	Model #	S/N					
Laptop	Dell	Latitude E7240	NA					
8-Port Gigabit Desktop Switch with 8-Port PoE	TP-Link	TL-SG1008PE	2159470000322					
AC Adaptor	Dell	LA65NM130	NA					

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	UHF RFID
Operating Frequency Range:	902-928MHz
Number of Hopping Channels:	50
Modulation Type(s):	ASK
Maximum Duty Cycle:	100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Circular Polarized UHF Antenna Slimline A5010, 8.5dBiC Circular Polarized UHF Antenna Slimline A5020, 5.5dBiC
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	24Vdc
Firmware / Software used for Test:	Impinj Item Test V1.4.1.0

FCC Part 15 Subpart C


15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc. • 22116	23rd DR SE • Bothell V	VA, 98021 • (425) 402-1717						
Customer:	Impinj Inc.								
Specification:	15.247(d) / 15.209 Radiated Sp	urious Emissions							
Work Order #:	101403		ate: 8/11/2018						
Test Type:	Maximized Emissions	Ti	me: 11:52:25						
Tested By:	Steven Pittsford Sequence#: 1								
Software:	EMITest 5.03.11	1							
Equipment Teste	d:								
Device	Manufacturer	Model #	S/N						
Configuration 1									
Support Equipme	ent:								
Device	Manufacturer	Model #	S/N						
Configuration 1									
Test Conditions /	Notes:								
Frequency Range:	9kHz-10GHz (No emissions obse	erved below 30MHz)							
Frequency tested:	902.75, 914.75, 927.25								
Firmware power s	etting; 30dBm								
EUT Firmware: In	npinj Item Test V1.4.1.0.								
Protocol /MCS/Mo	odulation: Continuously modulate	ed							
	cular Polarized UHF Antenna								
Antenna Gain: 8.5									
Antenna in X, Y &	z Z axis investigated								
Duty Cycle: 100%									
, _, _,,									
Test Method: ANS	SI 63.10 (2013)								
Bothell Lab C									
Temperature (°C):	22-25								
Relative Humidity	(%): 37-42								
Setup: The EUT is	s set on a foam test table.								
The antenna is cor	nnected to antenna port 1 via a 1.2	5-meter RG058 cable							
A shielded Cat5e i	s run from the EUT to a gigabit s	witch located outside t	he chamber						
The switch is then	attached to the support laptop								

Impinj Inc. WO#: 101403 Sequence#: 1 Date: 8/11/2018 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

Test Equipment:

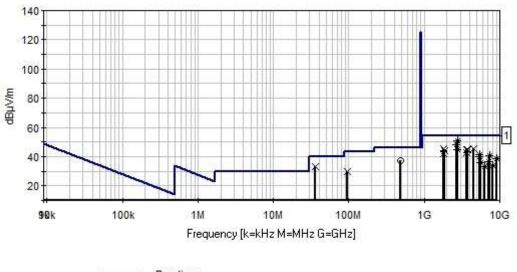
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T2	AN01467	Horn Antenna-ANSI	3115	7/21/2017	7/21/2019
		C63.5 Calibration			
T3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T5	ANP06934	Cable	32026-29801-	3/13/2018	3/13/2020
			29801-18		
T6	AN02872	Spectrum Analyzer	E4440A	11/3/2017	11/3/2019
T7	AN03170	High Pass Filter	HM1155-11SS	11/27/2017	11/27/2019
Т8	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
Т9	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T10	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
T11	ANP05360	Cable	RG214	1/31/2018	1/31/2020
	AN00052	Loop Antenna	6502	5/7/2018	5/7/2020

Measu	urement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2708.247M	52.9	-33.8	+28.7	+2.6	+0.5	+0.0	51.9	54.0	-2.1	Horiz
	Ave		+0.4	+0.0	+0.6	+0.0	360		Low		165
			+0.0	+0.0	+0.0						
^	2708.272M	57.0	-33.8	+28.7	+2.6	+0.5	+0.0	56.0	54.0	+2.0	Horiz
			+0.4	+0.0	+0.6	+0.0	204		Low		165
			+0.0	+0.0	+0.0						
3	2744.250M	50.0	-33.8	+28.8	+2.6	+0.5	+0.0	49.1	54.0	-4.9	Horiz
	Ave		+0.4	+0.0	+0.6	+0.0	360		Mid		161
			+0.0	+0.0	+0.0						
^	2744.250M	54.4	-33.8	+28.8	+2.6	+0.5	+0.0	53.5	54.0	-0.5	Horiz
			+0.4	+0.0	+0.6	+0.0	360		Mid		165
			+0.0	+0.0	+0.0						
5	6403.692M	38.6	-33.6	+35.4	+5.4	+0.6	+0.0	47.7	54.0	-6.3	Vert
			+0.8	+0.0	+0.5	+0.0	157		Mid		152
			+0.0	+0.0	+0.0						
6	36.150M	14.1	+0.0	+0.0	+0.0	+0.1	+0.0	33.2	40.0	-6.8	Vert
			+0.0	+0.0	+0.0	+12.5	81				99
	(210,115) (20.0	+5.9	+0.3	+0.3	0.6		14.0			**
1	6319.417M	38.0	-33.5	+35.3	+5.2	+0.6	+0.0	46.8	54.0	-7.2	Vert
			+0.7	+0.0	+0.5	+0.0	342		Low		154
	(100 750) (26.0	+0.0	+0.0	+0.0	0.6	0.0	165	54.0		
8	6490.750M	36.9	-33.6	+35.5	+5.6	+0.6	+0.0	46.5	54.0	-7.5	Horiz
			+0.9	+0.0	+0.6	+0.0	360		High		151
		20.7	+0.0	+0.0	+0.0	.0.5	.0.0	16.0	54.0	7.0	
9	5416.457M	38.5	-33.1	+33.9	+4.5	+0.6	+0.0	46.2	54.0	-7.8	Horiz
			+0.8	+0.0	+1.0	+0.0	180		Low		180
			+0.0	+0.0	+0.0						

10 2781.750M	46.0	-33.8	+28.9	+2.6	+0.5	+0.0	45.2		-8.8	Horiz
Ave		+0.4	+0.0	+0.6	+0.0	360		High		162
		+0.0	+0.0	+0.0						
^ 2781.750M	51.3	-33.8	+28.9	+2.6	+0.5	+0.0	50.5	54.0	-3.5	Horiz
		+0.4	+0.0	+0.6	+0.0	360		High		162
		+0.0	+0.0	+0.0						
12 489.700M	10.1	+0.0	+0.0	+0.0	+0.3	+0.0	37.0	46.0	-9.0	Vert
QP		+0.0	+0.0	+0.0	+18.3	360				99
		+5.9	+1.1	+1.3						
^ 489.700M	13.0	+0.0	+0.0	+0.0	+0.3	+0.0	39.9	46.0	-6.1	Vert
		+0.0	+0.0	+0.0	+18.3	187				99
		+5.9	+1.1	+1.3						
14 1854.500M	48.8	-34.5	+26.8	+2.3	+0.4	+0.0	44.8	54.0	-9.2	Horiz
		+0.3	+0.0	+0.7	+0.0			High		175
		+0.0	+0.0	+0.0						
15 3709.000M	41.5	-33.4	+30.9	+3.8	+0.4	+0.0	44.7	54.0	-9.3	Vert
		+0.6	+0.0	+0.9	+0.0	147		High		162
		+0.0	+0.0	+0.0				-		
16 1829.520M	48.8	-34.5	+26.6	+2.3	+0.4	+0.0	44.6	54.0	-9.4	Horiz
		+0.3	+0.0	+0.7	+0.0	360		Mid		156
		+0.0	+0.0	+0.0						
17 4636.280M	39.4	-33.2	+32.1	+4.0	+0.5	+0.0	44.5	54.0	-9.5	Horiz
		+0.9	+0.0	+0.8	+0.0	197		High		155
		+0.0	+0.0	+0.0				U		
18 1805.522M	48.7	-34.5	+26.4	+2.2	+0.5	+0.0	44.3	54.0	-9.7	Horiz
		+0.3	+0.0	+0.7	+0.0	38		Low		154
		+0.0	+0.0	+0.0						
19 3659.095M	41.2	-33.4	+30.8	+3.7	+0.4	+0.0	44.2	54.0	-9.8	Horiz
		+0.6	+0.0	+0.9	+0.0			Mid		152
		+0.0	+0.0	+0.0						
20 3610.702M	40.7	-33.5	+30.7	+3.6	+0.4	+0.0	43.3	54.0	-10.7	Vert
		+0.6	+0.0	+0.8	+0.0			Low		152
		+0.0	+0.0	+0.0						
21 4575.035M	37.6	-33.1	+32.0	+4.0	+0.5	+0.0	42.7	54.0	-11.3	Vert
21 10/01000111	57.0	+0.9	+0.0	+0.8	+0.0	360	12.7	Mid	11.0	146
		+0.0	+0.0	+0.0		200				1.0
22 4513.962M	36.8	-33.1	+31.9	+3.9	+0.5	+0.0	41.7	54.0	-12.3	Vert
0131902001	20.0	+0.9	+0.0	+0.8		360		Low	12.5	152
		+0.9	+0.0	+0.0	10.0	2.00		L 0 II		104
23 7317.950M	31.4	-34.1	+36.5	+5.4	+0.9	+0.0	41.1	54.0	-12.9	Vert
Ave	51.7	+0.5	+0.0	+0.5	+0.9	184	11.1	Mid	12.7	146
		+0.0	+0.0	+0.0	10.0	101		11114		1 10
^ 7317.950M	41.4	-34.1	+36.5	+5.4	+0.9	+0.0	51.1	54.0	-2.9	Vert
/31/./30141	71.7	+0.5	+30.3 +0.0	+0.5	+0.9 +0.0	+0.0 183	51.1	Mid	2.7	146
		+0.0	+0.0	+0.0	10.0	105		11114		1+0
25 96.900M	14.9	+0.0	+0.0	+0.0	+0.1	+0.0	29.6	43.5	-13.9	Vert
25 70.700WI	14.7	+0.0 +0.0	$^{+0.0}_{+0.0}$	+0.0 $+0.0$	+0.1 +7.7	+0.0 59	29.0	+5.5	-13.7	99
		+0.0 +5.9	+0.0 +0.5	+0.0 $+0.5$	± 1.1	59				77
26 5488.500M	30.7	-33.1	+0.3 +34.2	+0.3 +4.5	+0.7	+0.0	38.8	54.0	-15.2	Vert
	50.7	-55.1 +0.9	+34.2 +0.0	+4.3 +0.9	+0.7 +0.0	+0.0 180	20.0	Mid	-13.2	185
Ave		+0.9 +0.0	$^{+0.0}_{+0.0}$	+0.9 +0.0	+0.0	100		11110		183
		± 0.0	± 0.0	± 0.0						

^	5488.500M	40.6	-33.1	+34.2	+4.5	+0.7	+0.0	48.7	54.0	-5.3	Vert
			+0.9	+0.0	+0.9	+0.0	180		Mid		185
•	044546036		+0.0	+0.0	+0.0	0.0		20.0		1.5.0	
	9147.163M	26.2	-33.9	+37.2	+6.2	+0.8	+0.0	38.0	54.0	-16.0	Vert
	Ave		+0.9	+0.0	+0.6	+0.0	95		Mid		137
	0147 16014	40.1	+0.0	+0.0	+0.0	0.0	0.0	51.0	54.0	0.1	X X .
~	9147.163M	40.1	-33.9	+37.2	+6.2	+0.8	+0.0	51.9	54.0	-2.1	Vert
			+0.9	+0.0	+0.6	+0.0	238		Mid		134
20	0070 ((5))	25.5	+0.0	+0.0	+0.0	.0.0	.0.0	27.5	54.0	165	X 7 /
	9272.665M	25.5	-33.8	+37.3	+6.2	+0.9	+0.0		54.0	-16.5	Vert
	Ave		+0.8	+0.0	+0.6	+0.0	78		High		154
	0272 ((5))	40.5	+0.0	+0.0	+0.0			50.5	54.0	-1.5	Mart
~	9272.665M	40.5	-33.8 +0.8	+37.3 +0.0	+6.2	+0.9	+0.0 289	52.5		-1.5	Vert
			$^{+0.8}_{+0.0}$	$^{+0.0}_{+0.0}$	$^{+0.6}_{+0.0}$	+0.0	289		High		154
20	8345.415M	26.1	-34.6	+0.0 +37.0	+0.0 +5.8	+0.8	+0.0	26.2	54.0	-17.7	Vert
	8545.415M Ave	20.1	-34.0 +0.7	+37.0 +0.0	+3.8 +0.5	$^{+0.8}_{+0.0}$	+0.0 135	50.5	J4.0 High	-1/./	154
	Ave		+0.7 +0.0	$^{+0.0}_{+0.0}$	+0.3 +0.0	+0.0	155		nıgli		134
^	8345.415M	40.4	-34.6	+0.0 +37.0	+0.0 +5.8	+0.8	+0.0	50.6	54.0	-3.4	Vert
	0343.413WI	40.4	-34.0 +0.7	+37.0 +0.0	+0.5	+0.8 $+0.0$	+0.0 129		High	-3.4	154
			+0.7 +0.0	+0.0 $+0.0$	+0.0	± 0.0	129		Ingn		1.54
3/	7418.165M	26.2	-34.4	+36.8	+5.5	+1.1	+0.0	36.2	54.0	-17.8	Horiz
	Ave	20.2	+0.5	+0.0	+0.5	+0.0	360		High	-17.0	151
	1100		+0.0	+0.0	+0.0	10.0	500		mgn		151
^	7418.165M	37.5	-34.4	+36.8	+5.5	+1.1	+0.0	47.5	54.0	-6.5	Horiz
	/ 110.10510	51.5	+0.5	+0.0	+0.5	+0.0	360		High	0.5	151
			+0.0	+0.0	+0.0		200				101
36	7221.997M	26.2	-33.9	+36.2	+5.3	+0.8	+0.0	35.7	54.0	-18.3	Vert
	Ave	2012	+0.5	+0.0	+0.6	+0.0	155	0017	Low	1010	160
			+0.0	+0.0	+0.0						
^	7221.997M	37.0	-33.9	+36.2	+5.3	+0.8	+0.0	46.5	54.0	-7.5	Vert
			+0.5	+0.0	+0.6	+0.0	155		Low		160
			+0.0	+0.0	+0.0						
38	8124.747M	25.7	-34.7	+36.8	+5.7	+0.7	+0.0	35.6	54.0	-18.4	Horiz
	Ave		+0.8	+0.0	+0.6	+0.0			Low		150
			+0.0	+0.0	+0.0						
^	8124.747M	38.7	-34.7	+36.8	+5.7	+0.7	+0.0	48.6	54.0	-5.4	Horiz
			+0.8	+0.0	+0.6	+0.0	85		Low		150
			+0.0	+0.0	+0.0						
40	8232.292M	25.8	-34.8	+36.9	+5.7	+0.7	+0.0	35.6	54.0	-18.4	Vert
	Ave		+0.8	+0.0	+0.5	+0.0	182		Mid		139
			+0.0	+0.0	+0.0						
^	8232.292M	40.4	-34.8	+36.9	+5.7	+0.7	+0.0	50.2	54.0	-3.8	Vert
			+0.8	+0.0	+0.5	+0.0	238		Mid		134
			+0.0	+0.0	+0.0						
									-	-	

42 9027.497M	23.9	-34.0	+37.1	+6.2	+0.6	+0.0	35.4	54.0	-18.6	Vert
Ave		+1.0	+0.0	+0.6	+0.0			Low		150
		+0.0	+0.0	+0.0						
^ 9027.427M	38.0	-34.0	+37.1	+6.2	+0.6	+0.0	49.5	54.0	-4.5	Vert
		+1.0	+0.0	+0.6	+0.0			Low		150
		+0.0	+0.0	+0.0						
44 5563.500M	25.2	-33.2	+34.3	+4.5	+0.7	+0.0	33.1	54.0	-20.9	Vert
Ave		+0.9	+0.0	+0.7	+0.0			High		159
		+0.0	+0.0	+0.0						
^ 5563.500M	39.8	-33.2	+34.3	+4.5	+0.7	+0.0	47.7	54.0	-6.3	Vert
		+0.9	+0.0	+0.7	+0.0			High		159
		+0.0	+0.0	+0.0						


Test Location:	CKC Laboratories, Inc. • 22116 23rd DR SE •	Bothell WA, 9	8021 • (425) 402-1717
Customer:	Impinj Inc.		
Specification:	15.247(d) / 15.209 Radiated Spurious Emiss	ions	
Work Order #:	101403	Date:	8/11/2018
Test Type:	Maximized Emissions	Time:	09:08:43
Tested By:	Steven Pittsford	Sequence#:	2
Software:	EMITest 5.03.11		

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			
Support Equipment:			
Device	Manufacturer	Model #	S/N
Configuration 2			
Test Conditions / Not	es:		
Frequency Range: 9kH	z-10GHz (No emissions ob	served below 30MHz)	
Frequency tested: 902.			
Firmware power setting			
EUT Firmware: Impinj			
Protocol /MCS/Modula	ation: Continuously modulat	ed	
Antenna type: Circular	Polarized UHF Antenna		
Antenna Gain: 5.5dBiC			
Antenna in X, Y & Z a			
, ,	8		
Duty Cycle: 100%			
5 5			
Test Method: ANSI 63	.10 (2013)		
Bothell Lab C			
Temperature (°C): 22-2	25		
Relative Humidity (%)	: 37-42		
Setup: The EUT is set of			
	ed to antenna port 1 via a 1.		
	from the EUT to a gigabit	switch located outside the	e chamber
The switch is then attac	ched to the support laptop.		

Impinj Inc. WO#: 101403 Sequence#: 2 Date: 8/11/2018 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Vert

1 - 15.247(d) / 15.209 Radiated Spurious Emissions

Х Peak Readings

0 QP Readings *

Average Readings

Software Version: 5.03.11

Test Equipment:

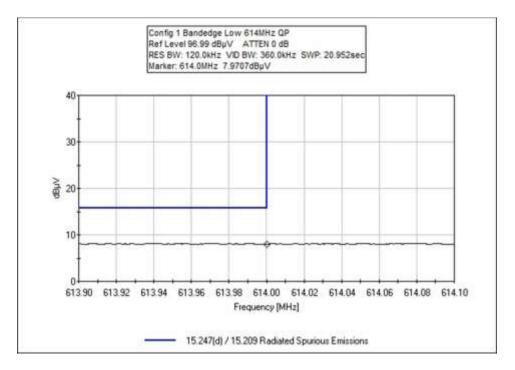
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T2	AN01467	Horn Antenna-	3115	7/21/2017	7/21/2019
		ANSI C63.5			
		Calibration			
Т3	ANP06515	Cable	Heliax	6/29/2018	6/29/2020
T4	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T5	ANP06934	Cable	32026-29801-	3/13/2018	3/13/2020
			29801-18		
Т6	AN02872	Spectrum Analyzer	E4440A	11/3/2017	11/3/2019
T7	AN03170	High Pass Filter	HM1155-11SS	11/27/2017	11/27/2019
	AN00052	Loop Antenna	6502	5/7/2018	5/7/2020
Т8	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
Т9	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T10	ANP05360	Cable	RG214	1/31/2018	1/31/2020
T11	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019

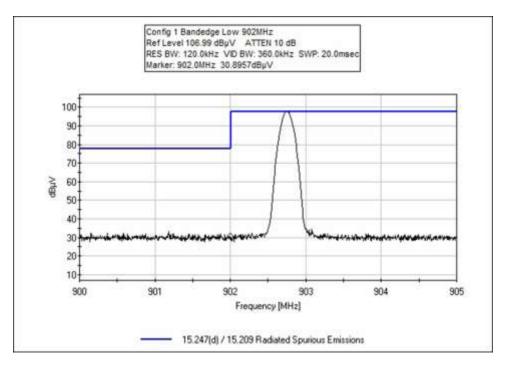
Meası	irement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2744.375M	51.9	-33.8	+28.8	+2.6	+0.5	+0.0	51.0	54.0	-3.0	Vert
	Ave		+0.4	+0.0	+0.6	+0.0	316		Mid		158
			+0.0	+0.0	+0.0						
^	2744.375M	56.7	-33.8	+28.8	+2.6	+0.5	+0.0	55.8	54.0	+1.8	Vert
			+0.4	+0.0	+0.6	+0.0	204		Mid		158
			+0.0	+0.0	+0.0						
3	2708.247M	49.1	-33.8	+28.7	+2.6	+0.5	+0.0	48.1	54.0	-5.9	Vert
	Ave		+0.4	+0.0	+0.6	+0.0	7		Low		158
			+0.0	+0.0	+0.0						
^	2708.247M	56.4	-33.8	+28.7	+2.6	+0.5	+0.0	55.4	54.0	+1.4	Vert
			+0.4	+0.0	+0.6	+0.0	67		Low		158
			+0.0	+0.0	+0.0						
5	36.150M	14.1	+0.0	+0.0	+0.0	+0.1	+0.0	33.2	40.0	-6.8	Vert
			+0.0	+0.0	+0.0	+12.5	81				99
			+5.9	+0.3	+0.3						
6	1805.540M	50.0	-34.5	+26.4	+2.2	+0.5	+0.0	45.6	54.0	-8.4	Horiz
			+0.3	+0.0	+0.7	+0.0	232		Low		154
			+0.0	+0.0	+0.0						
7	4513.512M	40.4	-33.1	+31.9	+3.9	+0.5	+0.0	45.3	54.0	-8.7	Vert
			+0.9	+0.0	+0.8	+0.0	74		Low		147
			+0.0	+0.0	+0.0						
8	3709.000M	41.8	-33.4	+30.9	+3.8	+0.4	+0.0	45.0	54.0	-9.0	Vert
			+0.6	+0.0	+0.9	+0.0	181		High		151
			+0.0	+0.0	+0.0						

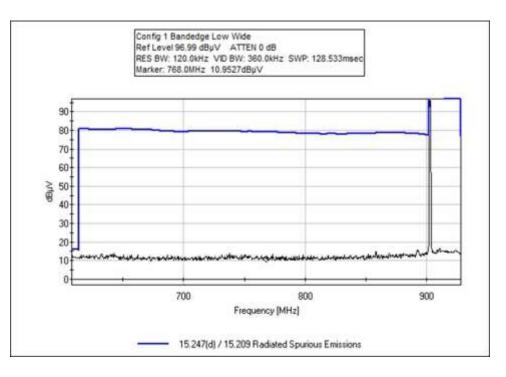
	100										
	489.700M	10.1	+0.0	+0.0		+0.3	+0.0	37.0	46.0	-9.0	Vert
	QP		+0.0	+0.0	+0.0	+18.3	360				99
	100 5003 6	12.0	+5.9	+1.3	+1.1	0.0	0.0	20.0	44.0		
^	489.700M	13.0	+0.0	+0.0	+0.0	+0.3	+0.0	39.9	46.0	-6.1	Vert
			+0.0	+0.0	+0.0	+18.3	187				99
	0001 0101 0		+5.9	+1.3	+1.1	0.7					
	2781.740M	45.7	-33.8	+28.9	+2.6	+0.5	+0.0	44.9		-9.1	Vert
	Ave		+0.4	+0.0	+0.6	+0.0	195		High		158
			+0.0	+0.0	+0.0						
^	2781.740M	50.7	-33.8	+28.9	+2.6	+0.5	+0.0		54.0	-4.1	Vert
			+0.4	+0.0	+0.6	+0.0	196		High		158
10	0 (0 0 0 0 0 0 0 0		+0.0	+0.0	+0.0	0.4	0.0			~ ~	
13	3659.000M	41.5	-33.4	+30.8	+3.7	+0.4	+0.0	44.5	54.0	-9.5	Vert
			+0.6	+0.0	+0.9	+0.0	217		Mid		147
1.4	1054 4653 6	47.0	+0.0	+0.0	+0.0	0.4	0.0	10.0	54.0	10.0	¥.7 .
14	1854.465M	47.8	-34.5	+26.8	+2.3	+0.4	+0.0	43.8		-10.2	Vert
			+0.3	+0.0	+0.7	+0.0	360		High		153
1.5	0 (11 000) (40.4	+0.0	+0.0	+0.0	0.4	0.0	12.0	54.0	11.0	¥7 .
15	3611.000M	40.4	-33.5	+30.7	+3.6	+0.4	+0.0	43.0	54.0	-11.0	Vert
			+0.6	+0.0	+0.8	+0.0	322		Low		147
1.0	1020 50014	16.0	+0.0	+0.0	+0.0	.0.1	. 0. 0	12.0	54.0	10.0	X 7 (
16	1829.500M	46.2	-34.5	+26.6	+2.3	+0.4	+0.0	42.0	54.0	-12.0	Vert
			+0.3	+0.0	+0.7	+0.0	348		Mid		159
17	5416 5003 6		+0.0	+0.0	+0.0	0.6	0.0	41.1	54.0	12.0	
	5416.500M	33.4	-33.1	+33.9	+4.5	+0.6	+0.0	41.1	54.0	-12.9	Horiz
	Ave		+0.8	+0.0	+1.0	+0.0	167		Low		163
•	5416 50014	40.0	+0.0	+0.0	+0.0	.0.6	. 0. 0	10.0	54.0	5.4	
Λ	5416.500M	40.9	-33.1	+33.9	+4.5	+0.6	+0.0	48.6	54.0	-5.4	Horiz
			+0.8	+0.0	+1.0	+0.0	167		Low		163
10	7410.00014	20.0	+0.0	+0.0	+0.0	. 1. 1	.0.0	40.0	54.0	12.1	X7t
	7418.000M	30.9	-34.4	+36.8	+5.5	+1.1	+0.0	40.9		-13.1	Vert
	Ave		+0.5	+0.0	+0.5	+0.0	179		High		158
	7410.00014	20.0	+0.0	+0.0	+0.0	. 1. 1	. 0. 0	10.0	54.0	4.1	X 7 /
Λ	7418.000M	39.9	-34.4	+36.8	+5.5	+1.1	+0.0	49.9		-4.1	Vert
			+0.5	+0.0	+0.5	+0.0	170		High		158
21	7210.00014	21.0	+0.0	+0.0	+0.0			40.7	54.0	12.2	Vart
	7318.000M	31.0		+36.5	+5.4				54.0	-13.3	Vert
	Ave		$^{+0.5}_{+0.0}$		+0.5	+0.0	195		Mid		163
٨	7210.0001	20.5		+0.0	+0.0	0.0		40.2	54.0	4.0	Vart
~	7318.000M	39.5	-34.1 +0.5	+36.5	+5.4	+0.9	+0.0 192	49.2	54.0 Mid	-4.8	Vert
				+0.0	+0.5	+0.0	192		Mid		163
22	5488.500M	22.0	+0.0	+0.0	+0.0	107		40.1	54.0	12.0	Vort
		32.0	-33.1 +0.9	+34.2	+4.5	+0.7	+0.0	40.1	54.0 Mid	-13.9	Vert
	Ave			$^{+0.0}_{+0.0}$	+0.9 +0.0	+0.0	204		Mid		152
^	5488.445M	20 6	+0.0		+0.0	07		177	510	60	Vart
~	3400.443M	39.6	-33.1	+34.2	+4.5	+0.7	+0.0	47.7	54.0 Mid	-6.3	Vert
			+0.9	+0.0	+0.9	+0.0	171		Mid		152
25	06.00014	14.0	+0.0	+0.0	+0.0	+0.1		29.6	12 5	-13.9	V
25	96.900M	14.9	+0.0	+0.0	+0.0	+0.1	+0.0	29.6	43.5	-13.9	Vert
			+0.0	+0.0	+0.0	+7.7	59				99
			+5.9	+0.5	+0.5						

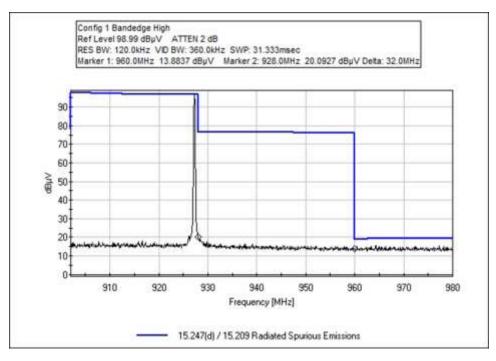
		21.0	07.1	<i>.</i>	0.5	0.0	20 -	- 4 6	1.5.0	**
26 9027.500M	27.2	-34.0	+37.1	+6.2	+0.6	+0.0	38.7	54.0	-15.3	Vert
Ave		+1.0	+0.0	+0.6	+0.0	185		Low		153
		+0.0	+0.0	+0.0						
^ 9027.500M	39.2	-34.0	+37.1	+6.2	+0.6	+0.0	50.7	54.0	-3.3	Vert
		+1.0	+0.0	+0.6	+0.0	206		Low		153
		+0.0	+0.0	+0.0						
28 7222.000M	27.3	-33.9	+36.2	+5.3	+0.8	+0.0	36.8	54.0	-17.2	Vert
Ave		+0.5	+0.0	+0.6	+0.0	360		Low		153
		+0.0	+0.0	+0.0						
^ 7222.000M	39.9	-33.9	+36.2	+5.3	+0.8	+0.0	49.4	54.0	-4.6	Vert
		+0.5	+0.0	+0.6	+0.0	360		Low		153
		+0.0	+0.0	+0.0						
30 5563.500M	27.7	-33.2	+34.3	+4.5	+0.7	+0.0	35.6	54.0	-18.4	Vert
Ave		+0.9	+0.0	+0.7	+0.0			High		158
		+0.0	+0.0	+0.0				-		
^ 5563.500M	38.0	-33.2	+34.3	+4.5	+0.7	+0.0	45.9	54.0	-8.1	Vert
		+0.9	+0.0	+0.7	+0.0	194		High		158
		+0.0	+0.0	+0.0				U		
32 8124.750M	23.7	-34.7	+36.8	+5.7	+0.7	+0.0	33.6	54.0	-20.4	Horiz
Ave		+0.8	+0.0	+0.6	+0.0	181		Low		153
		+0.0	+0.0	+0.0						
^ 8124.750M	37.4	-34.7	+36.8	+5.7	+0.7	+0.0	47.3	54.0	-6.7	Horiz
		+0.8	+0.0	+0.6	+0.0	159		Low		153
		+0.0	+0.0	+0.0						
34 6319.250M	24.4	-33.5	+35.3	+5.2	+0.6	+0.0	33.2	54.0	-20.8	Vert
Ave		+0.7	+0.0	+0.5	+0.0	360		Low		153
		+0.0	+0.0	+0.0						
^ 6319.250M	39.9	-33.5	+35.3	+5.2	+0.6	+0.0	48.7	54.0	-5.3	Vert
	2717	+0.7	+0.0	+0.5	+0.0	360		Low	0.00	153
		+0.0	+0.0	+0.0						
			. 510	. 510						

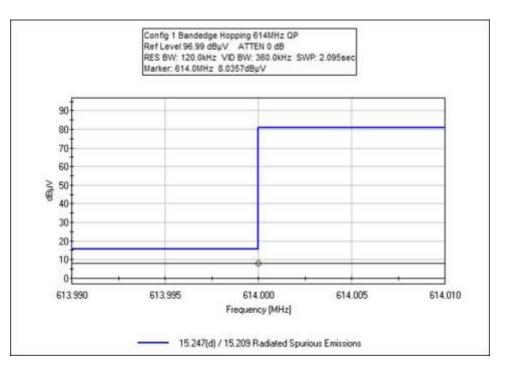
Band Edge

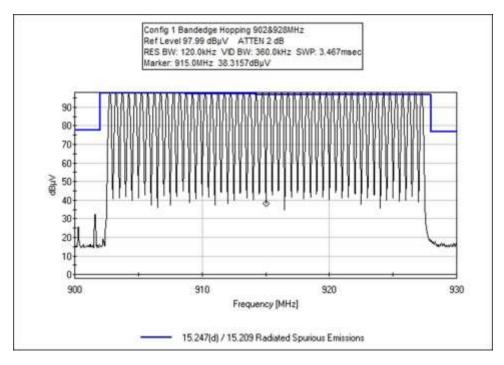

	Band Edge Summary – Configuration 1									
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results					
614	ASK	Circular Polarized UHF Antenna Slimline A5010, 8.5dBiC	38.2	<54	Pass					
902	ASK	Circular Polarized UHF Antenna Slimline A5010, 8.5dBiC	64.4	<111.2	Pass					
928	ASK	Circular Polarized UHF Antenna Slimline A5010, 8.5dBiC	54.6	< 111.2	Pass					
960	ASK	Circular Polarized UHF Antenna Slimline A5010, 8.5dBiC	48.8	<54	Pass					

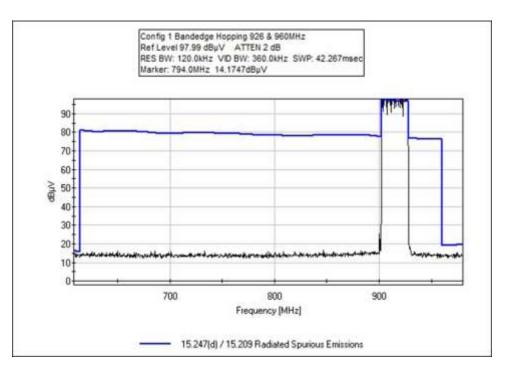

		Band Edge Summary – Cont	figuration 2		
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614	ASK	Circular Polarized UHF Antenna Slimline A5020, 5.5dBiC	38.2	<54	Pass
902	ASK	Circular Polarized UHF Antenna Slimline A5020, 5.5dBiC	50.7	<108.2	Pass
928	ASK	Circular Polarized UHF Antenna Slimline A5020, 5.5dBiC	51.5	< 108.2	Pass
960	ASK	Circular Polarized UHF Antenna Slimline A5020, 5.5dBiC	46.1	<54	Pass

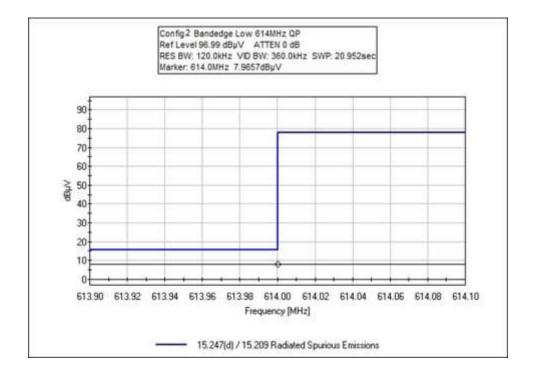

Band Edge Plots

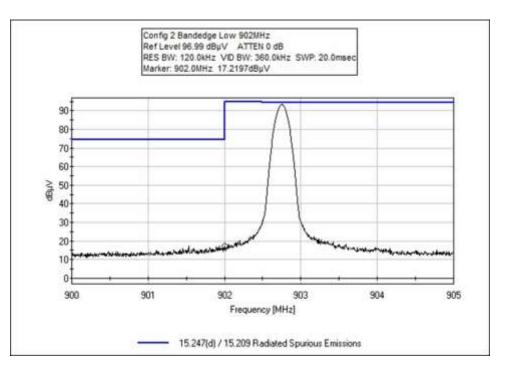

Plots show raw data with the limit line being corrected for all transducers

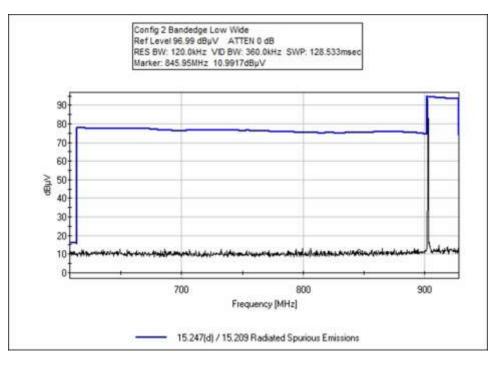


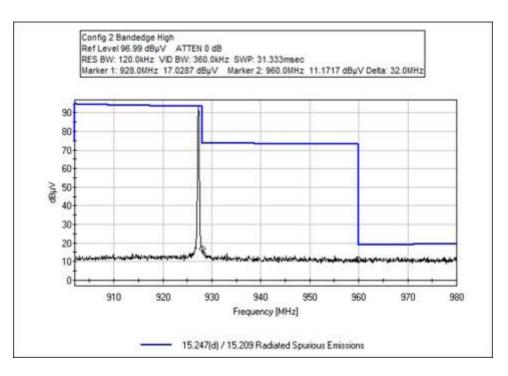


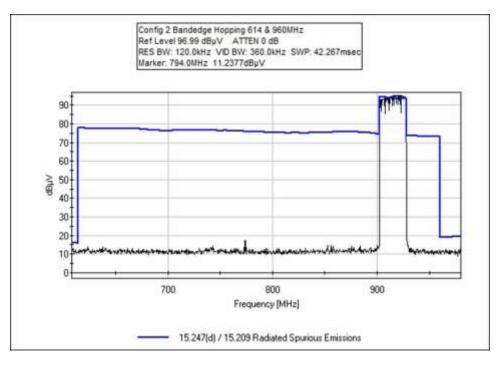


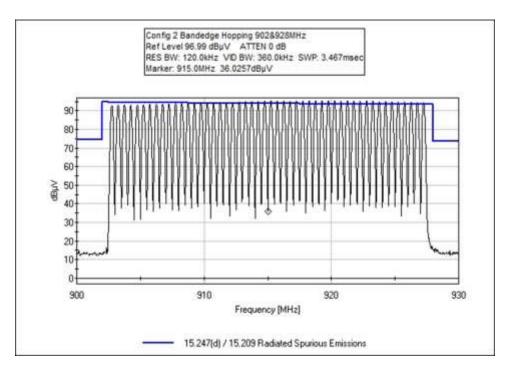












Test Setup / Conditions / Data

Test Location: Customer: Specification: Work Order #: Test Type: Tested By: Software:	CKC Laboratories, Inc. • 22116 Impinj Inc. 15.247(d) / 15.209 Radiated Spr 101403 Maximized Emissions Steven Pittsford EMITest 5.03.11	urious Emissions D	Pate: 8/11/2018 me: 10:43:49	
Equipment Test	ed: Manufacturer	Model #	S/N	
Configuration 1	Manufacturer	Niodel #	5/19	
0	ant.			
Support Equipm Device	Manufacturer	Model #	S/N	
Configuration 1	ivianulu ctul ci	niouci "	0111	
Test Conditions	/ Notes:			
Firmware power a EUT Firmware: I Protocol /MCS/M Antenna type: Cin Antenna Gain: 8.:	mpinj ItemTest V1.4.1.0. Iodulation: Continuously modulate rcular Polarized UHF Antenna 5dBiC & Z axis investigated	ed.		
Test Method: AN Bothell Lab C3 Temperature (°C) Relative Humidit	: 22-25			
The antenna is co A shielded Cat5e	s set on a foam test table. nnected to antenna port 1 via a 1.2 is run from the EUT to a gigabit so a attached to the support laptop.		he chamber	

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
T2	AN02872	Spectrum Analyzer	E4440A	11/3/2017	11/3/2019
Т3	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
T4	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T5	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
Т6	ANP05360	Cable	RG214	1/31/2018	1/31/2020

Ι	leasu	rement Data:	Re	eading list	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
	#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
				T5	T6							
		MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1	960.000M	13.9	+0.4	+0.0	+24.9	+5.9	+0.0	48.8	54.0	-5.2	Vert
				+1.6	+2.1			1				114
	2	614.000M	8.0	+0.3	+0.0	+21.2	+5.9	+0.0	38.2	46.0	-7.8	Vert
		QP		+1.3	+1.5			1				99
	۸	614.000M	13.3	+0.3	+0.0	+21.2	+5.9	+0.0	43.5	46.0	-2.5	Vert
				+1.3	+1.5			1				99
	4	902.000M	30.9	+0.3	+0.0	+23.8	+5.9	+0.0	64.4	111.2	-46.8	Vert
				+1.5	+2.0			1				114
Γ	5	928.000M	20.1	+0.4	+0.0	+24.6	+5.9	+0.0	54.6	111.2	-56.6	Vert
				+1.6	+2.0			1				114

Test Location:	CKC Laboratories, Inc. • 22116 23rd DR SE • Bothell WA, 98021 • (425) 402-1717							
Customer:	Impinj Inc.							
Specification:	15.247(d) / 15.209 Radiated Spurious Emis	sions						
Work Order #:	101403	Date:	8/11/2018					
Test Type:	Maximized Emissions	Time:	11:12:41					
Tested By:	Steven Pittsford	Sequence#:	4					
Software:	EMITest 5.03.11							

Equipment Tested:

Device	Manufacturer	Model #	S/N							
Configuration 2										
Support Equipment:	Support Equipment:									
Device	Manufacturer	Model #	S/N							
Configuration 2										
Test Conditions / Notes	3:									
Frequency Range: 600-1										
Frequency tested: 902.73										
Firmware power setting;										
EUT Firmware: Impinj l										
Protocol /MCS/Modulat	ion: Continuously modulate	ed								
Antenna Gain: 5.5dBiC antenna in X, Y & Z axi	Antenna type: Circular Polarized UHF Antenna Antenna Gain: 5.5dBiC antenna in X, Y & Z axis investigated									
Duty Cycle: 100%										
Test Method: ANSI 63.10 (2013) Bothell Lab C3 Temperature (°C): 22-25 Relative Humidity (%): 37-42										
Setup: The EUT is set on a foam test table. The antenna is connected to antenna port 1 via a 1.25-meter RG058 cable A shielded Cat5e is run from the EUT to a gigabit switch located outside the chamber The switch is then attached to the support laptop.										

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP06540	Cable	Heliax	10/30/2017	10/30/2019
	AN02872	Spectrum Analyzer	E4440A	11/3/2017	11/3/2019
T2	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
Т3	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T4	ANP05305	Cable	ETSI-50T	10/24/2017	10/24/2019
T5	ANP05360	Cable	RG214	1/31/2018	1/31/2020

Meas	surement Data:	Re	ading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 614.000M	8.0	+0.3	+21.2	+5.9	+1.3	+0.0	38.2	46.0	-7.8	Vert
	QP		+1.5								120
	^ 614.000M	11.6	+0.3	+21.2	+5.9	+1.3	+0.0	41.8	46.0	-4.2	Vert
			+1.5								120
	3 960.000M	11.2	+0.4	+24.9	+5.9	+1.6	+0.0	46.1	54.0	-7.9	Vert
			+2.1								120
	4 928.000M	17.0	+0.4	+24.6	+5.9	+1.6	+0.0	51.5	108.2	-56.7	Vert
			+2.0								120
	5 902.000M	17.2	+0.3	+23.8	+5.9	+1.5	+0.0	50.7	108.2	-57.5	Vert
			+2.0								120

Test Setup Photos

Configuration 1, Below 1GHz

Configuration 1, Above 1GHz Cone placement

Configuration 2, Below 1GHz

Configuration 2, Above 1 GHz Cone placement

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS							
	Meter reading (dBµV)						
+	Antenna Factor	(dB/m)					
+	Cable Loss	(dB)					
-	Distance Correction	(dB)					
-	Preamplifier Gain	(dB)					
=	Corrected Reading	(dBµV/m)					

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.