

FCC C2PC Test Report

FCC ID : TWG-SDCWB40NBT

Equipment : 802.11abgn 1x with BT

Model No. : SDC-WB40NBT

Brand Name : Summit

Applicant : Summit Data Communications, Inc.

Address : 526 South Main Street Suite 805 Akron, OH

44311

Standard : 47 CFR FCC Part 15.407

Received Date : Apr. 14, 2015

Tested Date : Apr. 14 ~ May 04, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Iac-MRA

TAF

Testing Laboratory

Report No.: FR542801 Page : 1 of 38

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	
1.5	Testing Applied Standards	9
1.6	Measurement Uncertainty	
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	Emission Bandwidth	14
3.3	RF Output Power	16
3.4	Peak Power Spectral Density	17
3.5	Transmitter Radiated and Band Edge Emissions	19
3.6	Frequency Stability	36
4	TEST LABORATORY INFORMATION	38

Release Record

Report No.	Version	Description	Issued Date
FR542801	Rev. 01	Initial issue	May 29, 2015

Report No.: FR542801 Page: 3 of 38

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 24.001MHz 30.42 (Margin -19.58dB) - AV	Pass
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 5715.00MHz	Pass
15.209	Radiated Effissions	65.01 (Margin -3.19dB) - PK	F d 5 5
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Max Power [dBm]: 10.51	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR542801 Page: 4 of 38

1 General Description

1.1 Information

This report is prepared for FCC class II change.

This report is issued as a FCC Class II Permissive Change for complying with New U-NII rule requirement. In this test report, all test items has been re-tested and its data was recorded in the following sections.

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	Data Rate / MCS					
5725-5850	а	5745-5805	149-161 [4]	1	6-54 Mbps	
5725-5850	n (HT20)	5745-5805	149-161 [4]	1	MCS 0-7	

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Details

Ant. No.	Brand	Model	Туре	Connector	Gain (dBi)
1	Radiall Larsen	R380.500.314	Dipole	RP-TNC plug	5

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 3.3Vdc from host	
------------------------------------	--

1.1.4 Accessories

N/A

Report No.: FR542801 Page : 5 of 38

1.1.5 Channel List

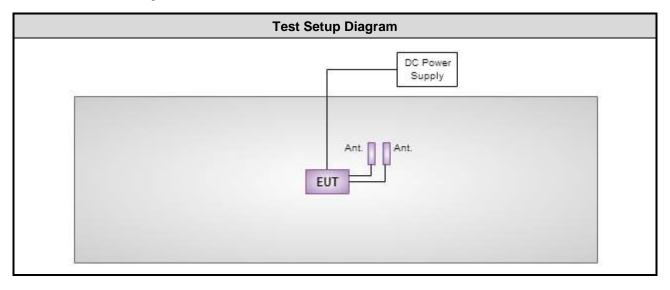
802.11 a / HT20				
Channel	Frequency(MHz)			
149	5745			
153	5765			
157	5785			
161	5805			

1.1.6 Test Tool and Duty Cycle

Test Tool	Hyperterminal, Version: 5.1				
	Mode	Duty cycle (%)	Duty factor (dB)		
Duty Cycle and Duty Factor	11a	96.08%	0.17		
	HT20	95.11%	0.22		

1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11a	5745	Default
11a	5785	Default
11a	5805	Default
HT20	5745	Default
HT20	5785	Default
HT20	5805	Default


Report No.: FR542801 Page: 6 of 38

1.2 Local Support Equipment List

	Support Equipment List							
No.	No. Equipment Brand Model FCC ID Signal cable / Length (n							
1	DC Power Source	GW INSTEK	GPC-3060D					

1.3 Test Setup Chart

Report No.: FR542801 Page: 7 of 38

1.4 The Equipment List

Test Item	Conducted Emission						
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)					
Instrument Manufacturer Model No. Serial No. Calibration Date Calibration							
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015		
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015		
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015		
Measurement Software AUDIX e3 6.120210k NA NA							
Note: Calibration Interval of instruments listed above is one year.							

Test Item	Radiated Emission						
Test Site	966 chamber 3 / (03CH03-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 16, 2014	Sep. 15, 2015		
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 03, 2015	Feb. 02, 2016		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015		
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015		
Preamplifier	EMC	EMC02325	980187	Sep. 26, 2014	Sep. 25, 2015		
Preamplifier	Agilent	83017A	MY53270014	Sep. 17, 2014	Sep. 16, 2015		
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015		
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 09, 2015	Feb. 08, 2016		
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 09, 2015	Feb. 08, 2016		
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 09, 2015	Feb. 08, 2016		
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 09, 2015	Feb. 08, 2016		
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 09, 2015	Feb. 08, 2016		
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 09, 2015	Feb. 08, 2016		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		
Note: Calibration Int	erval of instruments lis	ted above is one year.					

Report No.: FR542801 Page: 8 of 38

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 03, 2014	Dec. 02, 2015
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA
Note: Calibration Inte	rval of instruments liste	d above is one year.		•	

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2009

FCC 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 412172 D01 Determining ERP and EIRP v01

Note: FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 02, 2014.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Frequency error	±34.134 Hz
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.92 dB
Radiated emission ≤ 1GHz	±3.99 dB
Radiated emission > 1GHz	±5.52 dB
Time	±0.1%
Temperature	±0.6 °C

Report No.: FR542801 Page: 9 of 38

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 64%	Kevin Ma
Radiated Emissions	03CH03-WS	20-21°C / 61-71%	Warren Lee Aska Huang
RF Conducted	TH01-WS	23°C / 64%	Felix Sung

FCC site registration No.: 390588IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

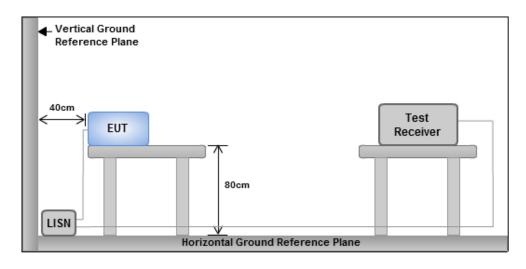
	For Frequer	ncy band 5725-5850 MHz		
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration
Conducted Emissions	HT20	5745	MCS 0	
Radiated Emissions ≤1GHz	HT20	5745	MCS 0	
RF Output Power	11a HT20	5745 / 5785 / 5805 5745 / 5785 / 5805	6 Mbps MCS 0	
Radiated Emissions >1GHz Emission Bandwidth	11a	5745 / 5785 / 5805	6 Mbps	
6dB bandwidth Peak Power Spectral Density	HT20	5745 / 5785 / 5805	MCS 0	
Frequency Stability	Un-modulation	5785		

NOTE: The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.

Report No.: FR542801 Page: 10 of 38

3 Transmitter Test Results

3.1 Conducted Emissions

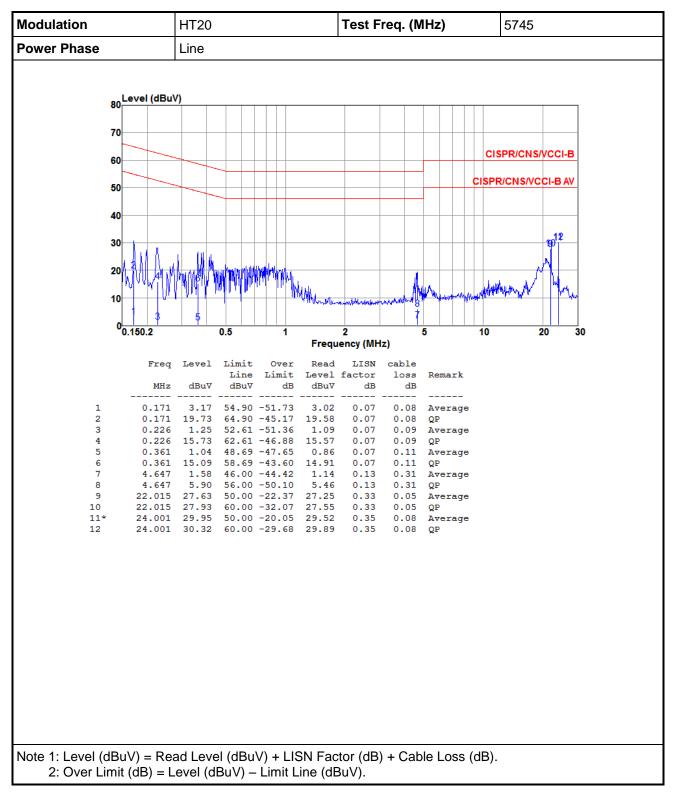

3.1.1 Limit of Conducted Emissions

	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	m of the frequency.	-

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR542801 Page: 11 of 38



3.1.4 Test Result of Conducted Emissions

Report No.: FR542801 Page: 12 of 38

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).

2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

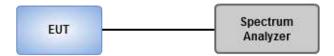
Report No.: FR542801 Page: 13 of 38

3.2 Emission Bandwidth

3.2.1 Limit of Emission bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures

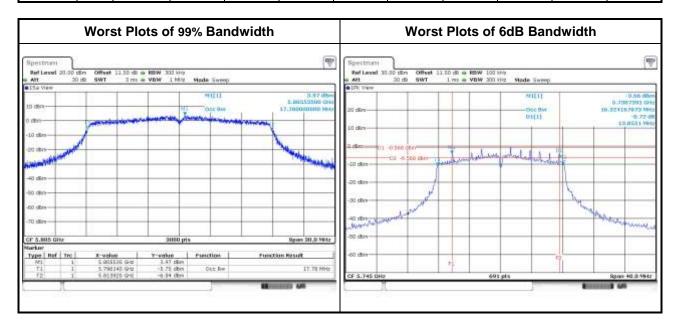

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW
- 2. Set VBW ≥ 3 RBW
- 3. Sample detection and single sweep mode shall be used
- 4. Use the 99 % power bandwidth function of the instrument

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz
- 2. Detector = Peak, Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.2.3 Test Setup



Report No.: FR542801 Page: 14 of 38

3.2.4 Test Result of Emission Bandwidth

					Emission	Bandwid	th					
			0	BW Band	width (MHz)			6dB Bandwidth (MHz)				
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)	
11a	1	5745	16.55				13.86				0.5	
11a	1	5785	16.53				15.13				0.5	
11a	1	5805	16.53				13.91				0.5	
HT20	1	5745	17.74				16.00				0.5	
HT20	1	5785	17.71				15.13				0.5	
HT20	1	5805	17.78				13.86				0.5	

Report No.: FR542801 Page: 15 of 38

3.3 RF Output Power

3.3.1 Limit of RF Output Power

The maximum conducted output power over the frequency band of operation shall not exceed 1 W

3.3.2 Test Procedures

Measurements may is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

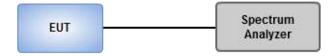
3.3.3 Test Setup

3.3.4 Test Result of Maximum Conducted Output Power

			C	onducted I	Power (dBn	Total	Total	Limit	
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	1	5745	7.45				5.559	7.45	30.00
11a	1	5785	7.6				5.754	7.60	30.00
11a	1	5805	7.55				5.689	7.55	30.00
HT20	1	5745	10.51				11.246	10.51	30.00
HT20	1	5785	10.22				10.520	10.22	30.00
HT20	1	5805	10.12				10.280	10.12	30.00

Report No.: FR542801 Page: 16 of 38

3.4 Peak Power Spectral Density

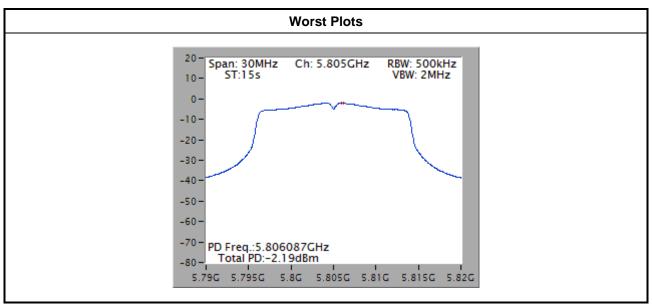

3.4.1 Limit of Peak Power Spectral Density

The maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.

3.4.2 Test Procedures

- ☐ Method SA-1
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add $10 \log(1/x)$, where x is the duty cycle.

3.4.3 Test Setup


Report No.: FR542801 Page: 17 of 38

3.4.4 Test Result of Peak Power Spectral Density

			For Frequency	band 5725-5850 MH	lz	
Co	ndition	1	F	Peak Power Spectral	Density (dBm/500kl	Hz)
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz)	Duty Factor (dB)	PPSD with D.F (dBm/500kHz)	PPSD Limit (dBm/500kHz)
11a	1	5745	-4.65	0.17	-4.48	30.00
11a	1	5785	-4.32	0.17	-4.15	30.00
11a	1	5805	-4.50	0.17	-4.33	30.00
HT20	1	5745	-3.19	0.22	-2.97	30.00
HT20	1	5785	-3.09	0.22	-2.87	30.00
HT20	1	5805	-2.19	0.22	-1.97	30.00

Note: D.F is duty factor.

Note: The plot without duty factor.

Report No.: FR542801 Page: 18 of 38

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

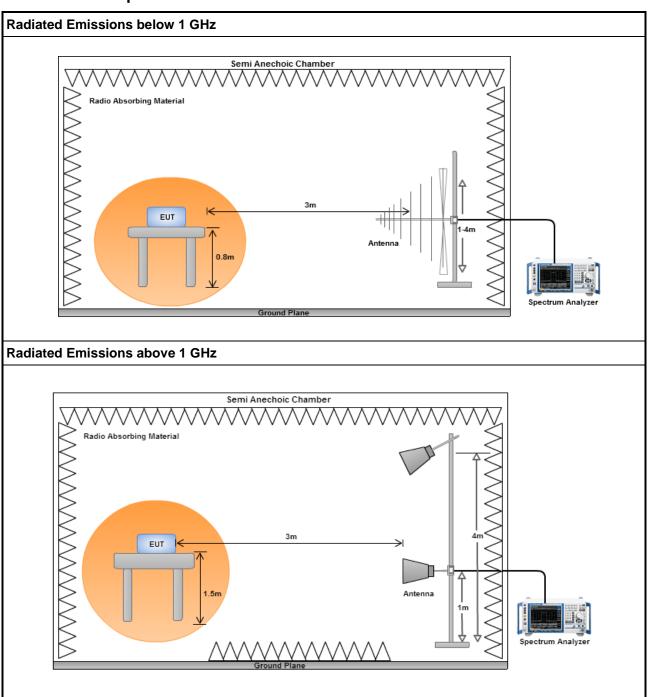
	Un-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.850 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.85 5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR542801 Page: 19 of 38

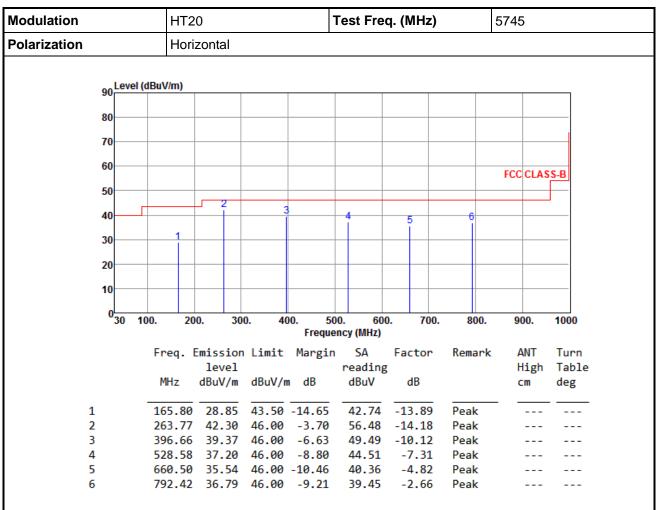
3.5.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR542801 Page: 20 of 38


3.5.3 Test Setup

Report No.: FR542801 Page: 21 of 38

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

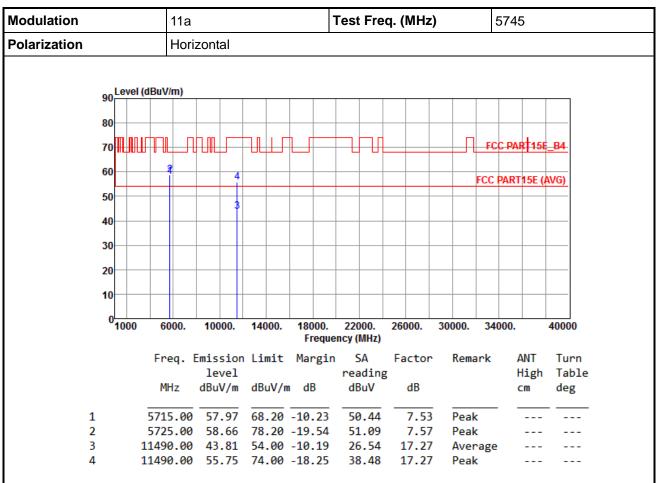
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR542801 Page: 22 of 38

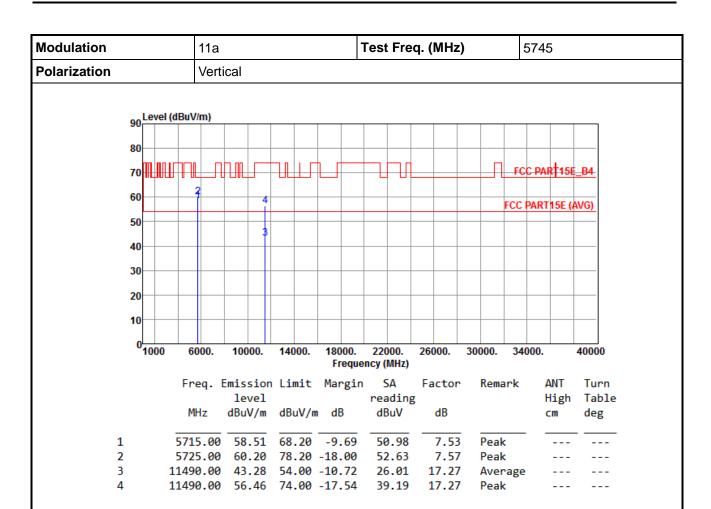
Modulation		HT20)		-	Te	st Fre	q. (N	1Hz)		5745	5	
Polarization		Vertic	cal		1								
90 <mark>.</mark>	_evel (dB	BuV/m)											_
80-													
70-													
60-											FCC	CLAS	S-B
50													
40-		1	2		3	4		5				6	
30-			-			-1							
20-													
10-													
0	30 100	. 200	. 30	00. 4	00. 50 Freque	00.	60 (MHz)	0.	700.	800.	9(00.	1000
		Frea. Fi	missio	n limit	Margin			Fac	tor	Remark		ANT	Turn
			level		1101 8211		eading			remark.		ligh	Table
		MHz (dBuV/m	dBuV/	m dB	(lBuV	d	IB		C	m	deg
1	_	165.80	34.61	43.50	-8.89	_	18.50	-13	.89	Peak			
2		263.77	32.74		-13.26		16.92		.18	Peak			
3 4					-10.83 -13.02		15.29 10.29		.12	Peak Peak			
5					-9.82		11.00		.82	QP			
6		924.34	35.43	46.00	-10.57	3	35.65		.22	Peak			


*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR542801 Page: 23 of 38

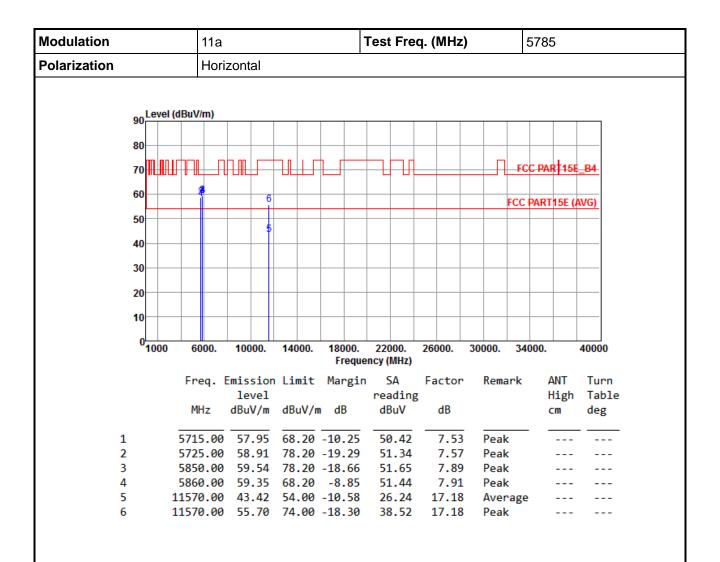
3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

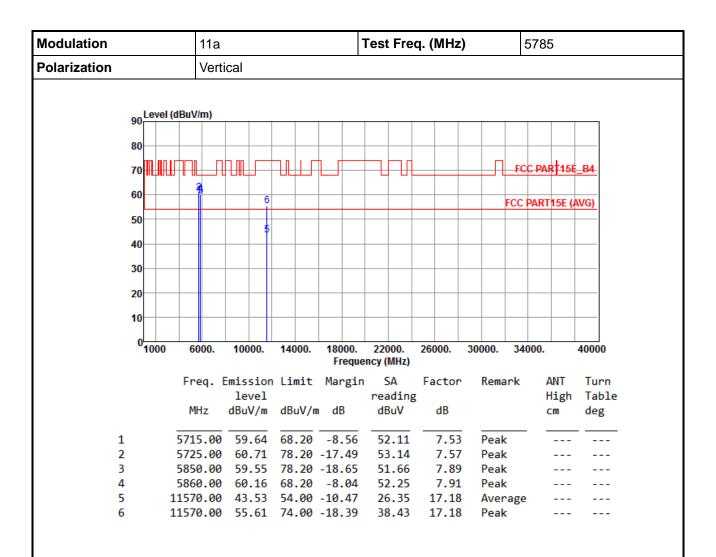
Report No.: FR542801 Page: 24 of 38



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

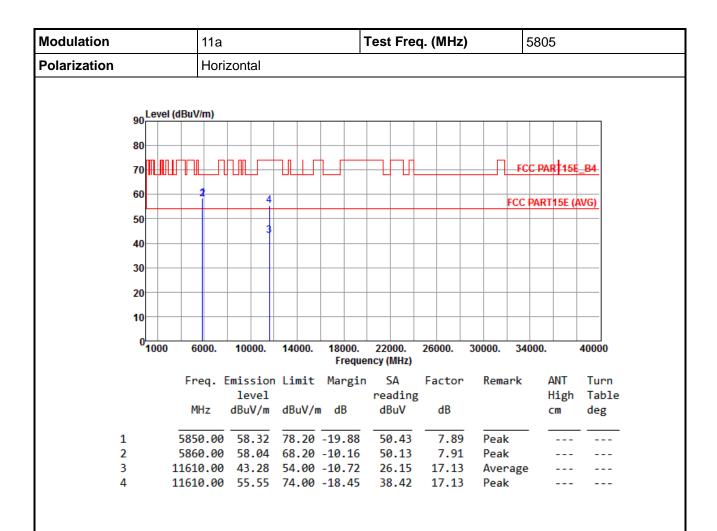
Report No.: FR542801 Page: 25 of 38



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

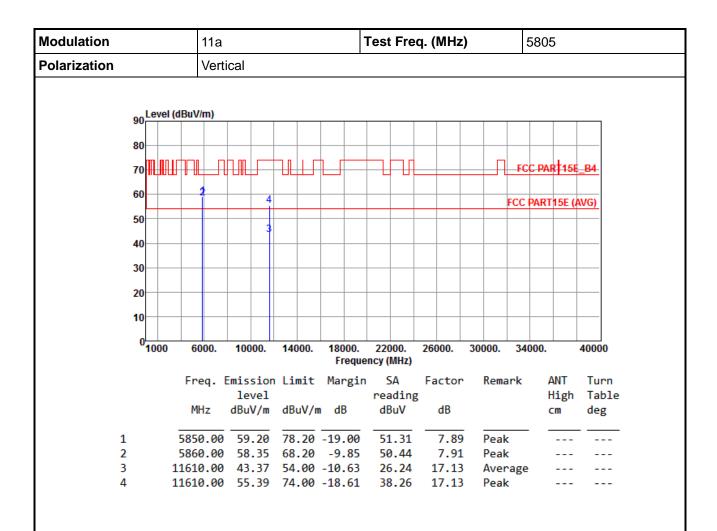
Report No.: FR542801 Page: 26 of 38



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

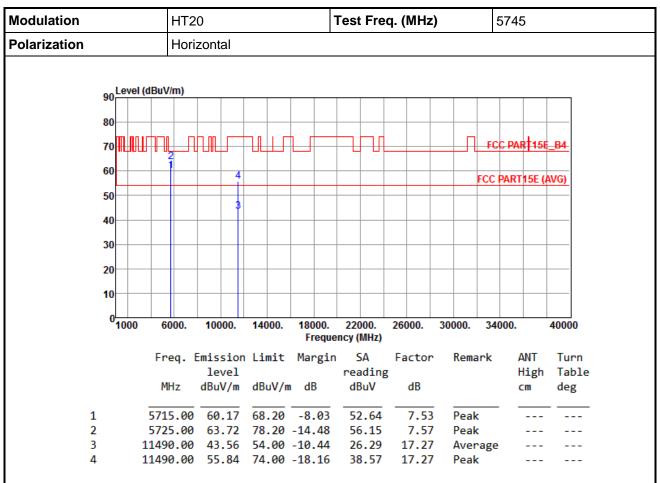
Report No.: FR542801 Page: 27 of 38



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

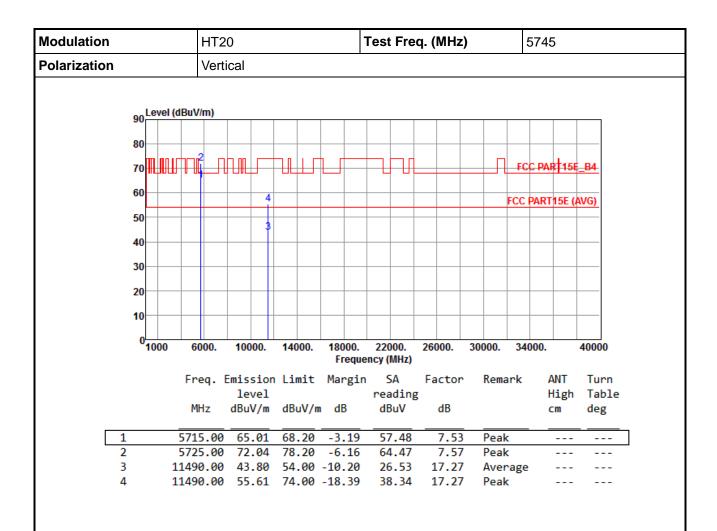
Report No.: FR542801 Page: 28 of 38


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR542801 Page: 29 of 38

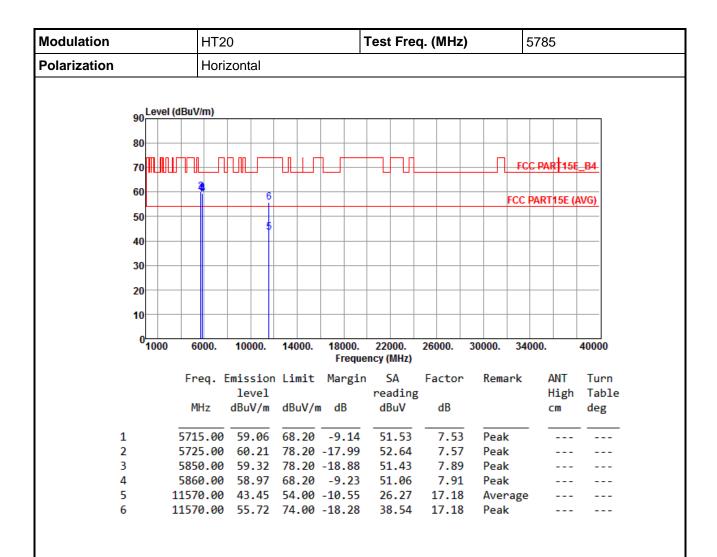
3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR542801 Page: 30 of 38



Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

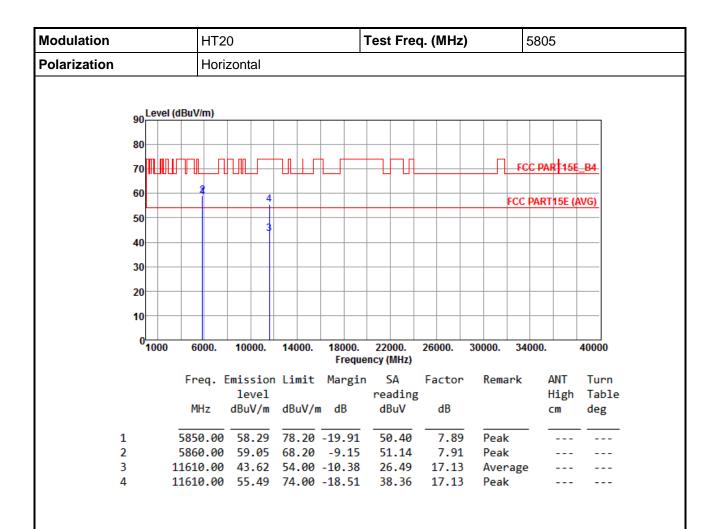
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR542801 Page: 31 of 38

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

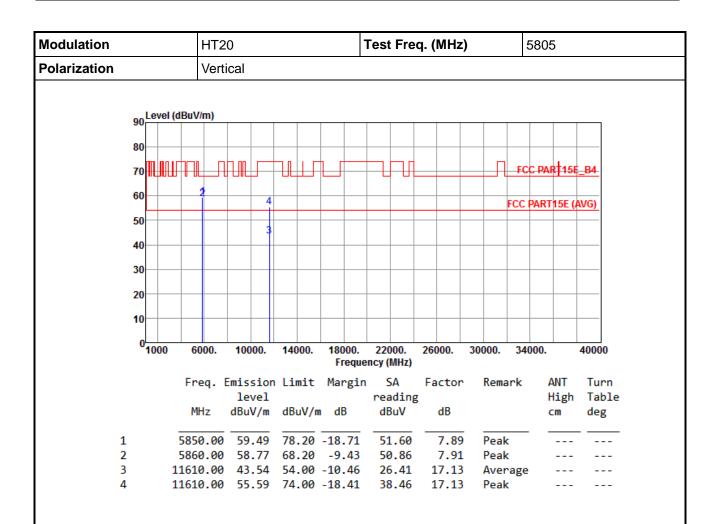
Report No.: FR542801 Page: 32 of 38



Modulation	HT20		Test Freq	. (MHz)		5785	
Polarization	Vertical						
90 Level (dBu	V/m)						
80							
70					F	C PAR 15	_B4
60	4 6				F00	DADT455 (11/61
50					FCC	PART15E (AVG)
40							
30							
20							
10							
01000 6	6000. 10000.	14000. 18000. Frequ	22000. 2 ency (MHz)	26000. 300	000. 34	1000.	40000
Fr	reg. Emission	Limit Margi	n SA	Factor	Remark	ANT	Turn
	level	J	reading			High	Table
1	MHz dBuV/m	dBuV/m dB	dBuV	dB		cm	deg
1 571	15.00 59.21	68.20 -8.99	51.68	7.53	Peak		
2 572	25.00 60.90	78.20 -17.30	53.33	7.57	Peak		
	60.00 60.10	78.20 -18.10	52.21		Peak		
	50.00 59.40	68.20 -8.80 54.00 -10.58	51.49 26.24		Peak Average		
		74.00 -18.29	38.53		average Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)
*Factor includes antenna factor , cable loss and amplifier gain
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR542801 Page: 33 of 38



*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR542801 Page: 34 of 38

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR542801 Page: 35 of 38

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

Report No.: FR542801 Page: 36 of 38

3.6.4 Test Result of Frequency Stability

Frequency: 5785 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	1.60	1.50	1.45	1.26	
T20°CVmin	3.65	3.10	3.70	4.08	
T60°CVnom	1.60	2.00	2.34	2.14	
T50°CVnom	2.27	2.95	2.22	2.20	
T40°CVnom	3.03	2.57	2.69	2.47	
T30°CVnom	2.38	1.83	1.78	1.87	
T20°CVnom	0.81	1.81	1.55	1.24	
T10°CVnom	3.58	3.09	3.10	3.07	
T0°CVnom	2.40	1.93	1.40	1.75	
T-10°CVnom	0.81	0.40	0.73	0.88	
T-20°CVnom	0.91	0.90	0.28	1.28	
T-30°CVnom	0.37	0.39	0.52	0.52	
Vnom [Vac]: 120		max [Vac]: 138	Vmin [Vac]	Vmin [Vac]: 102	
Tnom [°C]: 20		max [°C]: 60	Tmin [°C]: -	Tmin [°C]: -30	

Report No.: FR542801 Page: 37 of 38

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR542801 Page: 38 of 38