IMPINJ INC TEST REPORT

FOR THE

RFID READER, IPJ-REV
FCC PART 15 SUBPART C SECTIONS 15.207 \& 15.247
AND RSS-210 ISSUE 7

TESTING

DATE OF ISSUE: FEBRUARY 23, 2009

PREPARED FOR:

Impinj, Inc.
701 N. 34th Street
Seattle, WA 98103
P.O. No.: 100974
W.O. No.: 89028

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Date of test: February 9-12, 2009

Report No.: FC09-014

This report contains a total of 122 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS
Administrative Information 3
Approvals 3
Summary of Results 4
Conditions During Testing 4
FCC 15.31(m) Number Of Channels 4
FCC 15.33(a) Frequency Ranges Tested 4
EUT Operating Frequency 4
Equipment Under Test (EUT) Description 5
Equipment Under Test 5
Peripheral Devices 5
Report of Emissions Measurements 6
Testing Parameters 6
FCC 15.31(e) - Voltage Variation 8
FCC 15.207 - AC Conducted Emissions 11
FCC 15.247(a) - 20dB Bandwidth 25
FCC 15.247(a) - Frequency Separation 28
FCC 15.247(a) - Number of Hopping Channels 30
FCC 15.247(a) - Average Time of Occupancy 32
FCC 15.247(b) - RF Power Output 34
FCC 15.247(d) - Antenna Conducted Spurious Emissions 38
FCC 15.247(d) - OATS Radiated Spurious Emissions 52
RSS-210 - 99\% Bandwidth 120

ADMINISTRATIVE INFORMATION

DATE OF TEST: February 9-12, 2009
REPRESENTATIVE: Mike Thomas
MANUFACTURER:
Impinj, Inc.
701 N. 34th Street
Seattle, WA 98103

DATE OF RECEIPT: February 9, 2009

TEST LOCATION:

CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

TEST METHOD: ANSI C63.4 (2003), RSS-210 Issue 7 and RSS GEN Issue 2

PURPOSE OF TEST: To perform the testing of the RFID Reader, IPJ-REV with the requirements for FCC Part 15 Subpart C Sections 15.207 \& 15.247and RSS-210 devices.

APPROVALS

QUALITY ASSURANCE:

Steve Behm, Director of Engineering Services

Donald Jones, Senior EMC Engineer / Lab Manager

TEST PERSONNEL:

Armando Del Angel, Test Engineer

SUMMARY OF RESULTS

Test	Specification	Results
Voltage Variation	FCC Part 15.31(e)	Pass
Conducted Emissions	FCC Part 15.207	Pass
20dB Bandwidth	FCC Part 15.247(a)	Pass
Frequency Separation	FCC Part 15.247(a)	Pass
Number of Hopping Channels	FCC Part 15.247(a)	Pass
Average Time of Occupancy	FCC Part 15.247(a)	Pass
RF Power Output	FCC Part 15.247(b)	Pass
Antenna Conducted Spurious Emissions	FCC Part 15.247(d)	Pass
OATS Spurious Emissions	FCC Part 15.209/15.247(d)	Pass
		Pass
Bandedge		Pass
	RSS-210 Issue 7 and RSS GEN Issue 2	
99\% Bandwidth		

CONDITIONS DURING TESTING
No modifications to the EUT were necessary during testing.

FCC 15.31(m) Number Of Channels

This device was tested on three channels.
FCC 15.33(a) Frequency Ranges Tested
15.207 Conducted Emissions: $150 \mathrm{kHz}-30 \mathrm{MHz}$
15.209/15.247 Radiated Emissions: $9 \mathrm{kHz}-19 \mathrm{GHz}$

EUT Operating Frequency

The EUT was operating in the $902-928 \mathrm{MHz}$ band.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Circular Patch Antenna

Manuf: Cushcraft
Model: S90289CLJ
Serial: 092436

AC/DC Adaptor
Manuf: CUI
Model: DSA-60W-20
Serial: ETS240250UC-P11P-DB

Mini-Guardrail

Manuf: Impinj Inc.
Model: IPJ-A0303-0000E
Serial: 0069

RFID Reader

Manuf: Impinj Inc.
Model: IPJ-REV
Serial: 940-08-21-0006

Antenna Cable

Manuf: Manhattan/CDT
Model: M4213
Serial: 1354 E12091

Brickyard Antenna

Manuf: CSL
Model: CS777-2
Serial: V25078 EP00090

Guardwall Antenna

Manuf: Impinj Inc.
Model: IPJ-A0402-USA
Serial: 0116

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Wireless G Router

Manuf: Belkin
Model: F5D7230-4
Serial: 2028723009696

Laptop Computer

Manuf: Dell
Model: Latitude
Serial: 6497402833

Switch POE

Manuf: NETGEAR
Model: FS108P
Serial: 1DL1863H0073E

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.
The relative humidity was between 20% and 75%.
The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.31(e) - VOLTAGE VARIATIONS

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active 1114018 $11 / 13 / 2008$ $11 / 13 / 2010$ $18-26 G H z$			2742	
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$12 / 30 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 20 / 2007$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$07 / 08 / 2008$	$07 / 08 / 2010$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01271
Filter	2	$05 / 01 / 2008$	$05 / 01 / 2010$	2750
Filter	$12 / 02 / 2008$	$12 / 02 / 2010$	3116	
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$		

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
The Unit is an RF reader. It is connected directly to the spectrum analyzer through a special cable provided by the customer due to the fact that it will provide the required attenuation for the unit to comply with the limit in this situation.

The EUT will be in transmitting mode throughout the test in the LOW, MEDIUM and HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.

Power setting = 32.5 dBm
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75,915.25$ \& 927.25

Test Setup Photos

AC/DC converter

Frequency (MHz)	Voltage	30dBm	32.5dBm w/ cable	Limit (dBuV)
902.75	$+15 \%$	136.5 dBuV	136.6 dBuV	137.0
902.75	Nominal	136.8 dBuV	136.6 dBuV	137.0
902.75	-15%	136.5 dBuV	136.6 dBuV	137.0
915.25	$+15 \%$	137.0 dBuV	136.9 dBuV	137.0
915.25	Nominal	136.6 dBuV	136.9 dBuV	137.0
915.25	-15%	136.9 dBuV	136.6 dBuV	137.0
927.25	$+15 \%$	136.8 dBuV	136.4 dBuV	137.0
927.25	Nominal	136.7 dBuV	136.4 dBuV	137.0
927.25	-15%	136.8 dBuV	136.4 dBuV	137.0

POE

Frequency (MHz)	Voltage	30dBm	Limit (dBuV)
902.75	$+15 \%$	136.5 dBuV	137.0
902.75	Nominal	136.5 dBuV	137.0
902.75	-15%	136.4 dBuV	137.0
915.25	$+15 \%$	136.6 dBuV	137.0
915.25	Nominal	136.6 dBuV	137.0
915.25	-15%	136.6 dBuV	137.0
927.25	$+15 \%$	136.6 dBuV	137.0
927.25	Nominal	136.7 dBuV	137.0
927.25	-15%	136.7 dBuV	137.0

Notes: The unit is connected directly to the PSA and depending on the power output the measurement will be taken in the RF port or in the end of the cable. The unit's AC/DC converter \& POE will be connected to a programmable power supply so we can vary the voltage from 85% to 115% of the nominal voltage.

FCC 15.207 - AC CONDUCTED EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.207-AVE		Date:
Work Order \#:	89028	Time:	10:32:49 AM
Test Type:	Conducted Emissions	Sequence\#:	2
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj		110 V 60 Hz
Model:	IPJ-REV		
S/N:	$940-08-21-0006$		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Agilent E4440A	MY46186330	$01 / 31 / 2008$	$01 / 31 / 2010$	AN02872
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503
Filter	G7752	$07 / 21 / 2008$	$07 / 21 / 2010$	AN02611
EMCO LISN	$9606-1049$	$06 / 01 / 2007$	$06 / 01 / 2009$	AN01492

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Antenna cable	Manhattan/CDT	M4213	1354 E12091
Support Devices:			
Function	Manufacturer	Model \#	S/N
Wireless G Router	Belkin	F5D7230-4	2028723009696
Laptop Computer	Dell	Latitude	6497402833

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing AC conducted emissions per FCC 15.207.

The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by an AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is located on the wooden table.
The EUT will be in transmitter mode throughout the test.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting: 32.5 dBm
Operating frequency: $902-928 \mathrm{MHz}$.
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{kHz}, \mathrm{VBW}=1 \mathrm{kHz}$.

Transducer Legend:

T1=CAB-ANP05371	T2=FIL-AN02611-072108
T3=CAB-ANP05366	T4=ATT-ANP5503-032108
T5=CAB-ANP05360	T6=CDN-AN01492-060107 - Neutral

Measu	ment Data	Reading listed by margin.				Test Lead: Neutral					
\#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz		$\begin{aligned} & \mathrm{T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T6 } \\ & \text { dB } \end{aligned}$		dB					
1	187.815k	37.5	+0.0	+0.2	+0.0	+10.1	+0.0	48.0	54.1	-6.1	Neutr
			+0.0	+0.2							
2	363.071k	30.6	+0.1	+0.1	+0.0	+10.1	+0.0	41.2	48.7	-7.5	Neutr
			+0.1	+0.2							
3	423.429k	28.3	+0.1	+0.1	+0.0	+10.1	+0.0	38.9	47.4	-8.5	Neutr
			+0.1	+0.2							
4	247.446k	31.6	+0.0	+0.2	+0.0	+10.1	+0.0	42.1	51.8	-9.7	Neutr
			+0.0	+0.2							
5	176.907k	33.3	+0.0	+0.3	+0.0	+10.1	+0.0	43.9	54.6	-10.7	Neutr
			+0.0	+0.2							
6	195.814k	31.3	+0.0	+0.2	+0.0	+10.1	+0.0	41.8	53.8	-12.0	Neutr
			+0.0	+0.2							
7	661.953k	22.1	+0.1	+0.2	+0.0	+10.1	+0.0	32.8	46.0	-13.2	Neutr
			+0.1	+0.2							
8	207.449k	29.5	+0.0	+0.2	+0.0	+10.1	+0.0	40.0	53.3	-13.3	Neutr
			+0.0	+0.2							
9	2.774M	22.0	+0.1	+0.1	+0.1	+10.1	+0.0	32.7	46.0	-13.3	Neutr
			+0.1	+0.2							
10	240.901k	28.1	+0.0	+0.2	+0.0	+10.1	+0.0	38.6	52.1	-13.5	Neutr
			+0.0	+0.2							
11	2.591 M	21.2	+0.1	+0.1	+0.1	+10.1	+0.0	31.9	46.0	-14.1	Neutr
			+0.1	+0.2							
12	602.322k	21.0	+0.1	+0.2	+0.0	+10.1	+0.0	31.7	46.0	-14.3	Neutr
			+0.1	+0.2							
13	254.718k	26.6	+0.0	+0.2	+0.0	+10.1	+0.0	37.1	51.6	-14.5	Neutr
			+0.0	+0.2							
14	2.532 M	20.8	+0.1	+0.1	+0.1	+10.1	+0.0	31.5	46.0	-14.5	Neutr
			+0.1	+0.2							
15	305.622k	25.0	+0.0	+0.1	+0.0	+10.1	+0.0	35.4	50.1	-14.7	Neutr
			+0.0	+0.2							
16	723.766k	20.5	+0.0	+0.2	+0.1	+10.1	+0.0	31.2	46.0	-14.8	Neutr
			+0.1	+0.2							
17	2.833M	19.9	+0.1	+0.1	+0.1	+10.1	+0.0	30.6	46.0	-15.4	Neutr
			+0.1	+0.2							
18	317.257k	23.6	+0.1	+0.1	+0.0	+10.1	+0.0	34.2	49.8	-15.6	Neutr
			+0.1	+0.2							
19	2.714 M	19.7	+0.1	+0.1	+0.1	+10.1	+0.0	30.4	46.0	-15.6	Neutr
			+0.1	+0.2							
20	485.242k	19.8	+0.1	+0.2	+0.0	+10.1	+0.0	30.5	46.2	-15.7	Neutr
			+0.1	+0.2							
21	962.260k	19.1	+0.0	+0.2	+0.1	+10.1	+0.0	29.8	46.0	-16.2	Neutr
			+0.1	+0.2							
22	2.230 M	18.9	+0.1	+0.1	+0.1	+10.1	+0.0	29.6	46.0	-16.4	Neutr
			+0.1	+0.2							

23	2.468M	18.9	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.2 \\ & \hline \end{aligned}$	+0.1	+10.1	+0.0	29.6	46.0	-16.4	Neutr
24	902.721k	18.8	+0.0	+0.2	+0.1	+10.1	+0.0	29.5	46.0	-16.5	Neutr
			+0.1	+0.2							
25	310.713k	23.0	+0.0	+0.1	+0.0	+10.1	+0.0	33.4	50.0	-16.6	Neutr
			+0.0	+0.2							
26	327.438k	22.3	+0.1	+0.1	+0.0	+10.1	+0.0	32.9	49.5	-16.6	Neutr
			+0.1	+0.2							
27	465.607k	19.3	+0.1	+0.2	+0.0	+10.1	+0.0	30.0	46.6	-16.6	Neutr
			+0.1	+0.2							
28	1.145M	18.7	+0.0	+0.2	+0.1	+10.1	+0.0	29.4	46.0	-16.6	Neutr
			+0.1	+0.2							
29	2.293M	18.7	+0.1	+0.1	+0.1	$+10.1$	+0.0	29.4	46.0	-16.6	Neutr
			+0.1	+0.2							
30	354.345k	21.6	+0.1	+0.1	+0.0	+10.1	+0.0	32.2	48.9	-16.7	Neutr
			+0.1	+0.2							

CKC Laboratories Date: 2/12/2009 Time: 10:32:49 AM Impinj Inc WO\#: 89028 FCC 15.207 - AVE Test Lead: Neutral 110V 60 Hz Sequence\#: 2 Polarity: Neutral Notes:

$\begin{array}{ll}\times & \text { 1- FCC } 15.207 \text { - AVE } \\ \text { Peak Readings }\end{array}$
——2-FCC 15.207-QP

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.207-AVE		Date:
2/12/2009			
Work Order \#:	$\mathbf{8 9 0 2 8}$	Time:	11:32:45
Test Type:	Conducted Emissions	Sequence\#:	3
Equipment:	RFID Reader	Tested By:	Armando Del Angel
Manufacturer:	Impinj	110 V 60 Hz	
Model:	IPJ-REV		

S/N: 940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Agilent E4440A	MY46186330	$01 / 31 / 2008$	$01 / 31 / 2010$	AN02872
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503
Filter	G7752	$07 / 21 / 2008$	$07 / 21 / 2010$	AN02611
EMCO LISN	$9606-1049$	$06 / 01 / 2007$	$06 / 01 / 2009$	AN01492

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
Support Devices:			
Function	Manufacturer	Model \#	S/N
Wireless G Router	Belkin	F5D7230-4	2028723009696
Laptop Computer	Dell	Latitude	6497402833
Switch POE	NETGEAR	FS108P	1DL1863H0073E

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing AC conducted emissions per FCC 15.207.
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by POE.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is located on the wooden table.
The EUT will be in transmitter mode throughout the test.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting: 30.0 dBm

Operating frequency: $902-928 \mathrm{MHz}$.
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{kHz}, \mathrm{VBW}=1 \mathrm{kHz}$.

Transducer Legend:

T1=CAB-ANP05371	T2=FIL-AN02611-072108
T3=CAB-ANP05366	T4=ATT-ANP5503-032108
T5=CAB-ANP05360	T6=CDN-AN01492-060107 - Line

Measurement Data: \quad Reading listed by margin. \quad Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \text { T1 } \\ & \text { T5 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \text { dB } \end{aligned}$	T3 dB	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $d B \mu V$	Margin dB	Polar Ant
1	494.048k	31.1	+0.1	+0.2	+0.0	+10.1	+0.0	41.7	46.1	-4.4	Line
	ve		+0.1	+0.1							
\wedge	494.048k	34.0	+0.1	+0.2	+0.0	+10.1	+0.0	44.6	46.1	-1.5	Line
			+0.1	+0.1							
3	556.911k	30.4	+0.1	+0.2	+0.0	+10.1	+0.0	41.0	46.0	-5.0	Line
	ve		+0.1	+0.1							
\wedge	556.911k	34.0	+0.1	+0.2	+0.0	+10.1	+0.0	44.6	46.0	-1.4	Line
			+0.1	+0.1							
5	741.219k	29.8	+0.0	+0.2	+0.1	+10.1	+0.0	40.4	46.0	-5.6	Line
			+0.1	+0.1							
6	372.525k	31.3	+0.1	+0.1	+0.0	+10.1	+0.0	41.8	48.4	-6.6	Line
			+0.1	+0.1							
7	27.163M	30.8	+0.2	+0.2	+0.3	+10.1	+0.0	42.8	50.0	-7.2	Line
			+0.3	+0.9							
8	312.167k	31.5	+0.0	+0.1	+0.0	+10.1	+0.0	41.8	49.9	-8.1	Line
			+0.0	+0.1							
9	678.679k	27.2	+0.1	+0.2	+0.0	+10.1	+0.0	37.8	46.0	-8.2	Line
			+0.1	+0.1							
10	190.724k	34.6	+0.0	+0.2	+0.0	+10.1	+0.0	45.0	54.0	-9.0	Line
			+0.0	+0.1							
11	617.593k	26.4	+0.1	+0.2	+0.0	+10.1	+0.0	37.0	46.0	-9.0	Line
			+0.1	+0.1							
12	26.608M	28.9	+0.2	+0.2	+0.3	+10.1	+0.0	40.9	50.0	-9.1	Line
			+0.3	+0.9							
13	803.031k	24.8	+0.0	+0.2	+0.1	+10.1	+0.0	35.4	46.0	-10.6	Line
			+0.1	+0.1							
14	27.341M	27.3	+0.2	+0.2	+0.3	+10.1	+0.0	39.3	50.0	-10.7	Line
			+0.3	+0.9							
15	26.492M	26.8	+0.2	+0.2	+0.3	+10.1	+0.0	38.8	50.0	-11.2	Line
			+0.3	+0.9							
16	26.553M	26.5	+0.2	+0.2	+0.3	+10.1	+0.0	38.5	50.0	-11.5	Line
			+0.3	+0.9							
17	27.218 M	25.8	+0.2	+0.2	+0.3	+10.1	+0.0	37.8	50.0	-12.2	Line
			+0.3	+0.9							
18	27.410 M	25.7	+0.2	+0.2	+0.3	+10.1	+0.0	37.8	50.0	-12.2	Line
			+0.3	+1.0							
19	432.883k	23.7	+0.1	+0.2	+0.0	+10.1	+0.0	34.3	47.2	-12.9	Line
			+0.1	+0.1							
20	26.944M	24.4	+0.2	+0.2	+0.3	+10.1	+0.0	36.4	50.0	-13.6	Line
			+0.3	+0.9							
21	923.985k	21.7	+0.0	+0.2	+0.1	+10.1	+0.0	32.3	46.0	-13.7	Line
			+0.1	+0.1							
22	24.902 M	24.3	+0.2	+0.2	+0.3	+10.1	+0.0	36.2	50.0	-13.8	Line
			+0.3	+0.8							

23	26.855M	24.2	$\begin{aligned} & \hline+0.2 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.9 \end{aligned}$	+0.3	+10.1	+0.0	36.2	50.0	-13.8	Line
24	24.532M	23.9	+0.2	+0.2	+0.3	+10.1	+0.0	35.8	50.0	-14.2	Line
			+0.3	+0.8							
25	987.776k	21.0	+0.0	+0.2	+0.1	+10.1	+0.0	31.6	46.0	-14.4	Line
			+0.1	+0.1							
26	24.964 M	23.7	+0.2	+0.2	+0.3	+10.1	+0.0	35.6	50.0	-14.4	Line
			+0.3	+0.8							
27	179.815k	29.4	+0.0	+0.3	+0.0	+10.1	+0.0	39.9	54.5	-14.6	Line
			+0.0	+0.1							
28	24.354M	23.5	+0.2	+0.2	+0.3	+10.1	+0.0	35.4	50.0	-14.6	Line
			+0.3	+0.8							
29	27.896M	23.1	+0.2	+0.2	+0.3	+10.1	+0.0	35.2	50.0	-14.8	Line
			+0.3	+1.0							
30	176.907k	29.2	+0.0	+0.3	+0.0	+10.1	+0.0	39.7	54.6	-14.9	Line
			+0.0	+0.1							
31	25.875M	22.9	+0.2	+0.2	+0.3	+10.1	+0.0	34.9	50.0	-15.1	Line
			+0.3	+0.9							
32	26.670M	22.9	+0.2	+0.2	+0.3	+10.1	+0.0	34.9	50.0	-15.1	Line
			+0.3	+0.9							

CKC Laboratories Date: 2/12/2009 Time: 11:32:45 Impinj Inc WO\#: 89028 FCC 15.207 - AVE Test Lead: Line 110 V 60 Hz Sequence\#: 3 Polarity: Line Notes:

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.207-AVE		Date:
2/12/2009			
Work Order \#:	$\mathbf{8 9 0 2 8}$	Time:	11:37:34
Test Type:	Conducted Emissions	Sequence\#:	4
Equipment:	RFID Reader	Tested By:	Armando Del Angel
Manufacturer:	Impinj	110 V 60 Hz	
Model:	IPJ-REV		

S/N: 940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Agilent E4440A	MY46186330	$01 / 31 / 2008$	$01 / 31 / 2010$	AN02872
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503
Filter	G7752	$07 / 21 / 2008$	$07 / 21 / 2010$	AN02611
EMCO LISN	$9606-1049$	$06 / 01 / 2007$	$06 / 01 / 2009$	AN01492

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
Support Devices:			
Function	Manufacturer	Model \#	S/N
Wireless G Router	Belkin	F5D7230-4	2028723009696
Laptop Computer	Dell	Latitude	6497402833
Switch POE	NETGEAR	FS108P	1DL1863H0073E

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing AC conducted emissions per FCC 15.207.
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by POE.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is located on the wooden table.
The EUT will be in transmitter mode throughout the test.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting: 30.0 dBm

Operating frequency: $902-928 \mathrm{MHz}$.
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{kHz}, \mathrm{VBW}=1 \mathrm{kHz}$.

Transducer Legend:

T1=CAB-ANP05371	T2=FIL-AN02611-072108
T3=CAB-ANP05366	T4=ATT-ANP5503-032108
T5=CAB-ANP05360	T6=CDN-AN01492-060107 - Neutral

Meas	ment Data	Reading listed by margin.				Test Lead: Neutral					
\#	FreqMHz	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			$\begin{aligned} & \mathrm{T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T6 } \\ & \text { dB } \end{aligned}$		dB					
	554.840k	32.6	+0.1	+0.2	+0.0	+10.1	+0.0	43.3	46.0	-2.7	Neutr
	Ave		+0.1	+0.2							
\wedge	554.840k	35.5	+0.1	+0.2	+0.0	+10.1	+0.0	46.2	46.0	+0.2	Neutr
			+0.1	+0.2							
3	493.487k	32.2	+0.1	+0.2	+0.0	+10.1	+0.0	42.9	46.1	-3.2	Neutr
Ave			+0.1	+0.2							
\wedge	493.487k	35.2	+0.1	+0.2	+0.0	+10.1	+0.0	45.9	46.1	-0.2	Neutr
			+0.1	+0.2							
5	739.763k	32.1	+0.0	+0.2	+0.1	+10.1	+0.0	42.8	46.0	-3.2	Neutr
			+0.1	+0.2							
6	372.524k	32.6	+0.1	+0.1	+0.0	+10.1	+0.0	43.2	48.4	-5.2	Neutr
			+0.1	+0.2							
7	677.223k	29.2	+0.1	+0.2	+0.0	+10.1	+0.0	39.9	46.0	-6.1	Neutr
			+0.1	+0.2							
8	27.163M	31.0	+0.2	+0.2	+0.3	+10.1	+0.0	43.3	50.0	-6.7	Neutr
			+0.3	+1.2							
9	312.893k	32.3	+0.0	+0.1	+0.0	+10.1	+0.0	42.7	49.9	-7.2	Neutr
			+0.0	+0.2							
10	615.411k	28.0	+0.1	+0.2	+0.0	+10.1	+0.0	38.7	46.0	-7.3	Neutr
			+0.1	+0.2							
11	803.030k	26.0	+0.0	+0.2	+0.1	+10.1	+0.0	36.7	46.0	-9.3	Neutr
			+0.1	+0.2							
12	26.608M	28.4	+0.2	+0.2	+0.3	+10.1	+0.0	40.7	50.0	-9.3	Neutr
			+0.3	+1.2							
13	27.341M	28.1	+0.2	+0.2	+0.3	+10.1	+0.0	40.4	50.0	-9.6	Neutr
			+0.3	+1.2							
14	26.492M	27.9	+0.2	+0.2	+0.3	+10.1	+0.0	40.2	50.0	-9.8	Neutr
			+0.3	+1.2							
15	23.130M	27.5	+0.2	+0.2	+0.3	+10.1	+0.0	39.7	50.0	-10.3	Neutr
			+0.3	+1.1							
16	191.450k	32.9	+0.0	+0.2	+0.0	+10.1	+0.0	43.4	54.0	-10.6	Neutr
			+0.0	+0.2							
17	26.553M	26.8	+0.2	+0.2	+0.3	+10.1	+0.0	39.1	50.0	-10.9	Neutr
			+0.3	+1.2							
18	923.985k	24.2	+0.0	+0.2	+0.1	+10.1	+0.0	34.9	46.0	-11.1	Neutr
			+0.1	+0.2							
19	23.867 M	26.2	+0.2	+0.2	+0.3	+10.1	+0.0	38.4	50.0	-11.6	Neutr
			+0.3	+1.1							
20	27.403M	26.0	+0.2	+0.2	+0.3	+10.1	+0.0	38.4	50.0	-11.6	Neutr
			+0.3	+1.3							
21	987.776k	23.6	+0.0	+0.2	+0.1	+10.1	+0.0	34.3	46.0	-11.7	Neutr
			+0.1	+0.2							
22	23.744M	25.5	+0.2	+0.2	+0.3	+10.1	+0.0	37.7	50.0	-12.3	Neutr
			+0.3	+1.1							

Page 20 of 122
Report No: FC09-014

23	433.609k	24.0	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.2 \end{aligned}$	+0.0	+10.1	+0.0	34.7	47.2	-12.5	Neutr
24	23.436M	25.3	+0.2	+0.2	+0.3	+10.1	+0.0	37.5	50.0	-12.5	Neutr
			+0.3	+1.1							
25	23.374M	25.1	+0.2	+0.2	+0.3	+10.1	+0.0	37.3	50.0	-12.7	Neutr
			+0.3	+1.1							
26	23.067M	24.9	+0.2	+0.2	+0.3	+10.1	+0.0	37.1	50.0	-12.9	Neutr
			+0.3	+1.1							
27	27.218M	24.8	+0.2	+0.2	+0.3	+10.1	+0.0	37.1	50.0	-12.9	Neutr
			+0.3	+1.2							
28	26.923M	24.2	+0.2	+0.2	+0.3	+10.1	+0.0	36.5	50.0	-13.5	Neutr
			+0.3	+1.2							
29	24.354M	24.2	+0.2	+0.2	+0.3	+10.1	+0.0	36.4	50.0	-13.6	Neutr
			+0.3	+1.1							
30	26.855M	24.1	+0.2	+0.2	+0.3	+10.1	+0.0	36.4	50.0	-13.6	Neutr
			+0.3	+1.2							
31	26.457M	23.6	+0.2	+0.2	+0.3	+10.1	+0.0	35.9	50.0	-14.1	Neutr
			+0.3	+1.2							
32	27.876M	23.3	+0.2	+0.2	+0.3	$+10.1$	$+0.0$	35.7	50.0	-14.3	Neutr
			+0.3	+1.3							

CKC Laboratories Date: 2/12/2009 Time: 11:37:34 Impinj Inc WO\#: 89028 FCC 15.207 - AVE Test Lead: Neutral 110V 60 Hz Sequence\#: 4 Polarity: Neutral Notes:

[^0]Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.207-AVE		Date:
2/12/2009			
Work Order \#:	$\mathbf{8 9 0 2 8}$	Time:	10:28:14 AM
Test Type:	Conducted Emissions	Sequence\#:	1
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj	110 V 60 Hz	
Model:	IPJ-REV		

S/N: 940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Agilent E4440A	MY46186330	$01 / 31 / 2008$	$01 / 31 / 2010$	AN02872
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503
Filter	G7752	$07 / 21 / 2008$	$07 / 21 / 2010$	AN02611
EMCO LISN	$9606-1049$	$06 / 01 / 2007$	$06 / 01 / 2009$	AN01492

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Antenna cable	Manhattan/CDT	M4213	1354 E12091
Support Devices:			
Function	Manufacturer	Model \#	S/N
Wireless G Router	Belkin	F5D7230-4	2028723009696
Laptop Computer	Dell	Latitude	6497402833

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing AC conducted emissions per FCC 15.207.
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by an AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is located on the wooden table.
The EUT will be in transmitter mode throughout the test.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting: 32.5 dBm
Operating frequency: $902-928 \mathrm{MHz}$.
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{kHz}, \mathrm{VBW}=1 \mathrm{kHz}$.

Transducer Legend:

T1=CAB-ANP05371	T2=FIL-AN02611-072108
T3=CAB-ANP05366	T4=ATT-ANP5503-032108
T5=CAB-ANP05360	T6=CDN-AN01492-060107 - Line

Measurement Data: \quad Reading listed by margin. \quad Test Lead: Line

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~T} 6 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{T} 3 \\ \mathrm{~dB} \\ \hline \end{array}$	T4 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{V}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	188.542k	35.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	45.8	54.1	-8.3	Line
2	362.344 k	29.9	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.0	+10.1	+0.0	40.4	48.7	-8.3	Line
3	2.965M	26.7	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+10.1	+0.0	37.3	46.0	-8.7	Line
4	423.429k	27.1	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	37.6	47.4	-9.8	Line
5	192.178k	31.4	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	41.8	53.9	-12.1	Line
6	245.264 k	29.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \\ & \hline \end{aligned}$	+0.0	+10.1	+0.0	39.6	51.9	-12.3	Line
7	662.680k	21.5	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	32.1	46.0	-13.9	Line
8	2.591M	20.5	$\begin{aligned} & +0.1 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+10.1	+0.0	31.1	46.0	-14.9	Line
9	2.532M	20.3	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+10.1	+0.0	30.9	46.0	-15.1	Line
10	2.778 M	20.3	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+10.1	+0.0	30.9	46.0	-15.1	Line
11	602.322k	20.2	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	30.8	46.0	-15.2	Line
12	2.833M	20.1	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+10.1	+0.0	30.7	46.0	-15.3	Line
13	542.691k	19.9	$\begin{aligned} & +0.1 \\ & +0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	30.5	46.0	-15.5	Line
14	2.714 M	19.8	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+10.1	+0.0	30.4	46.0	-15.6	Line
15	307.077k	23.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	34.0	50.0	-16.0	Line
16	2.472 M	19.3	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+10.1	+0.0	29.9	46.0	-16.1	Line
17	259.808k	24.4	$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	34.8	51.4	-16.6	Line
18	723.766k	18.5	$\begin{aligned} & \hline+0.0 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \end{aligned}$	+0.1	+10.1	+0.0	29.1	46.0	-16.9	Line
19	2.293M	18.3	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	+0.1	+10.1	+0.0	28.9	46.0	-17.1	Line
20	2.651 M	18.3	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	+0.1	+10.1	+0.0	28.9	46.0	-17.1	Line
21	471.425k	18.6	$\begin{array}{r} +0.1 \\ +0.1 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	29.2	46.5	-17.3	Line
22	511.421k	18.0	$\begin{aligned} & \hline+0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.1 \end{aligned}$	+0.0	+10.1	+0.0	28.6	46.0	-17.4	Line

23	308.531k	22.1	+0.0	+0.1	+0.0	+10.1	+0.0	32.4	50.0	-17.6	Line
			+0.0	+0.1							
24	408.158k	19.5	+0.1	+0.1	+0.0	+10.1	+0.0	30.0	47.7	-17.7	Line
			+0.1	+0.1							
25	410.340k	19.3	+0.1	+0.1	+0.0	+10.1	+0.0	29.8	47.6	-17.8	Line
			+0.1	+0.1							
26	294.714k	22.2	+0.0	+0.1	+0.0	+10.1	+0.0	32.5	50.4	-17.9	Line
			+0.0	+0.1							
27	310.713k	21.7	+0.0	+0.1	+0.0	+10.1	+0.0	32.0	50.0	-18.0	Line
			+0.0	+0.1							
28	844.482k	17.4	+0.0	+0.2	+0.1	+10.1	+0.0	28.0	46.0	-18.0	Line
			+0.1	+0.1							
29	395.068k	19.4	+0.1	+0.1	+0.0	+10.1	+0.0	29.9	48.0	-18.1	Line
			+0.1	+0.1							
30	2.230 M	17.3	+0.1	+0.1	+0.1	+10.1	+0.0	27.9	46.0	-18.1	Line
			+0.1	+0.1							

CKC Laboratories Date: 2/12/2009 Time: 10:28:14 AM Impinj Inc WO\#: 89028 FCC 15.207 - AVE Test Lead: Line 110 V 60 Hz Sequence\#: 1 Polarity: Line Notes:

$\begin{array}{ll}\times \quad & 1 \text { - FCC } 15.207 \text { - AVE } \\ \text { Peak Readings }\end{array}$
—— 2-FCC 15.207-QP

FCC 15.247(a) - 20dB BANDWIDTH
Test Equipment

Asset \#	Name	Manufacturer	Model	Serial	Cal date	Cal Due
P05747	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05748	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05371	Cable 6'	Belden	RG-214	RG214 49	$11 / 10 / 2008$	$11 / 10 / 2010$
2872	Spectrum Analyzer	Agilent	E4440A	MY46186330	$1 / 31 / 2008$	$1 / 31 / 2010$

Test Conditions

EUT is transmitting at maximum rate. PSA is on max hold, marker-to-peak function is set on the peak of each channel (LOW, MID, HIGH), and then the marker will be positioned 20 dB below the peak on one side and then on the other side. The separation between those two is the 20 dB bandwidth.

Test Setup Photos

Test Data

Channel	Frequency	20dB Bandwidth	Limit
LOW	902.75 MHz	456.0 kHz	500 kHz
MID	915.25 MHz	456.0 hHz	500 kHz
HIGH	927.25 MHz	454.0 kHz	500 kHz

FCC 15.247(a)(1) - 20dB BANDWIDTH - LOW CHANNEL

FCC 15.247(a)(1) - 20dB BANDWIDTH - MID CHANNEL

FCC 15.247(a)(1) - 20dB BANDWIDTH - HIGH CHANNEL

FCC 15.247(a) - FREQUENCY SEPARATION
Test Equipment

Asset \#	Name	Manufacturer	Model	Serial	Cal date	Cal Due
P05747	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05748	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05371	Cable 6'	Selden	RG-214	RG214 49	$11 / 10 / 2008$	$11 / 10 / 2010$
2872	Spectrum Analyzer	Agilent	E4440A	MY46186330	$1 / 31 / 2008$	$1 / 31 / 2010$

Test Conditions

EUT is transmitting with the Hopping function enabled at maximum rate, PSA is on max hold and the span is wide enough to capture two adjacent signals. Two markers are positioned in the peak of each signal and the delta of those two markers is the frequency separation between signals.

Test Setup Photos

Test Data

Result: 500 kHz

FCC 15.247(a) - NUMBER OF HOPPING CHANNELS
Test Equipment

Asset \#	Name	Manufacturer	Model	Serial	Cal date	Cal Due
P05747	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05748	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05371	Cable 6'	Belden	RG-214	RG214 49	$11 / 10 / 2008$	$11 / 10 / 2010$
2872	Spectrum Analyzer	Agilent	E4440A	MY46186330	$1 / 31 / 2008$	$1 / 31 / 2010$

Test Conditions

EUT is transmitting with the Hopping function enabled at maximum rate, PSA is on max hold and the span is wide enough to capture all the channels ($902-928 \mathrm{MHz}$ at least). All the signals within the screen are the number of hopping channels.

Result: 50 Channels

Notes: The setup included 16 RFID tags coupled to the transmitter to operate with maximum transmitter duty cycle during hopping tests.

Test Setup Photos

Test Data

FCC 15.247(a)(1) - NUMBER OF HOPPING CHANNELS

FCC 15.247(a) - AVERAGE TIME OF OCCUPANCY
Test Equipment

Asset \#	Name	Manufacturer	Model	Serial	Cal date	Cal Due
P05747	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05748	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05371	Cable 6'	Belden	RG-214	RG214 49	$11 / 10 / 2008$	$11 / 10 / 2010$
Spectrum	Agilent	E4440A	MY46186330	$1 / 31 / 2008$	$1 / 31 / 2010$	

Test Conditions

EUT is transmitting with the Hopping function enabled at maximum rate; PSA is on oscilloscope mode (0 Hz span) and on max hold. Frequency is centered in a channel and the sweep time long enough to capture the dwell time (500 ms). The sweep time is then increased to view the number of hops over a 10 second period. The combination of these measurements yields the total on time per channel over a 10 second period. A total of 10 sets of measurements were taken and the average was calculated to determine the result.

Test Setup Photos

Test Data

Dwell time per hop	Number of signals in a 20 seconds span	Result	Limit
198.6 ms	2	397.2 ms	400 ms

Notes: 10 measurements were taken to determine the dwell time per hop, and ten measurements were taken to determine how many times the hop would repeat in a 20 seconds interval. Manufacturer declares one operational mode which has occupied bandwidth less than 250 kHz . Therefore, the more stringent requirement was employed.

FCC 15.247(a)(1) - AVERAGE TIME

FCC 15.247(a)(1) - DWELL TIME

FCC 15.247(b) - RF POWER OUTPUT
Test Setup Photos

Test Data

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	15.247(b)(2) RF power Output		Date: 2/9/2009
Work Order \#:	89028	Time:	10:19:06
Test Type:	Radiated Scan	Sequence\#:	1
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj		
Model:	IPJ-REV		
S/N:	940-08-21-0006		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Cable 6^{\prime}	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	5747
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	5748

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
RF Output Power FCC 15.247(b)(2).
The Unit is an RF reader. It is connected directly to the spectrum analyzer.
The EUT will be in transmitting mode throughout the test in the LOW, MEDIUM and HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75,915.25 \& 927.25$

Transducer Legend:

T1=CAB-ANP05371 T2=ATT-ANP05747-040308

TЗ=ATT-ANP05748-040308

Measu	ment Data	Reading listed by margin.				Test Distance: No Distance					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \hline \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Spec } \\ \text { dB } \mu \mathrm{V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	927.246M	95.9	+0.5	+20.0	+19.9		+0.0	136.3	$\begin{array}{r} 137.0 \\ \text { High Ch } \end{array}$	$\text { nel }{ }^{-0.7}$	Condu
2	902.754M	96.0	+0.3	+20.0	+19.9		+0.0	136.2	$\begin{array}{r} 137.0 \\ \text { Low Cha } \\ \hline \end{array}$	${ }^{-0.8}$	Condu
3	915.234M	95.9	+0.4	+20.0	+19.9		+0.0	136.2	$\begin{array}{r} 137.0 \\ \text { Mid Cha } \end{array}$	$\begin{array}{ll} -0.8 \\ \hline \end{array}$	Condu

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	15.247(b)(2) RF power Output		Date:
2/9/2009			
Work Order \#:	$\mathbf{8 9 0 2 8}$	Time:	$09: 57: 17$
Test Type:	Radiated Scan	Sequence\#:	2
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj		
Model:	IPJ-REV		

S/N: 940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	5747
Attenuator	$04 / 03 / 2008$	$04 / 03 / 2010$	5748	

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Antenna cable	Manhattan/CDT	M4213	1354 E12091
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

20C / 26\% relative humidity / 102.3 kPa .
RF Output Power FCC 15.247(b)(2)
The Unit is an RF reader. It is connected directly to the spectrum analyzer through
a special cable provided by the customer due to the fact that it will provide the required attenuation for the unit to comply with the limit in this situation.
The EUT will be in transmitting mode throughout the test in the LOW, MEDIUM and HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=32.5 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75,915.25 \& 927.25$

Transducer Legend:

T1=ATT-ANP05747-040308 T2=ATT-ANP05748-040308

Measu	ment Data:	Reading listed by margin.					Test Distance: No Distance				
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	902.754M	96.3	+20.0	+19.9			+0.0	136.2	$\begin{gathered} 137.0 \\ \text { Low Chat } \end{gathered}$	$\mathrm{el}^{-0.8}$	Condu
2	915.260M	96.3	+20.0	+19.9			+0.0	136.2	$\begin{gathered} 137.0 \\ \text { Mid Chan } \end{gathered}$	${ }^{-0.8}$	Condu
3	927.246M	96.1	+20.0	+19.9			+0.0	136.0	$\begin{gathered} 137.0 \\ \text { High Cha } \end{gathered}$	$\text { nel }{ }^{-1.0}$	Condu

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	$\mathbf{1 5 . 2 4 7 (b) (2) ~ R F ~ p o w e r ~ O u t p u t ~}$		
Work Order \#:	89028	Date:	2/12/2009
Test Type:	Radiated Scan	Time:	14:11:16
Equipment:	RFID Reader	Sequence\#:	3
Manufacturer:	Impinj	Tested By: Armando Del Angel	
Model:	IPJ-REV		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Cable 6^{\prime}	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	5747
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	5748

| Equipment Under Test (* $=$ EUT): | |
| :--- | :--- | :--- | :--- |
| Function Manufacturer Model \# S/N
 RFID Reader* Impinj IPJ-REV 940-08-21-0006 | |

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696
Switch POE	NETGEAR	FS108P	1DL1863H0073E

Test Conditions / Notes:

20C / 26\% relative humidity / 102.3 kPa .

RF Output Power FCC 15.247(b)(2)

The Unit is an RF reader. It is connected directly to the spectrum analyzer through
a special cable provided by the customer due to the fact that it will provide the required attenuation for the unit to comply with the limit in this situation.
The EUT will be in transmitting mode throughout the test in the LOW, MEDIUM and HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.

Power setting = 30.0dBm
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75,915.25 \& 927.25$

Transducer Legend:

T1=CAB-ANP05371	T2=ATT-ANP05747-040308
T3=ATT-ANP05748-040308	

Measurement Data: Reading listed by margin. Test Distance: No Distance

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	927.250M	96.3	+0.5	+20.0	+19.9		+0.0	136.7	137.0	-0.3	Condu
							179		100\% Power HIGH		101
2	915.250M	96.3	+0.4	+20.0	+19.9		+0.0	136.6	137.0	-0.4	Condu
							179		100\% Power MID		101
3	902.750M	96.3	+0.3	+20.0	+19.9		+0.0	136.5	137.0	-0.5	Condu
							179		100\% Po	er LOW	101

FCC 15.247(d) - ANTENNA CONDUCTED SPURIOUS EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.247(d) Conducted		Date: 2/9/2009
Work Order \#:	89028	Time: 17:18:53	
Test Type:	Radiated Scan	Sequence\#: 6	
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj		
Model:	IPJ-REV		
S/N:	$940-08-21-0006$		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	05747
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503
Cable 6'	RG214 49	$11 / 10 / 2008$	$11 / 10 / 2010$	P05371

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB

Support Devices:			S/N
Function	Manufacturer	Model \#	6497402833
Laptop Computer	Dell	Latitude	2028723009696
Wireless G Router	Belkin	F5D7230-4	

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Conducted Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. The measurements will be taken from the RF port.
The EUT will be in transmitting mode throughout the test in the LOW channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:
T1=CAB-ANP05371
T2=ATT-ANP05747-040308
T3=ATT-ANP5503-032108

Measurement Data: \quad Reading listed by margin.
Test Distance: No Distance

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \hline \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Spec } \\ \text { dB } \mu \mathrm{V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	902.750M	104.1	+0.3	+20.0	+10.1		+0.0	134.5	137.0	-2.5	Condu
							360				157
2	3992.000M	45.6	+0.0	+20.0	+10.2		+0.0	75.8	117.0	-41.2	Condu
							360				157
3	3128.000M	44.5	+0.0	+20.0	+10.2		+0.0	74.7	117.0	-42.3	Condu
							360				157
4	12400.000	54.2	+0.0	+20.1	+0.0		+0.0	74.3	117.0	-42.7	Condu
							360				157
5	$\begin{gathered} \hline 16216.000 \\ \mathrm{M} \end{gathered}$	48.5	+0.0	+20.3	+0.0		+0.0	68.8	117.0	-48.2	Condu
							360				157
6	$\begin{gathered} 14845.000 \\ \text { M } \end{gathered}$	48.3	+0.0	+20.3	+0.0		+0.0	68.6	117.0	-48.4	Condu
							360				157
7	7300.000M	46.2	+0.0	+20.0	+0.0		+0.0	66.2	117.0	-50.8	Condu
							360				157
8	778.500 M	32.6	+0.5	+20.0	+10.1		+0.0	63.2	117.0	-53.8	Condu
							360				157
9	581.000 M	31.2	+0.4	+20.0	+10.1		+0.0	61.7	117.0	-55.3	Condu
							360				157
10	187.200M	23.8	+0.2	+20.0	+10.1		+0.0	54.1	117.0	-62.9	Condu
							360				157
11	270.800M	23.5	+0.3	+20.0	+10.1		+0.0	53.9	117.0	-63.1	Condu
							360				157
12	57.020M	19.6	+0.1	+20.0	+10.0		+0.0	49.7	117.0	-67.3	Condu
							360				157
13	999.995k	14.1	+0.0	+20.0	+10.1		+0.0	44.2	117.0	-72.8	Condu
							360				157
14	1.319M	12.3	+0.0	+20.0	+10.1		+0.0	42.4	117.0	-74.6	Condu
							360				157
15	12.194M	11.7	+0.1	+20.0	+10.0		+0.0	41.8	117.0	-75.2	Condu
							360				157
16	10.902k	6.8	+0.0	+20.0	+10.1		+0.0	36.9	117.0	-80.1	Condu
							360				157
17	44.567k	3.0	+0.0	+20.0	+10.1		+0.0	33.1	117.0	-83.9	Condu
							360				157

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc

Specification: FCC 15.247(d) Conducted
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:

89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
940-08-21-0006

Date: 2/9/2009
Time: 17:12:46
Sequence\#: 5
Tested By: Armando Del Angel

S/N:
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872
Attenuator	NA	$04 / 03 / 2008$	$04 / 03 / 2010$	05747
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503
Cable 6^{\prime}	RG214 49	$11 / 10 / 2008$	$11 / 10 / 2010$	P05371
Cable	NA	$12 / 2 / 2008$	$12 / 2 / 2010$	03121

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Conducted Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. The measurements will be taken from the RF port.
The EUT will be in transmitting mode throughout the test in the MID channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=927.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=CAB-ANP05371	T2=CAB-ANP03121-120208
T3=ATT-ANP05747-040308	T4=ATT-ANP5503-032108

Measurement Data: \quad Reading listed by margin.
Test Distance: No Distance

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	915.250M	104.1	+0.4	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	134.6	137.0	-2.4	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
2	2746.000M	46.2	+0.0	+1.4	+20.1	+10.2	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	77.9	117.0	-39.1	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
3	4564.000M	52.5	+0.0	+2.0	+20.0	+0.0	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	74.5	117.0	-42.5	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
4	$\begin{gathered} 16174.000 \\ \mathrm{M} \end{gathered}$	50.1	+0.0	+2.9	+20.3	+0.0	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	73.3	117.0	-43.7	Condu
5	7930.000M	46.8	+0.0	+2.5	+20.0	+0.0	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	69.3	117.0	-47.7	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
6	$\begin{gathered} 12484.000 \\ \mathrm{M} \end{gathered}$	45.2	+0.0	+3.1	+20.2	+0.0	$\begin{aligned} & \hline+0.0 \\ & 360 \\ & \hline \end{aligned}$	68.5	117.0	-48.5	Condu 157
7	431.200M	24.0	+0.5	+0.0	+20.0	+10.1	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	54.6	117.0	-62.4	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
8	333.000M	23.9	+0.3	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	54.3	117.0	-62.7	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
9	216.000M	23.5	+0.3	+0.0	+20.0	+10.1	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	53.9	117.0	-63.1	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
10	113.500M	23.4	+0.3	+0.0	+20.0	+10.1	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	53.8	117.0	-63.2	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
11	52.890M	23.2	+0.1	+0.0	+20.0	+10.0	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	53.3	117.0	-63.7	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
12	186.100k	18.4	+0.0	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	48.5	117.0	-68.5	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
13	135.000k	18.2	+0.0	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	48.3	117.0	-68.7	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
14	2.305 M	13.5	+0.1	+0.0	+20.0	+10.1	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	43.7	117.0	-73.3	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
15	10.811k	6.6	+0.0	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	36.7	117.0	-80.3	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
16	32.166k	-0.8	+0.0	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	29.3	117.0	-87.7	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.247(d) Conducted		Date: 2/9/2009
Work Order \#:	89028	Time:	17:08:28
Test Type:	Radiated Scan	Sequence\#:	4
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj		
Model:	IPJ-REV		

S/N: 940-08-21-0006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	05747
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503
Cable 6^{\prime}	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .

Testing Conducted Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. The measurements will be taken from the RF port.
The EUT will be in transmitting mode throughout the test in the HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.

Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=927.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW=200Hz, VBW=200Hz
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad \mathrm{VBW}=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=CAB-ANP05371	T2=CAB-ANP03121-120208
T3=ATT-ANP05747-040308	T4=ATT-ANP5503-032108

Measurement Data: \quad Reading listed by margin.
Test Distance: No Distance

\#	Freq MHz	$\begin{aligned} & \hline \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \hline \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Margin dB	Polar Ant
1	927.250M	104.1	+0.5	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	134.7	137.0	-2.3	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
2	2724.000M	53.6	+0.0	+1.4	+20.1	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	85.2	117.0	-31.8	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
3	3156.000M	45.2	+0.0	+1.6	+20.1	+10.2	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	77.1	117.0	-39.9	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
4	$\begin{gathered} 14235.000 \\ \text { M } \end{gathered}$	49.0	+0.0	+3.3	+20.1	+0.0	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	72.4	117.0	-44.6	Condu 157
5	$\begin{gathered} 16160.000 \\ \mathrm{M} \end{gathered}$	48.9	+0.0	+2.9	+20.3	+0.0	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	72.1	117.0	-44.9	Condu 157
6	7020.000M	46.7	+0.0	+2.2	+20.0	+0.0	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	68.9	117.0	-48.1	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
7	972.400M	34.0	+0.5	+0.0	+20.0	+10.0	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	64.5	117.0	-52.5	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
8	212.500 M	33.9	+0.3	+0.0	+20.0	+10.1	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	64.3	117.0	-52.7	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
9	113.800M	33.4	+0.3	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	63.8	117.0	-53.2	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
10	68.010 M	32.5	+0.2	+0.0	+20.0	+10.0	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	62.7	117.0	-54.3	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
11	1.870 M	23.0	+0.1	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	53.2	117.0	-63.8	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
12	114.600k	17.9	+0.0	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \\ & \hline \end{aligned}$	48.0	117.0	-69.0	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$
13	12.546k	8.3	+0.0	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.4	117.0	-78.6	$\begin{gathered} \hline \text { Condu } \\ 157 \end{gathered}$
14	58.599k	1.5	+0.0	+0.0	+20.0	+10.1	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	31.6	117.0	-85.4	$\begin{gathered} \hline \text { Condu } \\ 157 \\ \hline \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.247(d) Conducted		Date: 2/9/2009
Work Order \#:	89028	Time:	16:36:30
Test Type:	Radiated Scan	Sequence\#:	1
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj		
Model:	IPJ-REV		

S/N: 940-08-21-0006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	05747
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Antenna cable	Manhattan/CDT	M4213	1354 E12091
Support Devices:			S/N
Function	Manufacturer	Model \#	6497402833
Laptop Computer	Dell	Latitude	2028723009696
Wireless G Router	Belkin	F5D7230-4	

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .

Testing Conducted Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. It will be connected to the PSA through a special cable provided by the customer. The EUT will be in transmitting mode throughout the test in the LOW channel.

Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=32.5 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.

Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW= $200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad \mathrm{VBW}=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:
T1=ATT-ANP05747-040308
T2=ATT-ANP5503-032108

Measurement Data: \quad Reading listed by margin.
Test Distance: No Distance

\#	Freq MHz	$\begin{aligned} & \hline \text { Rdng } \\ & \text { dB } \mu \mathrm{V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	903.000M	104.5	+20.0	+10.1			+0.0	134.6	137.0	-2.4	Condu
							360				157
2	1798.000M	39.3	+20.0	+10.2			+0.0	69.5	117.0	-47.5	Condu
							360				157
3	2710.000M	37.4	+20.1	+10.1			+0.0	67.6	117.0	-49.4	Condu
							360				157
4	10842.000	42.1	+20.1	+0.0			+0.0	62.2	117.0	-54.8	Condu
							360				157
5	$\begin{gathered} 15003.000 \\ \mathrm{M} \end{gathered}$	39.0	+20.3	+0.0			+0.0	59.3	117.0	-57.7	Condu
							360				157
6	$\begin{gathered} 13198.000 \\ \mathrm{M} \end{gathered}$	37.9	+20.1	+0.0			+0.0	58.0	117.0	-59.0	Condu
							360				157
7	7289.000M	36.9	+20.0	+0.0			+0.0	56.9	117.0	-60.1	Condu
							360				157
8	450.000M	25.6	+20.0	+10.1			+0.0	55.7	117.0	-61.3	Condu
							360				157
9	$\begin{gathered} 10348.000 \\ \mathrm{M} \end{gathered}$	35.4	+20.0	+0.0			+0.0	55.4	117.0	-61.6	Condu
							360				157
10	602.300M	24.2	+20.0	+10.1			+0.0	54.3	117.0	-62.7	Condu
							360				157
11	5313.000M	34.2	+20.0	+0.0			+0.0	54.2	117.0	-62.8	Condu
							360				157
12	82.400M	23.8	+20.0	+10.1			+0.0	53.9	117.0	-63.1	Condu
							360				157
13	129.900k	16.9	+20.0	+10.1			+0.0	47.0	117.0	-70.0	Condu
							360				157
14	1.002 M	13.4	+20.0	+10.1			+0.0	43.5	117.0	-73.5	Condu
							360				157
15	17.562M	12.7	+20.0	+10.1			+0.0	42.8	117.0	-74.2	Condu
							360				157
16	7.246M	12.1	+20.0	+10.1			+0.0	42.2	117.0	-74.8	Condu
							360				157
17	16.784 M	10.9	+20.0	+10.1			+0.0	41.0	117.0	-76.0	Condu
							360				157
18	22.313k	3.8	+20.0	+10.1			+0.0	33.9	117.0	-83.1	Condu
							360				157
19	77.627k	2.7	+20.0	+10.1			+0.0	32.8	117.0	-84.2	Condu
							360				157
20	9.076k	8.5	+0.0	+0.0			+0.0	8.5	117.0	-108.5	Condu
							360				157

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.247(d) Conducted		Date: 2/9/2009
Work Order \#:	89028	Time:	16:47:27
Test Type:	Radiated Scan	Sequence\#:	2
Equipment:	RFID Reader	Tested By:	Armando Del Angel
Manufacturer:	Impinj		
Model:	IPJ-REV		

S/N: 940-08-21-0006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	05747
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Antenna cable	Manhattan/CDT	M4213	1354 E12091
Support Devices:			S/N
Function	Manufacturer	Model \#	6497402833
Laptop Computer	Dell	Latitude	2028723009696
Wireless G Router	Belkin	F5D7230-4	

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .

Testing Conducted Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. It will be connected to the PSA through a special cable provided by the customer. The EUT will be in transmitting mode throughout the test in the MID channel.

Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=32.5 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=915.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.

Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW= $200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad \mathrm{VBW}=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:
T1=ATT-ANP05747-040308
T2=ATT-ANP5503-032108

Measurement Data: \quad Reading listed by margin.
Test Distance: No Distance

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	Dist Table	$\begin{gathered} \hline \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	Spec $\mathrm{dB} \mu \mathrm{V}$	Margin dB	Polar Ant
1	915.251 M	104.9	+20.0	+10.1			+0.0	135.0	137.0	-2.0	Condu
							360				157
2	2744.000M	41.5	+20.1	+10.1			+0.0	71.7	117.0	-45.3	Condu
							360				157
3	1832.000M	39.5	+20.0	+10.2			+0.0	69.7	117.0	-47.3	Condu
							360				157
4	13665.000	38.9	+20.1	+0.0			+0.0	59.0	117.0	-58.0	Condu
							360				157
5	$\begin{gathered} 17415.000 \\ \mathrm{M} \end{gathered}$	38.4	+20.3	+0.0			+0.0	58.7	117.0	-58.3	Condu
							360				157
6	$\begin{gathered} 16220.000 \\ \mathrm{M} \end{gathered}$	38.3	+20.3	+0.0			+0.0	58.6	117.0	-58.4	Condu
							360				157
7	7700.000M	36.9	+20.0	+0.0			+0.0	56.9	117.0	-60.1	Condu
							360				157
8	$\begin{gathered} \hline 11895.000 \\ \mathrm{M} \end{gathered}$	35.9	+20.1	+0.0			+0.0	56.0	117.0	-61.0	Condu
							360				157
9	837.800M	25.2	+20.0	+10.1			+0.0	55.3	117.0	-61.7	Condu
							360				157
10	7005.000M	35.2	+20.0	+0.0			+0.0	55.2	117.0	-61.8	Condu
							360				157
11	442.300 M	24.6	+20.0	+10.1			+0.0	54.7	117.0	-62.3	Condu
							360				157
12	241.200M	24.6	+20.0	+10.1			+0.0	54.7	117.0	-62.3	Condu
							360				157
13	571.300M	24.2	+20.0	+10.1			+0.0	54.3	117.0	-62.7	Condu
							360				157
14	312.200 M	23.9	+20.0	+10.1			+0.0	54.0	117.0	-63.0	Condu
							360				157
15	633.200M	23.4	+20.0	+10.1			+0.0	53.5	117.0	-63.5	Condu
							360				157
16	125.400M	23.0	+20.0	+10.1			+0.0	53.1	117.0	-63.9	Condu
							360				157
17	138.800k	17.1	+20.0	+10.1			+0.0	47.2	117.0	-69.8	Condu
							360				157
18	545.400k	14.9	+20.0	+10.1			+0.0	45.0	117.0	-72.0	Condu
							360				157
19	2.653 M	13.1	+20.0	+10.1			+0.0	43.2	117.0	-73.8	Condu
							360				157
20	20.778M	11.3	+20.0	+10.1			+0.0	41.4	117.0	-75.6	Condu
							360				157
21	11.267k	6.1	+20.0	+10.1			+0.0	36.2	117.0	-80.8	Condu
							360				157

22	15.102 k	5.8	+20.0	+10.1	+0.0 360	35.9	117.0	-81.1	Condu
							157		
23	73.714 k	3.2	+20.0	+10.1	360	33.3	117.0	-83.7	Condu

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.247(d) Conducted		Date: 2/9/2009
Work Order \#:	89028	Time:	16:54:28
Test Type:	Radiated Scan	Sequence\#:	3
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj		
Model:	IPJ-REV		

S/N: 940-08-21-0006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872
Attenuator		$04 / 03 / 2008$	$04 / 03 / 2010$	05747
Attenuator	9912	$03 / 21 / 2008$	$03 / 21 / 2010$	ANP05503

Equipment Under Test (* $\boldsymbol{*}$ EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Antenna cable	Manhattan/CDT	M4213	1354 E12091
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .

Testing Conducted Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. It will be connected to the PSA through a special cable provided by the customer. The EUT will be in transmitting mode throughout the test in the HIGH channel.

Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=32.5 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=927.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.

Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW= $200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad \mathrm{VBW}=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:
T1=ATT-ANP05747-040308
T2=ATT-ANP5503-032108

Measurement Data: \quad Reading listed by margin.
Test Distance: No Distance

\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	dB	dB	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	927.249M	104.3	+20.0	+10.1			+0.0	134.4	137.0	-2.6	Condu
							360				157
2	3980.000M	55.5	+20.0	+10.2			+0.0	85.7	117.0	-31.3	Condu
							360				157
3	$\begin{gathered} 15728.000 \\ \text { M } \end{gathered}$	58.6	+20.4	+0.0			+0.0	79.0	117.0	-38.0	Condu
							360				157
4	$\begin{gathered} 14155.000 \\ \mathrm{M} \end{gathered}$	58.8	+20.1	+0.0			+0.0	78.9	117.0	-38.1	Condu
							360				157
5	7155.000M	57.1	+20.0	+0.0			+0.0	77.1	117.0	-39.9	Condu
							360				157
6	432.700M	24.6	+20.0	+10.1			+0.0	54.7	117.0	-62.3	Condu
							360				157
7	130.700M	24.1	+20.0	+10.1			+0.0	54.2	117.0	-62.8	Condu
							360				157
8	226.000M	23.9	+20.0	+10.1			+0.0	54.0	117.0	-63.0	Condu
							360				157
9	78.090M	23.6	+20.0	+10.1			+0.0	53.7	117.0	-63.3	Condu
							360				157
10	124.800k	19.4	+20.0	+10.1			+0.0	49.5	117.0	-67.5	Condu
							360				157
11	2.566 M	12.4	+20.0	+10.1			+0.0	42.5	117.0	-74.5	Condu
							360				157
12	21.010M	12.1	+20.0	+10.1			+0.0	42.2	117.0	-74.8	Condu
							360				157
13	12.272k	6.7	+20.0	+10.1			+0.0	36.8	117.0	-80.2	Condu
							360				157
14	43.929k	0.9	+20.0	+10.1			+0.0	31.0	117.0	-86.0	Condu
							360				157

FCC 15.247(d) - OATS RADIATED SPURIOUS EMISSIONS

Test Setup Photos

Test Data Sheets

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717

Customer:	Impinj Inc		
Specification:	FCC 15.247/15.209		Date: 2/11/2009
Work Order \#:	89028	Time:	10:37:19
Test Type:	Radiated Scan	Sequence\#:	1
Equipment:	RFID Reader	Tested By: Armando Del Angel	
Manufacturer:	Impinj		

Model:
S/N:

Impinj Inc

FCC 15.24715.209
Radiated Scan
RFID Reader
IPJ-REV
940-08-21-0006

Date: 2/11/2009
Time: 10:37:19
Tested By: Armando Del Angel

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	06/04/2008	06/04/2010	AN00052
Antenna	2453	12/22/2008	12/22/2010	AN01994
EMCO 3115 Horn	9606-4854	11/12/2007	11/12/2009	AN01412
Horn Antenna, Active $18-26 \mathrm{GHz}$	1114018	11/13/2008	11/13/2010	2742
Heliax cable	N/A	07/22/2008	07/22/2010	AN05545
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03123
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03122
High freq. Cable	N/A	12/02/2008	12/02/2010	AN03121
Cable 30'	11	11/05/2008	11/05/2010	ANP05366
Cable 6'	49	11/10/2008	11/10/2010	ANP05371
Cable 20'	16	11/10/2008	11/10/2010	ANP05360
Cable 6'	51	12/30/2008	12/30/2010	ANP05361
Pasternack Coax		07/20/2007	07/20/2009	AN05425
HP 8447D Preamp	2944A08601	07/08/2008	07/08/2010	AN01517
HP 83017A Pre-amp	3123A00464	10/02/2007	10/02/2009	AN01271
Filter	2	05/01/2008	05/01/2010	2750
Filter	$\begin{aligned} & \hline \text { 311SH10- } \\ & \text { 3000/T10000-0/0 } \\ & \hline \end{aligned}$	12/02/2008	12/02/2010	3116
Spectrum Analyzer	MY46186330	03/10/2007	03/10/2009	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Antenna cable	Manhattan/CDT	M4213	1354 E12091
Support Devices:			
Function	Manufacturer	Model \#	S/N
Wireless G Router	Belkin	F5D7230-4	2028723009696
Laptop Computer	Dell	Latitude	6497402833

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the LOW channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=32.5 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad \mathrm{VBW}=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

\#											Margin	Polar	
		Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec			
				T5	T6	T7	T8						
				T9	T10	T11	T12						
				T13	T14								
		MHz		$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V}$	$\frac{\mathrm{dB}}{-4.2}$	Ant
1		$7222.023 \mathrm{M}$	39.7	+0.0	+36.3	+0.0	+0.0	+0.0	49.8	54.0	$\begin{gathered} \hline \text { Vert } \\ 109 \end{gathered}$		
		Ave		+0.0	+0.0	+0.0	+2.3	337				-4.2	
		+1.1		+4.7	+0.0	+0.4							
		+0.0		-34.7									
\wedge			7222.023M	47.4	+0.0	+36.3	+0.0	+0.0	+0.0	57.5	54.0	+3.5	$\begin{gathered} \hline \text { Vert } \\ 109 \end{gathered}$
			+0.0		+0.0	+0.0	+2.3	337					
			+1.1		+4.7	+0.0	+0.4						
			+0.0		-34.7								
3			5.902M	15.3	+9.9	+0.0	+0.0	+0.2	+0.0	25.7	30.0 Noisefloor	-4.3	$\begin{gathered} \hline 90 \mathrm{deg} \\ 100 \end{gathered}$
		Ambient	+0.0		+0.2	+0.1	+0.0	175					
		+0.0	+0.0		+0.0	+0.0							
		+0.0	+0.0										
	4		15544.000	30.6	+0.0	+38.6	+0.0	+0.0	+0.0	49.6	54.0	-4.4	Vert
			M		+0.0	+0.0	+0.0	+3.4					
Ambient			+1.4		+7.3	+0.0	+0.5	180		Noisefloor		112	
			+0.0		-32.2								

$\begin{gathered} 18 \text { 5416.584M } \\ \text { Ave } \end{gathered}$	32.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{gathered} +0.0 \\ 352 \end{gathered}$	41.8	54.0	-12.2	$\begin{array}{r} \hline \text { Vert } \\ 112 \end{array}$
$\wedge 5416.584 \mathrm{M}$	39.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 352 \end{aligned}$	49.0	54.0	-5.0	$\begin{array}{r} \hline \text { Vert } \\ 112 \end{array}$
$\begin{gathered} 20 \begin{array}{c} 24.300 \mathrm{M} \\ \text { Ambient } \end{array} \\ \hline \end{gathered}$	9.4	$\begin{aligned} & +6.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 200 \end{aligned}$	17.0	$\begin{gathered} 30.0 \\ \text { Noisefloor } \end{gathered}$	-13.0	$\begin{gathered} \hline \text { 180de } \\ 100 \end{gathered}$
$\begin{array}{cc} 21 & 11483.010 \\ & \text { M } \\ & \text { Ambient } \end{array}$	34.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+39.1 \\ +0.0 \\ +5.8 \\ -43.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 231 \end{aligned}$	41.0	54.0 Noisefloor	-13.0	Horiz 99
$\begin{aligned} & 22 \text { 5416.471M } \\ & \text { Ave } \end{aligned}$	31.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 336 \end{aligned}$	40.1	54.0	-13.9	$\begin{gathered} \text { Horiz } \\ 111 \end{gathered}$
$\wedge 5416.471 \mathrm{M}$	37.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{gathered} +0.0 \\ 336 \end{gathered}$	46.3	54.0	-7.7	$\begin{gathered} \text { Horiz } \\ 111 \end{gathered}$
$\begin{aligned} & 24 \text { 7222.100M } \\ & \text { Ave } \end{aligned}$	30.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +36.3 \\ +0.0 \\ +4.7 \\ -34.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.4 \end{aligned}$	$\begin{gathered} +0.0 \\ 352 \end{gathered}$	40.1	54.0	-13.9	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
$\wedge 7222.100 \mathrm{M}$	40.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+36.3 \\ +0.0 \\ +4.7 \\ -34.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.4 \end{aligned}$	$\begin{gathered} +0.0 \\ 352 \end{gathered}$	50.4	54.0	-3.6	$\begin{gathered} \text { Horiz } \\ 99 \end{gathered}$
$\begin{aligned} & 26 \text { 9027.463M } \\ & \text { Ave } \end{aligned}$	24.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+38.9 \\ +0.0 \\ +5.3 \\ -33.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.5 \end{aligned}$	+0.0	40.0	54.0	-14.0	Horiz 99
$\wedge 9027.463 \mathrm{M}$	36.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.9 \\ +0.0 \\ +5.3 \\ -33.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +0.5 \end{aligned}$	+0.0	51.6	54.0	-2.4	Horiz 99
28 160.280k	73.3	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 199 \end{aligned}$	3.3	23.8	-20.5	$\begin{gathered} \hline \text { 180de } \\ 100 \end{gathered}$
$\begin{gathered} 29 \text { 972.925M } \\ \text { Ambient } \end{gathered}$	31.6	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+24.1 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	31.6	54.0 Noisefloor	-22.4	Horiz 151
$30 \quad 640.500 \mathrm{k}$	38.1	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -40.0 \\ & 200 \end{aligned}$	8.2	31.6	-23.4	$\begin{gathered} \text { 180de } \\ 100 \end{gathered}$

31	319.370k	62.6	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 175 \end{aligned}$	-7.3	17.7	-25.0	90deg 100
32	101.900k	67.4	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 175 \end{aligned}$	-2.6	27.8	-30.4	90deg 100
33	15.755k	67.8	$\begin{array}{r} +14.2 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 174 \end{aligned}$	2.0	44.1	-42.1	90deg 100
34	12.006k	65.7	$\begin{array}{r} \hline+15.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 174 \end{aligned}$	1.3	46.5	-45.2	90deg 100
35	23.030k	60.2	$\begin{array}{r} \hline+12.4 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 199 \end{aligned}$	-7.4	40.8	-48.2	$\begin{gathered} \hline \text { 180de } \\ 100 \end{gathered}$
36	11.982k	59.5	$\begin{array}{r} \hline+15.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 187 \end{aligned}$	-4.9	46.5	-51.4	$\begin{gathered} \text { 180de } \\ 100 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$12 / 30 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 20 / 2007$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$07 / 08 / 2008$	$07 / 08 / 2010$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01271
Filter	2	$05 / 01 / 2008$	$05 / 01 / 2010$	2750
Filter	$12 / 02 / 2008$	$12 / 02 / 2010$	3116	
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the LOW channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad \mathrm{VBW}=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

5	18.313M	15.8	$\begin{aligned} & +8.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 205 \end{aligned}$	25.0	30.0 -5.0	$\begin{gathered} \text { 180de } \\ 160 \end{gathered}$
6	100.065M	56.0	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.2 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.6	$44.0 \quad-5.4$	$\begin{gathered} \hline \text { Vert } \\ 111 \end{gathered}$
7	802.445M	42.2	$\begin{array}{r} +0.0 \\ +0.4 \\ +0.0 \\ -29.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+22.5 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	40.0	46.0 -6.0	$\begin{gathered} \hline \text { Vert } \\ 111 \end{gathered}$
8	13.093M	14.2	$\begin{aligned} & +8.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 205 \end{aligned}$	23.6	$30.0-6.4$	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
9	102.660M	54.6	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+10.4 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	37.4	$44.0-6.6$	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
	$\begin{aligned} & \text { 9027.590M } \\ & \text { Ave } \end{aligned}$	30.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.9 \\ +0.0 \\ +5.3 \\ -33.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 42 \end{aligned}$	46.1	$54.0 \quad-7.9$	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
\wedge	9027.590M	38.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+38.9 \\ +0.0 \\ +5.3 \\ -33.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.1 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 42 \end{aligned}$	53.8	54.0 -0.2	$\begin{array}{r} \hline \text { Vert } \\ 119 \end{array}$
	$\begin{aligned} & \hline 24.900 \mathrm{M} \\ & \text { Ambient } \end{aligned}$	14.5	$\begin{aligned} & +6.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 168 \end{aligned}$	21.9	$30.0 \quad-8.1$ NOISEFLOOR	90deg 160
13	799.850M	39.2	$\begin{array}{r} +0.0 \\ +0.4 \\ +0.0 \\ -29.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +22.5 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	37.0	$46.0 \quad-9.0$	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
	$\begin{gathered} 10832.880 \\ \text { M } \\ \text { Ambient } \end{gathered}$	31.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.6 \\ +0.0 \\ +5.6 \\ -35.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.8 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 251 \end{aligned}$	44.8	$54.0 \quad-9.2$ NOISEFLOOR	Horiz 125
15	7222.001M	33.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+36.3 \\ +0.0 \\ +4.7 \\ -34.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 156 \end{aligned}$	43.9	54.0 -10.1	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
16	455.580M	43.6	$\begin{gathered} +0.0 \\ +0.3 \\ +0.0 \\ -29.3 \end{gathered}$	$\begin{aligned} & +0.0 \\ & +1.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+17.3 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.6	46.0 -10.4	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
	913.150M Ambient	35.6	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+23.3 \\ +0.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 253 \end{gathered}$	34.4	46.0 -11.6 NOISEFLOOR	$\begin{array}{r} \hline \text { Vert } \\ 111 \end{array}$

$\begin{aligned} & 18 \text { 5416.514M } \\ & \text { Ave } \end{aligned}$	32.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 156 \end{aligned}$	42.0	54.0 -12.0	$\begin{array}{r} \hline \text { Vert } \\ 172 \end{array}$
\wedge 5416.514M	39.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 156 \end{aligned}$	48.9	54.0 -5.1	$\begin{array}{r} \hline \text { Vert } \\ 172 \end{array}$
$\begin{array}{cc} \hline 20 & 17152.010 \\ & \text { M } \\ \text { Ambient } \end{array}$	20.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+40.8 \\ +0.0 \\ +8.0 \\ -32.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.4 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 42 \end{aligned}$	41.9	$54.0 \quad-12.1$ NOISEFLOOR	Vert 119
21 169.265M	48.0	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+9.8 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	31.1	44.0 -12.9	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
$\begin{array}{cc} \hline 22 & 15346.530 \\ \text { M } \\ \text { Ambient } \end{array}$	21.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+39.1 \\ +0.0 \\ +7.2 \\ -32.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 251 \end{aligned}$	40.2	$54.0 \quad-13.8$ NOISEFLOOR	Horiz 125
$\begin{aligned} & 23 \text { 3611.033M } \\ & \text { Ave } \end{aligned}$	33.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.8 \\ +0.0 \\ +3.0 \\ -32.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.6 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 254 \end{aligned}$	38.3	54.0 -15.7	$\begin{gathered} \text { Horiz } \\ 125 \end{gathered}$
\wedge 3611.033M	40.3	$\begin{array}{r} +0.0 \\ +0.0 \\ +0.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+31.8 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.6 \\ & +0.7 \end{aligned}$	$\begin{gathered} +0.0 \\ 254 \end{gathered}$	45.3	$54.0 \quad-8.7$	$\begin{gathered} \text { Horiz } \\ 125 \end{gathered}$
$\begin{aligned} & 25 \text { 3611.052M } \\ & \text { Ave } \end{aligned}$	28.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.8 \\ +0.0 \\ +3.0 \\ -32.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.6 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 42 \end{aligned}$	33.6	54.0 -20.4	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
$\wedge 3611.052 \mathrm{M}$	37.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.8 \\ +0.0 \\ +3.0 \\ -32.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.6 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 42 \end{aligned}$	42.6	54.0 -11.4	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
$\begin{gathered} 27 \text { 990.100M } \\ \text { Ambient } \end{gathered}$	33.0	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+24.3 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	33.2	$54.0 \quad-20.8$ NOISEFLOOR	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
$\begin{aligned} & 28 \text { 5416.514M } \\ & \text { Ave } \end{aligned}$	24.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 156 \end{aligned}$	33.1	54.0 -20.9	Horiz 172
$\wedge 5416.514 \mathrm{M}$	36.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 156 \end{aligned}$	46.0	54.0 -8.0	Horiz 172
$\wedge 5416.494 \mathrm{M}$	34.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 191 \end{aligned}$	43.7	54.0 -10.3	$\begin{gathered} \text { Horiz } \\ 125 \end{gathered}$

31	149.360k	72.9	$\begin{array}{r} +10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 160 \end{aligned}$	2.9	24.4	-21.5	$\begin{gathered} \hline 90 \mathrm{deg} \\ 160 \end{gathered}$
32	159.890k	69.5	$\begin{array}{r} +10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} -80.0 \\ 30 \end{gathered}$	-0.5	23.8	-24.3	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
33	1.076M	28.7	$\begin{array}{r} +10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 160 \end{aligned}$	-1.1	27.1	-28.2	$\begin{gathered} \hline 90 \mathrm{deg} \\ 160 \end{gathered}$
34	1.000M	27.2	$\begin{array}{r} +10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -40.0 \\ & 205 \end{aligned}$	-2.6	27.7	-30.3	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
35	320.700k	55.8	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 160 \end{aligned}$	-14.1	17.7	-31.8	90deg 160
36	480.240k	51.3	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 205 \end{aligned}$	-18.6	14.2	-32.8	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
37	318.960k	53.4	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 168 \end{aligned}$	-16.5	17.8	-34.3	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
38	101.900k	60.9	$\begin{array}{r} +10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 152 \end{aligned}$	-9.1	27.8	-36.9	$\begin{gathered} \hline \text { 90deg } \\ 160 \end{gathered}$
39	15.790k	62.0	$\begin{array}{r} +14.2 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 159 \end{aligned}$	-3.8	44.1	-47.9	$\begin{gathered} \hline \text { 90deg } \\ 160 \end{gathered}$
40	12.006k	60.8	$\begin{array}{r} +15.6 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 159 \end{aligned}$	-3.6	46.5	-50.1	90deg 160
41	15.715k	58.7	$\begin{array}{r} \hline+14.2 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 205 \end{aligned}$	-7.1	44.1	-51.2	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
42	12.024k	57.2	$\begin{array}{r} \hline+15.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 205 \end{aligned}$	-7.2	46.5	-53.7	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Antenna cable	Manhattan/CDT	M4213	1354 E12091
Support Devices:			
Function	Manufacturer	Model \#	S/N
Wireless G Router	Belkin	F5D7230-4	2028723009696
Laptop Computer	Dell	Latitude	6497402833

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the MID channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=32.5 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=915.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\wedge	16.900M	15.8	+8.5	+0.0	+0.0	+0.3	+0.0	25.1	30.0	-4.9	180de
			+0.0	+0.3	+0.2	+0.0	1				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
	5491.440M	29.6	+0.0	+34.7	+0.0	+0.0	+0.0	38.2	54.0	-15.8	Vert
Ave			+0.0	+0.0	+0.0	+2.0	6				111
			+0.8	+3.9	+0.0	+0.5					
			+0.0	-33.3							
	5491.440M	37.7	+0.0	+34.7	+0.0	+0.0	+0.0	46.3	54.0	-7.7	Vert
			+0.0	+0.0	+0.0	+2.0	6				111
			+0.8	+3.9	+0.0	+0.5					
			+0.0	-33.3							
	5491.612M	28.3	+0.0	+34.7	+0.0	+0.0	+0.0	36.9	54.0	-17.1	Horiz
	Ave		+0.0	+0.0	+0.0	+2.0	339				122
			+0.8	+3.9	+0.0	+0.5					
			+0.0	-33.3							
\wedge	5491.612M	38.3	+0.0	+34.7	+0.0	+0.0	+0.0	46.9	54.0	-7.1	Horiz
			+0.0	+0.0	+0.0	+2.0	339				122
			+0.8	+3.9	+0.0	+0.5					
			+0.0	-33.3							
23	25.000M	5.1	+6.6	+0.0	+0.0	+0.3	+0.0	12.5	30.0	-17.5	90deg
	Ambient		+0.0	+0.3	+0.2	+0.0	310		Noisefloor		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
	7321.941M	25.7	+0.0	+36.4	+0.0	+0.0	+0.0	35.8	54.0	-18.2	Horiz
	Ave		+0.0	+0.0	+0.0	+2.3	89				200
			+1.1	+4.7	+0.0	+0.3					
			+0.0	-34.7							
\wedge	7321.941M	37.5	+0.0	+36.4	+0.0	+0.0	+0.0	47.6	54.0	-6.4	Horiz
			+0.0	+0.0	+0.0	+2.3	89				200
			+1.1	+4.7	+0.0	+0.3					
			+0.0	-34.7							
26	960.880M	30.4	+0.0	+0.0	+23.9	+1.8	+0.0	30.1	54.0	-23.9	Vert
			+0.5	+2.2	+0.5	+0.0					99
			+0.0	+0.0	+0.0	+0.0					
			-29.2	+0.0							
27	960.800M	29.6	+0.0	+0.0	+23.9	+1.8	+0.0	29.3	54.0	-24.7	Horiz
			+0.5	+2.2	+0.5	+0.0	282				151
			+0.0	+0.0	+0.0	+0.0					
			-29.2	+0.0							
28	159.477k	54.8	+10.0	+0.0	+0.0	+0.0	-80.0	-15.2	23.8	-39.0	90deg
			+0.0	+0.0	+0.0	+0.0	171				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
29	$141.450 \mathrm{k}$ Ambient	48.3	+9.9	+0.0	+0.0	+0.0	-80.0	-21.8	24.9	-46.7	90deg
			+0.0	+0.0	+0.0	+0.0	209		Noisefloor		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
30	159.010k	47.1	+10.0	+0.0	+0.0	+0.0	-80.0	-22.9	23.9	-46.8	180de
			+0.0	+0.0	+0.0	+0.0	169				100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							

31	12.288k	44.1	+15.5	+0.0	+0.0	+0.0	-80.0	-20.4	46.3	-66.7	$\begin{gathered} \hline \text { 180de } \\ 100 \end{gathered}$
			+0.0	+0.0	+0.0	+0.0	360				
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
32	11.862k	44.0	+15.7	+0.0	+0.0	+0.0	-80.0	-20.3	46.6 Noisefloor	-66.9	90deg 100
	Ambient		+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	360		Noisefloor		
			+0.0	+0.0	+0.0	$+0.0$					
			+0.0	+0.0							
33	119.153k	28.7	+10.1	+0.0	+0.0	+0.0	-80.0	-41.2	26.4	-67.6	90deg
	Ambient		+0.0	+0.0	+0.0	+0.0	360		Noisefloor		100
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$12 / 30 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 20 / 2007$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$07 / 08 / 2008$	$07 / 08 / 2010$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01271
Filter	2	$05 / 01 / 2008$	$05 / 01 / 2010$	2750
Filter	$12 / 02 / 2008$	$12 / 02 / 2010$	3116	
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the MID channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=915.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

$5 \quad 815.000 \mathrm{M}$	41.7	$\begin{array}{r} +0.0 \\ +0.4 \\ +0.0 \\ -29.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+22.6 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	39.7	$46.0-6.3$	$\begin{array}{r} \hline \text { Vert } \\ 111 \end{array}$
$6 \quad 18.252 \mathrm{M}$	14.2	$\begin{aligned} & \hline+8.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	23.4	$30.0-6.6$	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
7 478.900M	47.3	$\begin{array}{r} +0.0 \\ +0.3 \\ +0.0 \\ -29.4 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+17.7 \\ +0.4 \\ +0.0 \end{array}$	$\begin{aligned} & +1.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	39.4	$46.0-6.6$	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
$\begin{aligned} & \hline 8 \underset{\text { Ambient }}{25.880 \mathrm{M}} \\ & \hline \end{aligned}$	14.5	$\begin{aligned} & +6.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	22.0	30.0 -8.0 NOISEFLOOR	$\begin{gathered} \hline \text { 90deg } \\ 160 \end{gathered}$
$\begin{aligned} & 9 \text { 1830.497M } \\ & \text { Ave } \end{aligned}$	15.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +26.6 \\ +0.0 \\ +2.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 205 \end{aligned}$	45.9	54.0 -8.1	$\begin{array}{r} \hline \text { Vert } \\ 115 \end{array}$
$\wedge 1830.497 \mathrm{M}$	25.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +26.6 \\ +0.0 \\ +2.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 205 \end{aligned}$	56.5	54.0 +2.5	$\begin{array}{r} \hline \text { Vert } \\ 115 \end{array}$
11 102.200M	53.1	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+10.4 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 39 \end{aligned}$	35.9	44.0 -8.1	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
	11.5	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	21.0	$30.0 \quad-9.0$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
$\begin{gathered} 13941.040 \mathrm{M} \\ \text { Ambient } \end{gathered}$	37.5	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+23.7 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & +1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	37.0	${ }_{\text {NOISEFLOOR }}{ }^{46.0}{ }^{-9.0}$	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
$14 \quad 17390.140$ M Ambient	21.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +41.9 \\ +0.0 \\ +8.1 \\ -32.9 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.3 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	43.8	$54.0 \quad-10.2$ NOISEFLOOR	Horiz 115
$15 \quad 169.200 \mathrm{M}$	47.9	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +9.8 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$+0.0$	31.0	44.0 -13.0	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
$\begin{aligned} & 16 \text { 1830.497M } \\ & \text { Ave } \end{aligned}$	10.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +26.6 \\ +0.0 \\ +2.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 205 \end{aligned}$	40.8	54.0 -13.2	$\begin{gathered} \text { Horiz } \\ 115 \end{gathered}$
$\wedge 1830.497 \mathrm{M}$	22.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +26.6 \\ +0.0 \\ +2.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 205 \end{aligned}$	53.3	$54.0-0.7$	$\begin{gathered} \text { Horiz } \\ 115 \end{gathered}$

18	134.700M	46.1	$\begin{array}{r} \hline+0.0 \\ +0.2 \\ +0.0 \\ -29.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+11.7 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	30.7	44.0	-13.3	$\begin{array}{r} \hline \text { Vert } \\ 111 \end{array}$
	$7321.991 \mathrm{M}$ Ave	28.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+36.4 \\ +0.0 \\ +4.7 \\ -34.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 342 \end{aligned}$	38.9	54.0	-15.1	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
\wedge	7321.991M	37.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+36.4 \\ +0.0 \\ +4.7 \\ -34.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 342 \end{aligned}$	47.4	54.0	-6.6	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
	$\begin{aligned} & \text { 3661.005M } \\ & \text { Ave } \end{aligned}$	32.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{gathered} +0.0 \\ 253 \end{gathered}$	37.9	54.0	-16.1	$\begin{gathered} \hline \text { Horiz } \\ 125 \end{gathered}$
\wedge	3661.005M	41.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 253 \end{aligned}$	46.4	54.0	-7.6	$\begin{gathered} \text { Horiz } \\ 125 \end{gathered}$
	$\begin{aligned} & \text { 3661.005M } \\ & \text { Ave } \end{aligned}$	32.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{gathered} +0.0 \\ 249 \end{gathered}$	37.5	54.0	-16.5	$\begin{array}{r} \hline \text { Vert } \\ 125 \end{array}$
\wedge	3661.005M	39.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 249 \end{aligned}$	45.0	54.0	-9.0	$\begin{array}{r} \hline \text { Vert } \\ 125 \end{array}$
	$982.480 \mathrm{M}$ Ambient	35.8	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+24.2 \\ +0.4 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 247 \end{aligned}$	35.9	$\begin{array}{cc} \hline 54.0 & - \\ \text { NOISEFLOOF } \end{array}$	$\begin{aligned} & \hline-18.1 \\ & \mathrm{R} \end{aligned}$	$\begin{array}{r} \hline \text { Vert } \\ 111 \end{array}$
	$7321.991 \mathrm{M}$ Ave	25.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+36.4 \\ +0.0 \\ +4.7 \\ -34.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 24 \end{aligned}$	35.3	54.0	-18.7	$\begin{gathered} \text { Horiz } \\ 114 \end{gathered}$
\wedge	7321.991M	36.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+36.4 \\ +0.0 \\ +4.7 \\ -34.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 24 \end{aligned}$	46.1	54.0	-7.9	$\begin{gathered} \text { Horiz } \\ 114 \end{gathered}$
	$\begin{aligned} & \text { 5491.545M } \\ & \text { Ave } \end{aligned}$	26.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +3.9 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 325 \end{aligned}$	34.9	54.0	-19.1	$\begin{gathered} \text { Horiz } \\ 152 \end{gathered}$
\wedge	5491.545M	37.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +3.9 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 325 \end{aligned}$	46.1	54.0	-7.9	$\begin{gathered} \text { Horiz } \\ 152 \end{gathered}$
	$\begin{aligned} & \text { 5491.545M } \\ & \text { Ave } \end{aligned}$	25.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +3.9 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 234 \end{aligned}$	34.4	54.0	-19.6	$\begin{array}{r} \hline \text { Vert } \\ 125 \end{array}$

\wedge	5491.545M	36.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +3.9 \\ -33.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 234 \end{aligned}$	45.2	$54.0 \quad-8.8$	$\begin{gathered} \hline \text { Vert } \\ 125 \end{gathered}$
32	935.160k	32.7	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 150 \end{aligned}$	2.8	28.3 -25.5	90deg 160
33	172.170k	51.5	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 150 \end{aligned}$	-18.5	$23.2-41.7$	90deg 160
	$\begin{aligned} & \text { 150.000k } \\ & \text { Ambient } \end{aligned}$	46.5	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-23.5	$\begin{array}{ll} \hline 24.4 & -47.9 \end{array}$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
35	61.600k	38.8	$\begin{array}{r} \hline+10.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 244 \end{aligned}$	-31.1	$32.2-63.3$	90deg 160
36	14.508k	45.6	$\begin{array}{r} \hline+14.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 144 \end{aligned}$	-19.8	44.8 -64.6	$\begin{gathered} \text { 90deg } \\ 160 \end{gathered}$
37	17.753k	44.6	$\begin{array}{r} \hline+13.5 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 160 \end{aligned}$	-21.9	$43.1-65.0$	90deg 160
38	$\begin{aligned} & \text { 18.313k } \\ & \text { Ambient } \end{aligned}$	43.5	$\begin{array}{r} +13.4 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 159 \end{aligned}$	-23.1	$42.8 \quad-65.9$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Antenna cable	Manhattan/CDT	M4213	1354 E12091
Support Devices:			
Function	Manufacturer	Model \#	S/N
Wireless G Router	Belkin	F5D7230-4	2028723009696
Laptop Computer	Dell	Latitude	6497402833

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the High channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=32.5 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=927.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

18	68.270M	50.0	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +6.1 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	28.2	40.0	-11.8	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
19	2781.750M	7.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+30.0 \\ +0.0 \\ +2.7 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.4 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 195 \end{aligned}$	42.2	54.0	-11.8	$\begin{gathered} \text { Horiz } \\ 126 \end{gathered}$
20	956.180M	33.6	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.2 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+23.8 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 321 \end{gathered}$	33.2	46.0	-12.8	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
	$\begin{aligned} & \text { 5563.473M } \\ & \text { Ave } \end{aligned}$	31.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +4.0 \\ -33.4 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 344 \end{aligned}$	39.8	54.0	-14.2	$\begin{array}{r} \hline \text { Vert } \\ 133 \end{array}$
\wedge	5563.473M	39.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +4.0 \\ -33.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.4 \end{aligned}$	$\begin{gathered} +0.0 \\ 344 \end{gathered}$	47.9	54.0	-6.1	$\begin{gathered} \hline \text { Vert } \\ 133 \end{gathered}$
23	167.060M	46.0	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	29.3	44.0	-14.7	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
	$7417.934 \mathrm{M}$ Ave	28.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +36.5 \\ +0.0 \\ +4.7 \\ -34.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 180 \end{aligned}$	38.7	54.0	-15.3	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
\wedge	7417.934M	38.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+36.5 \\ +0.0 \\ +4.7 \\ -34.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 180 \end{aligned}$	49.2	54.0	-4.8	$\begin{gathered} \hline \text { Vert } \\ 123 \end{gathered}$
26	$\begin{aligned} & \text { 18.244M } \\ & \text { Ave } \end{aligned}$	3.2	$\begin{aligned} & +8.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	12.4	30.0	-17.6	$\begin{gathered} \hline \text { 90deg } \\ 100 \end{gathered}$
\wedge	18.244M	14.5	$\begin{aligned} & +8.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	23.7	30.0	-6.3	$\begin{gathered} \hline \text { 90deg } \\ 100 \end{gathered}$
28	$\begin{aligned} & \text { 23.131M } \\ & \text { Ave } \end{aligned}$	0.7	$\begin{aligned} & +7.2 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	8.7	30.0	-21.3	$\begin{gathered} \hline \text { 90deg } \\ 100 \end{gathered}$
\wedge	23.131M	10.8	$\begin{aligned} & +7.2 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 355 \end{aligned}$	18.8	30.0	-11.2	90deg 100
30	992.650M	30.7	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+24.3 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	30.9	54.0	-23.1	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$

31	146.720k	46.9	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 337 \end{aligned}$	-23.1	24.6	-47.7	$\begin{gathered} \hline \text { 90deg } \\ 100 \end{gathered}$
32	150.000k	46.1	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline-80.0 \\ 81 \end{gathered}$	-23.9	24.4	-48.3	$\begin{gathered} \hline \text { 180de } \\ 100 \end{gathered}$
33	35.120k	42.4	$\begin{array}{r} \hline+11.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-26.6	37.1	-63.7	$\begin{gathered} \hline \text { 180de } \\ 100 \end{gathered}$
34	13.988k	43.5	$\begin{array}{r} \hline+14.8 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 111 \end{aligned}$	-21.7	45.1	-66.8	90deg 100
35	9.550k	43.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} -80.0 \\ 39 \end{gathered}$	-36.8	48.5	-85.3	$\begin{gathered} \hline \text { 180de } \\ 100 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Circular patch antenna	Cushcraft	S90289CLJ	092436
RFID Reader*	Impinj	IPJ-REV	$940-08-21-0006$
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB

Support Devices:

Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=927.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

5	23.130M	14.5	$\begin{aligned} & +7.2 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 241 \end{aligned}$	22.5	30.0	-7.5	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
6	100.310M	53.8	$\begin{array}{r} \hline+0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.2 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	36.4	44.0	-7.6	Horiz 160
7	15.345M	13.0	$\begin{aligned} & +8.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 185 \end{aligned}$	22.2	30.0	-7.8	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
8	453.640M	45.6	$\begin{gathered} +0.0 \\ +0.3 \\ +0.0 \\ -29.3 \end{gathered}$	$\begin{aligned} & +0.0 \\ & +1.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+17.3 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	37.6	46.0	-8.4	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
9	15.877M	12.1	$\begin{aligned} & \hline+8.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 185 \end{aligned}$	21.5	30.0	-8.5	$\begin{array}{r} \hline \text { 90deg } \\ 160 \end{array}$
10	25.880M	13.2	$\begin{aligned} & +6.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 185 \end{aligned}$	20.7	30.0	-9.3	90deg 160
	$\begin{gathered} 17617.760 \\ \mathrm{M} \end{gathered}$	19.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+42.9 \\ +0.0 \\ +8.2 \\ -33.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.6 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 215 \end{aligned}$	43.8	54.0	-10.2	$\begin{gathered} \hline \text { Vert } \\ 113 \end{gathered}$
12	5563.505M	34.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +4.0 \\ -33.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 211 \end{aligned}$	42.9	54.0	-11.1	$\begin{gathered} \hline \text { Vert } \\ 113 \end{gathered}$
13	3709.000M	35.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \\ +2.9 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.8 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 169 \end{aligned}$	41.1	54.0	-12.9	Horiz 118
	$\begin{aligned} & \text { 1854.191M } \\ & \text { Ave } \end{aligned}$	10.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+26.8 \\ +0.0 \\ +2.2 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 204 \end{gathered}$	41.1	54.0	-12.9	Horiz 119
\wedge	1854.191M	22.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+26.8 \\ +0.0 \\ +2.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 204 \end{aligned}$	53.6	54.0	-0.4	$\begin{gathered} \hline \text { Horiz } \\ 119 \end{gathered}$
16	67.380M	48.8	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+6.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	26.9	40.0	-13.1	$\begin{array}{r} \hline \text { Vert } \\ 125 \end{array}$
17	169.730M	47.6	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+9.8 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	30.7	44.0	-13.3	Horiz 160

	$\begin{aligned} & \text { 9272.503M } \\ & \text { Ave } \end{aligned}$	23.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.8 \\ +0.0 \\ +5.3 \\ -33.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.4 \end{aligned}$	$\begin{gathered} +0.0 \\ 215 \end{gathered}$	39.8	54.0	-14.2	$\begin{array}{r} \hline \text { Vert } \\ 113 \end{array}$
\wedge	9272.503M	32.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.8 \\ +0.0 \\ +5.3 \\ -33.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 215 \end{aligned}$	48.4	54.0	-5.6	$\begin{gathered} \hline \text { Vert } \\ 113 \end{gathered}$
	$\begin{aligned} & \text { 3709.000M } \\ & \text { Ave } \end{aligned}$	31.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \\ +2.9 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.8 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 169 \end{aligned}$	36.8	54.0	-17.2	$\begin{gathered} \hline \text { Vert } \\ 118 \end{gathered}$
\wedge	3709.000M	39.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+32.1 \\ +0.0 \\ +2.9 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.8 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 169 \end{aligned}$	44.6	54.0	-9.4	$\begin{gathered} \hline \text { Vert } \\ 118 \end{gathered}$
22	992.720M	34.7	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+24.3 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	34.9	54.0	-19.1	$\begin{array}{r} \hline \text { Vert } \\ 125 \end{array}$
23	962.200 M	33.2	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +2.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+23.9 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	32.9	54.0	-21.1	$\begin{gathered} \text { Horiz } \\ 160 \end{gathered}$
24	650.480 k	36.7	$\begin{array}{r} +10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -40.0 \\ & 185 \end{aligned}$	6.9	31.5	-24.6	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
25	835.090k	33.2	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-40.0 \\ & 185 \end{aligned}$	3.4	29.3	-25.9	$\begin{gathered} \hline \text { 90deg } \\ 160 \end{gathered}$
26	1.171 M	28.2	$\begin{array}{r} \hline+10.1 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -40.0 \\ & 185 \end{aligned}$	-1.5	26.3	-27.8	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
27	1.000 M	27.4	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -40.0 \\ & 185 \end{aligned}$	-2.4	27.7	-30.1	$\begin{gathered} \hline \text { 90deg } \\ 160 \end{gathered}$
28	39.220k	54.5	$\begin{array}{r} \hline+10.7 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 185 \end{aligned}$	-14.8	36.1	-50.9	$\begin{gathered} \hline \text { 90deg } \\ 160 \end{gathered}$
29	141.200k	34.0	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 185 \end{aligned}$	-36.1	24.9	-61.0	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
30	15.545k	45.0	$\begin{array}{r} \hline+14.2 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 185 \end{aligned}$	-20.8	44.2	-65.0	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$

31	11.172k	46.0	$\begin{array}{r} \hline+16.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 111 \end{aligned}$	-18.0	47.1	-65.1	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
32	58.600k	37.3	$\begin{array}{r} \hline+10.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 185 \end{aligned}$	-32.6	32.6	-65.2	$\begin{gathered} \hline \text { 180de } \\ 160 \end{gathered}$
33	16.526k	43.3	$\begin{array}{r} +13.9 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 185 \end{aligned}$	-22.8	43.7	-66.5	90deg 160
34	11.916k	44.2	$\begin{array}{r} +15.7 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-20.1	46.5	-66.6	$\begin{gathered} \hline 90 \text { deg } \\ 160 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$12 / 30 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 20 / 2007$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$07 / 08 / 2008$	$07 / 08 / 2010$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01271
Filter	2	$05 / 01 / 2008$	$05 / 01 / 2010$	2750
Filter	$12 / 02 / 2008$	$12 / 02 / 2010$	3116	
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Brickyard Antenna	CSL	CS777-2	V25078 EP00090
Support Devices: S/N Function Manufacturer Model \# 6497402833 Laptop Computer Dell Latitude 2028723009696 Wireless G Router Belkin F5D7230-4			

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the MID channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=915.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad \mathrm{VBW}=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

5	12.077 M	14.6	$\begin{aligned} & +9.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	24.1	$30.0 \quad-5.9$	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
6	904.700M	41.5	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +23.2 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	40.1	$46.0 \quad-5.9$	$\begin{gathered} \hline \text { Horiz } \\ 175 \end{gathered}$
7	99.500M	54.8	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	37.3	44.0 -6.7	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
8	$\begin{aligned} & \text { 11.507M } \\ & \text { Ambient } \end{aligned}$	13.6	$\begin{aligned} & +9.1 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	23.2	30.0 -6.8 NOISEFLOOR	90deg 101
9	7322.003M	36.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+36.4 \\ +0.0 \\ +4.7 \\ -34.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	46.7	$54.0 \quad-7.3$	Horiz 141
10	7322.004M	36.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +36.4 \\ +0.0 \\ +4.7 \\ -34.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	+0.0	46.3	$54.0 \quad-7.7$	$\begin{gathered} \hline \text { Vert } \\ 140 \end{gathered}$
	$\begin{gathered} \hline 10760.000 \\ \mathrm{M} \\ \text { Ambient } \end{gathered}$	32.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +38.5 \\ +0.0 \\ +5.6 \\ -34.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.8 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	45.5	$54.0 \quad-8.5$ NOISEFLOOR	$\begin{gathered} \hline \text { Vert } \\ 141 \end{gathered}$
12	5491.494M	36.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +34.7 \\ +0.0 \\ +3.9 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 339 \end{aligned}$	44.9	54.0 -9.1	$\begin{gathered} \text { Horiz } \\ 137 \end{gathered}$
13	167.300M	50.9	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	34.2	$44.0 \quad-9.8$	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
	1506.000M Ambient	15.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +24.7 \\ +0.0 \\ +2.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	+0.0	44.2	${ }_{\text {NOISEFLOOR }}{ }^{-9.8}$	$\begin{gathered} \text { Horiz } \\ 116 \end{gathered}$
	5491.496M	35.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +34.7 \\ +0.0 \\ +3.9 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 160 \end{aligned}$	43.9	54.0 -10.1	$\begin{array}{r} \hline \text { Vert } \\ 125 \end{array}$
	$\begin{gathered} \hline 14190.000 \\ \mathrm{M} \\ \text { Ambient } \end{gathered}$	21.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.2 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +41.2 \\ +0.0 \\ +6.8 \\ -32.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.4 \\ & +1.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	42.0	$54.0 \quad-12.0$ NOISEFLOOR	$\begin{gathered} \hline \text { Vert } \\ 141 \end{gathered}$
	$\begin{aligned} & \text { 3661.005M } \\ & \text { Ave } \end{aligned}$	33.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 191 \end{aligned}$	38.3	$54.0 \quad-15.7$	$\begin{gathered} \hline \text { Vert } \\ 140 \end{gathered}$

\wedge	3661.005M	40.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +31.9 \\ +0.0 \\ +3.0 \\ -32.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 191 \end{aligned}$	45.3	54.0 -8.7	$\begin{gathered} \hline \text { Vert } \\ 140 \end{gathered}$
19	$\begin{aligned} & \text { 3660.996M } \\ & \text { Ave } \end{aligned}$	32.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 358 \end{aligned}$	38.1	54.0 -15.9	$\begin{gathered} \hline \text { Horiz } \\ 140 \end{gathered}$
\wedge	3660.996M	39.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 358 \end{aligned}$	45.1	54.0 -8.9	$\begin{gathered} \hline \text { Horiz } \\ 140 \end{gathered}$
21	162.000M	44.3	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.5 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	28.0	44.0 -16.0	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
22	437.541k	41.6	$\begin{aligned} & \hline+9.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-28.4	15.0 -43.4	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
23	$16.281 \mathrm{k}$ Ambient	47.6	$\begin{array}{r} \hline+14.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 14 \end{aligned}$	-18.4	43.8 -62.2 NOISEFLOOR	90deg 101
	10.884k Ambient	45.9	$\begin{array}{r} \hline+16.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-18.0	$47.3-65.3$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
25	11.940k Ambient	45.0	$\begin{array}{r} \hline+15.7 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 360 \end{aligned}$	-19.3	46.5 -65.8 NOISEFLOOR	$\begin{gathered} \hline \text { 90deg } \\ 101 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Brickyard Antenna	CSL	CS777-2	V25078 EP00090
Support Devices: S/N Function Manufacturer Model \# 6497402833 Laptop Computer Dell Latitude 2028723009696 Wireless G Router Belkin F5D7230-4			

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=927.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# \& \& Freq

MHz \& Rdng

dB $\mu \mathrm{V}$ \& \[
$$
\begin{gathered}
\hline \text { T1 } \\
\text { T5 } \\
\text { T9 } \\
\text { T13 } \\
\text { dB } \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\hline \text { T2 } \\
\text { T6 } \\
\text { T10 } \\
\text { T14 } \\
\text { dB } \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{T} 3 \\
\text { T7 } \\
\text { T11 } \\
\\
\text { dB } \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\hline \text { T4 } \\
\text { T8 } \\
\text { T12 } \\
\\
\text { dB } \\
\hline
\end{gathered}
$$
\] \& Dist

Table \& Corr

$\mathrm{dB} \mu \mathrm{V}$ \& Spec

$d B \mu \mathrm{~V}$ \& Margin \& | Polar |
| :---: |
| |
| Ant |

\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \& $$
1854.495 \mathrm{M}
$$ \& 20.3 \& +0.0 \& +26.8 \& +0.0 \& +0.0 \& +0.0 \& 51.3 \& 54.0 \& -2.7 \& Vert

\hline \& \& Ambient \& \& +0.0 \& +0.0 \& +0.0 \& +1.1 \& 112 \& \& NOISEFL \& OR \& 116

\hline \& \& \& \& +0.5 \& +2.2 \& +0.4 \& +0.0 \& \& \& \& \&

\hline \& \& \& \& +0.0 \& +0.0 \& \& \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{2}} \& 916.440M \& 42.8 \& +0.0 \& +0.0 \& +23.3 \& +1.9 \& +0.0 \& 41.6 \& 46.0 \& -4.4 \& Vert

\hline \& \& \& \& +0.5 \& +2.0 \& +0.4 \& +0.0 \& \& \& \& \& 100

\hline \& \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& \& -29.3 \& +0.0 \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{} \& 3 \& 100.310M \& 56.9 \& +0.0 \& +0.0 \& +10.2 \& +0.6 \& +0.0 \& 39.5 \& 44.0 \& -4.5 \& Vert

\hline \& \& \& \& +0.1 \& +0.6 \& +0.2 \& +0.0 \& \& \& \& \& 100

\hline \& \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& \& -29.1 \& +0.0 \& \& \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{4}} \& 100.310 M \& 55.1 \& +0.0 \& +0.0 \& +10.2 \& +0.6 \& +0.0 \& 37.7 \& 44.0 \& -6.3 \& Horiz

\hline \& \& \& \& +0.1 \& +0.6 \& +0.2 \& +0.0 \& 360 \& \& \& \& 175

\hline \& \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& \& -29.1 \& +0.0 \& \& \& \& \& \& \&

\hline
\end{tabular}

5	26.490M	15.3	$\begin{aligned} & +6.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	22.9	$30.0 \quad-7.1$	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
6	11.811M	13.2	$\begin{aligned} & \hline+9.1 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 357 \end{aligned}$	22.8	$30.0 \quad-7.2$	$\begin{array}{r} \hline \text { 180de } \\ 101 \end{array}$
7	853.250M	40.5	$\begin{array}{r} +0.0 \\ +0.5 \\ +0.0 \\ -29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+22.8 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	38.5	$46.0 \quad-7.5$	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
8	$\begin{aligned} & \text { 25.690M } \\ & \text { Ambient } \end{aligned}$	14.3	$\begin{aligned} & +6.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	21.8	30.0 -8.2 NOISEFLOOR	90deg 101
	$\begin{gathered} \hline 17752.000 \\ \text { M } \\ \text { Ambient } \end{gathered}$	20.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +43.6 \\ +0.0 \\ +8.1 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.6 \\ & +0.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 209 \end{aligned}$	44.9	$54.0 \quad-9.1$ NOISEFLOOR	Horiz 109
10	5563.505M	35.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +34.7 \\ +0.0 \\ +4.0 \\ -33.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	44.1	54.0 -9.9	Horiz 151
	5563.505M	35.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +34.7 \\ +0.0 \\ +4.0 \\ -33.4 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 159 \end{aligned}$	43.9	54.0 -10.1	$\begin{gathered} \hline \text { Vert } \\ 113 \end{gathered}$
12	3709.000M	38.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +32.1 \\ +0.0 \\ +2.9 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.8 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 197 \end{aligned}$	43.6	54.0 -10.4	$\begin{gathered} \hline \text { Vert } \\ 113 \end{gathered}$
13	167.060M	49.8	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	33.1	44.0 -10.9	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
14	3709.000M	36.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +32.1 \\ +0.0 \\ +2.9 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.8 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 290 \end{aligned}$	41.9	54.0 -12.1	$\begin{gathered} \text { Horiz } \\ 109 \end{gathered}$
	$9272.500 \mathrm{M}$ Ave	24.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +38.8 \\ +0.0 \\ +5.3 \\ -33.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +3.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 209 \end{aligned}$	40.0	54.0 -14.0	$\begin{gathered} \hline \text { Horiz } \\ 109 \end{gathered}$
\wedge	9272.500M	33.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.7 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +38.8 \\ +0.0 \\ +5.3 \\ -33.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 209 \end{aligned}$	49.2	54.0 -4.8	$\begin{gathered} \text { Horiz } \\ 109 \end{gathered}$
17	136.800M	44.9	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -29.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+11.7 \\ +0.3 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.7 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	29.5	44.0 -14.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$

18	438.510M	37.4	+0.0	+0.0	+17.0	+1.5	+0.0	29.0	46.0 -17.0	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
			+0.3	+1.6	+0.5	+0.0	360			
			+0.0	+0.0	+0.0	+0.0				
			-29.3	+0.0						
19	173.920k	46.5	+10.0	+0.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-23.5	23.1 -46.6 NOISEFLOOR	$\begin{gathered} \hline \text { 90deg } \\ 101 \end{gathered}$
	Ambient		+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0					
			+0.0	+0.0						
20	$14.460 \mathrm{k}$ Ambient	45.2	+14.6	+0.0	+0.0	+0.0	-80.0	-20.2	$44.8 \quad-65.0$ NOISEFLOOR	$\begin{gathered} 90 \mathrm{deg} \\ 101 \end{gathered}$
			+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$				
			+0.0	+0.0	+0.0					
			+0.0	+0.0						
21	11.526k	45.4	+15.8	+0.0	+0.0	+0.0	-80.0	-18.8	46.8 -65.6	180de
	Ambient		+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	360		NOISEFLOOR	101
			+0.0	+0.0	+0.0					
			+0.0	+0.0						

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$12 / 30 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 20 / 2007$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$07 / 08 / 2008$	$07 / 08 / 2010$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01271
Filter	2	$05 / 01 / 2008$	$05 / 01 / 2010$	2750
Filter	$12 / 02 / 2008$	$12 / 02 / 2010$	3116	
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Brickyard Antenna	CSL	CS777-2	V25078 EP00090
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the LOW channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

| 5 | 100.065M | 55.6 | +0.0 | +0.0 | +10.2 | +0.6 | +0.0 | 38.2 | 44.0 | -5.8 | Horiz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | +0.1 | +0.6 | +0.2 | +0.0 | 360 | | | | |
| | | | +0.0 | +0.0 | +0.0 | +0.0 | | | | | |

18	136.395M	44.8	+0.0	+0.0	+117	+0.7	+0.0	29.4	44.0	-14.6	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$	
			+0.2	+0.7	+0.3	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			-29.0	+0.0								
19	1.114M	32.0	+10.1	+0.0	+0.0	+0.1	-40.0	2.3	26.8	$\begin{aligned} & -24.5 \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \hline \text { 0deg } \\ & 101 \end{aligned}$	
	Ambient		+0.0	+0.1	+0.0	+0.0	360		NOISEFLOOR		101	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0								
20	149.360k	64.5	+10.0	+0.0	+0.0	+0.0	$\begin{aligned} & -80.0 \\ & 156 \end{aligned}$	-5.5	24.4	-29.9	$\begin{gathered} \text { 180de } \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0								
21	119.850k	62.9	+10.1	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 110 \end{aligned}$	-7.0	26.3	-33.3	$\begin{gathered} \hline \text { 90deg } \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.0		110					
			+0.0	+0.0	+0.0							
			+0.0	+0.0								
22	319.830k	48.1	+9.9	+0.0	+0.0	+0.1	-80.0	-21.8	17.7	-39.5	$\begin{gathered} \text { 180de } \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.1	+0.0	156					
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0								
23	111.700k	52.5	+9.9	+0.0	+0.0	+0.0	$\begin{aligned} & \hline-80.0 \\ & 185 \end{aligned}$	-17.6	26.9	-44.5	$\begin{gathered} \text { 180de } \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0								
24	15.790k	54.3	+14.2	+0.0	+0.0	+0.0	$\begin{gathered} \hline-80.0 \\ 60 \end{gathered}$	-11.5	44.1	-55.6	$\begin{gathered} \text { 180de } \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0								
25	12.024 k	52.8	+15.6	+0.0	+0.0	+0.0	-80.0185	-11.6	46.5	-58.1	$\begin{gathered} \text { 180de } \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0								
26	17.823k	50.6	+13.5	+0.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-15.9	43.0	-58.9	$\begin{gathered} \hline \text { 90deg } \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.0							
			+0.0	+0.0	+0.0							
			+0.0	+0.0								
27	31.309k	47.0	+11.3	+0.0	+0.0	+0.0	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-21.7	38.1	-59.8	$\begin{gathered} \hline \text { 90deg } \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0								
28	9.792k	50.3	+0.0	+0.0	+0.0	+0.0	-80.0	-29.7	48.3	-78.0	$\begin{gathered} \hline 90 \mathrm{deg} \\ 101 \end{gathered}$	
			+0.0	+0.0	+0.0	$+0.0$						
			+0.0	+0.0	+0.0							
			+0.0	+0.0								

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Mini-Guardrail	Impinj	IPJ-A0303-0000E	0069
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the LOW channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad \mathrm{VBW}=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

5	100.065M	56.2	$\begin{array}{r} \hline+0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.2 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	38.8	44.0	-5.2	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
6	3610.986M	41.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.8 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.6 \\ & +0.7 \end{aligned}$	$\begin{gathered} +0.0 \\ 224 \end{gathered}$	46.0	54.0	-8.0	$\begin{array}{r} \hline \text { Vert } \\ 147 \end{array}$
7	100.065M	52.2	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+10.2 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	34.8	44.0	-9.2	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
8	5416.606M	35.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 127 \end{aligned}$	44.5	54.0	-9.5	$\begin{gathered} \hline \text { Horiz } \\ 116 \end{gathered}$
9	3611.134M	38.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.8 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.6 \\ & +0.7 \end{aligned}$	$\begin{gathered} \hline+0.0 \\ 184 \end{gathered}$	43.5	54.0	-10.5	$\begin{gathered} \text { Horiz } \\ 147 \end{gathered}$
10	67.195M	50.2	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.5 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	28.2	40.0	-11.8	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
11	169.265M	48.7	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+9.8 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	31.8	44.0	-12.2	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
	$\begin{aligned} & \text { 18.305M } \\ & \text { Ave } \end{aligned}$	6.8	$\begin{aligned} & +8.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 111 \end{gathered}$	16.0	30.0	-14.0	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
\wedge	18.305M	17.8	$\begin{aligned} & \hline+8.4 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 111 \end{aligned}$	27.0	30.0	-3.0	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
14	169.265M	46.5	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +9.8 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	29.6	44.0	-14.4	$\begin{array}{r} \hline \text { Vert } \\ 101 \end{array}$
	$5416.435 \mathrm{M}$ Ave	30.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 155 \end{aligned}$	39.5	54.0	-14.5	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
\wedge	5416.435M	38.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 155 \end{aligned}$	47.2	54.0	-6.8	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
17	$24.352 \mathrm{M}$ Ave	6.2	$\begin{aligned} & +6.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	13.8	30.0	-16.2	90deg 101

\wedge	24.352M	17.4	$\begin{aligned} & +6.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	25.0	30.0 -5.0	$\begin{gathered} \hline 90 \mathrm{deg} \\ 101 \end{gathered}$
19	790.335M	27.6	$\begin{array}{r} +0.0 \\ +0.4 \\ +0.0 \\ -29.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+22.3 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	25.1	46.0 -20.9	$\begin{gathered} \hline \text { Vert } \\ 101 \end{gathered}$
20	794.660M	25.5	$\begin{array}{r} +0.0 \\ +0.4 \\ +0.0 \\ -29.5 \end{array}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+22.4 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	23.1	46.0 -22.9	$\begin{gathered} \hline \text { Horiz } \\ 175 \end{gathered}$
21	1.114M	29.1	$\begin{array}{r} \hline+10.1 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-0.6	26.8 -27.4	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
	$154.620 \mathrm{k}$ Ambient	48.5	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-21.5	$24.1 \quad-45.6$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
23	$\begin{gathered} \text { 50.900k } \\ \text { Ambient } \end{gathered}$	38.4	$\begin{array}{r} \hline+10.4 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-31.2	33.8 -65.0 NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
	$11.544 \mathrm{k}$ Ambient	45.6	$\begin{array}{r} \hline+15.8 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 360 \end{aligned}$	-18.6	$46.8 \quad-65.4$ NOISEFLOOR	90deg 101
25	$21.607 \mathrm{k}$ Ambient	43.2	$\begin{array}{r} \hline+12.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-24.2	$41.3 \quad-65.5$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
26	$9.624 \mathrm{k}$ Ambient	45.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & -16 \end{aligned}$	-34.7	$48.4 \quad-83.1$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$12 / 30 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 20 / 2007$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$07 / 08 / 2008$	$07 / 08 / 2010$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01271
Filter	2	$05 / 01 / 2008$	$05 / 01 / 2010$	2750
Filter	$12 / 02 / 2008$	$12 / 02 / 2010$	3116	
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Mini-Guardrail	Impinj	IPJ-A0303-0000E	0069
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the MID channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=915.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:	
T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

4	1864.000M	16.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+26.8 \\ +0.0 \\ +2.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 311 \end{aligned}$	47.7	54.0 -6.3	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
5	7322.002M	35.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+36.4 \\ +0.0 \\ +4.7 \\ -34.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +2.3 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 359 \end{aligned}$	45.9	54.0 -8.1	Horiz 140
6	99.500M	53.3	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	35.8	44.0 -8.2	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
	$24.540 \mathrm{M}$ Ambient	14.0	$\begin{aligned} & \hline+6.7 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 24 \end{aligned}$	21.5	$30.0 \quad-8.5$ NOISEFLOOR	$\begin{gathered} \hline \text { 90deg } \\ 101 \end{gathered}$
8	5491.467M	36.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +3.9 \\ -33.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 339 \end{aligned}$	45.0	$54.0 \quad-9.0$	$\begin{gathered} \text { Horiz } \\ 136 \end{gathered}$
	$\begin{aligned} & 17624.000 \\ & \text { M } \\ & \text { Ave } \end{aligned}$	20.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+43.0 \\ +0.0 \\ +8.2 \\ -33.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.6 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	44.2	54.0 -9.8	Horiz 100
10	5491.675M	35.6	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +3.9 \\ -33.3 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 160 \end{aligned}$	44.2	$54.0 \quad-9.8$	$\begin{array}{r} \hline \text { Vert } \\ 125 \end{array}$
11	$3.337 \mathrm{M}$ Ambient	8.3	$\begin{array}{r} +10.5 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.2 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	19.3	$\begin{array}{ll} \hline 30.0 & -10.7 \end{array}$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
12	67.000M	51.0	$\begin{array}{r} +0.0 \\ +0.1 \\ +0.0 \\ -29.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+5.9 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.4 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	28.7	40.0 -11.3	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
13	167.300M	48.6	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+10.0 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	31.9	44.0 -12.1	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
14	169.000M	46.2	$\begin{gathered} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{gathered}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +9.8 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	29.3	$44.0-14.7$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
	$\begin{aligned} & \text { 3660.930M } \\ & \text { Ave } \end{aligned}$	32.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 190 \end{aligned}$	38.0	54.0 -16.0	$\begin{array}{r} \hline \text { Vert } \\ 140 \end{array}$
\wedge	3660.930M	42.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 201 \end{aligned}$	47.5	54.0 -6.5	$\begin{gathered} \hline \text { Vert } \\ 140 \end{gathered}$

Page 101 of 122
Report No: FC09-014

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Mini-Guardrail	Impinj	IPJ-A0303-0000E	0069
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=927.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# \& \& Freq

MHz \& Rdng

$\mathrm{dB} \mu \mathrm{V}$ \& \[
$$
\begin{gathered}
\text { T1 } \\
\text { T5 } \\
\text { T9 } \\
\text { T13 } \\
\text { dB }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{T} 2 \\
\mathrm{~T} 6 \\
\mathrm{~T} 10 \\
\mathrm{~T} 14 \\
\text { dB }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{T} 3 \\
\text { T7 } \\
\mathrm{T} 11 \\
\\
\text { dB }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{T} 4 \\
\mathrm{~T} 8 \\
\mathrm{~T} 12 \\
\\
\text { dB }
\end{gathered}
$$

\] \& Dist \& Corr \& \[

$$
\begin{array}{cc}
\hline \text { Spec } & \text { Margin } \\
\mathrm{dB} \mu \mathrm{~V} & \mathrm{~dB}
\end{array}
$$
\] \& Polar

Ant

\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \& 2704.000M \& 17.2 \& +0.0 \& +29.7 \& +0.0 \& +0.0 \& +0.0 \& 52.1 \& 54.0 -1.9 \& Horiz

\hline \& \& Ambient \& \& +0.0 \& +0.0 \& +0.0 \& +1.4 \& 360 \& \& NOISEFLOOR \& 116

\hline \& \& \& \& +0.5 \& +2.7 \& +0.6 \& +0.0 \& \& \& \&

\hline \& \& \& \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{2}} \& 16232.000 \& 33.1 \& +0.0 \& +38.8 \& +0.0 \& +0.0 \& +0.0 \& 51.1 \& 54.0 -2.9 \& Vert

\hline \& \& M \& \& +0.0 \& +0.0 \& +0.0 \& +2.9 \& \& \& \&

\hline \& \& Ambient \& \& +0.8 \& +7.6 \& +0.0 \& +0.5 \& 209 \& \& NOISEFLOOR \& 109

\hline \& \& \& \& +0.0 \& -32.6 \& \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{3}} \& 100.310M \& 55.8 \& +0.0 \& +0.0 \& +10.2 \& +0.6 \& +0.0 \& 38.4 \& $44.0 \quad-5.6$ \& Vert

\hline \& \& \& \& +0.1 \& +0.6 \& +0.2 \& +0.0 \& 360 \& \& \& 100

\hline \& \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \&

\hline \& \& \& \& -29.1 \& +0.0 \& \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{4}} \& 25.700M \& 16.1 \& +6.7 \& +0.0 \& +0.0 \& +0.3 \& +0.0 \& 23.6 \& $30.0-6.4$ \& 90deg

\hline \& \& \& \& +0.0 \& +0.3 \& +0.2 \& +0.0 \& 360 \& \& \& 101

\hline \& \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \&

\hline \& \& \& \& +0.0 \& +0.0 \& \& \& \& \& \&

\hline
\end{tabular}

5	24.350M	16.0	+6.8	+0.0	+0.0	+0.3	+0.0	23.6	${ }_{\text {NOISEFLOOR }}{ }^{-6.4}$	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
	Ambient		+0.0	+0.3	+0.2	+0.0	242			
			+0.0	+0.0	+0.0	+0.0				
			+0.0	+0.0						
6	1868.000M Ambient	16.5	+0.0	+26.8	+0.0	+0.0	+0.0	47.5	$54.0 \quad-6.5$NOISEFLOOR	$\begin{array}{r} \hline \text { Vert } \\ 116 \end{array}$
			+0.0	+0.0	+0.0	$\begin{aligned} & +1.1 \\ & +0.0 \end{aligned}$				
			+0.5	+2.2	+0.4					
			+0.0	+0.0						
7	17922.000	20.0	+0.0	+44.3	+0.0	+0.0	+0.0	45.7	54.0 -8.3	Horiz
	M		+0.0	+0.0	+0.0	+3.7				
	Ambient		+1.6	+8.1	+0.0	+1.1	209		NOISEFLOOR	109
			+0.0	-33.1						
8	100.310M	52.4	+0.0	+0.0	+10.2	+0.6	+0.0	35.0	$44.0 \quad-9.0$	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
			+0.1	+0.6	+0.2	+0.0				
			+0.0	+0.0	+0.0	+0.0				
			-29.1	+0.0						
9	5563.769M	36.6	+0.0	+34.7	+0.0	+0.0	+0.0	45.0	54.0 -9.0	$\begin{gathered} \text { Horiz } \\ 151 \end{gathered}$
			+0.0	+0.0	+0.0	+1.9	360			
			+0.8	+4.0	+0.0	+0.4				
			+0.0	-33.4						
10	5563.619M	36.6	+0.0	+34.7	+0.0	+0.0		45.0	54.0 -9.0	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
			+0.0	+0.0	+0.0	+1.9	158			
			+0.8	+4.0	+0.0	+0.4				
			+0.0	-33.4						
11	3708.994M	37.0	+0.0	+32.1	+0.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 197 \end{aligned}$	42.5	54.0 -11.5	$\begin{array}{r} \hline \text { Vert } \\ 113 \end{array}$
			+0.0	+0.0	+0.0	+1.8	197			
			+0.7	+2.9	+0.0	+0.7				
			+0.0	-32.7						
2	67.380M	50.0	+0.0	+0.0	+6.0	+0.5	+0.0	28.1	40.0 -11.9	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+0.1	+0.5	+0.2	+0.0	360			
			+0.0	+0.0	+0.0	+0.0				
			-29.2	+0.0						
13	167.060M	48.7	+0.0	+0.0	+10.0	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	32.0	44.0 -12.0	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
			+0.2	+0.9	+0.2					
			+0.0	+0.0	+0.0					
			-28.8	+0.0						
	3709.000M	35.5	+0.0	+32.1	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & 290 \end{aligned}$	41.0	54.0 -13.0	$\begin{gathered} \text { Horiz } \\ 107 \end{gathered}$
			+0.0	+0.0	+0.0	+1.8				
			+0.7	+2.9	+0.0	+0.7				
			+0.0	-32.7						
15	16232.000	21.3	+0.0	+38.8	+0.0	+0.0	$+0.0$	39.3	54.0 -14.7	Vert
	M		+0.0	+0.0	+0.0	+2.9				
Ambient			+0.8	+7.6	+0.0	+0.5	209		NOISEFLOOR	109
			+0.0	-32.6						
	$\begin{aligned} & \text { 9272.394M } \\ & \text { Ave } \end{aligned}$	23.4	+0.0	+38.8	+0.0	+0.0	+0.0	39.3	54.0 -14.7	$\begin{array}{r} \hline \text { Vert } \\ 109 \end{array}$
			+0.0	+0.0	+0.0	+3.2	209			
			+1.7	+5.3	+0.0	+0.4				
			+0.0	-33.5						
\wedge	9272.394M	35.5	+0.0	+38.8	+0.0	+0.0	+0.0	51.4	54.0 -2.6	Vert
			+0.0	+0.0	+0.0	+3.2	209			109
			+1.7	+5.3	+0.0	+0.4				
			+0.0	-33.5						

18	168.840M	45.3	+0.0	+0.0	+9.9	+0.8	+0.0	28.5	44.0 -15.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+0.2	+0.9	+0.2	+0.0	360			
			+0.0	+0.0	+0.0	+0.0				
			-28.8	+0.0						
19	799.850M	27.4	+0.0	+0.0	+22.5	+1.9	+0.0	25.2	46.0	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
			+0.4	+2.0	+0.5	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	360			
			+0.0	+0.0	+0.0					
			-29.5	+0.0						
20	$37.227 \mathrm{k}$ Ambient	40.1	+10.8	+0.0	+0.0	+0.0	-80.0	-29.1	$\begin{array}{ll} \hline 36.6 & -65.7 \end{array}$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
			+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	360			
			+0.0	+0.0	+0.0	$+0.0$				
			+0.0	+0.0						
21	11.922k	44.5	+15.7	+0.0	+0.0	+0.0	-80.0	-19.8	46.5 -66.3	180de
	Ambient		+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$			NOISEFLOOR	101
			+0.0	+0.0	+0.0					
			+0.0	+0.0						

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Guardwall antenna	Impinj	IPJ-A0402-USA	0116
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the LOW channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=902.75 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Page 109 of 122
Report No: FC09-014

\wedge	9027.500M	32.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.9 \\ +0.0 \\ +5.3 \\ -33.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 180 \end{aligned}$	48.4	54.0	-5.6	$\begin{gathered} \hline \text { Vert } \\ 123 \end{gathered}$
	$\begin{aligned} & \text { 9027.502M } \\ & \text { Ave } \end{aligned}$	22.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+38.9 \\ +0.0 \\ +5.3 \\ -33.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +0.5 \end{aligned}$	$\begin{gathered} +0.0 \\ 209 \end{gathered}$	38.5	54.0	-15.5	$\begin{gathered} \hline \text { Horiz } \\ 124 \end{gathered}$
\wedge	9027.502M	32.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+38.9 \\ +0.0 \\ +5.3 \\ -33.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.1 \\ & +0.5 \end{aligned}$	$\begin{gathered} +0.0 \\ 209 \end{gathered}$	48.0	54.0	-6.0	Horiz 124
	$\begin{aligned} & \text { 3610.989M } \\ & \text { Ave } \end{aligned}$	33.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.8 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.6 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 170 \end{aligned}$	38.5	54.0	-15.5	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
\wedge	3610.989M	39.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.8 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.6 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 170 \end{aligned}$	44.5	54.0	-9.5	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
23	169.265M	44.8	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+9.8 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	27.9	44.0	-16.1	$\begin{array}{r} \hline \text { Vert } \\ 99 \end{array}$
24	5416.492M	28.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +1.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.5 \\ +0.0 \\ +3.9 \\ -33.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.3 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 196 \end{aligned}$	37.6	54.0	-16.4	$\begin{gathered} \text { Horiz } \\ 123 \end{gathered}$
25	452.985M	37.3	$\begin{array}{r} +0.0 \\ +0.3 \\ +0.0 \\ -29.3 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+17.3 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	+0.0	29.3	46.0	-16.7	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
26	$16.162 \mathrm{M}$ Ave	2.8	$\begin{aligned} & +8.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 190 \end{aligned}$	12.2	30.0	-17.8	90deg 101
\wedge	16.162M	15.5	$\begin{aligned} & +8.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 190 \end{aligned}$	24.9	30.0	-5.1	90deg 101
28	119.850k	77.7	$\begin{array}{r} +10.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 190 \end{aligned}$	7.8	26.3	-18.5	90deg 101
29	319.080k	58.3	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 190 \end{aligned}$	-11.6	17.8	-29.4	90deg 101
30	123.780k	63.4	$\begin{array}{r} \hline+10.1 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 179 \end{aligned}$	-6.5	26.0	-32.5	$\begin{array}{r} \hline \text { 180de } \\ 101 \end{array}$

Page 110 of 122
Report No: FC09-014

31	319.080k	47.7	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 179 \end{aligned}$	-22.2	17.8	-40.0	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
32	15.755k	64.1	$\begin{array}{r} \hline+14.2 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 190 \end{aligned}$	-1.7	44.1	-45.8	90deg 101
33	26.021k	61.5	$\begin{array}{r} \hline+11.9 \\ +0.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 190 \end{aligned}$	-6.6	39.7	-46.3	90deg 101
34	12.018k	62.6	$\begin{array}{r} \hline+15.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 190 \end{aligned}$	-1.8	46.5	-48.3	90deg 101
35	15.790k	52.6	$\begin{array}{r} \hline+14.2 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 180 \end{aligned}$	-13.2	44.1	-57.3	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
36	12.030k	51.7	$\begin{array}{r} \hline+15.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 180 \end{aligned}$	-12.7	46.5	-59.2	$\begin{gathered} \text { 180de } \\ 101 \end{gathered}$

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Guardwall antenna	Impinj	IPJ-A0402-USA	0116
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d)
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the MID channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=915.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# \& Freq

MHz \& Rdng

$\mathrm{dB} \mu \mathrm{V}$ \& \[
$$
\begin{gathered}
\text { T1 } \\
\text { T5 } \\
\text { T9 } \\
\text { T13 } \\
\text { dB }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{T} 2 \\
\mathrm{~T} 6 \\
\mathrm{~T} 10 \\
\mathrm{~T} 14 \\
\text { dB }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{T} 3 \\
\text { T7 } \\
\mathrm{T} 11 \\
\\
\text { dB }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{T} 4 \\
\mathrm{~T} 8 \\
\mathrm{~T} 12 \\
\\
\text { dB }
\end{gathered}
$$
\] \& Dist \& Corr \& Spec

dB $\mu \mathrm{V}$ \& Margin \& Polar

Ant

\hline 1 \& 15414.000 \& 31.6 \& +0.0 \& +38.9 \& +0.0 \& +0.0 \& +0.0 \& 50.0 \& 54.0 \& -4.0 \& Horiz

\hline \& M \& \& +0.0 \& +0.0 \& +0.0 \& +3.1 \& \& \& \& \&

\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Ambient}} \& \& +1.1 \& +7.2 \& +0.0 \& +0.4 \& 375 \& \& Noisefloor \& \& 115

\hline \& \& \& +0.0 \& -32.3 \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{2} \& 904.700M \& 43.1 \& +0.0 \& +0.0 \& +23.2 \& +1.9 \& +0.0 \& 41.7 \& 46.0 \& -4.3 \& Horiz

\hline \& \& \& +0.5 \& +2.0 \& +0.3 \& +0.0 \& 360 \& \& \& \& 175

\hline \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& -29.3 \& +0.0 \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{3} \& 904.700 M \& 42.8 \& +0.0 \& +0.0 \& +23.2 \& +1.9 \& +0.0 \& 41.4 \& 46.0 \& -4.6 \& Vert

\hline \& \& \& +0.5 \& +2.0 \& +0.3 \& +0.0 \& \& \& \& \& 139

\hline \& \& \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \& \& \& \&

\hline \& \& \& -29.3 \& +0.0 \& \& \& \& \& \& \&

\hline 4 \& 9248.500M \& 30.9 \& +0.0 \& +38.8 \& +0.0 \& +0.0 \& +0.0 \& 46.8 \& 54.0 \& -7.2 \& Vert

\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{Ambient}} \& \& +0.0 \& +0.0 \& +0.0 \& +3.2 \& 134 \& \& Noisefloor \& \& 115

\hline \& \& \& +1.7 \& +5.3 \& +0.0 \& +0.4 \& \& \& \& \&

\hline \& \& \& +0.0 \& -33.5 \& \& \& \& \& \& \&

\hline
\end{tabular}

5 1817.200M	15.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+26.6 \\ +0.0 \\ +2.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \end{aligned}$	+0.0	45.9	54.0	-8.1	$\begin{gathered} \hline \text { Vert } \\ 128 \end{gathered}$
$6 \quad 100.400 \mathrm{M}$	53.0	$\begin{array}{r} \hline+0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} +10.2 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & +0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{gathered} +0.0 \\ 3 \end{gathered}$	35.6	44.0	-8.4	$\begin{array}{r} \hline \text { Vert } \\ 139 \end{array}$
$\begin{gathered} \hline 7 \underset{\text { Ambient }}{ } \mathbf{2 4 . 8 8 0 \mathrm { M }} \\ \end{gathered}$	13.5	$\begin{aligned} & \hline+6.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 162 \end{aligned}$	20.9	30.0 Noisefloor	-9.1	$\begin{array}{r} \hline \text { 180de } \\ 101 \end{array}$
$\begin{gathered} \hline 8 \underset{ }{21.220 \mathrm{M}} \\ \text { Ambient } \end{gathered}$	12.3	$\begin{aligned} & \hline+7.8 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 189 \end{aligned}$	20.9	30.0 Noisefloor	-9.1	$\begin{gathered} \hline \text { 90deg } \\ 101 \end{gathered}$
$\begin{gathered} \hline 9 \quad 16.466 \mathrm{M} \\ \text { Ambient } \end{gathered}$	11.0	$\begin{aligned} & \hline+8.6 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.3 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 226 \end{aligned}$	20.4	30.0 Noisefloor	-9.6	$\begin{array}{r} \hline \text { 180de } \\ 101 \end{array}$
$\begin{array}{cc} \hline 10 & 17655.000 \\ \text { M } \\ \text { Ave } \end{array}$	20.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.3 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+43.1 \\ +0.0 \\ +8.2 \\ -33.1 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +3.5 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -11 \end{aligned}$	43.8	54.0	-10.2	$\begin{gathered} \hline \text { Vert } \\ 115 \end{gathered}$
11 169.000M	50.5	$\begin{array}{r} +0.0 \\ +0.2 \\ +0.0 \\ -28.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.9 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+9.8 \\ & +0.2 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.8 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	33.6	44.0	-10.4	$\begin{gathered} \text { Horiz } \\ 175 \end{gathered}$
1211103.000 M Ambient	30.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +1.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+38.9 \\ +0.0 \\ +5.7 \\ -36.6 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.9 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 134 \end{aligned}$	43.4	54.0 Noisefloor	-10.6	Horiz 115
13 99.500M	48.5	$\begin{array}{r} \hline+0.0 \\ +0.1 \\ +0.0 \\ -29.1 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+10.1 \\ +0.2 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 360 \end{aligned}$	31.0	44.0	-13.0	Horiz 175
$\begin{aligned} & 14 \text { 3660.996M } \\ & \text { Ave } \end{aligned}$	33.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 217 \end{aligned}$	38.3	54.0	-15.7	$\begin{gathered} \hline \text { Vert } \\ 109 \end{gathered}$
$\wedge 3660.996 \mathrm{M}$	40.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 217 \end{aligned}$	45.7	54.0	-8.3	$\begin{gathered} \hline \text { Vert } \\ 109 \end{gathered}$
$16 \quad 452.400 \mathrm{M}$	37.9	$\begin{array}{r} \hline+0.0 \\ +0.3 \\ +0.0 \\ -29.3 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+17.2 \\ +0.5 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 360 \end{aligned}$	29.8	46.0	-16.2	Horiz 175
$\begin{aligned} & 17 \text { 3661.001M } \\ & \text { Ave } \end{aligned}$	28.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 202 \end{aligned}$	33.4	54.0	-20.6	$\begin{gathered} \hline \text { Horiz } \\ 115 \end{gathered}$

Page 114 of 122
Report No: FC09-014

\wedge	3661.001M	39.4	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+31.9 \\ +0.0 \\ +3.0 \\ -32.7 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.7 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 202 \end{aligned}$	44.6	54.0	-9.4	$\begin{gathered} \text { Horiz } \\ 115 \end{gathered}$
19	$\begin{gathered} 1.038 \mathrm{M} \\ \text { Ambient } \end{gathered}$	28.2	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -40.0 \\ & 226 \end{aligned}$	-1.6	27.4 Noisefloor	-29.0	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
	$17.507 \mathrm{k}$ Ambient	44.5	$\begin{array}{r} +13.6 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 189 \end{aligned}$	-21.9	43.2 Noisefloor	-65.1	90deg 101
21	$\begin{gathered} 9.834 \mathrm{k} \\ \text { Ambient } \end{gathered}$	46.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 226 \end{aligned}$	-33.7	48.2 Noisefloor	-81.9	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
22	$\begin{gathered} 9.540 \mathrm{k} \\ \text { Ambient } \end{gathered}$	45.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 298 \end{aligned}$	-34.2	48.5 Noisefloor	-82.7	90deg 101

Test Location: CKC Laboratories •22116 23rd Dr SE • Bothell, WA 98021-4413 • 425-402-1717
Customer: Impinj Inc
Specification: \quad FCC 15.247/15.209
Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
89028
Radiated Scan
RFID Reader
Impinj
IPJ-REV
S/N:
940-08-21-0006
Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Mag Loop	2156	$06 / 04 / 2008$	$06 / 04 / 2010$	AN00052
Antenna	2453	$12 / 22 / 2008$	$12 / 22 / 2010$	AN01994
EMCO 3115 Horn	$9606-4854$	$11 / 12 / 2007$	$11 / 12 / 2009$	AN01412
Horn Antenna, Active $18-26 G H z$	1114018	$11 / 13 / 2008$	$11 / 13 / 2010$	2742
Heliax cable	N/A	$07 / 22 / 2008$	$07 / 22 / 2010$	AN05545
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03123
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03122
High freq. Cable	N/A	$12 / 02 / 2008$	$12 / 02 / 2010$	AN03121
Cable 30'	11	$11 / 05 / 2008$	$11 / 05 / 2010$	ANP05366
Cable 6'	49	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05371
Cable 20'	16	$11 / 10 / 2008$	$11 / 10 / 2010$	ANP05360
Cable 6'	51	$07 / 20 / 2008$	$12 / 30 / 2010$	ANP05361
Pasternack Coax		$07 / 08 / 2008$	$07 / 20 / 2009$	AN05425
HP 8447D Preamp	$2944 A 08601$	$10 / 02 / 2007$	$10 / 02 / 2009$	AN01517
HP 83017A Pre-amp	$3123 A 00464$	$05 / 01 / 2008$	$05 / 01 / 2010$	AN01271
Filter	2	$12 / 02 / 2008$	$12 / 02 / 2010$	3150
Filter	$311 S H 10-$			
Spectrum Analyzer	MY46186330	$03 / 10 / 2007$	$03 / 10 / 2009$	2872

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
RFID Reader*	Impinj	IPJ-REV	940-08-21-0006
AC/DC adaptor	CUI	DSA-60W-20	ETS240250UC-P11P-DB
Guardwall antenna	Impinj	IPJ-A0402-USA	0116
Support Devices:			
Function	Manufacturer	Model \#	S/N
Laptop Computer	Dell	Latitude	6497402833
Wireless G Router	Belkin	F5D7230-4	2028723009696

Test Conditions / Notes:

$20^{\circ} \mathrm{C} / 26 \%$ relative humidity / 102.3 kPa .
Testing Radiated Spurious Emissions per FCC 15.247(d).
The Unit is an RF reader. It is located in the back edge of the test table.
All its ports are being exercised. It is being powered by the AC/DC converter.
It is connected to a laptop outside the chamber through a shielded ethernet cable.
The antenna is suspended 10 cm above the wooden table with styrofoam.
The EUT will be in transmitting mode throughout the test in the HIGH channel.
Remote support computer sends commands to the EUT to exercise the intended functionalities.
Power setting $=30.0 \mathrm{dBm}$
Operating Frequency range $=902-928 \mathrm{MHz}$
Frequency under test $=927.25 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-19 \mathrm{GHz}$.
Frequency: $9 \mathrm{kHz}-150 \mathrm{kHz}$ RBW $=200 \mathrm{~Hz}$, VBW $=200 \mathrm{~Hz}$
$150 \mathrm{kHz}-30 \mathrm{MHz}$ RBW $=9 \mathrm{kHz}, \quad V B W=9 \mathrm{kHz}$
$30 \mathrm{MHz}-1 \mathrm{GHz}$ RBW $=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}$
$1 \mathrm{GHz}-19 \mathrm{GHz} \quad \mathrm{RBW}=1 \mathrm{MHz}, \quad \mathrm{VBW}=1 \mathrm{MHz}$.

Transducer Legend:

T1=ANT- AN00052-06042008	T2=ANT-AN01412-111207
T3=ANT AN01994 25-1000MHz	T4=CAB-ANP05360
T5=CAB-ANP05361	T6=CAB-ANP05366
T7=CAB-ANP05371	T8=CAB-ANP03121-120208
T9=CAB-ANP03123-120208	T10=CAB-ANP05545-072208
T11=Filter 1GHz HP AN02750	T12=FIL-AN03116-120208
T13=AMP-AN01517-070808	T14=AMP-AN01271-100207-.5-26.5 GHz

Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

Page 118 of 122
Report No: FC09-014

18	5563.495M	27.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.8 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline+34.7 \\ +0.0 \\ +4.0 \\ -33.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +1.9 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 197 \end{aligned}$	35.4	54.0 -18.6	$\begin{gathered} \hline \text { Vert } \\ 114 \end{gathered}$
	$\begin{aligned} & \text { 1.087M } \\ & \text { Ambient } \end{aligned}$	29.4	$\begin{array}{r} \hline+10.0 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	-40.0	-0.4	$\begin{array}{ll} \hline 27.0 & -27.4 \end{array}$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
20	$\begin{aligned} & \text { 135.550k } \\ & \text { Ambient } \end{aligned}$	46.7	$\begin{aligned} & +9.9 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 190 \end{aligned}$	-23.4	25.3 -48.7 NOISEFLOOR	$\begin{gathered} \text { 180de } \\ 101 \end{gathered}$
	$\begin{gathered} \text { 11.862k } \\ \text { Ambient } \end{gathered}$	45.2	$\begin{array}{r} \hline+15.7 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & -80.0 \\ & 352 \end{aligned}$	-19.1	46.6 -65.7 NOISEFLOOR	90deg 101
22	$18.454 \mathrm{k}$ Ambient	42.6	$\begin{array}{r} \hline+13.3 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	-80.0	-24.1	$\begin{array}{ll} \hline 42.7 & -66.8 \end{array}$ NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$
23	$11.928 \mathrm{k}$ Ambient	40.8	$\begin{array}{r} \hline+15.7 \\ +0.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline-80.0 \\ & 328 \end{aligned}$	-23.5	46.5 -70.0 NOISEFLOOR	$\begin{gathered} \hline \text { 180de } \\ 101 \end{gathered}$

RSS-210 - 99\% BANDWIDTH
Test Equipment

Asset \#	Name	Manufacturer	Model	Serial	Cal date	Cal Due
P05747	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05748	Attenuator	Pasternack	PE7004-20	NA	$4 / 3 / 2008$	$4 / 3 / 2010$
P05371	Cable 6'	Belden	RG-214	RG214 49	$11 / 10 / 2008$	$11 / 10 / 2010$
Spectrum	Agilent	E4440A	MY46186330	$1 / 31 / 2008$	$1 / 31 / 2010$	

Test Conditions

EUT is transmitting at maximum rate. PSA is on max hold, Agilent procedure is used where the Occupied Bandwidth option is used in three channels (LOW, MID, HIGH), and the span is set to 1 MHz and the RBW to 1 kHz .

Result: Less than 500 kHz

Test Setup Photos

Test Plots

RSS-210 - LOW CHANNEL

RSS-210 - MID CHANNEL

RSS-210 - HIGH CHANNEL

[^0]: - Sweep Data

 Readings

 1 - FCC 15.207 - AVE
 Peak Readings

