

EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15, Subpart E

Model: SDC-WB40NBT

IC CERTIFICATION #: 6616A-SDCWB40NBT FCC ID: TWG-SDCWB40NBT

> APPLICANT: Summit Data Communications 526 South Main St. Suite 805 Akron, CA 44311

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: REPORT DATE: FINAL TEST DATES: 2845B-3; 2845B-4, 2845B-5, 2845B-7

February 13, 2012

October 19, 20 and 21 and November 19 and 24, 2010 and May 11, August 2, 4, 10, 12, 13, 16, 17, 18 19, 20, 23, 24, 26 and October 6, 7, 19, 20 and 26 and November 3, 4, 7, 8, 9, 15, 2011

TOTAL NUMBER OF PAGES:

121

PROGRAM MGR / TECHNICAL REVIEWER

Mark Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	2-15-2012	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	13
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	14
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	15
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	15
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	17
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – FHSS SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	22
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES	23
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	23
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	25
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	26
APPENDIX B TEST DATA	29
END OF REPORT	

SCOPE

An electromagnetic emissions test has been performed on the Summit Data Communications model SDC-WB40NBT, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure KDB 789033 D01, Dated 10/25/2011

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Summit Data Communications model SDC-WB40NBT complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Summit Data Communications model SDC-WB40NBT and therefore apply only to the tested sample. The sample was selected and prepared by Ron Seide of Summit Data Communications.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (2)		26dB Bandwidth	27.8MHz	N/A – limits output power if < 20MHz	N/A
15.407 (a) (1)	A9.2(1)	Output Power	802.11a: 10.8dBm (0.012W) n20: 9.7dBm (0.009W) (Max eirp: 0.053W)	17dBm	Complies
15.407 (a) (1)	-	Power Spectral	802.11a: 0.3dBm/MHz	4 dBm/MHz	Complies
-	A9.5 (2)	Density	802.11n20: -1.8dBm/MHz	5 dBm/MHz	Complies

Operation in the 5.25 – 5.35 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	22.2MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	802.11a: 14.2dBm (0.026W) n20: 13.2dBm (0.021W) (Max eirp: 0.116W)	17dBm (50mW)	Complies
15.407(a) (2)	-	Power Spectral Density	802.11a: 3.1dBm/MHz	10.5 dBm/MHz	Complies
-	A9.2(2) / A9.5 (2)	Power Spectral Density	802.11n20: 1.7dBm/MHz	11 dBm/MHz	Complies

	Operation in the 5.47 – 5.725 GHz band						
FCC	RSS	Description	Measured Value /	Limit / Requirement	Result		
Rule Part	Rule Part	Description	Comments	Emilt / Requirement	(margin)		
15.407(a) (2)		26dB Bandwidth	22.3MHz	N/A – limits output power if < 20MHz	N/A		
15.407(a) (2)	A9.2(2)	Output Power	802.11a: 15.0dBm (0.031W) 802.11n20: 13.3dBm (0.021W) (Max eirp: 0.140W)	24 dBm / 250mW (eirp < 30dBm)	Complies		
15.407(a) (2))		Power Spectral Density	802.11a: 4.0 dBm/MHz	10.5 dBm/MHz	Complies		
	A9.2(2) / A9.5 (2)	Power Spectral Density	802.11n20: 2.1dBm/MHz	11 dBm/MHz	Complies		
KDB 443999	A9	Non-operation in 5600 – 5650 MHz sub band	Device cannot operate in the 5600 – 5650 MHz band –refer to Operational Description		Complies		

FCC	RSS	Description	Measured Value /	Limit / Requirement	Result
Rule Part	Rule Part	Description	Comments	-	Kesuit
15.407	A9.5a	Modulation	Digital Modulation is used	Digital modulation is required	Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions	53.8dBµV/m @ 5350.1MHz (-0.2dB)	Refer to page 23	Complies
15.407(a)(6)	-	Peak Excursion Ratio	12.1dB	< 13dB	Complies
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	N/A
15		Channel Selection	Measurements on three channels in each band	and center channels in each band	Complies
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 10ppm	Signal shall remain within the allocated band	Complies
15.407 (h1)	A9.4	Transmit Power Control	TPC is not required as the device operates at below 500mW eirp	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies
15.407 (h2)	A9.4	Dynamic frequency Selection (device without radar detection)	Refer to separate test report, reference R86361	Channel move time < 10s Channel closing transmission time < 260ms	Complies
	A9.9g	User Manual information	Refer to Exhibit 6 for details	Warning regarding interference from Satellite Systems	Complies

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	EUT uses u.FL connectors	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	32.7dBµV @ 0.457MHz (-14.1dB)	Refer to page 20	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	51.8dBµV/m @ 2994.7MHz (-2.2dB)	Refer to page 21	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11a: 17.3MHz 802.11n20: 18.1MHz	Information only	N/A

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Summit Data Communications model SDC-WB40NBT is an 802.11abgn 1x1 with Bluetooth 2.1 module.

The sample was received on October 19, 2010 and tested on October 19, 20 and 21 and November 19 and 24, 2010 and May 11, August 2, 4, 10, 12, 13, 16, 17, 18 19, 20, 23, 24, 26 and October 6, 7, 19, 20 and 26 and November 3, 4, 7, 8, 9, 15, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Cummit	SDC-	802.11abgn 1x	Drototyma	TWG-
Summit	WB40NBT	with BT	Prototype	SDCWB40NBT

OTHER EUT DETAILS

The EUT supports single transmit chain operation. The EUT supports 20MHz operation only.

ANTENNA SYSTEM

Monopole Antenna - 2.4 and 5GHz bands - Huber+Suhner, SOA 2459/360/5/0/V_C, 3dBi (2.4GHz), 6.5dBi (5GHz)

Dipole Antenna #1 - 2.4 and 5GHz bands - Larsen, R380.500.314, 1.6dBi (2.4GHz), 5dBi (5GHz)

Dipole Antenna #2 - 2.4 GHz only - Cisco Air-Ant 4941 2dBi(2.4GHz)

Magnetic Dipole - 2.4GHz and 5GHz bands - Ethertronics, 2.5dBi (2.4GHz), 5dBi (5GHz)

In the 2.4GHz range, the Huber+Suhner (H&S), Cisco and Ethertronics antennas were tested as they represented the highest gain antennas of each available type.

In the 5GHz range, the H&S, Larsen, and Ethertronics antennas were tested as the represented the highest gain antennas of each available type.

The antenna connects to the EUT via a non-standard u.FL antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Lenovo	Inspiron 1545	Laptop Computer	953R2K1	DoC
		(Note 1)		
GME	GFP181U-A330	AC/DC Adapter	1005-000194	-
		(Note 2)		
-	-	Battery Pack	-	-
		(Note 3)		

Note 1 - Used to configure the EUT and then disconnected prior to testing

Note 2 – Used for AC conducted emissions only

Note 3 – Used for radiated spurious emissions tests

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Polt	То	Description	Shielded or Unshielded	Length(m)
AC/DC Adapter – DC out	WB40	2wire	Unshielded	1.5m
Battery Pack	WB40	2wire	Unshielded	0.1m

EUT OPERATION

During testing, the EUT was configured to transmit continuously at the lowest data rate for the mode as this resulted in the highest output power.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont,
Chamber 7	A2LA	2845B-7	CA 94538-2435
Chamber /	accreditation	2043D-/	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

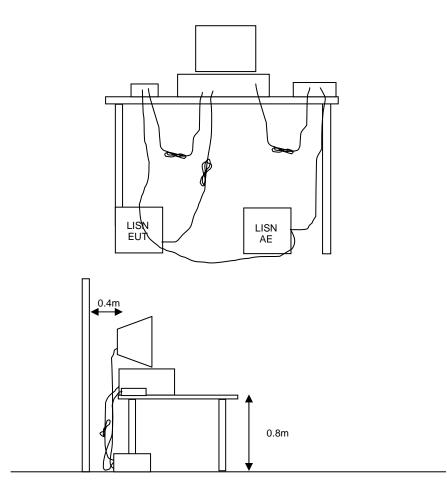
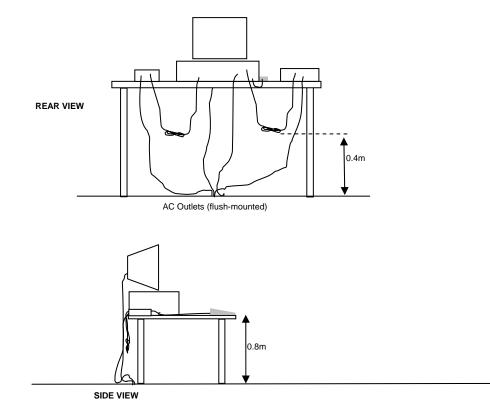
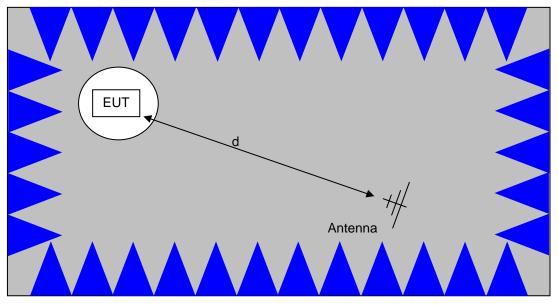


Figure 1 Typical Conducted Emissions Test Configuration

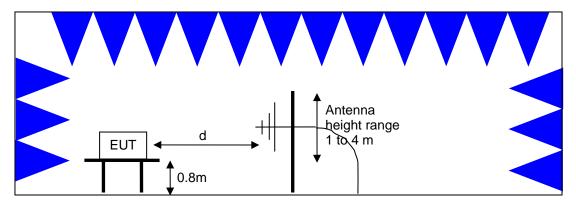

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

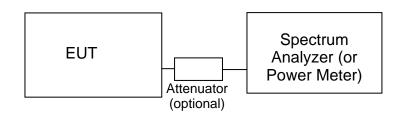
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)	
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0	
0.500 to 5.000	46.0	56.0	
5.000 to 30.000	50.0	60.0	

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 - 928	≥ 50	1 Watt (30 dBm)
902 - 928	25 to 49	0.25 Watts (24 dBm)
2400 - 2483.5	≥ 75	1 Watt (30 dBm)
2400 - 2483.5	< 75	0.125 Watts (21 dBm)
5725 - 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	$250 \text{ mW} (24 \text{ dBm})^2$ 1W (30dBm) eirp	11 dBm/MHz
5470 - 5725	250 mW (24 dBm) ³ 1W (30dBm) eirp	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SPURIOUS EMISSIONS LIMITS – UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed -7dBm/MHz (88.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to -17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

² If EIRP exceeds 500mW the device must employ TPC

³ If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radio (2nd Harmonic)	. 19-Nov-10			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/15/2010
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300-80039	1156	6/25/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	7/19/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
Radio Antenna Port (F	Power and Spurious Emissions), 2	24-Nov-10		
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1787	12/4/2010
Radiated Emissions, 1	1000 - 18,000 MHz, 04-Aug-11			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/12/2011
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	10/21/2011
Radiated Emissions, 3	30 - 40,000 MHz, 12-Aug-11			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
Narda West	High Pass Filter, 8 GHz	HPF 180	821	3/23/2012
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	8/5/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012

	1000 - 40,000 MHz, 13-Aug-11	Madal	A = = = 1 #	Cal Due
<u>Manufacturer</u> Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 12/8/2011
Narda West Hewlett Packard	High Pass Filter, 8 GHz Head (Inc flex cable, 1143, 2198) Red	HPF 180 84125C	821 1145	3/23/2012 2/17/2012
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	8/5/2012
A.H. Systems Hewlett Packard	Purple System Horn, 18-40GHz SpecAn 9 kHz - 40 GHz, (SA40) Purple	SAS-574, p/n: 2581 8564E (84125C)	2160 2415	2/9/2012 7/28/2012
	1000 - 40,000 MHz, 16-Aug-11			
<u>Manufacturer</u> Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 12/8/2011
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	2/17/2012
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1681	5/3/2012
A.H. Systems Micro-Tronics	Purple System Horn, 18-40GHz Band Reject Filter, 5150-5350 MHz	SAS-574, p/n: 2581 BRC50703-02	2160 2251	2/9/2012 10/21/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
Radiated Emissions,	1000 - 18,000 MHz, 17-Aug-11			
<u>Manufacturer</u> Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 12/8/2011
Narda West EMCO	High Pass Filter, 8 GHz Antenna, Horn, 1-18 GHz (SA40-Blu)	HPF 180 3115	821 1386	3/23/2012 9/21/2012
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2239	10/1/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
Radiated Emissions,	1000 - 18,000 MHz, 18-Aug-11			
<u>Manufacturer</u> Hewlett Packard	Description Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 12/8/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Micro-Tronics	Band Reject Filter, 5150-5350	BRC50703-02	2239	10/1/2011
Micro-Tronics	Band Reject Filter, 5470-5725	BRC50704-02	2240	10/1/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012

Radio Antenna Port (Power and Spurious Emissions), 2	24-Aug-11		
Manufacturer	Description	Model	Asset #	<u>Cal Due</u>
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	8/9/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011
Radio Antenna Port (Power and Spurious Emissions), 2	26-Aug-11		
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	4/6/2012
Radiated Emissions,	1000 - 18,000 MHz, 15-Nov-11			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	1682	3/23/2012
Conducted Emission	s - AC Power Ports, 16-Dec-11			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	LISN, 10 kHz-100 MHz, 25A	3825/2	1292	3/1/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	4/6/2012

Appendix B Test Data

T80880 Pages 30 – 111 T83198 Pages 112 - 120

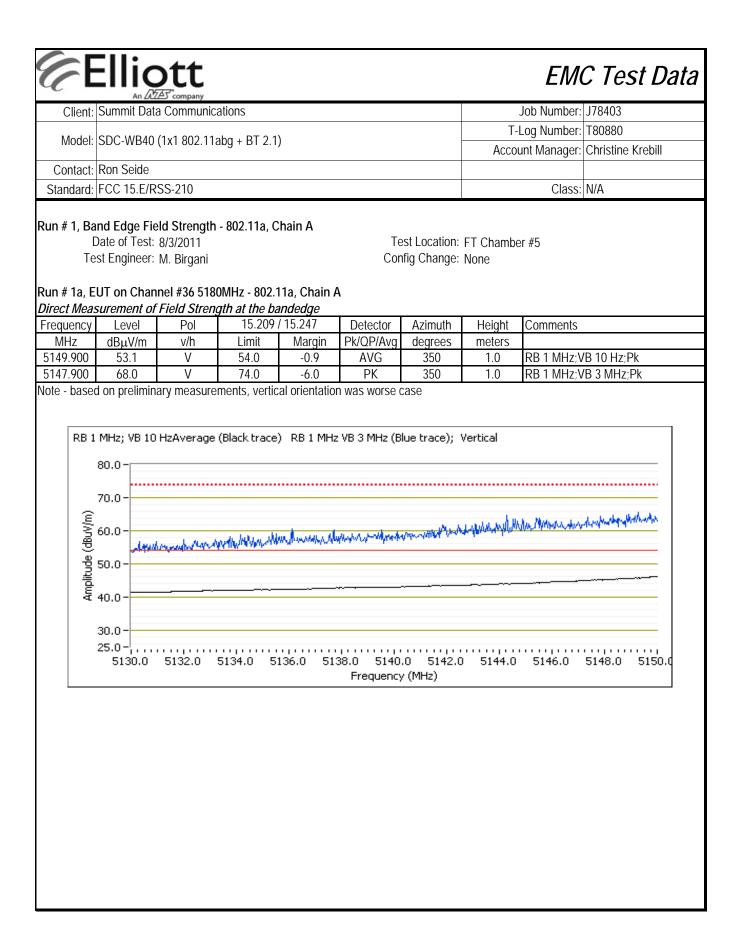
EMC Test Data

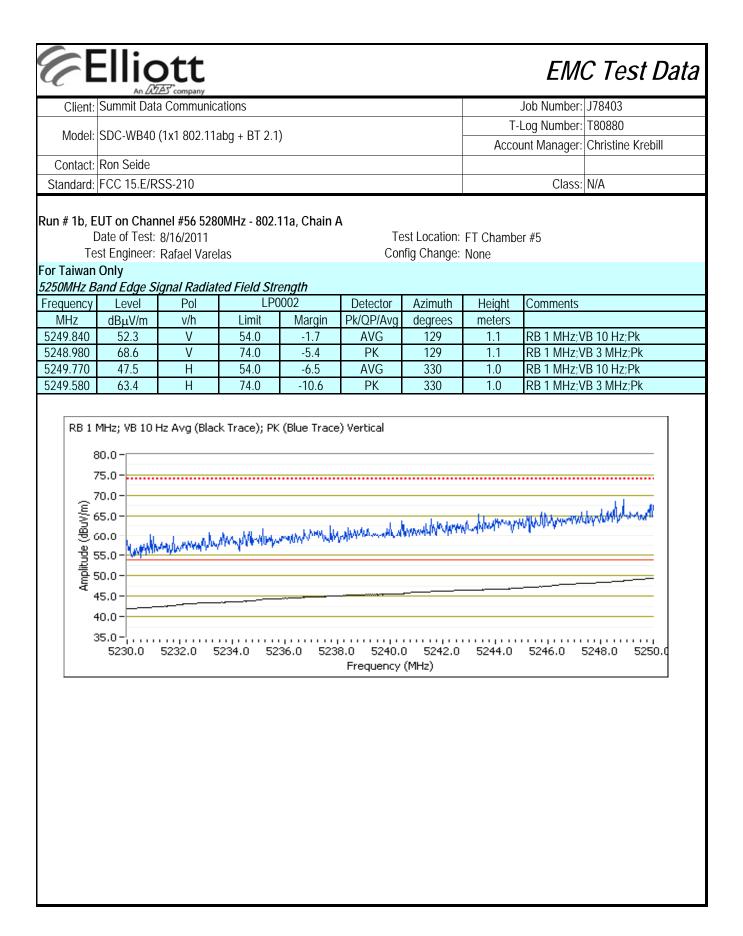
An ZAZZ) company		
Client:	Summit Data Communications	Job Number:	J78403
Model:	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80880
		Account Manager:	Christine Krebill
Contact:	Ron Seide		-
Emissions Standard(s):	FCC 15.E/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

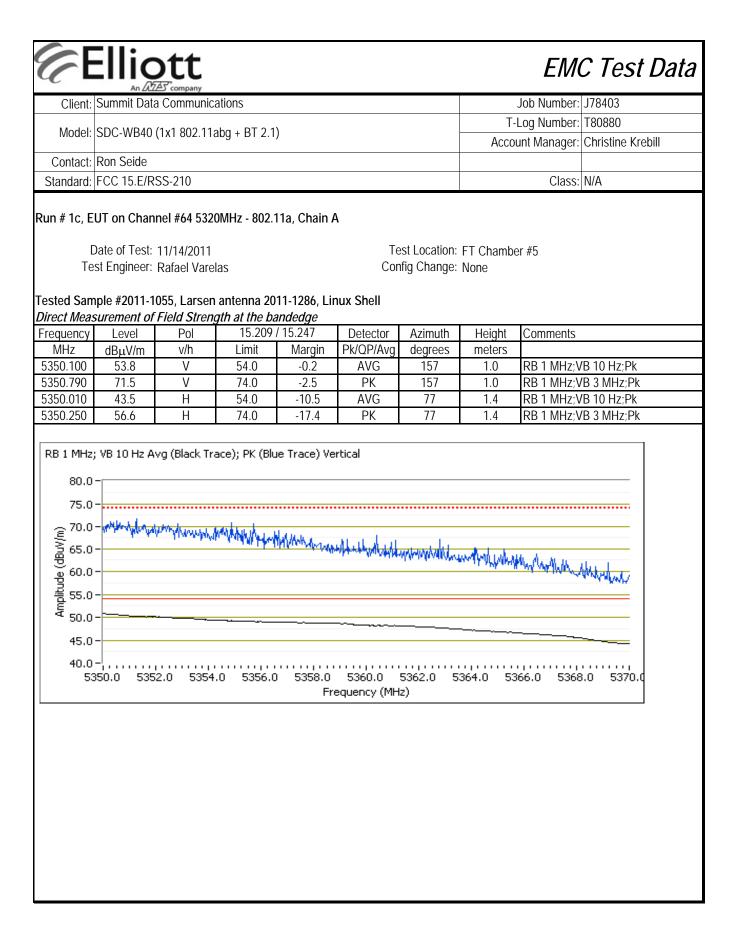
EMC Test Data

For The

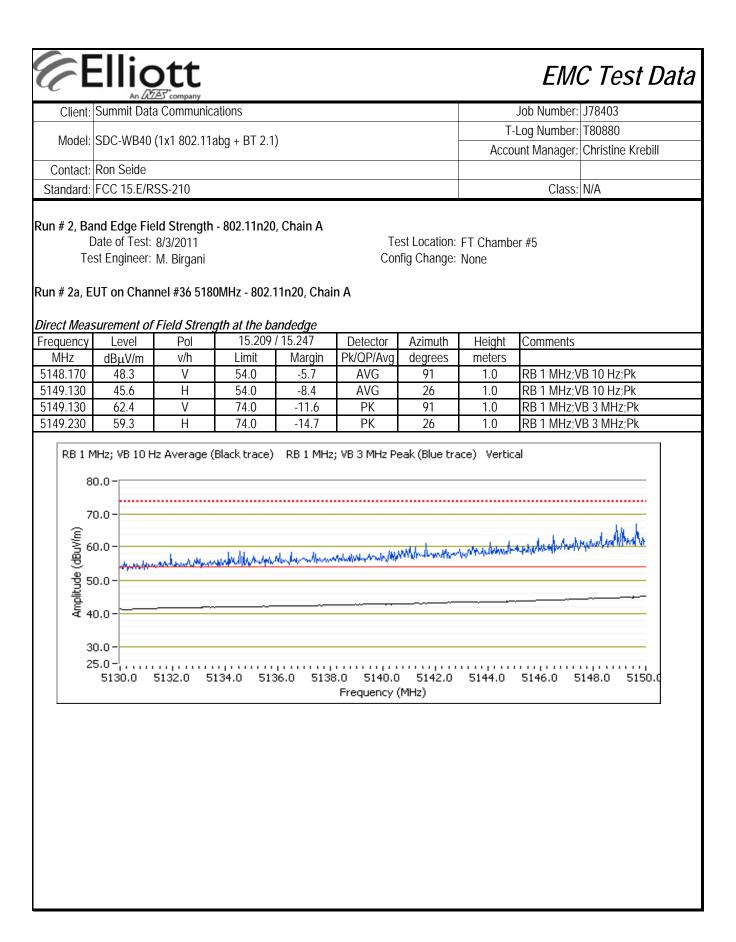
Summit Data Communications

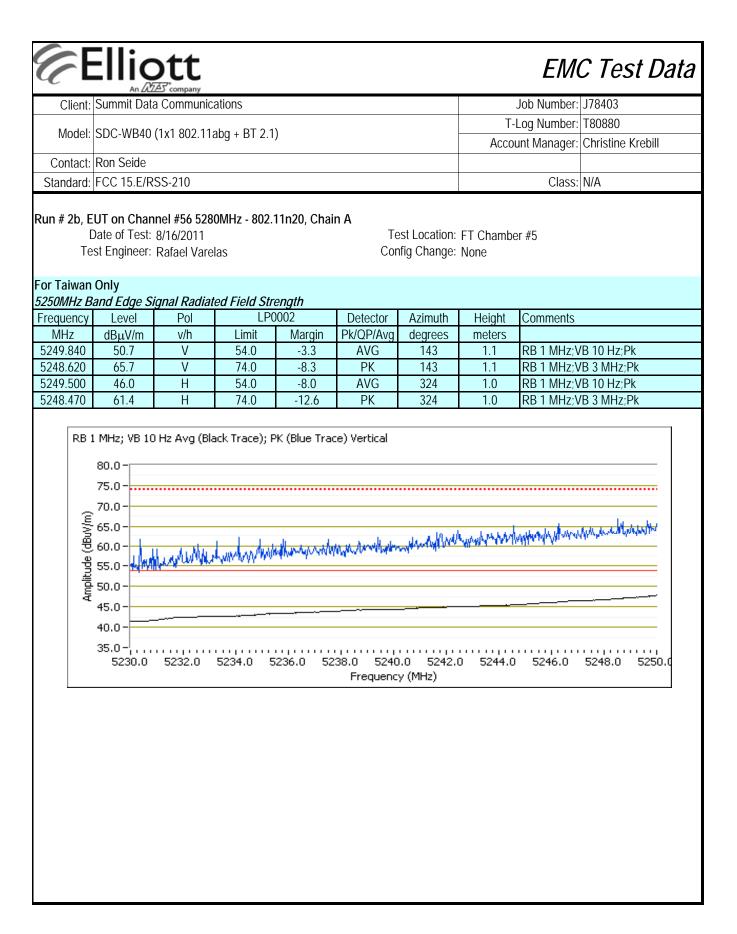

Model

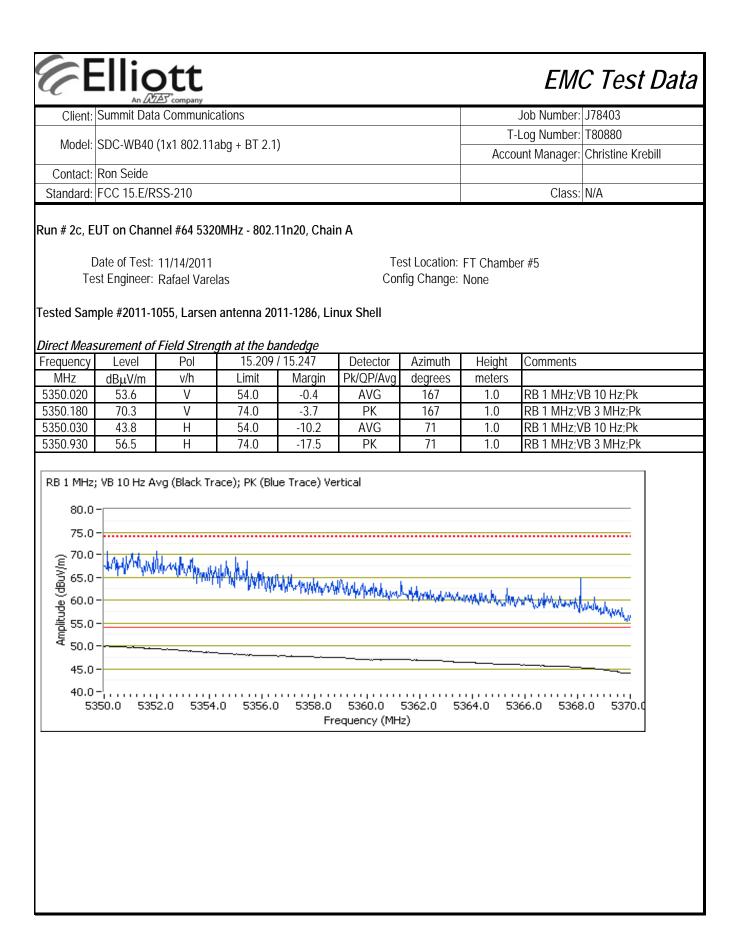

SDC-WB40 (1x1 802.11abg + BT 2.1)

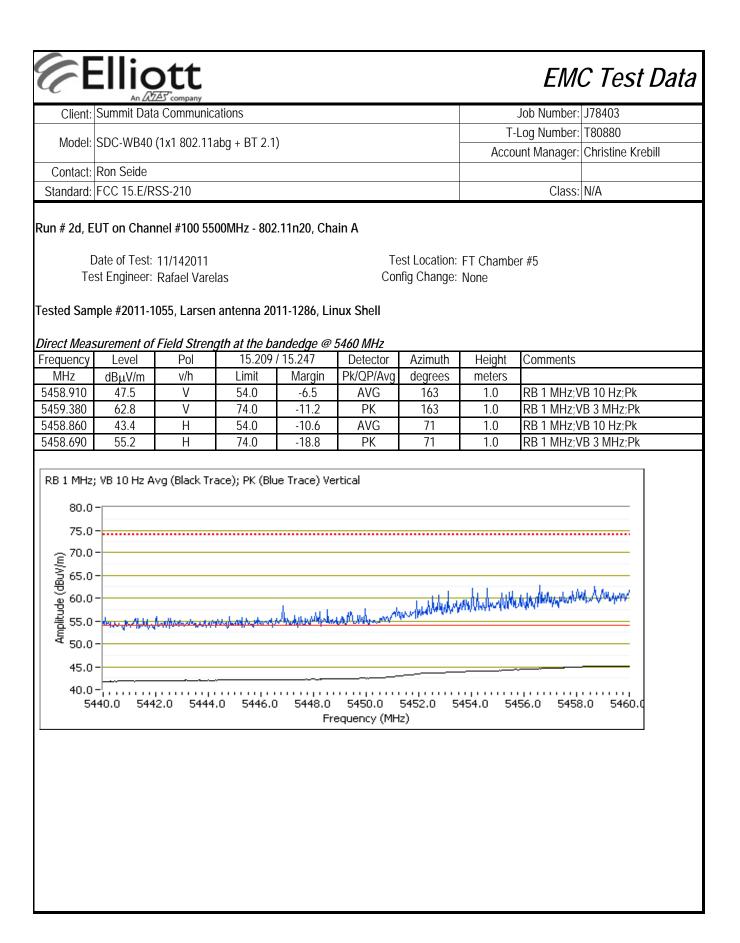

Date of Last Test: 8/24/2011

Elliott			EMO	C Test Da
Client: Summit Data Communica	tions		Job Number:	J78403
Model: SDC-WB40 (1x1 802.11a	ha + BT 2 1)		T-Log Number:	
	bg + D1 2.1)		Account Manager:	Christine Krebill
Contact: Ron Seide Standard: FCC 15.E/RSS-210			Class:	N/A
RSS 210 and FCC 1	5.407 (UNII) Radiat	ed Bandedge	Emissions (Larse	n Antenna)
Test Specific Details				
Objective: The objective specification	e of this test session is to pe listed above.	erform engineering e	valuation testing of the EUT	with respect to the
General Test Configuration The EUT ws installed into a test fixto For radiated emissions testing the n				
Ambient Conditions:	Rel. Humidity: Temperature:	30-40 % 18 - 25 °C		
Modifications Made During Te No modifications were made to the	•			
Deviations From The Standar No deviations were made from the r		d.		

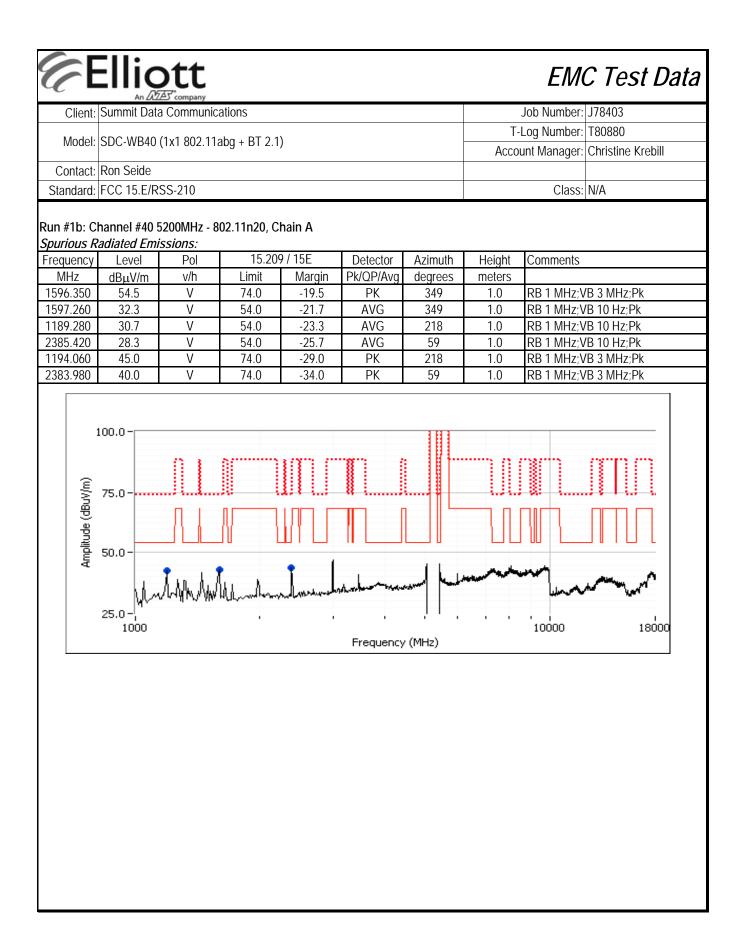

6		Dtt Ar company				EM	C Test Data
Client	Summit Data	a Communic	ations			Job Number:	J78403
						T-Log Number:	T80880
Model	SDC-WB40	(1x1 802.11a	abg + BT 2.1)		Account Manager:	Christine Krebill
Contact	Ron Seide					5	
	FCC 15.E/R	SS-210				Class:	N/A
	lule #2011- Mode	Channel	Antenna	Power	Test Performed	Limit	Result / Margin
Run #	Mode 802.11a	Channel #36	Antenna	Power Settina	Test Performed Restricted Band Edge		Result / Margin 53.1dBµV/m @
Run # 1	Chain A	5180MHz	Larsen	-	at 5150 MHz	15.209	5149.9MHz (-0.9dB
Run # 1	802.11a Chain A	#56 5280MHz	Larsen	-	Restricted Band Edge at 5250 MHz	LP0002 (Taiwan Only)	52.3dBµV/m @ 5249.8MHz (-1.7dB
Run # 1	802.11a Chain A	#64 5320MHz	Larsen	-	Restricted Band Edge at 5350 MHz	15.209	53.8dBµV/m @ 5350.1MHz (-0.2dB
Run # 1	802.11a Chain A	#100 5500MHz	Larsen	-	Restricted Band Edge at 5460 MHz	15.209	47.3dBµV/m @ 5459.3MHz (-6.7dB
Run # 2	802.11n20 Chain A	#36 5180MHz	Larsen	-	Restricted Band Edge at 5150 MHz	15.209	48.3dBµV/m @ 5148.2MHz (-5.7dB
Run # 2	802.11n20 Chain A	#56 5280MHz	Larsen	-	Restricted Band Edge at 5250 MHz	LP0002 (Taiwan Only)	50.7dBµV/m @ 5249.8MHz (-3.3dB
Run # 2	802.11n20 Chain A	#64 5320MHz	Larsen	-	Restricted Band Edge at 5350 MHz	15.209	53.6dBµV/m @ 5350.0MHz (-0.4dB
Run # 2	802.11n20 Chain A	#100 5500MHz	Larsen	-	Restricted Band Edge at 5460 MHz	15.209	47.5dBµV/m @ 5458.9MHz (-6.5dB

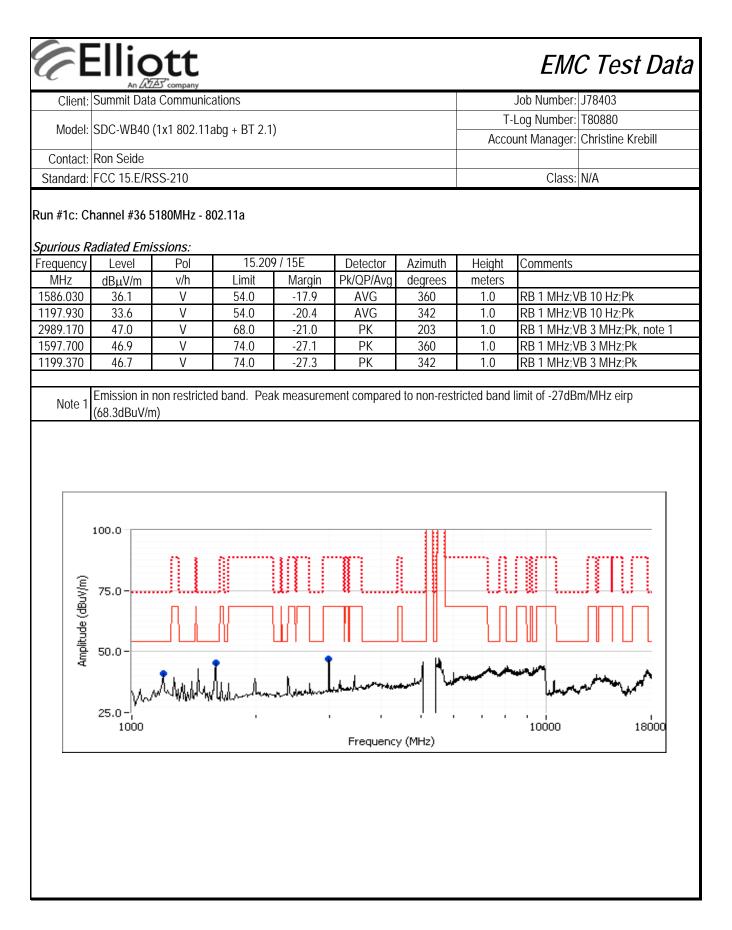


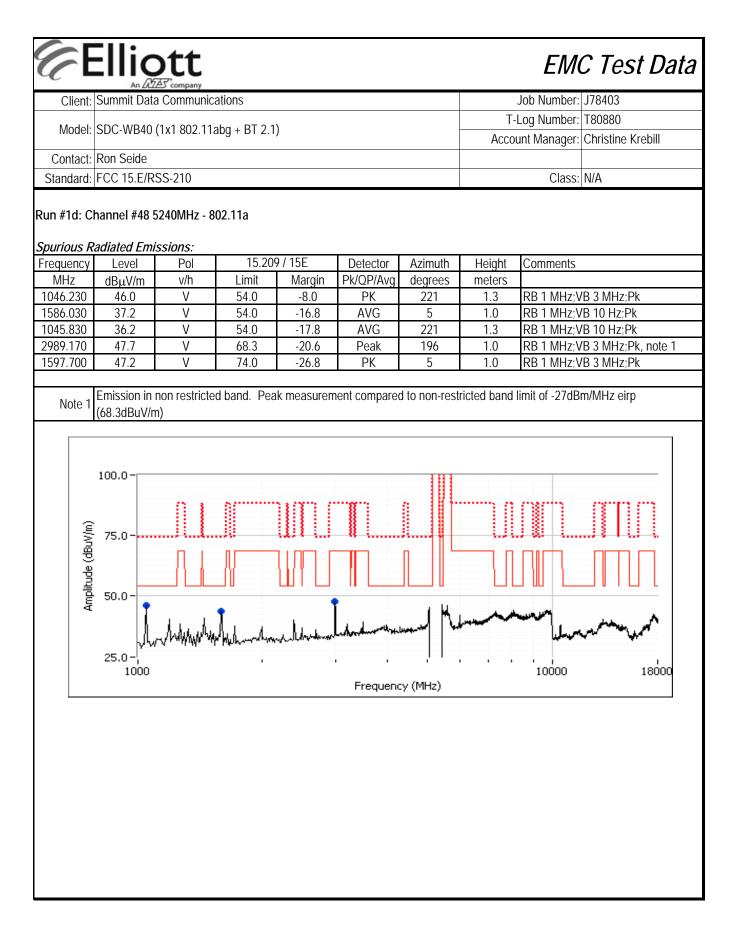




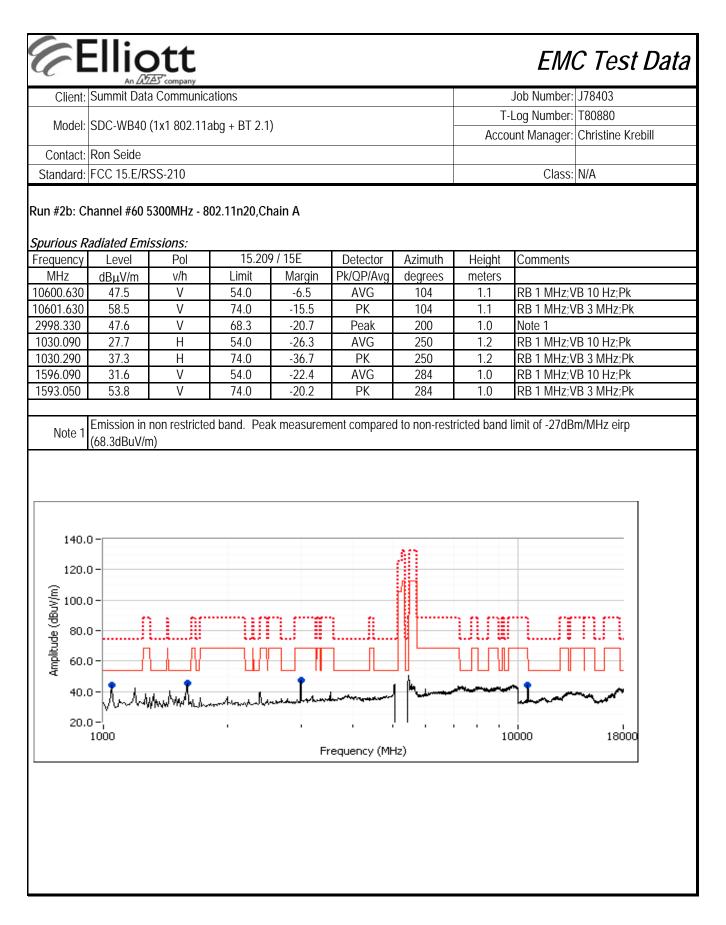
Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run # 1d, EUT on Channel #100 5500MHz - 802.11a, Chain A Direct Measurement of Field Strength at the bandedge @ 5460 MHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz Pk/QP/Avg dBµV/m Limit Margin v/h degrees meters 5459.330 47.3 V 54.0 AVG 1.1 RB 1 MHz;VB 10 Hz;Pk -6.7 45 5459.530 45.9 Н 54.0 -8.1 AVG 355 1.0 RB 1 MHz;VB 10 Hz;Pk 5459.330 62.7 V 74.0 -11.3 ΡK 45 1.1 RB 1 MHz;VB 3 MHz;Pk Η 74.0 -13.9 ΡK 355 5459.600 60.1 1.0 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz; VB 10 Hz Average (Black trace) RB 1 MHz; VB 3 MHz Peak (Blue trace) Vertical 80.0 70.0 (m) 60.0 -90.0 -50.0 -40.0 in an a ser all was the other was a specific the second of 30.0 25.0-5440.0 5442.0 5444.0 5446.0 5448.0 5450.0 5452.0 5454.0 5456.0 5458.0 5460.0 Frequency (MHz)

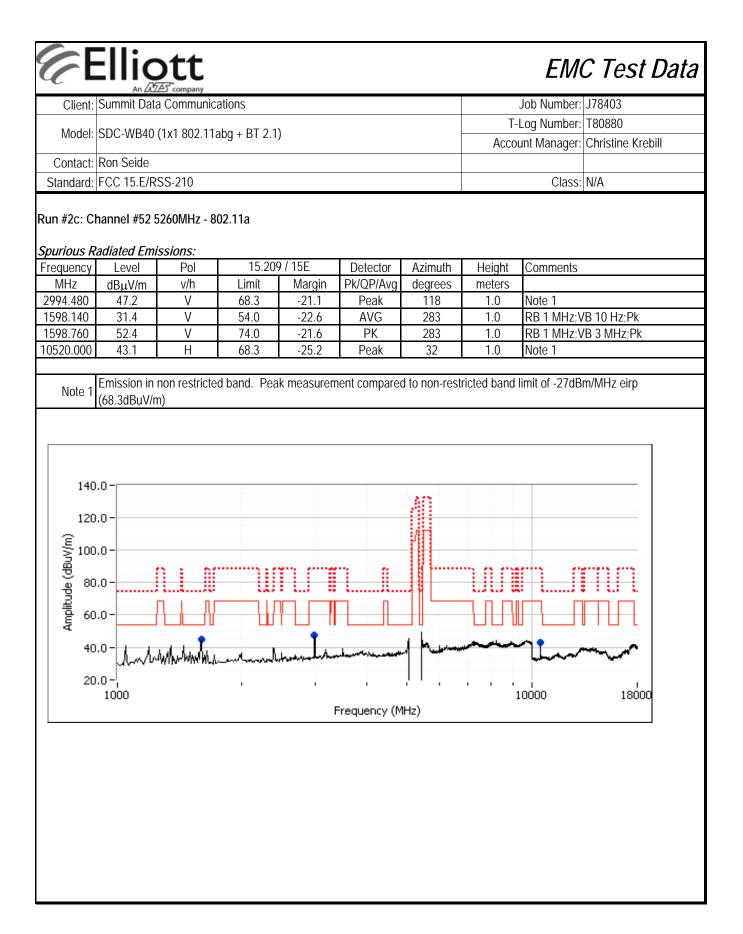


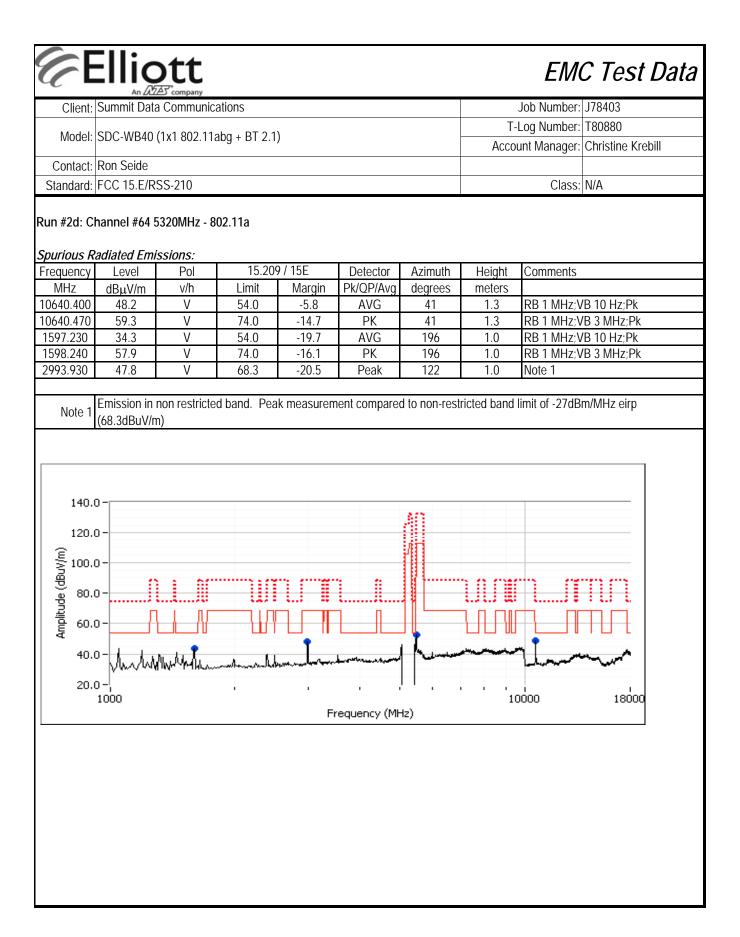


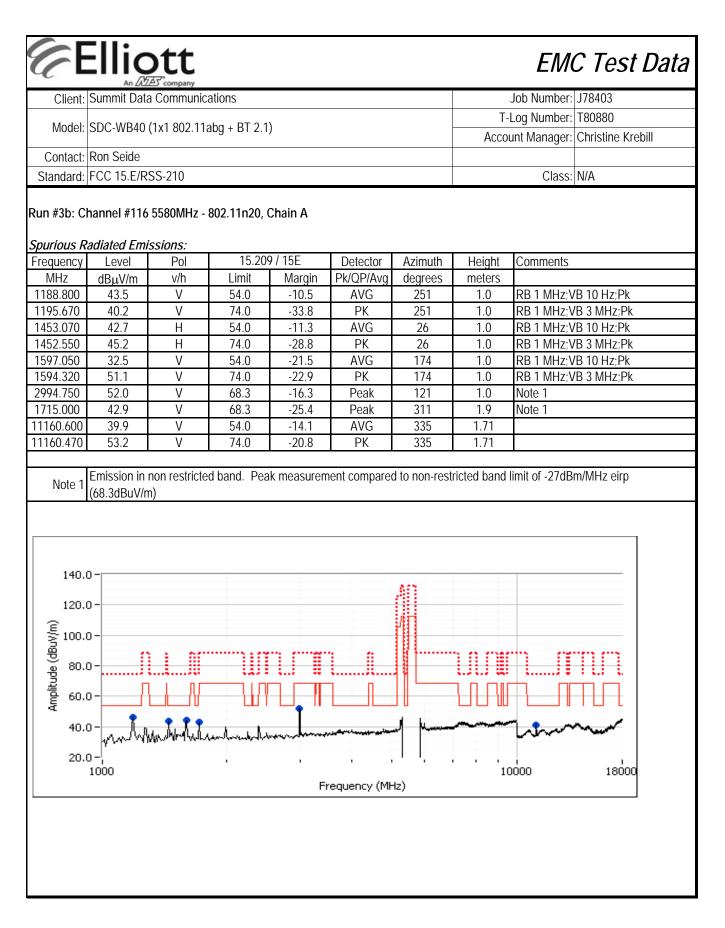

C E				EMO	C Test Da
Client:	Summit Data Communications			Job Number:	J78403
Model:	SDC-WB40 (1x1 802.11abg + E	3T 2.1)		T-Log Number: Account Manager:	
	Ron Seide FCC 15.E/RSS-210			Class:	
	RSS 210 and FCC	15.407 (UNII) R	adiated Spurio		L
est Spec	cific Details				
			erform engineering eva	luation testing of the EUT	with respect to the
The EUT	est Configuration ws installed into a test fixture sure ed emissions testing the measure				
Ambient	Conditions:	Rel. Humidity: Temperature:	15 - 55 % 18 - 25 °C		
	ions Made During Testing cations were made to the EUT d	•			
	s From The Standard	ements of the standard	J.		
Run #3 and	Run #4- Tested with New WB40	module Mac: 001723	31566CF		
Votes: No radio r	elated emissions were observed	I below 1GHz and abo	ove 18GHz in prelimina	ary measurements.	

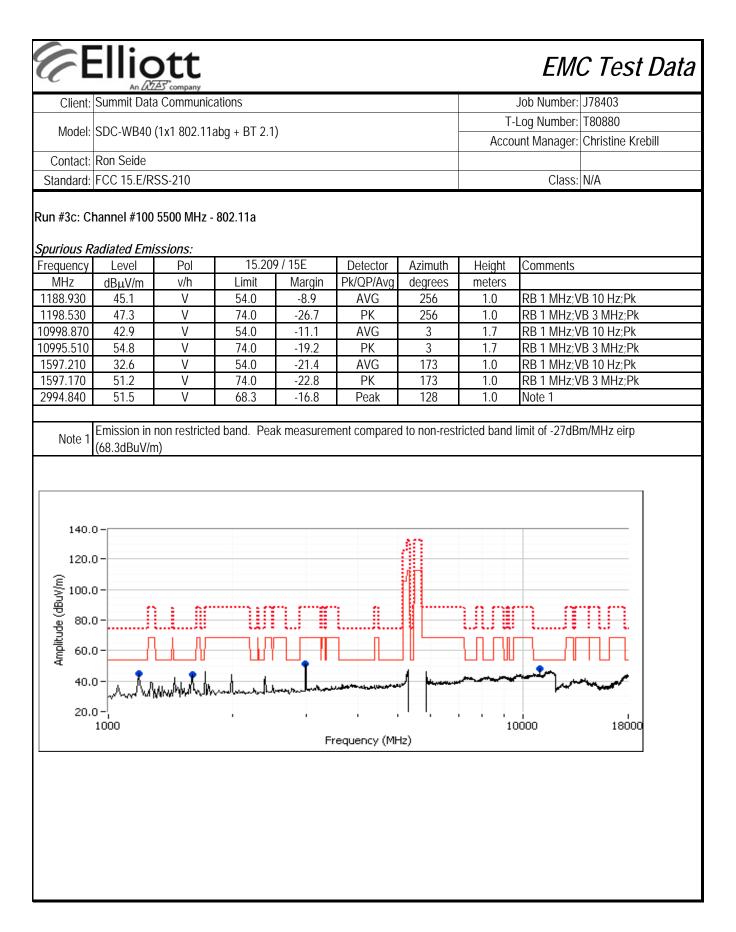
ta Communica (1x1 802.11a RSS-210)		Job Number: T-Log Number:	J78403						
RSS-210	abg + BT 2.1))									
RSS-210	abg + BT 2.1,)	SDC-WB40 (1x1 802.11abg + BT 2.1)								
			-	Account Manager:	Christine Krebill						
ts				Class:	N/A						
Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin						
	OFDM modes	s to determin	e the worst case								
#40 5200MHz	Larsen	-	Radiated Emissions,	FCC 15.209 / 15 E	36.2dBµV/m @ 1197.8MHz (-17.8dB)						
#40 5200MHz	Larsen	-	1 - 40 GHz		54.5dBµV/m @ 1596.4MHz (-19.5dB)						
mode - top ar	nd bottom ch	annels.	I								
#36 5180MHz	Larsen	-	Radiated Emissions,	FCC 15.209 / 15 E	36.1dBµV/m @ 1586.0MHz (-17.9dB)						
#48 5240MHz	Larsen	-	1 - 40 GHz		46.0dBµV/m @ 1046.2MHz (-8.0dB)						
#60 5300MHz	Larsen	-	Radiated Emissions,	FCC 15.209 / 15 E	48.5dBµV/m @ 10601.7MHz (-5.5dB)						
#60 5300MHz	Larsen	-	1 - 40 GHz		47.5dBµV/m @ 10600.6MHz (-6.5dB)						
	case Chain A	A - top and b	ottom channels.								
#52 5260MHz	Larsen	-	Radiated Emissions,	FCC 15.209 / 15 E	47.2dBµV/m @ 2994.5MHz (-21.1dB)						
#64 5320MHz	Larsen	-	1 - 40 GHz		48.2dBµV/m @ 10640.4MHz (-5.8dB)						
-1296, Lap	top #2011		ux Shell								
Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin						
#116 5580MHz	Larsen	-	Radiated Emissions,	FCC 15.209 / 15 E	44.8dBµV/m @ 1189.1MHz (-9.2dB)						
#116 5580MHz	Larsen	-	1 - 40 GHz		43.5dBµV/m @ 1188.8MHz (-10.5dB)						
mode/worse	case Chain A	Vn20) - top a	and bottom channels.								
#100 5500MHz	Larsen	-	Radiated Emissions,	FCC 15.209 / 15 E	45.1dBµV/m @ 1188.9MHz (-8.9dB)						
#140 5700MHz	Larsen	-	1 - 40 GHz	FUU 15.2097 15 E	40.3dBµV/m @ 1188.4MHz (-13.7dB)						
#40 5200MHz	Larsen	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	50.7dBµV/m @ 2994.7MHz (-3.3dB)						
#60 5300MHz	Larsen	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	51.6dBµV/m @ 2994.7MHz (-2.4dB)						
#116	Larsen	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	51.8dBµV/m @ 2994.7MHz (-2.2dB)						
# 520 # 530 #	[∉] 40 <u>0MHz</u> ∉60 0MHz	440 Larsen 0MHz Larsen 0MHz Larsen 116 Larsen	40 Larsen - 60 Larsen - 0MHz - 0MHz - 116 Larsen -	40 0MHzLarsen-Radiated Emissions, 1 - 18 GHz60 0MHzLarsen-Radiated Emissions, 1 - 18 GHz116Larsen-Radiated Emissions, 1 - 18 GHz	#40 Larsen - Radiated Emissions, 1 - 18 GHz RSS-GEN 0MHz Larsen - Radiated Emissions, 1 - 18 GHz RSS-GEN 0MHz Larsen - Radiated Emissions, 1 - 18 GHz RSS-GEN 116 Larsen - Radiated Emissions, 1 - 18 GHz RSS-GEN						

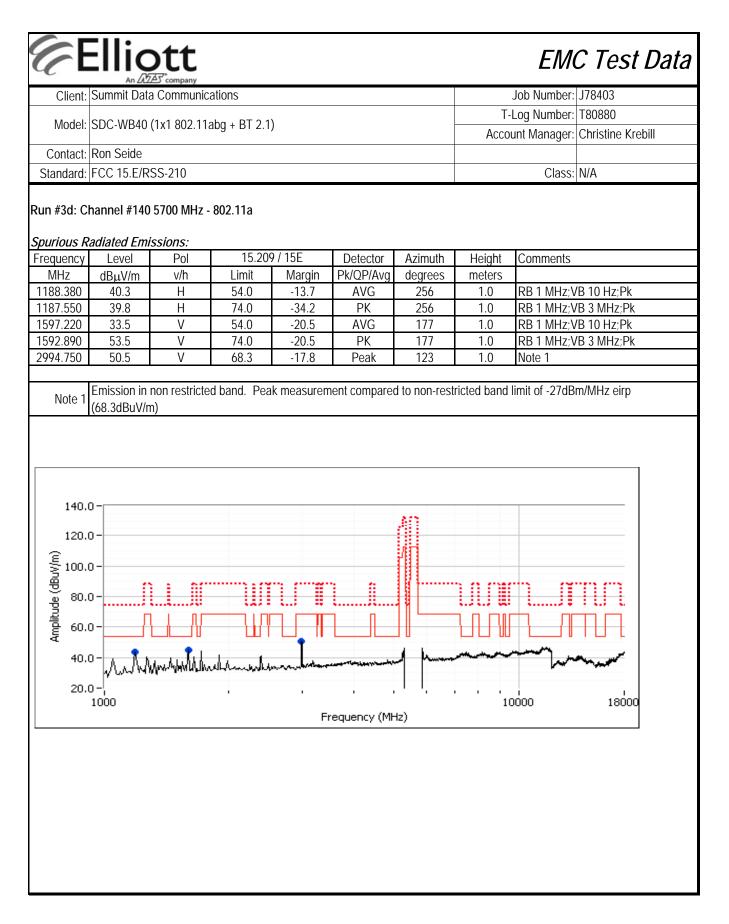

Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #1, Radiated Spurious Emissions, 1-40GHz, Center Channl 5150-5250MHz - 802.11a, n20 Date of Test: 8/3/2011 Test Location: FT Chamber #5 Test Engineer: M. Birgani Config Change: None For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). Run #1a: Channel #40 5200MHz - 802.11a,Chain A Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz v/h Limit Margin Pk/QP/Avg meters dBµV/m degrees 1197.750 V 54.0 -17.8 AVG RB 1 MHz;VB 10 Hz;Pk 36.2 196 1.0 V 1597.600 56.2 74.0 -17.8 ΡK 202 1.0 RB 1 MHz;VB 3 MHz;Pk 1597.200 32.8 V 54.0 -21.2 AVG 202 1.0 RB 1 MHz;VB 10 Hz;Pk 1197.150 48.0 V 74.0 -26.0 ΡK 196 1.0 RB 1 MHz;VB 3 MHz;Pk 100.0 Amplitude (dBuV/m) 75.0 50.0 a harmalla 25.0 10000 18000 1000 Frequency (MHz)

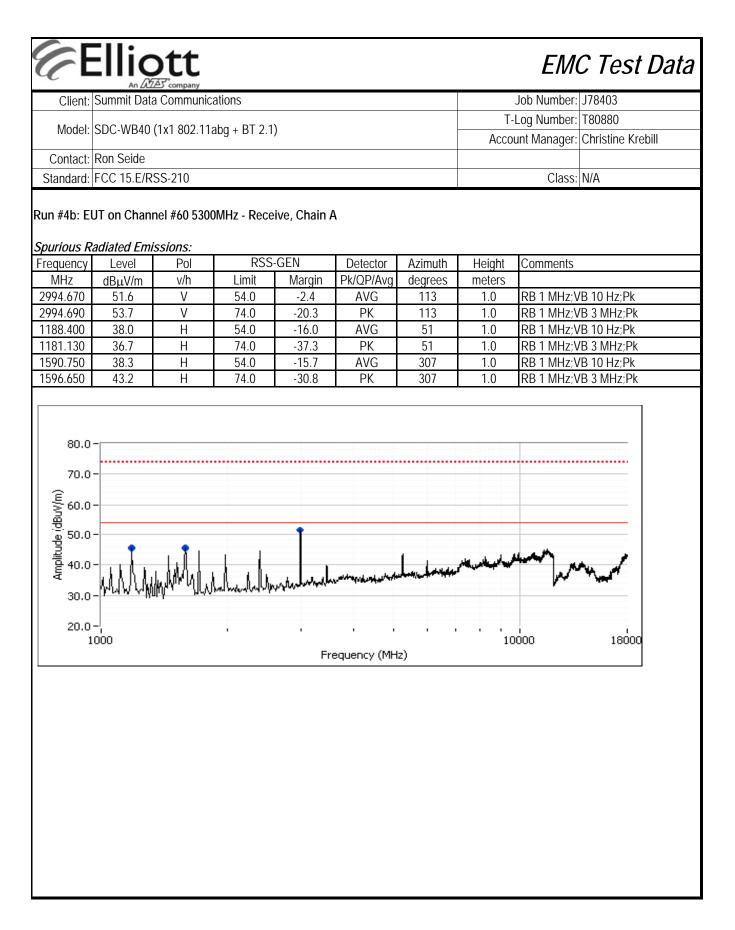


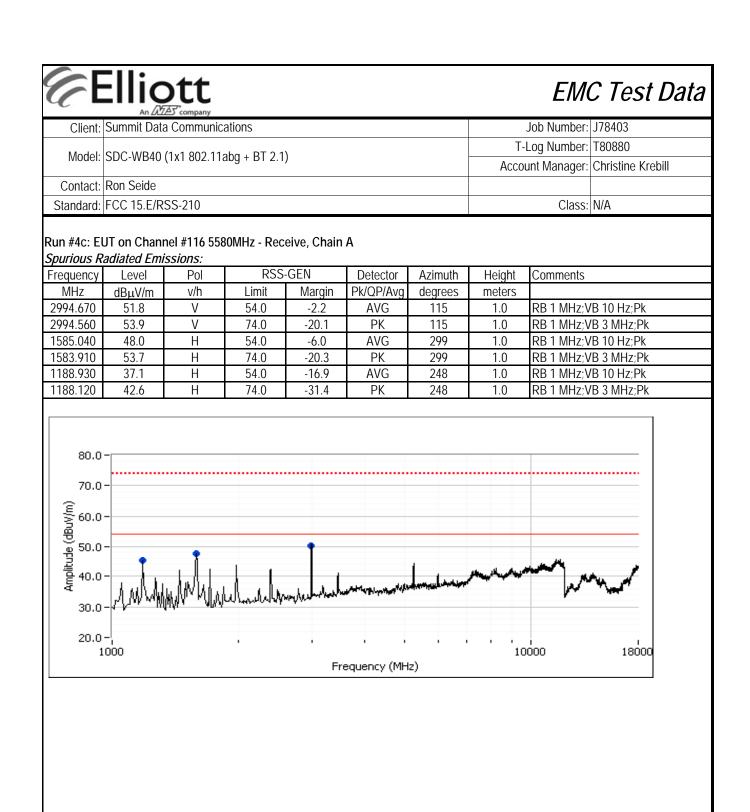



Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #2, Radiated Spurious Emissions, 1-40GHz, Center Channel 5250-5350MHz - 802.11a, n20 Date of Test: 8/3/2011 Test Location: FT Chamber #5 Test Engineer: Rafael Varelas Config Change: None For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). Run #2a: Channel #60 5300MHz - 802.11a,Chain A Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Avg MHz dBµV/m v/h Limit Margin degrees meters 10601.730 48.5 V 54.0 -5.5 AVG 30 1.3 RB 1 MHz;VB 10 Hz;Pk 10602.800 60.2 V 74.0 -13.8 ΡK 30 RB 1 MHz; VB 3 MHz; Pk 1.3 54.0 -22.4 AVG 145 1597.330 31.6 V 1.0 RB 1 MHz;VB 10 Hz;Pk 1598.030 54.3 V 74.0 -19.7 ΡK 145 1.0 RB 1 MHz; VB 3 MHz; Pk 5426.150 43.6 V 54.0 -10.4 AVG 76 1.0 RB 1 MHz;VB 10 Hz;Pk 5426.090 RB 1 MHz;VB 3 MHz;Pk 55.4 V 74.0 -18.6 ΡK 76 1.0 2994.390 47.2 V 122 1.0 68.3 -21.1 Peak Note 1 Emission in non restricted band. Peak measurement compared to non-restricted band limit of -27dBm/MHz eirp Note 1 (68.3dBuV/m) 140.0 120.0 Amplitude (dBuV/m) 100.0 80.0 60.0 40.0 20.0 1000 10000 18000 Frequency (MHz)






Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #3, Radiated Spurious Emissions, 1-40GHz, Center Channel 5470-5725MHz - 802.11a, n20 Date of Test: 8/12/2011 Test Location: FT3 Test Engineer: John Caizzi / R. Varelas Config Change: none For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). Run #3a: Channel #116 5580MHz - 802.11a, Chain A Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Avg MHz dBµV/m v/h Limit Margin degrees meters 1189.060 44.8 V 54.0 -9.2 AVG 285 1.00 1195.660 47.4 V 74.0 -26.6 ΡK 285 1.00 33.5 54.0 -20.5 AVG 170 1.00 1596.130 V 1592.960 52.8 V 74.0 -21.2 ΡK 170 1.00 11160.000 41.8 V 54.0 -12.2 AVG 1.28 3 -19.7 ΡK 11165.800 54.3 V 74.0 3 1.28 2998.330 49.9 V 120 68.3 -18.4 Peak 1.0 Note 1 1715.000 43.4 Η 68.3 -24.9 Peak 94 1.3 Note 1 Emission in non restricted band. Peak measurement compared to non-restricted band limit of -27dBm/MHz eirp Note 1 (68.3dBuV/m) 90.0 ļ 80.0 (m/vng) 60.0 50.0 40.0 30.0 20.0-18000 1000 10000 Frequency (MHz)



Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #4, Radiated Spurious Emissions, 1-18GHz, Receive, Chain A Date of Test: 8/12/2011 Test Location: FT3 Test Engineer: Rafael Varelas Config Change: none Run #4a: EUT on Channel #40 5200MHz - Receive, Chain A Spurious Radiated Emissions: Frequency **RSS-GEN** Detector Azimuth Comments Level Pol Height MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2994.670 50.7 V 54.0 -3.3 AVG RB 1 MHz;VB 10 Hz;Pk 117 1.0 2994.700 52.9 V 74.0 -21.1 ΡK 117 1.0 RB 1 MHz; VB 3 MHz; Pk 1453.080 54.0 -10.4 AVG 110 1.0 RB 1 MHz;VB 10 Hz;Pk 43.6 Η 1453.380 48.7 Η 74.0 -25.3 ΡK 110 1.0 RB 1 MHz;VB 3 MHz;Pk 1188.230 37.4 Η 54.0 -16.6 AVG 312 RB 1 MHz; VB 10 Hz; Pk 1.0 Н 74.0 -38.2 ΡK 312 1.0 1182.260 35.8 RB 1 MHz;VB 3 MHz;Pk 80.0 70.0 Amplitude (dBuV/m) 60.0 50.0 40.0 30.0 20.0 18000 1000 10000 Frequency (MHz)

Elliott

EMC Test Data

Client:	Summit Data Communications	Job Number:	J78403
Model:	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80880
	3DC-WD40 (1X1 602.11dbg + D1 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		
Standard:	FCC 15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Bandedge Emissions (Ethertronics Antenna)

Summary of Results

New Module #2011-1296, Laptop #2011-2312, Linux Shell

Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
		#36	Ethertronic	100%	Restricted Band Edge	15.209	45.5dBµV/m @
		5180MHz	S	100%	at 5150 MHz	13.209	5149.8MHz (-8.5dB)
		#56	Ethertronic	100%	Restricted Band Edge	LP0002 (Taiwan Only)	50.8dBµV/m @
Run # 1	802.11a	5280MHz	S	100%	at 5250 MHz	LF0002 (Taiwall Ofly)	5250.0MHz (-3.2dB)
	Chain A	#64	Ethertronic	100%	Restricted Band Edge	15.209	50.0dBµV/m @
		5320MHz	S	100 /0	at 5350 MHz	13.207	5350.0MHz (-4.0dB)
		#100	Ethertronic	100%	Restricted Band Edge	15.209	47.4dBµV/m @
		5500MHz	S	100 /0	at 5460 MHz	13.207	5459.7MHz (-6.6dB)
		#36	Ethertronic	100%	Restricted Band Edge	15.209	43.0dBµV/m @
		5180MHz	VHz s		at 5150 MHz	13.207	5149.8MHz (-11.0dB)
		#56	Ethertronic	100%	Restricted Band Edge	LP0002 (Taiwan Only)	48.5dBµV/m @
Run # 2	802.11n20	5280MHz	S	10076	at 5250 MHz	LF 0002 (Taiwaii Only)	5249.7MHz (-5.5dB)
	Chain A	#64	Ethertronic	100%	Restricted Band Edge	15.209	49.3dBµV/m @
		5320MHz	S	100 /0	at 5350 MHz	13.207	5350.0MHz (-4.7dB)
		#100	Ethertronic	100%	Restricted Band Edge	15.209	45.9dBµV/m @
		5500MHz	S	10070	at 5460 MHz	13.207	5459.5MHz (-8.1dB)

Client: Summit Data Communications Model: SDC-WB40 (1x1 802.11abg + BT 2.1)

EMC Test Data

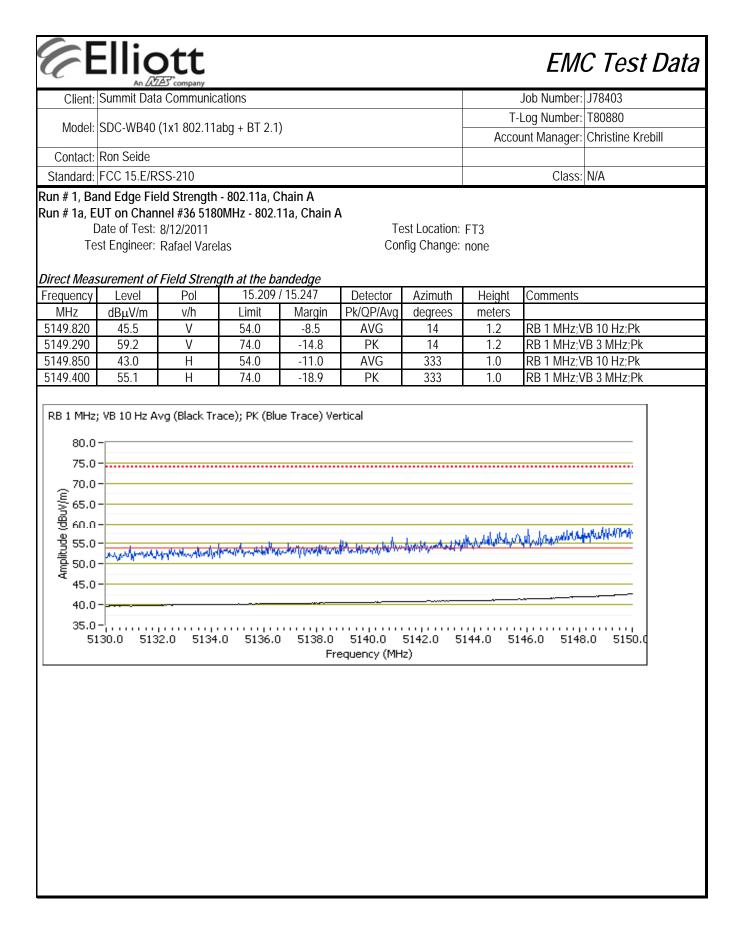
Clie	nt: Summit Data Communications	Job Number:	J78403					
Mor	lel: SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80880					
IVIOC	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Account Manager:	Christine Krebill					
Conta	nct: Ron Seide							
Standa	rd: FCC 15.E/RSS-210	Class:	N/A					
Test Sp	Test Specific Details							

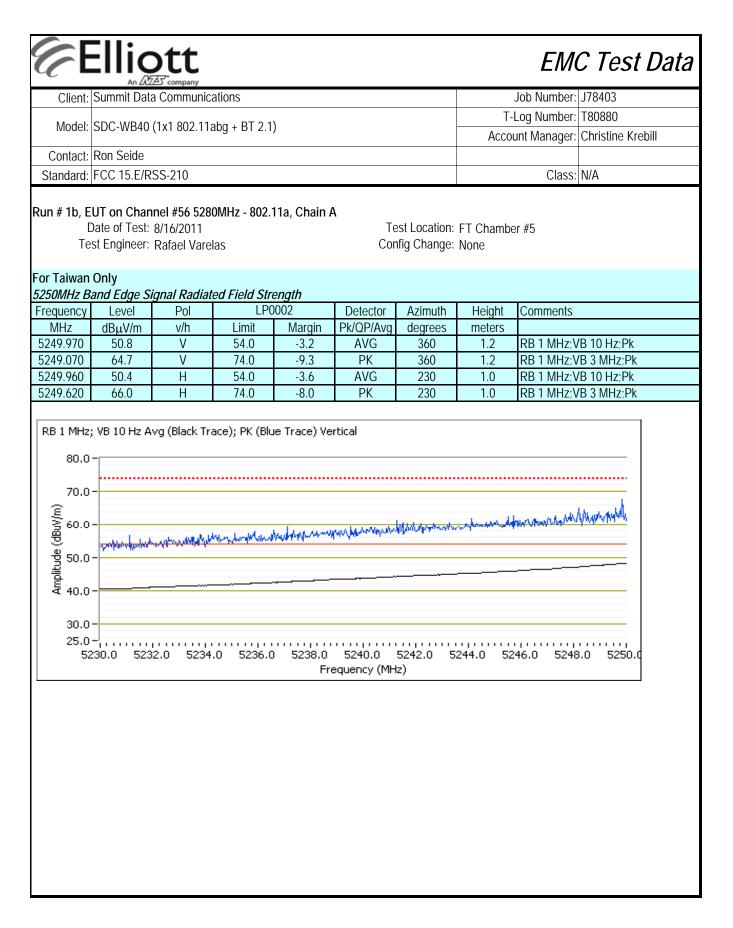
Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

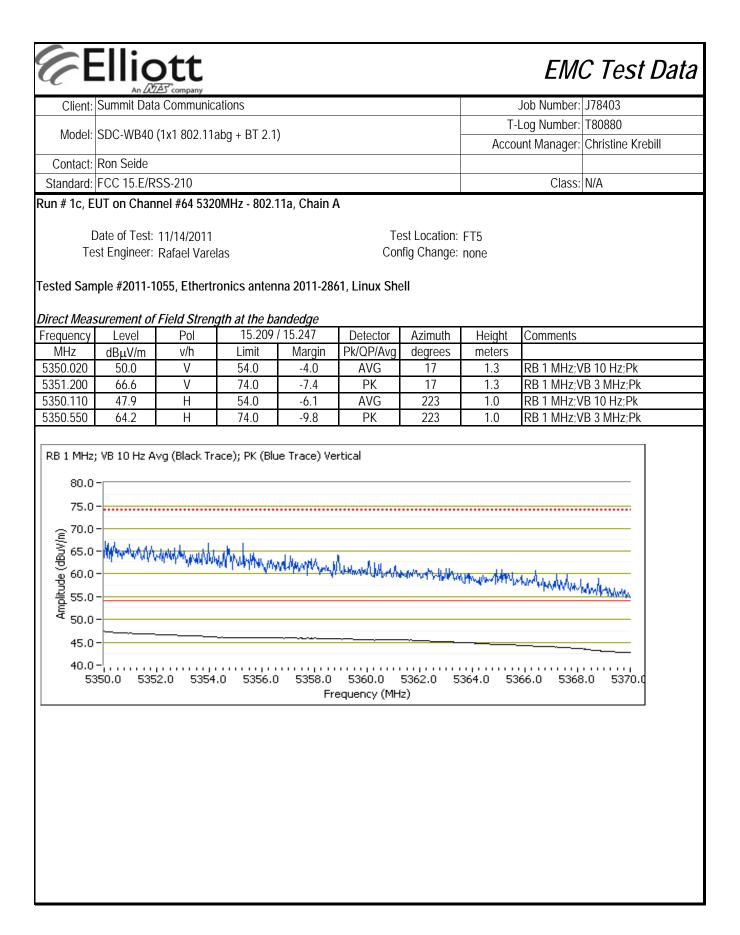
General Test Configuration

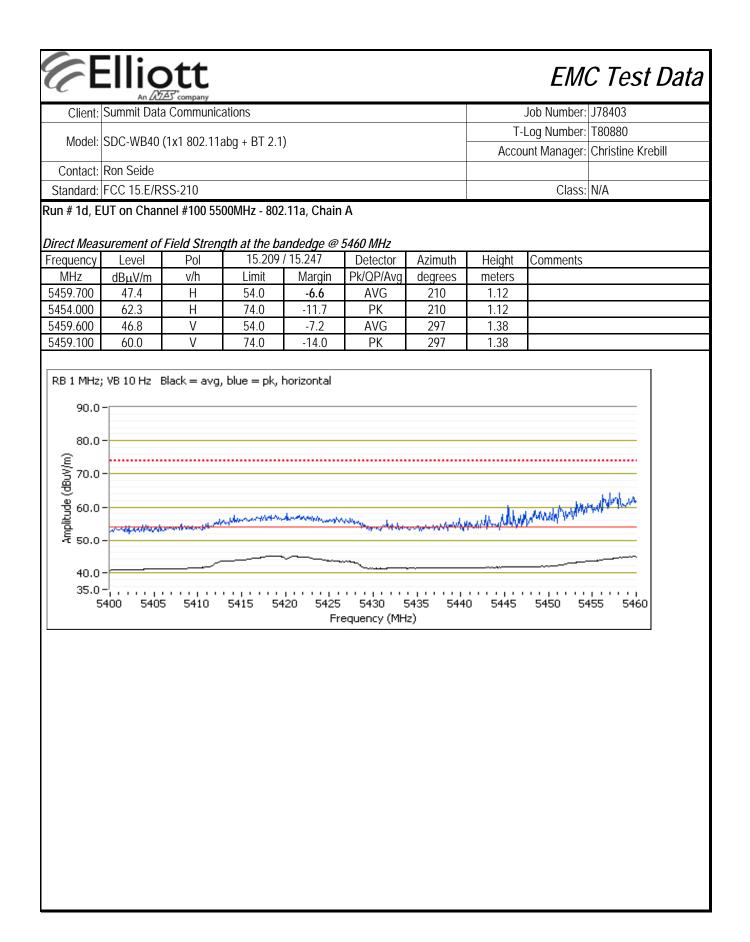
The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

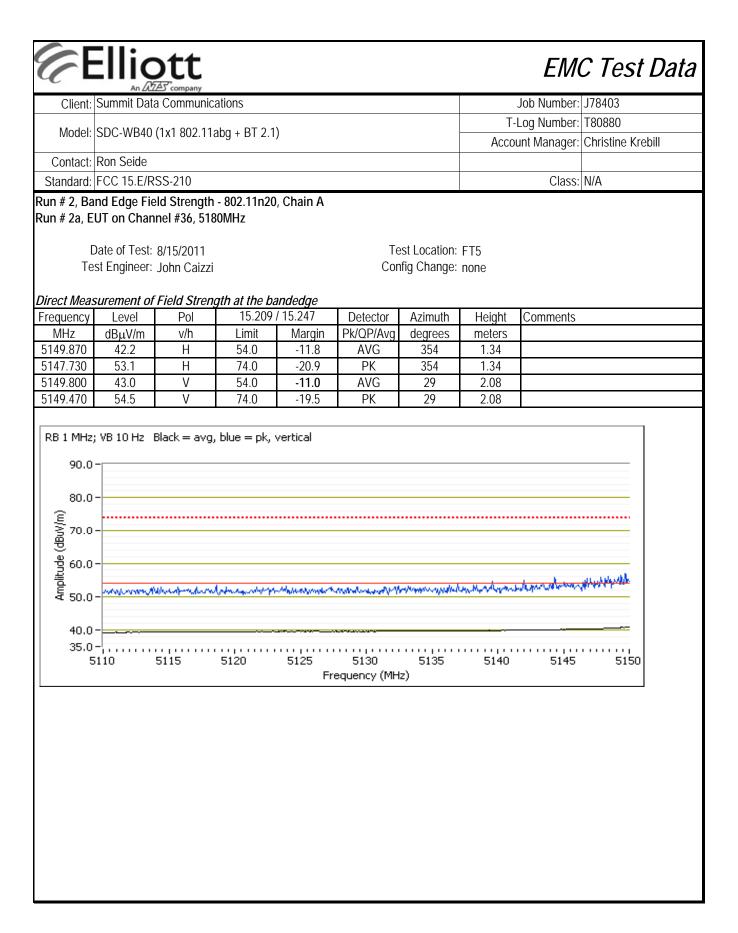
Ambient Conditions:

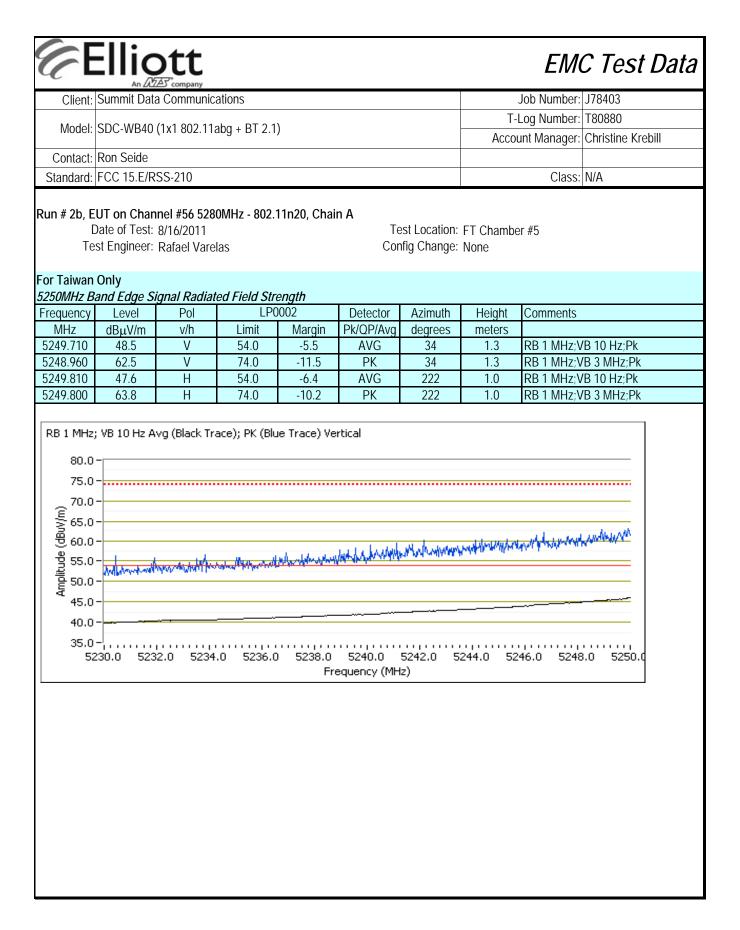

Rel. Humidity:	15 - 55 %
Temperature:	18 - 25 °C

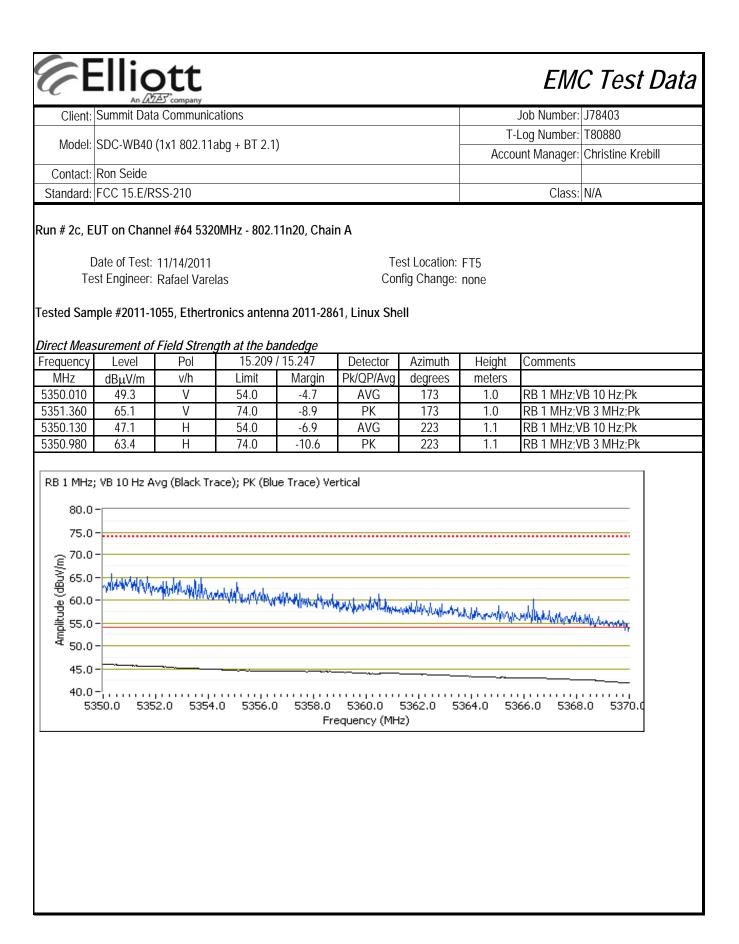

Modifications Made During Testing

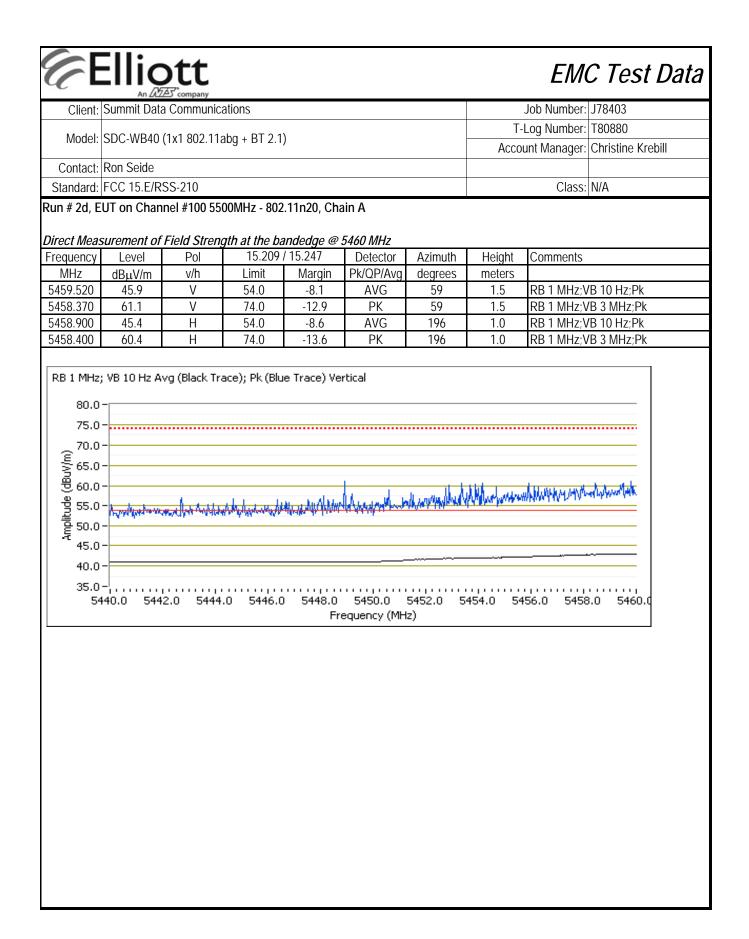

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.







Elliott

EMC Test Data

Client:	Summit Data Communications	Job Number:	J78403
Model:	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80880
	SDC-WD40 (1X1 602.11dby + D1 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		
Standard:	FCC 15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions (Ethertronics)

f D ıl+,

Summary of Results								
New Module #2011-1296, Laptop #2011-2312, Linux Shell								
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin	
Scans on center channel in all three OFDM modes to determine the worst case								
	802.11a Chain A	#40 5200MHz	Ethertronic s	100%	Radiated Emissions,	FCC 15.209 / 15 E	46.4dBµV/m @ 1453.1MHz (-7.6dB)	
Run #1	n20 Chain A	#40 5200MHz	Ethertronic s	100%	1 - 40 GHz	1 00 13.2077 13 L	42.7dBµV/m @ 1453.1MHz (-11.3dB)	
(5150- 5250MHz	Worst case	-	case Chain A	A top and bo	ttom channels.			
Band)	802.11a	#38 5180MHz	Ethertronic s	100%	Radiated Emissions,	FCC 15.209 / 15 E	46.0dBµV/m @ 1453.1MHz (-8.0dB)	
	Chain A	#48 5240MHz	Ethertronic s	100%	0% 1 - 40 GHz	1 CC 13.2077 13 E	41.2dBµV/m @ 1453.3MHz (-12.8dB)	
	802.11a Chain A	#60 5300MHz	Ethertronic s	100%	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	46.6dBµV/m @ 1453.1MHz (-7.4dB)	
Run #2	n20 Chain A	#60 5300MHz	Ethertronic s	100%			44.3dBµV/m @ 5458.9MHz (-9.7dB)	
(5250-	Worst case mode (802.11a) - top and bottom channels.							
5350MHz Band)	802.11a	#52 5260MHz	Ethertronic s	100%	Radiated Emissions,	FCC 15.209 / 15 E	42.2dBµV/m @ 1188.8MHz (-11.8dB)	
	Chain A	#64 5320MHz	Ethertronic s	100%	1 - 40 GHz	1 CC 15.2077 15 L	44.6dBµV/m @ 1453.2MHz (-9.4dB)	

6		Dtt Ar company				EM	C Test Data
Client:	Summit Dat	a Communic	ations			Job Number:	J78403
Madal		(11 000 11				T-Log Number:	T80880
woder:	SDC-WB40	(1X1 802.11)	abg + BT 2.1)			Account Manager:	Christine Krebill
Contact:	Ron Seide						
Standard:	FCC 15.E/R	SS-210				Class:	N/A
	L.						
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
Run #3	802.11a Chain A	#116 5580MHz	Ethertronic s	100% 100%	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	43.7dBµV/m @ 1188.9MHz (-10.3dB)
	n20 Chain A	#116 5580MHz	Ethertronic s				44.9dBµV/m @ 1453.1MHz (-9.1dB)
(5470- 5725MHz	Worst case	mode (802.1	1n20) - top ai	nd bottom c	nannels.		
Band)	n20 Chain A	#100 5500MHz	Ethertronic s	100%	Radiated Emissions,	FCC 15.209 / 15 E	44.6dBµV/m @ 1188.9MHz (-9.4dB)
		#140 5700MHz	Ethertronic s	100%	1 - 40 GHz	T CC 13.2077 13 E	42.6dBµV/m @ 1188.9MHz (-11.4dB)
Receive mo	ode	-					
	Receive	#40 5200MHz	Ethertronic s	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	48.1dBµV/m @ 2994.7MHz (-5.9dB)
Run #4		#60 5300MHz	Ethertronic s	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	47.2dBµV/m @ 2994.7MHz (-6.8dB)
		#116 5580MHz	Ethertronic s	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	47.3dBµV/m @ 2994.7MHz (-6.7dB)

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

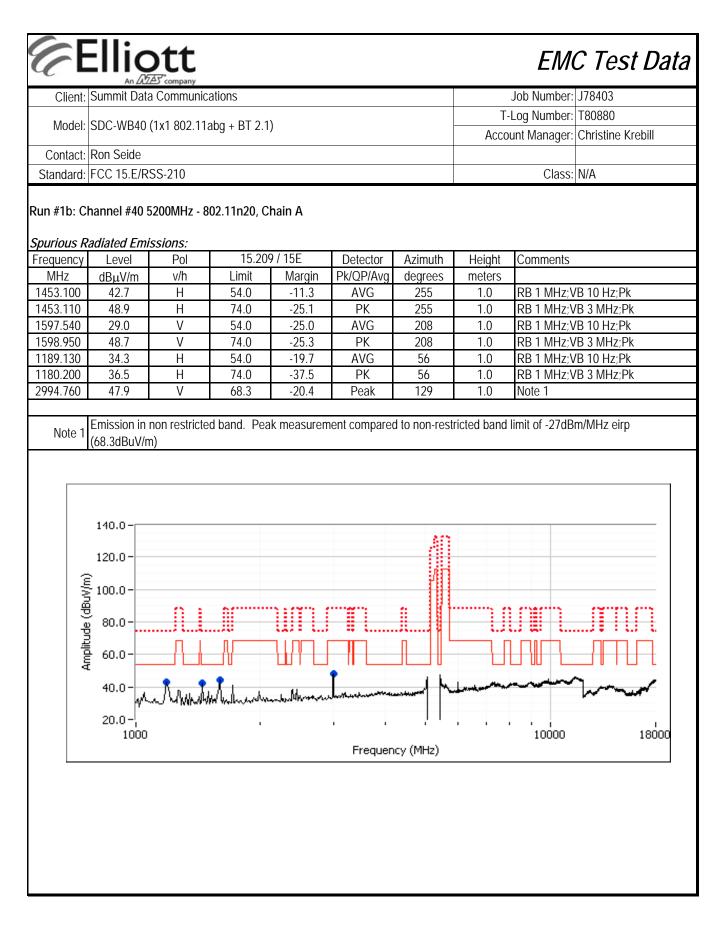
The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

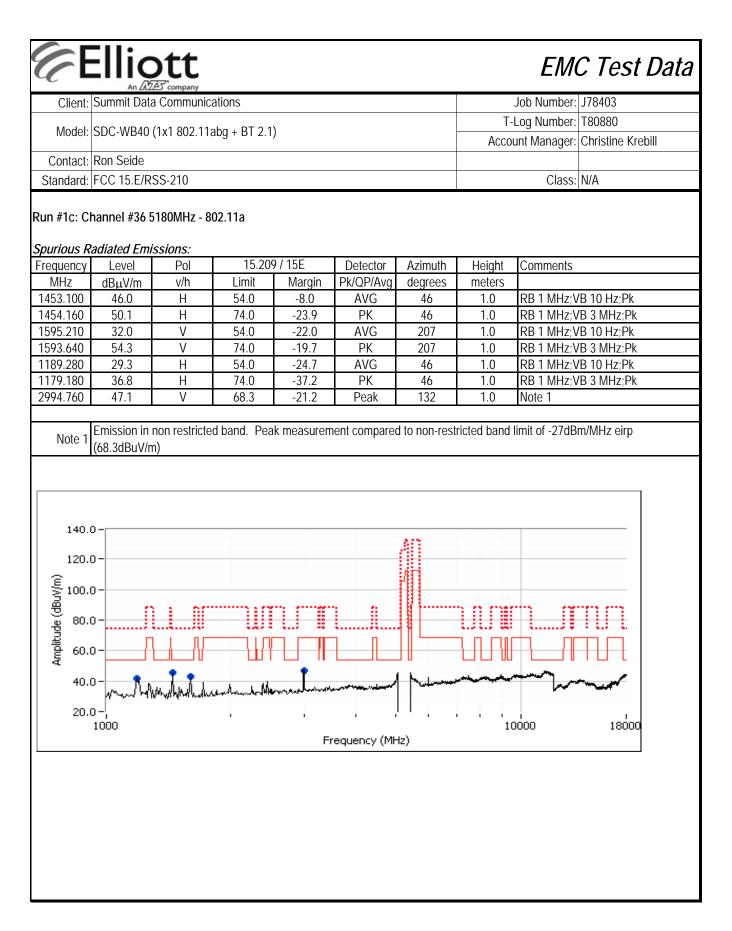
Ambient Conditions:

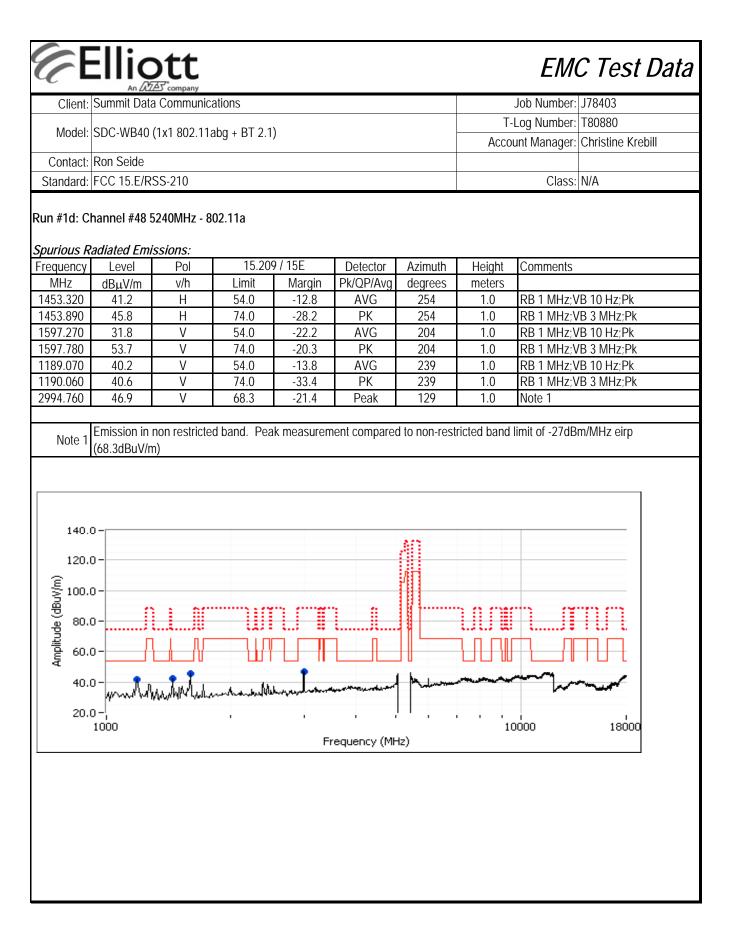
Rel. Humidity:	15 - 55 %
Temperature:	18 - 25 °C

Modifications Made During Testing

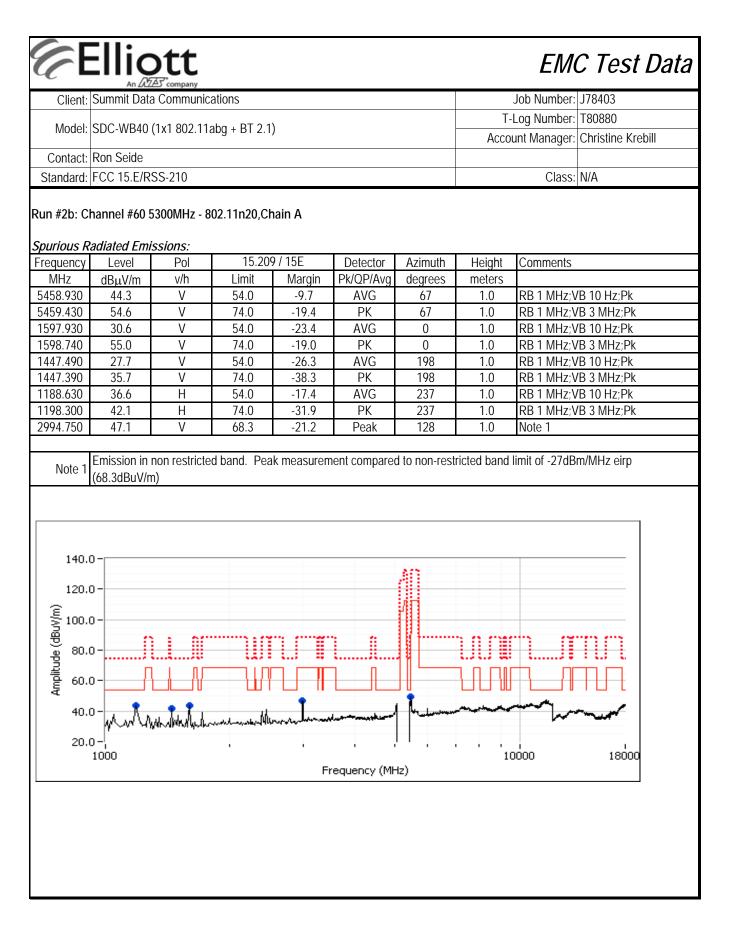
No modifications were made to the EUT during testing

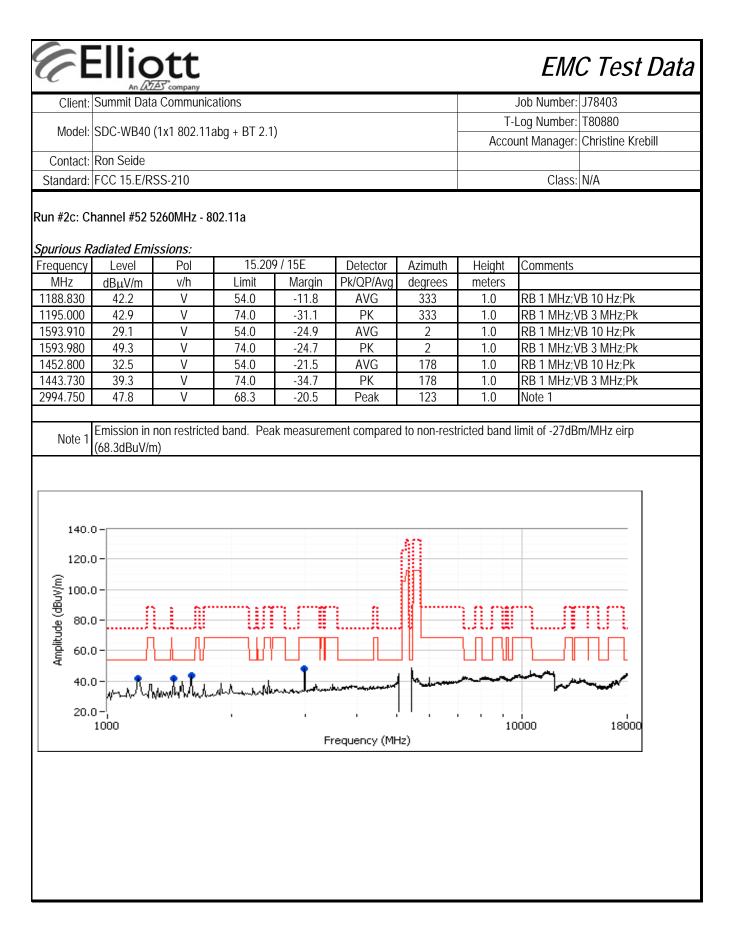

Deviations From The Standard

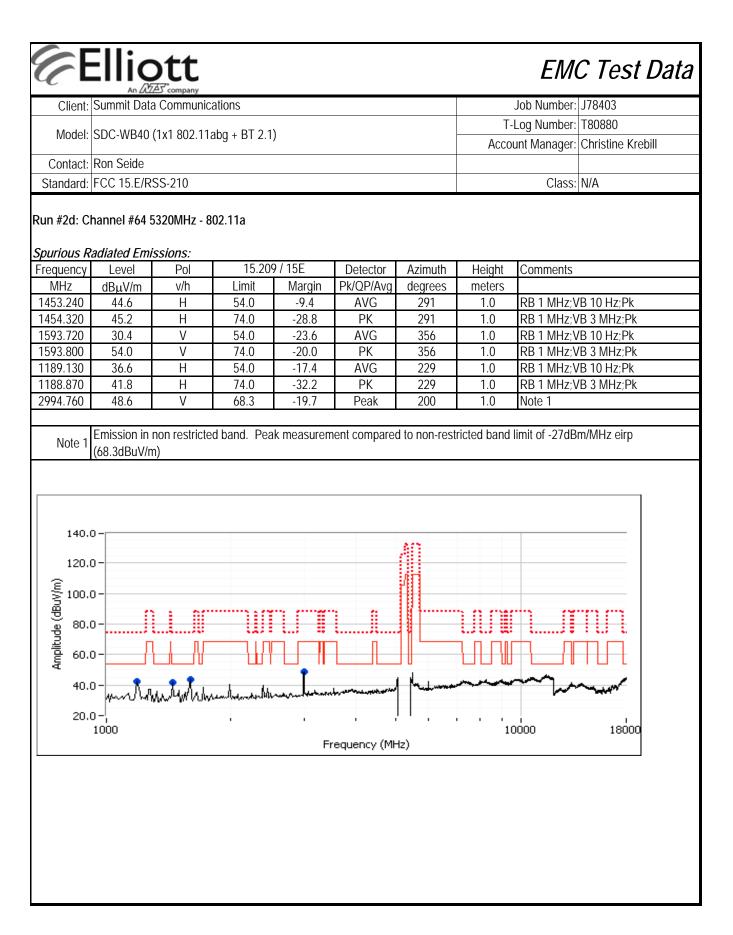

No deviations were made from the requirements of the standard.

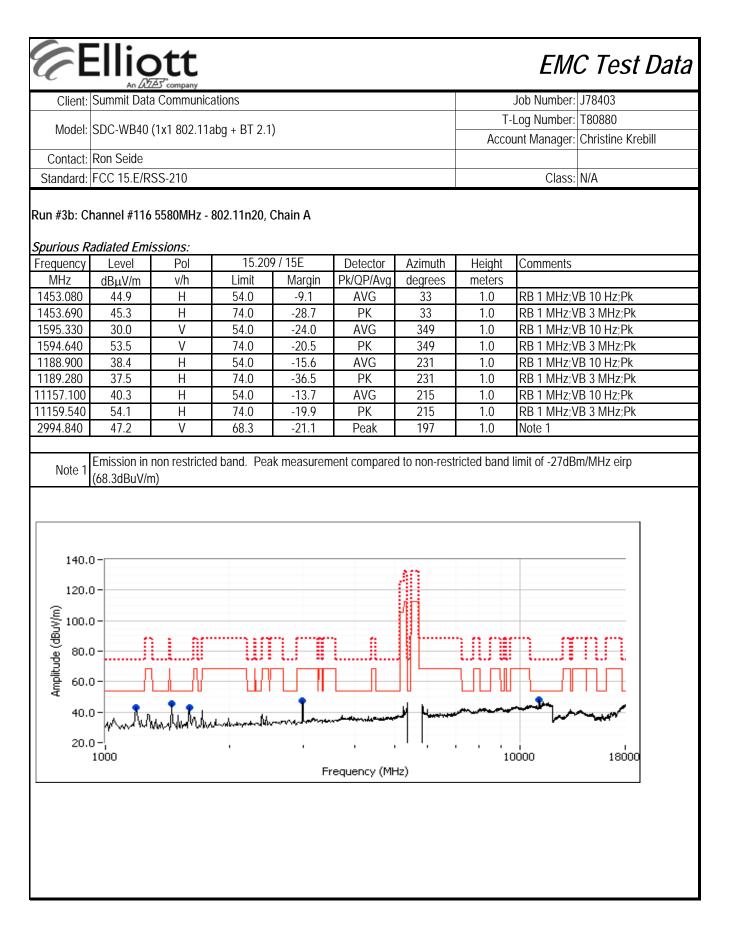

Notes:

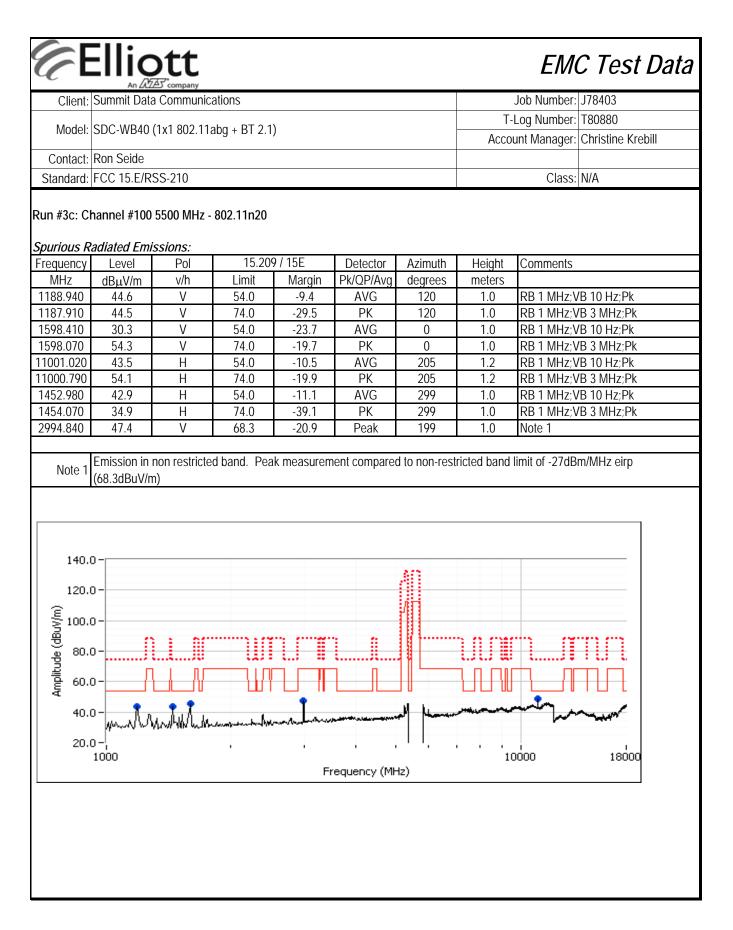
No radio related emissions were observed below 1GHz and above 18GHz in preliminary measurements.

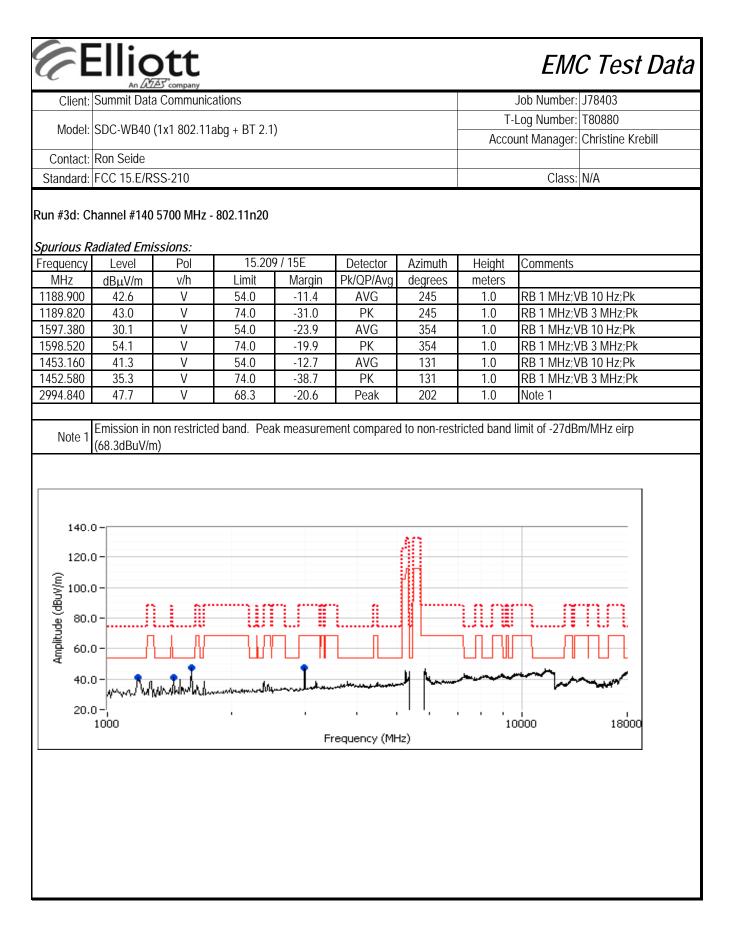

Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #1, Radiated Spurious Emissions, 1-40GHz, Center Channl 5150-5250MHz - 802.11a, n20 Date of Test: 8/15/2011 Test Location: FT5 Test Engineer: Rafael Varelas Config Change: none For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). Run #1a: Channel #40 5200MHz - 802.11a,Chain A Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz v/h Limit Margin Pk/QP/Avg meters dBµV/m degrees 1453.140 Η 54.0 AVG RB 1 MHz;VB 10 Hz;Pk 46.4 -7.6 63 1.0 1454.170 47.7 Η 74.0 -26.3 ΡK 63 1.0 RB 1 MHz;VB 3 MHz;Pk 1189.100 37.7 Η 54.0 -16.3 AVG 91 1.0 RB 1 MHz;VB 10 Hz;Pk 74.0 ΡK 91 RB 1 MHz;VB 3 MHz;Pk 1197.270 37.8 Н -36.2 1.0 2994.750 48.6 V 68.3 -19.7 Peak 204 1.0 Note 1 Emission in non restricted band. Peak measurement compared to non-restricted band limit of -27dBm/MHz eirp Note 1 68.3dBuV/m) 140.0 120.0 Amplitude (dBuV/m) 100.0 80.0 60.0 40.0 20.0-10000 18000 1000 Frequency (MHz)

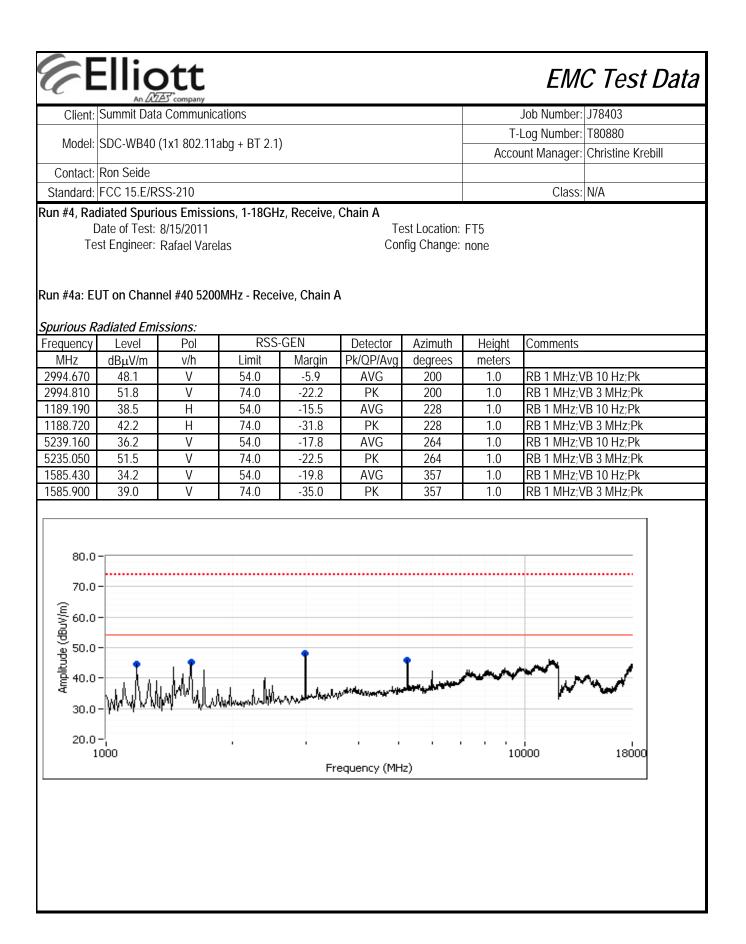


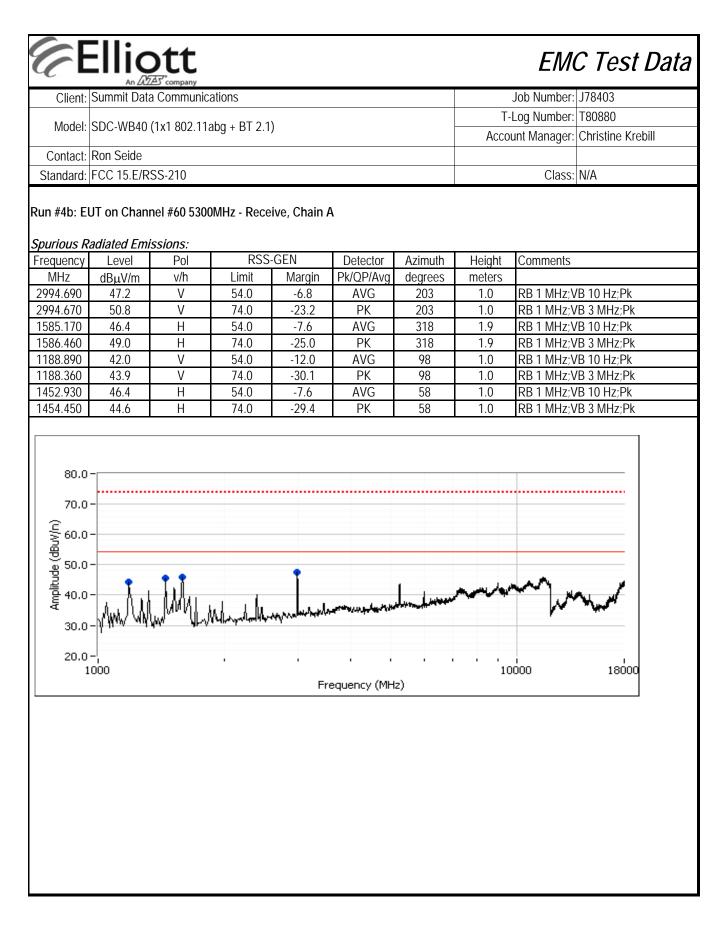


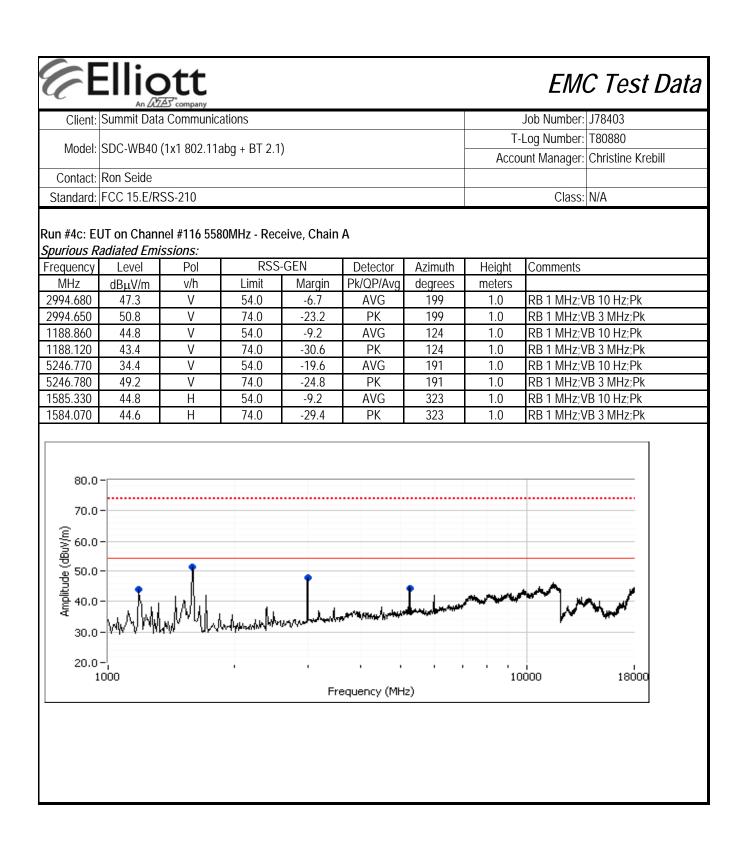

Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #2, Radiated Spurious Emissions, 1-40GHz, Center Channel 5250-5350MHz - 802.11a, n20 Date of Test: 8/15/2011 Test Location: FT5 Test Engineer: Rafael Varelas Config Change: none For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). Run #2a: Channel #60 5300MHz - 802.11a,Chain A Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz v/h Limit Margin Pk/QP/Avg dBµV/m degrees meters 1453.110 AVG RB 1 MHz;VB 10 Hz;Pk 46.6 Η 54.0 -7.4 61 1.0 1452.760 48.5 Η 74.0 -25.5 ΡK 61 1.0 RB 1 MHz;VB 3 MHz;Pk 1594.540 30.0 V 54.0 -24.0 AVG 265 RB 1 MHz; VB 10 Hz; Pk 1.0 1594.010 47.9 V 74.0 ΡK -26.1265 1.0 RB 1 MHz;VB 3 MHz;Pk 1188.620 36.6 Η 54.0 -17.4 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Pk 1198.020 74.0 -37.2 ΡK 84 1.0 RB 1 MHz;VB 3 MHz;Pk 36.8 Η 5458.630 54.0 AVG 48 RB 1 MHz;VB 10 Hz;Pk 44.8 V -9.2 1.0 V ΡK 48 RB 1 MHz;VB 3 MHz;Pk 5458.420 54.6 74.0 -19.4 1.0 2994.760 46.4 V 68.3 -21.9 Peak 128 1.5 Note 1 Emission in non restricted band. Peak measurement compared to non-restricted band limit of -27dBm/MHz eirp Note 1 (68.3dBuV/m) 140.0 120.0 4mplitude (dBuV/m) 100.0 80.0 60.0 40.0 20.0-18000 1000 10000 Frequency (MHz)








Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #3, Radiated Spurious Emissions, 1-40GHz, Center Channel 5470-5725MHz - 802.11a, n20 Date of Test: 8/15/2011 Test Location: FT5 Test Engineer: Rafael Varelas Config Change: none For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). Run #3a: Channel #116 5580MHz - 802.11a,Chain A Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz v/h Limit Margin Pk/QP/Avg meters dBµV/m degrees 1188.900 -10.3 AVG RB 1 MHz;VB 10 Hz;Pk 43.7 V 54.0 103 1.0 V 1188.240 46.2 74.0 -27.8 ΡK 103 1.0 RB 1 MHz;VB 3 MHz;Pk 1593.240 28.1 V 54.0 -25.9 AVG 1.0 RB 1 MHz;VB 10 Hz;Pk 3 1597.070 V 74.0 -23.5 ΡK 1.0 RB 1 MHz;VB 3 MHz;Pk 50.5 3 11158.900 42.3 Η 54.0 -11.7 AVG 212 1.0 RB 1 MHz; VB 10 Hz; Pk 11159.370 55.3 74.0 -18.7 ΡK 212 1.0 RB 1 MHz;VB 3 MHz;Pk Η 2994.850 46.4 V 68.3 -21.9Peak 127 1.0 Note 1 Emission in non restricted band. Peak measurement compared to non-restricted band limit of -27dBm/MHz eirp Note 1 (68.3dBuV/m) 140.0 120.0 Amplitude (dBuV/m) 100.0 80.0 60.0 40.0 20.0-18000 1000 10000 Frequency (MHz)



EMC Test Data

 Client:
 Summit Data Communications
 Job Number:
 J78403

 Model:
 SDC-WB40 (1x1 802.11abg + BT 2.1)
 T-Log Number:
 T80880

 Contact:
 Ron Seide
 Christine Krebill

 Standard:
 FCC 15.E/RSS-210
 Class:
 N/A

RSS 210 and FCC 15.407 (UNII) Radiated Bandedge Emissions (H&S)

Summary of Results

New Module #2011-1296, Laptop #2011-2312, Linux Shell	1
---	---

Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
Run # 1	802.11a	#36	H&S	100%	Restricted Band Edge	15.209	46.7dBµV/m @
Rull# I	Chain A	5180MHz	ΠάS	100%	at 5150 MHz	13.209	5149.9MHz (-7.3dB)
Run # 1	802.11a	#56	H&S	100%	Restricted Band Edge	LP0002 (Taiwan Only)	49.6dBµV/m @
Rull# I	Chain A	5280MHz	Παο	100%	at 5250 MHz	LF0002 (Taiwaii Only)	5250.0MHz (-4.4dB)
Run # 1	802.11a	#64	H&S	100%	Restricted Band Edge	15.209	51.7dBµV/m @
Rull# I	Chain A	5320MHz	пαз	100%	at 5350 MHz	15.209	5350.4MHz (-2.3dB)
Run # 1	802.11a	#100	H&S	100%	Restricted Band Edge	15.209	45.6dBµV/m @
Rull# I	Chain A	5500MHz	пαз	10076	at 5460 MHz	13.207	5459.5MHz (-8.4dB)
Run # 2	802.11n20	#36	H&S	100%	Restricted Band Edge	15.209	43.7dBµV/m @
Kull#Z	Chain A	5180MHz	Πασ	10070	at 5150 MHz	13.207	5149.8MHz (-10.3dB)
Run # 2	802.11n20	#56	H&S	100%	Restricted Band Edge	LP0002 (Taiwan Only)	48.4dBµV/m @
Kull#Z	Chain A	5280MHz	Πασ	10070	at 5250 MHz	LI 0002 (Taiwali Oliiy)	5249.5MHz (-5.6dB)
Run # 2	802.11n20	#64	H&S	100%	Restricted Band Edge	15.209	51.5dBµV/m @
Tull # Z	Chain A	5320MHz	1103	10070	at 5350 MHz	13.207	5350.1MHz (-2.5dB)
Run # 2	802.11n20	#100	H&S	100%	Restricted Band Edge	15.209	46.4dBµV/m @
TUIT# Z	Chain A	5500MHz	1103	10070	at 5460 MHz	15.207	5459.9MHz (-7.6dB)

Client: Summit Data Communications Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Contact: Ron Seide

Standard: FCC 15.E/RSS-210

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity:	15 - 55 %
Temperature:	18 - 25 °C

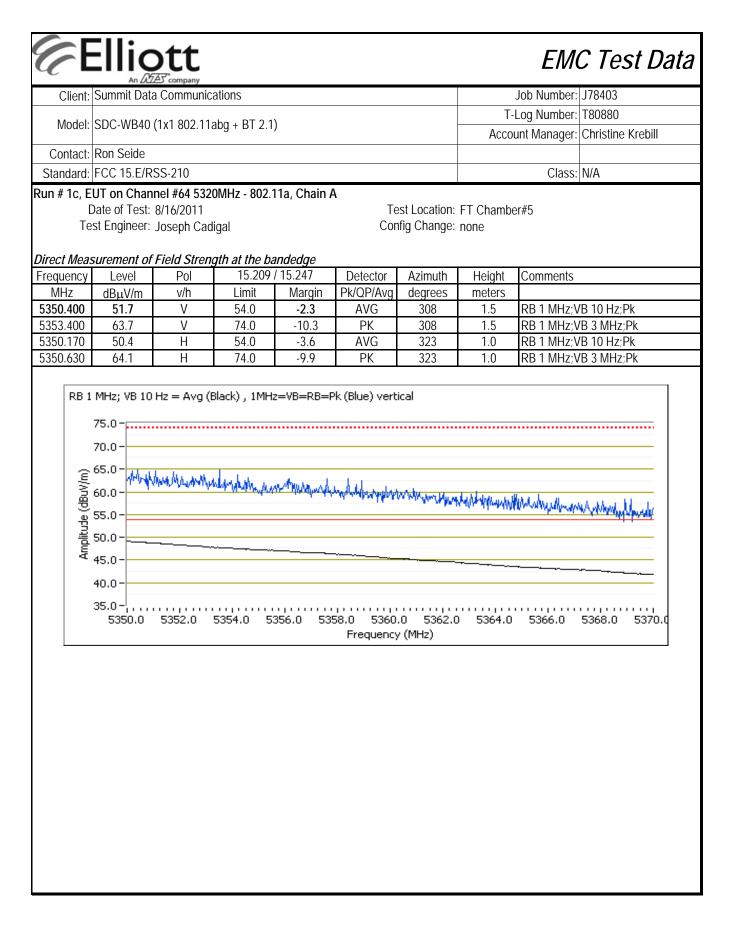
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

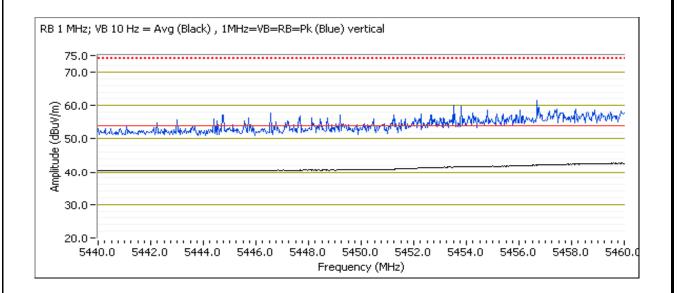

Job Number: J78403 T-Log Number: T80880

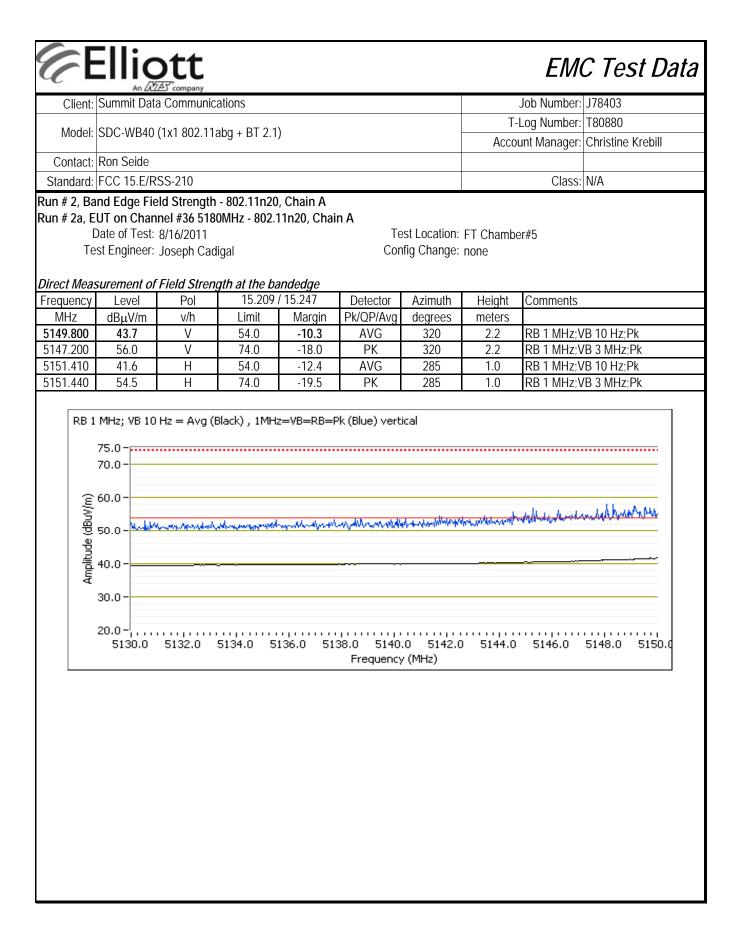
Account Manager: Christine Krebill

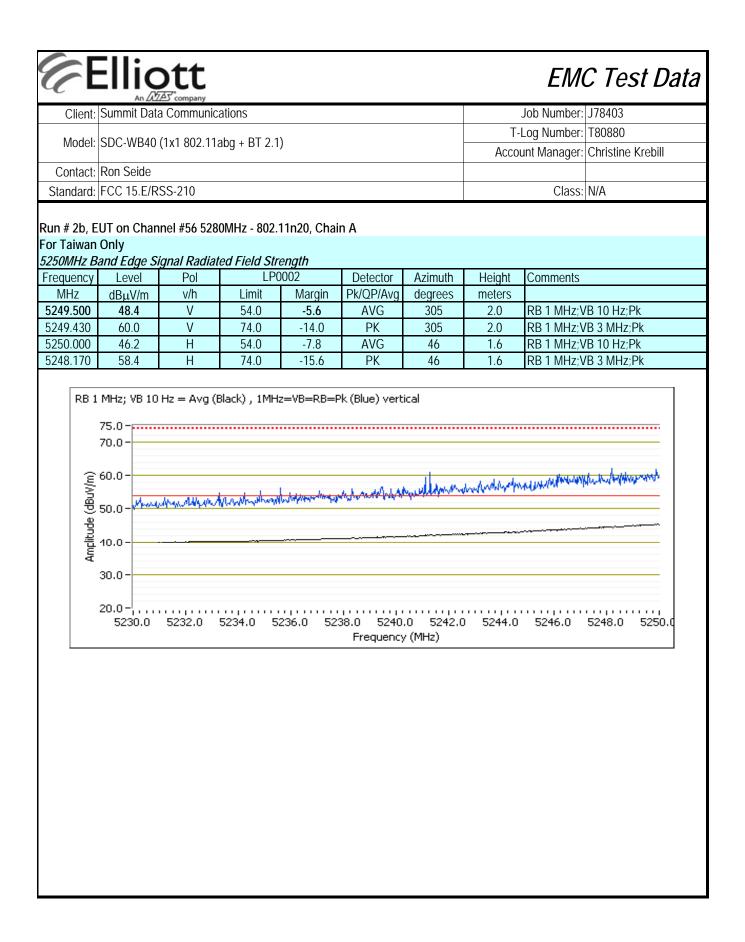
Class: N/A

Ellic							EM	C Test Data
: Summit Data	a Communic	ations					Job Number:	J78403
	(1,1 002 11)	aba + DT 2 1)			T-	Log Number:	T80880
	(1X1 802.118	ару + БТ Z.Т,)			Acco	unt Manager:	Christine Krebill
							Class:	N/A
EUT on Chan Date of Test: est Engineer:	nel #36 518 8/16/2011 Rafael Vare	0MHz - 802.1 Ias	1a, Chain A	Те			er #5	
1	Pol			Detector	Azimuth	Height	Comments	
dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
46.7	V	54.0	-7.3	AVG	277	1.7	RB 1 MHz;\	
80.0 - 75.0 - 70.0 - 65.0 - 90.0 - 65.0 - 90.0 - 45.0 - 45.0 - 45.0 - 45.0 - 45.0 - 45.0 - 45.0 -								
5130.0	5132.0	5134.0 51	136.0 51	38.0 5140.	0 5142.0	5144.0	5146.0	5148.0 5150.0
	An AZZ Summit Data SDC-WB40 Ron Seide FCC 15.E/R and Edge Fie UT on Chan Date of Test: est Engineer: bsurement of Level dBµV/m 46.7 60.9 44.5 58.5	: SDC-WB40 (1x1 802.11. : Ron Seide : FCC 15.E/RSS-210 and Edge Field Strength EUT on Channel #36 518 Date of Test: 8/16/2011 est Engineer: Rafael Vare surement of Field Streng Level Pol dBµV/m v/h 46.7 V 60.9 V 44.5 H 58.5 H 1 MHz; VB 10 Hz Avg (Bla 80.0 - 75.0 - 75.0 - 50.0 - 55.0 - 45.0 - 40.0 - 35.0 - 1 MHZ - - - - - - - - - - - - - -	An AZES' company Summit Data Communications SDC-WB40 (1x1 802.11abg + BT 2.1) Ron Seide FCC 15.E/RSS-210 and Edge Field Strength - 802.11a, C EUT on Channel #36 5180MHz - 802.1 Date of Test: 8/16/2011 est Engineer: Rafael Varelas <i>Buvenent of Field Strength at the base</i> Level Pol 15.209 dBµV/m V/h Limit 46.7 V 58.5 H 74.0 44.5 H 58.5 H 74.0 58.5 H 75.0 - 70.0 - 65.0 - 60.0 - 55.0 - 40.0 - 35.0 -	An Δ/ZAS' company : Summit Data Communications : SDC-WB40 (1x1 802.11abg + BT 2.1) : Ron Seide : FCC 15.E/RSS-210 and Edge Field Strength - 802.11a, Chain A EUT on Channel #36 5180MHz - 802.11a, Chain A EUT on Channel #36 5180MHz - 802.11a, Chain A Eutron Channel #36 5180MHz - 802.11a, Chain A BuV/m V/h Limit Margin 46.7 V 58.5 H 74.0 -15.5 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace); PK (Blue Trace) 50.0	An (AZAS' company : Summit Data Communications : SDC-WB40 (1x1 802.11abg + BT 2.1) : Ron Seide : FCC 15.E/RSS-210 and Edge Field Strength - 802.11a, Chain A EUT on Channel #36 5180MHz - 802.11a, Chain A Date of Test: 8/16/2011 rest Engineer: Rafael Varelas comment of Field Strength at the bandedge Level Pol Pol 15.209 / 15.247 dBµV/m v/h v/h Limit Margin PK/QP/Avg 46.7 V 58.5 H 74.0 -13.1 PK 44.5 H 58.5 H 74.0 -15.5 70.0 - 60.0 - 75.0 - 70.0 - 60.0 - 50.0 - 60.0 - 75.0 - 70.0 - 60.0 - 60.0 -<	An AZ25' company Summit Data Communications SDC-WB40 (1x1 802.11abg + BT 2.1) Ron Seide FCC 15.E/RSS-210 and Edge Field Strength - 802.11a, Chain A EUT on Channel #36 5180MHz - 802.11a, Chain A Date of Test: 8/16/2011 Test Location: est Engineer: Rafael Varelas Config Change: surement of Field Strength at the bandedge Level Pol 15.209 / 15.247 Detector dBµV/m v/h Limit Margin Pk/QP/Avg degrees 46.7 V 54.0 -7.3 AVG 277 60.9 V 74.0 -13.1 PK 277 44.5 H 54.0 -9.5 AVG 330 58.5 H 74.0 -15.5 PK 330 1 <mhz; (black="" (blue="" 10="" avg="" hz="" pk="" td="" trace)="" trace);="" vb="" vertical<=""> 80.0 - - - - 65.0 - - - - - - - - - - - - - - - - - - - <td< td=""><td>Add/ACS company Summit Data Communications T- SDC-WB40 (1x1 802.11abg + BT 2.1) Accoo Ron Seide Image: Company FCC 15.E/RSS-210 Image: Company and Edge Field Strength - 802.11a, Chain A Image: Company Date of Test: 8/16/2011 Test Location: FT Chambe est Engineer: Rafael Varelas Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: Co</td><td>An AZZS company Summit Data Communications Job Number: SDC-WB40 (1x1 802.11abg + BT 2.1) T-Log Number: Ron Seide Account Manager: FCC 15.E/RSS-210 Class: and Edge Field Strength - 802.11a, Chain A Class: EUT on Channel #36 5180MHz - 802.11a, Chain A Config Change: None est Engineer: Rafael Varelas Config Change: None estrement of Field Strength at the bandedge Config Change: None estrement of Field Strength at the bandedge Comments dBµV/m Vh Limit Margin 46.7 V 54.0 -7.3 AVG 277 1.7 RB 1 MHz;V 60.9 V 74.0 -13.1 PK 277 1.7 RB 1 MHz;V 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 -</td></td<></mhz;>	Add/ACS company Summit Data Communications T- SDC-WB40 (1x1 802.11abg + BT 2.1) Accoo Ron Seide Image: Company FCC 15.E/RSS-210 Image: Company and Edge Field Strength - 802.11a, Chain A Image: Company Date of Test: 8/16/2011 Test Location: FT Chambe est Engineer: Rafael Varelas Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: None surment of Field Strength at the bandedge Image: Config Change: Co	An AZZS company Summit Data Communications Job Number: SDC-WB40 (1x1 802.11abg + BT 2.1) T-Log Number: Ron Seide Account Manager: FCC 15.E/RSS-210 Class: and Edge Field Strength - 802.11a, Chain A Class: EUT on Channel #36 5180MHz - 802.11a, Chain A Config Change: None est Engineer: Rafael Varelas Config Change: None estrement of Field Strength at the bandedge Config Change: None estrement of Field Strength at the bandedge Comments dBµV/m Vh Limit Margin 46.7 V 54.0 -7.3 AVG 277 1.7 RB 1 MHz;V 60.9 V 74.0 -13.1 PK 277 1.7 RB 1 MHz;V 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 -

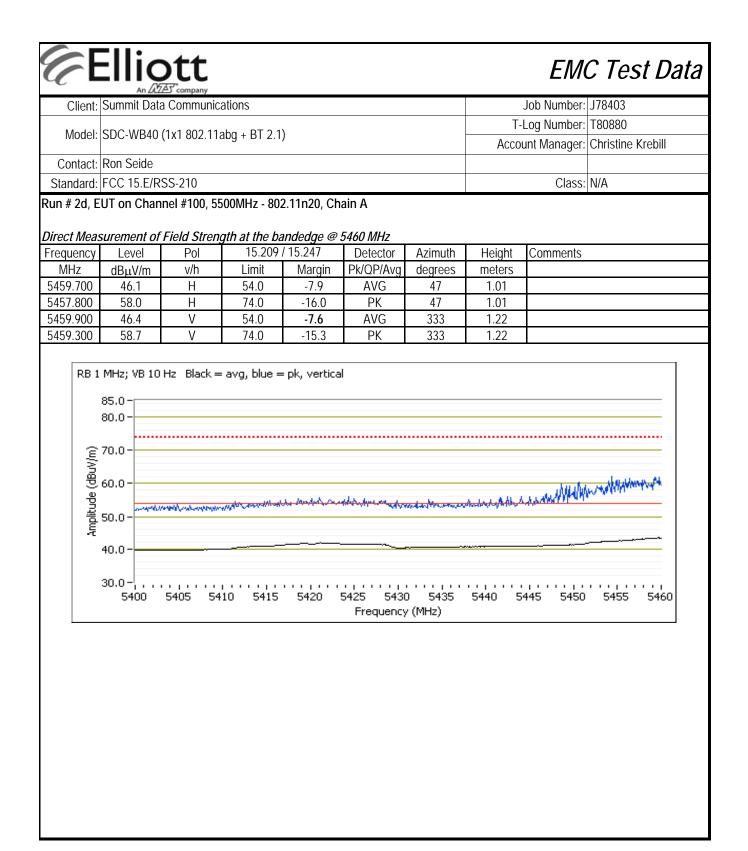
n # 1b, EUT on Channel #56 5280MHz - 802.11a, Chain A r Taiwan Only 50MHz Band Edge Signal Radiated Field Strength equency Level Pol LP002 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk 250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk	Model: SDC-WB40 (1x1 802.11abg + B1 2.1) Account Manager: Christine Kr Contact: Ron Seide Class: N/A istandard: FCC 15.E/RSS-210 Class: N/A n # 1b, EUT on Channel #56 5280MHz - 802.11a, Chain A Class: N/A r Taiwan Only S0MHz Band Edge Signal Radiated Field Strength Comments 6quency Level Pol LP0002 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 248.420 63.6 V 74.0 -10.4 PK 320 1.2 RB 1 MHz;VB 10 Hz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 70.0 - - - - - - - - - - - - <th>Model:</th> <th>Summit Data</th> <th colspan="11">ummit Data Communications Job Number: J78403</th>	Model:	Summit Data	ummit Data Communications Job Number: J78403										
Contact: Ron Seide tandard: FCC 15.E/RSS-210 Class: N/A	Contact: Ron Seide Account Manager: Christine Kr tandard: FCC 15.E/RSS-210 Class: N/A		SDC-WB40	(1x1 802.11a	abg + BT 2.1)				•				
Standard: FCC 15.E/RSS-210 Class: N/A In # 1b, EUT on Channel #56 5280MHz - 802.11a, Chain A r Taiwan Only r Standard: FCC 15.E/RSS-210 Class: N/A Standard: r Taiwan Only Standard: FCC 15.E/RSS-210 Class: N/A Standard: r Taiwan Only Standard: FCC 15.E/RSS-210 Class: N/A Standard: FCC 15.E/RSS-210 Detector Azimuth Height Comments Standard: FCC 15.E/RSS-210 Detector Azimuth Height Comments Standard: FCC 15.E/RSS-210 Detector Azimuth Height Comments Standard: Level Pol LP0002 Detector Azimuth Height Comments 250.000 49.6 V 54.0 -5.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 248.230 65.0 - - -	Standard: FCC 15.E/RSS-210 Class: N/A n # 1b, EUT on Channel #56 5280MHz - 802.11a, Chain A r raiwan Only raiwan Only raiwan Only requency Level Pol LP0002 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters reters reters <t< td=""><td></td><td></td><td></td><td>5</td><td>,</td><td></td><td></td><td>Ассо</td><td>unt Manager:</td><td>Christine Krebill</td></t<>				5	,			Ассо	unt Manager:	Christine Krebill			
un # 1b, EUT on Channel #56 5280MHz - 802.11a, Chain A or Taiwan Only 250MHz Band Edge Signal Radiated Field Strength requency Level Pol LP0002 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 220.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 228.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk 250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 3 MHz;Pk 250.000 48.6 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 2648.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 265.0	un # 1b, EUT on Channel #56 5280MHz - 802.11a, Chain A 250MHz Band Edge Signal Radiated Field Strength requency Level Pol LP0002 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 228.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk 2250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 3 MHz;Pk 228.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 - 75.0 - 76.0 - 65.0 - 45.0 - 45.			SS 210						Class	NI/A			
SoMHz Band Edge Signal Radiated Field Strength equency Level Pol LP0002 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz; VB 10 Hz; Pk 248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz; VB 3 MHz; Pk 250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz; VB 10 Hz; Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz; VB 3 MHz; Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz; VB 3 MHz; Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical	SomHz Band Edge Signal Radiated Field Strength equency Level Pol LP0002 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk 250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 260.0	n # 1b, E	UT on Chan	nel #56 528	0MHz - 802. ⁻	11a, Chain J	A							
requency Level Pol LP0002 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters i250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk i248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk i250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk i248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk i248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical Image: region of the second secon	requency Level Pol LP0002 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 5248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk 5250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk 5248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 5248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 65.0 - <td></td> <td></td> <td>ianal Dadiat</td> <td>ad Field Str</td> <td>onath</td> <td></td> <td></td> <td></td> <td></td> <td></td>			ianal Dadiat	ad Field Str	onath								
MHz dBµU/m v/h Limit Margin PK/QP/Avg degrees meters i250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk i248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk i250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk i248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk i248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 -	MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 5250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 5248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk 5250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk 5248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 5248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 70.0 -						Detector	Azimuth	Height	Comments				
2250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 2248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk 2250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk 2248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 2248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 -	2250.000 49.6 V 54.0 -4.4 AVG 320 1.7 RB 1 MHz;VB 10 Hz;Pk 2248.420 63.6 V 74.0 -10.4 PK 320 1.7 RB 1 MHz;VB 3 MHz;Pk 250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk 248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 - <								<u> </u>	2 chillion (c)				
3250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk 3248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0	3250.000 48.6 H 54.0 -5.4 AVG 327 1.2 RB 1 MHz;VB 10 Hz;Pk 3248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz;VB 3 MHz;Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 - <t< td=""><td></td><td>49.6</td><td></td><td></td><td>-4.4</td><td></td><td>320</td><td>1.7</td><td></td><td></td></t<>		49.6			-4.4		320	1.7					
248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz; VB 3 MHz; VB 3 MHz; Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 -	2248.230 63.4 H 74.0 -10.6 PK 327 1.2 RB 1 MHz; VB 3 MHz; Pk RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 - <													
RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 75.0 70.0 65.0 65.0 65.0 65.0 60.0 99 90 90.0 45.0 45.0 45.0	RB 1 MHz; VB 10 Hz Avg (Black Trace); PK (Blue Trace) Vertical 80.0 - 75.0 - 70.0 - (W) 65.0 - 90 55.0 - 10 -													
80.0 - 75.0 - 70.0 - (W) 65.0 - 55.0 - 45.0 - 45.0 - 40.0 - 35.0 -	80.0 - 75.0 - 70.0 - 65.0 - 80.0 - 70.0 - 65.0 - 80.0 - 70.0 - 65.0 - 80.0 - 80.0 - 70.0 - 80.0 -													
	35.0 - 5230.0 5232.0 5234.0 5236.0 5238.0 5240.0 5242.0 5244.0 5246.0 5248.0 5		55.0 - 50.0 - 45.0 - 40.0 - 35.0 -		~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·								


Elliott


EMC Test Data


	An ZCZAC company		
Client:	Summit Data Communications	Job Number:	J78403
Madal	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80880
wouer.	SDC-WD40 (1X1 602.11dby + D1 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		
Standard:	FCC 15.E/RSS-210	Class:	N/A
Run # 1d, E	UT on Channel #100 5500MHz - 802.11a, Chain A		

Direct Measurement of Field Strength at the bandedge @ 5460 MHz


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.500	45.6	V	54.0	-8.4	AVG	311	2.5	RB 1 MHz;VB 10 Hz;Pk
5453.130	58.3	V	74.0	-15.7	PK	311	2.5	RB 1 MHz;VB 3 MHz;Pk
5459.430	45.5	Н	54.0	-8.5	AVG	43	1.1	RB 1 MHz;VB 10 Hz;Pk
5455.170	58.4	Н	74.0	-15.6	PK	43	1.1	RB 1 MHz;VB 3 MHz;Pk

E	II		tt						EM	C Test Data	
Client:	Summi	t Data	Communica	ations					Job Number:	J78403	
Madal		T-Log Number: T80880									
Model:	SDC-W	DC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill									
Contact:	Ron Se	eide									
Standard:	FCC 1	5.E/RS	S-210						Class:	N/A	
Run # 2c, E	UT on (Chann	el #64 5320)MHz - 802.1	1n20, Chair	n A					
			/16/2011				st Location:	FT Chambe	er#5		
Те	st Engii	neer: J	oseph Cadi	igal		Con	fig Change:	none			
Frequency	Lev		Pol	<i>oth at the ba</i> 15.209	15 247	Detector	Azimuth	Height	Comments		
MHz	dBµ\		v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
5350.070	<u>51</u> .		V	54.0	-2.5	AVG	0	1.0	RB 1 MHz;V	B 10 Hz;Pk	
5350.330	62.	62.9 V 74.0 -11.1 PK 0 1.0 RB 1 MHz; VB 3 MHz; Pk									
5350.070	51.		Н	54.0	-2.2	AVG	44	1.6	RB 1 MHz;V	B 10 Hz;Pk	
5350.630	65.	1	Н	74.0	-8.9	PK	44	1.6	RB 1 MHz;V	B 3 MHz;Pk	
Amplitude (dBuV/m)	40.0 - 30.0 - 20.0 -					·	0 5362.0			5368.0 5370.0	

Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions (H&S) Summary of Results New Module #2011-1296, Laptop #2011-2312, Linux Shell Power Mode Channel Test Performed Limit Result / Margin Run # Antenna Settina Scans on center channel in both OFDM modes to determine the worst case. 802.11a #40 35.3dBµV/m @ H&S 100% 5200MHz Radiated Emissions, 1189.1MHz (-18.7dB) Chain A FCC 15.209 / 15 E n20 #40 1 - 40 GHz 44.3dBµV/m @ 100% H&S Run #1 Chain A 5200MHz 1189.1MHz (-9.7dB) (5150-Worst case mode top and bottom channels. 5250MHz 42.0dBµV/m @ Band) #36 H&S 100% n20 Radiated Emissions. 5180MHz 1188.9MHz (-12.0dB) FCC 15.209 / 15 E Chain A #48 1 - 40 GHz 46.8dBµV/m @ H&S 100% 5240MHz 1188.0MHz (-7.2dB) 802.11a 50.7dBµV/m @ #60 H&S 100% Chain A 5300MHz Radiated Emissions. 5459.1MHz (-3.3dB) FCC 15.209 / 15 E 48.5dBµV/m @ n20 #60 1 - 40 GHz Run #2 100% H&S 5300MHz Chain A 5458.4MHz (-5.5dB) (5250-Worst case mode (802.11a) - top and bottom channels. 5350MHz 43.8dBµV/m @ #52 Band) H&S 100% 802.11a Radiated Emissions, 5260MHz 1189.0MHz (-10.2dB) FCC 15.209 / 15 E Chain A 1 - 40 GHz 40.5dBµV/m @ #64 H&S 100% 10640.2MHz (-13.5dB) 5320MHz

C E		D tt				EM	C Test Data
Client:	Summit Dat	a Communic	ations			Job Number:	J78403
Madal		(11 000 11.		\ \		T-Log Number:	T80880
Model:	SDC-WB40	(1x1 802.11a	abg + BT 2.1)		Account Manager:	Christine Krebill
Contact:	Ron Seide						
Standard:	FCC 15.E/R	SS-210				Class:	N/A
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
	802.11a Chain A	#116 5580MHz	H&S	100%	Radiated Emissions,	FCC 15.209 / 15 E	48.0dBµV/m @ 1188.9MHz (-6.0dB)
Run #3	n20 Chain A	#116 5580MHz	H&S	100%	1 - 40 GHz	FCC 15.2097 15 E	45.7dBµV/m @ 1188.9MHz (-8.3dB)
(5470- 5725MHz	Worst case	mode (802.1	1a) - top and	bottom cha	nnels.		
Band)	802.11a	#100 5500MHz	H&S	100%	Radiated Emissions,	FCC 15.209 / 15 E	39.8dBµV/m @ 10999.2MHz (-14.2dB)
	Chain A	#140 5700MHz	H&S	100%	1 - 40 GHz	FCC 15.2097 15 E	46.0dBµV/m @ 1188.9MHz (-8.0dB)
Receive mo	ode					•	· · · · ·
		#40 5200MHz	H&S	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	48.0dBµV/m @ 2994.7MHz (-6.0dB)
Run #4	Receive	#60 5300MHz	H&S	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	48.5dBµV/m @ 1188.9MHz (-5.5dB)
		#116 5580MHz	H&S	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	46.2dBµV/m @ 2994.7MHz (-7.8dB)

Test Specific Details

-

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT ws installed into a test fixture such that the EUT was exposed (i.e. outside of a host PC). For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Rel. Humidity:	15 - 55 %
Temperature:	18 - 25 °C

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes:

No radio related emissions were observed below 1GHz and above 18GHz in preliminary measurements.

EMC Test Data

 Client:
 Summit Data Communications
 Job Number:
 J78403

 Model:
 SDC-WB40 (1x1 802.11abg + BT 2.1)
 T-Log Number:
 T80880

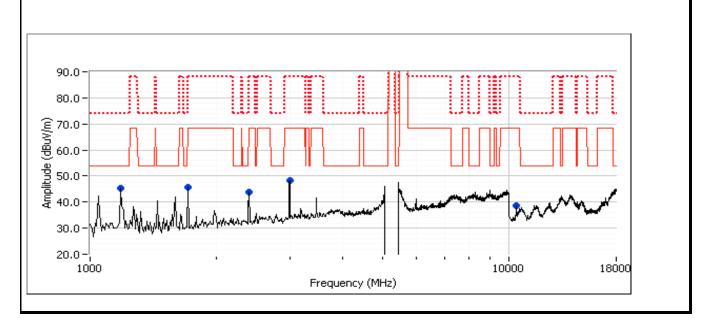
 Contact:
 Ron Seide
 Christine Krebill

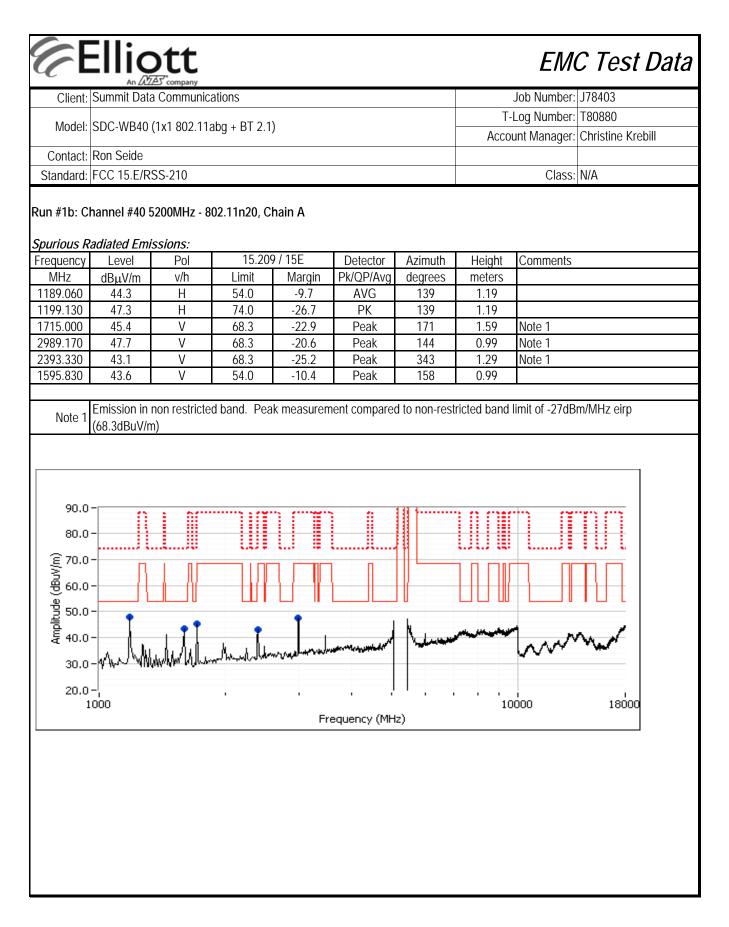
 Standard:
 FCC 15.E/RSS-210
 Class:
 N/A

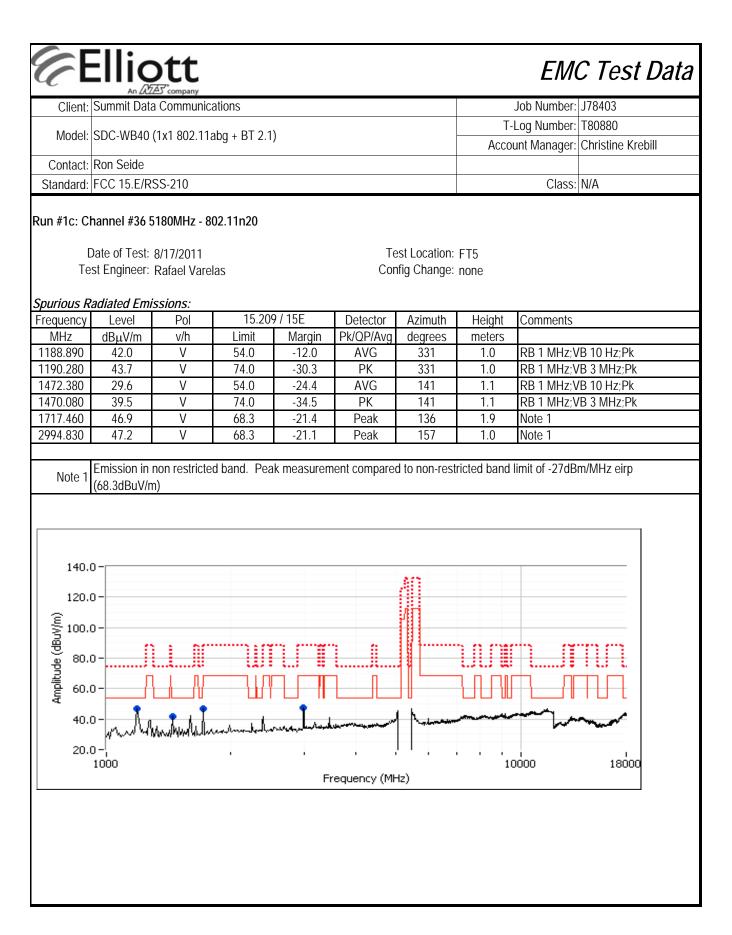
Run #1, Radiated Spurious Emissions, 1-40GHz, Center Channel, 5150-5250MHz - 802.11a, n20

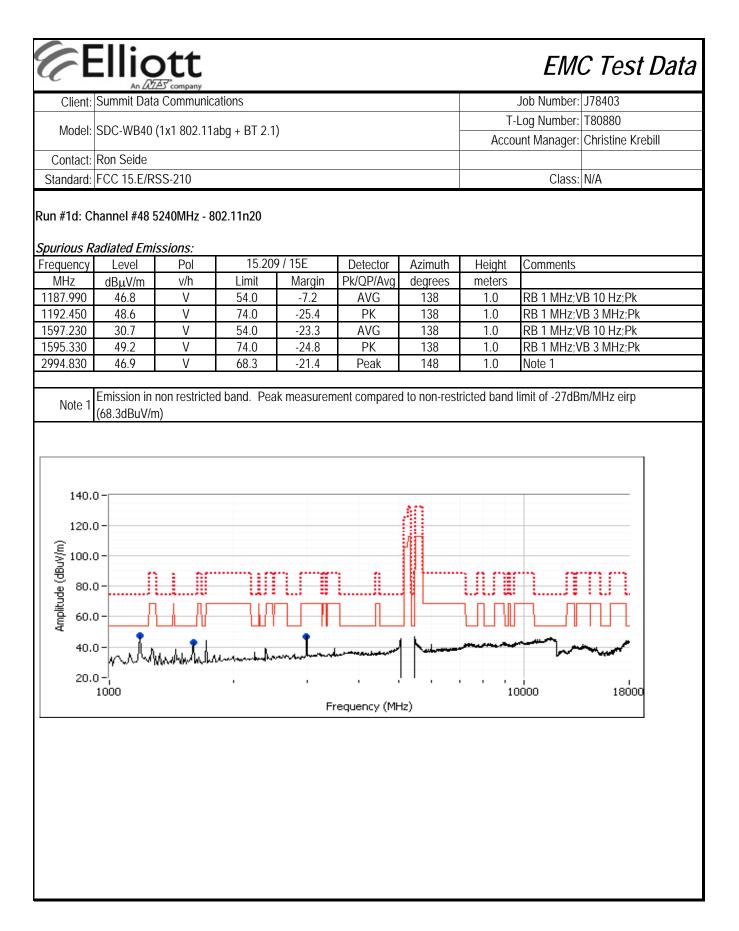
Date of Test: 8/17/2011	Test Location: FT5
Test Engineer: John Caizzi	Config Change: none

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @ 3m).

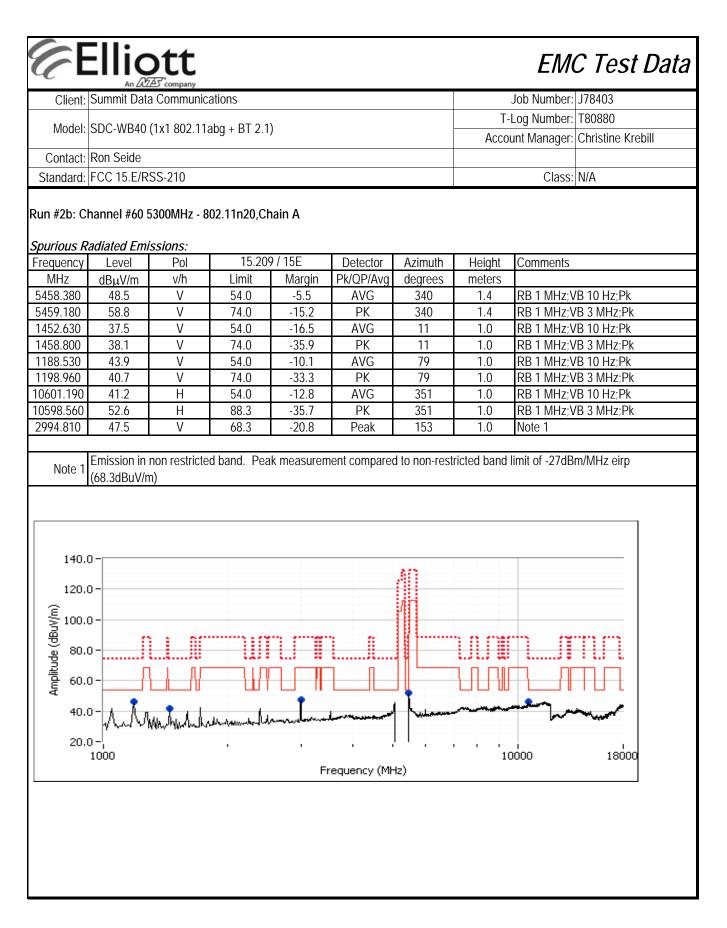

Run #1a: Channel #40, 5200MHz - 802.11a, Chain A

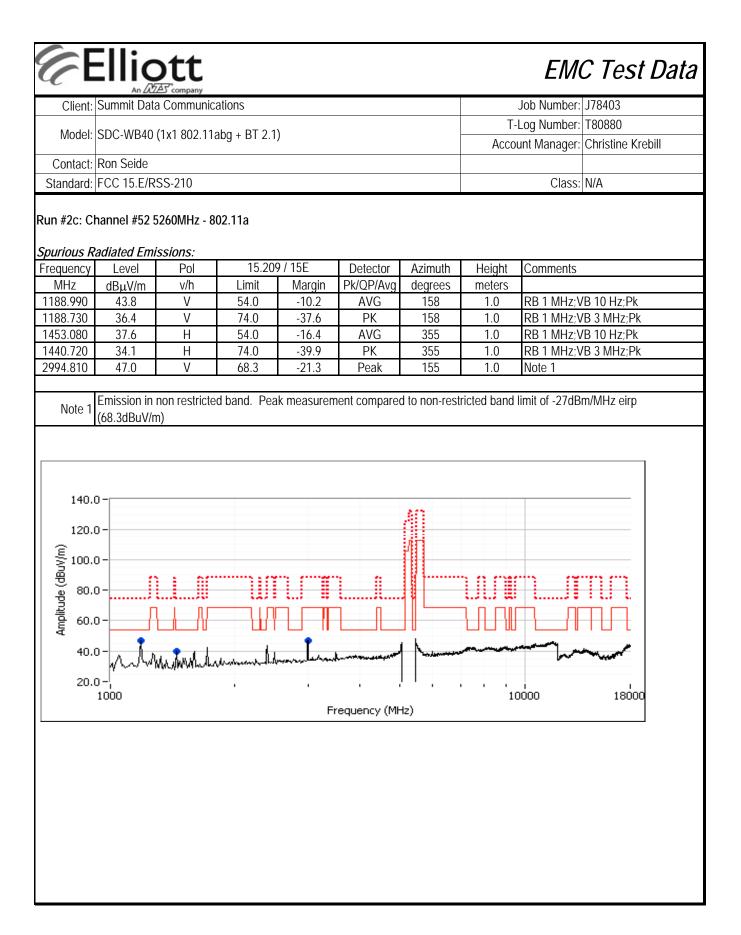

Spurious Radiated Emissions:

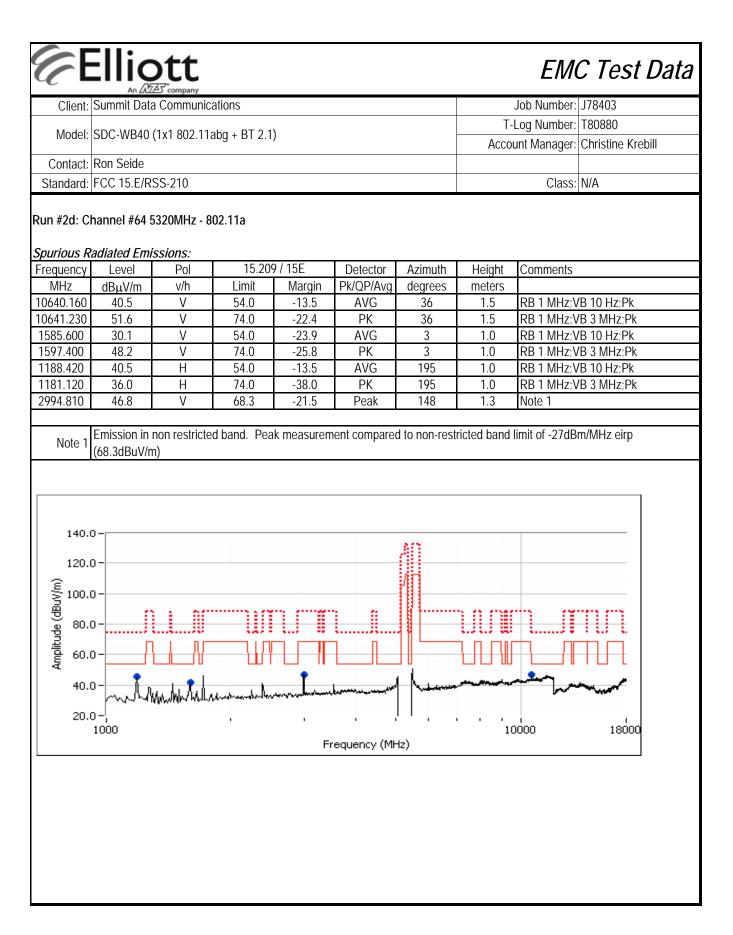

Elliott

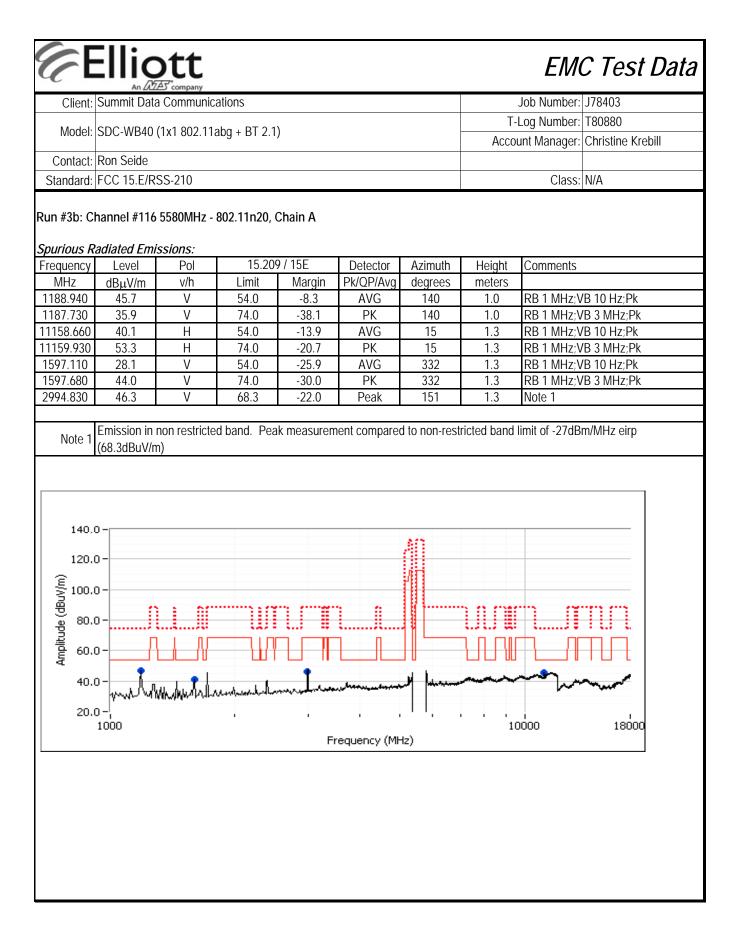

Frequency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1189.060	35.3	V	54.0	-18.7	AVG	261	1.03	
1199.200	45.0	V	74.0	-29.0	PK	261	1.03	
2390.000	31.8	V	54.0	-22.2	AVG	347	1.00	
2389.470	50.7	V	74.0	-23.3	PK	347	1.00	
2998.330	48.3	V	68.3	-20.0	Peak	146	1.0	Note 1
1715.000	45.6	V	68.3	-22.7	Peak	293	1.0	Note 1
10400.000	38.6	Н	68.3	-29.7	Peak	49	1.0	Note 1

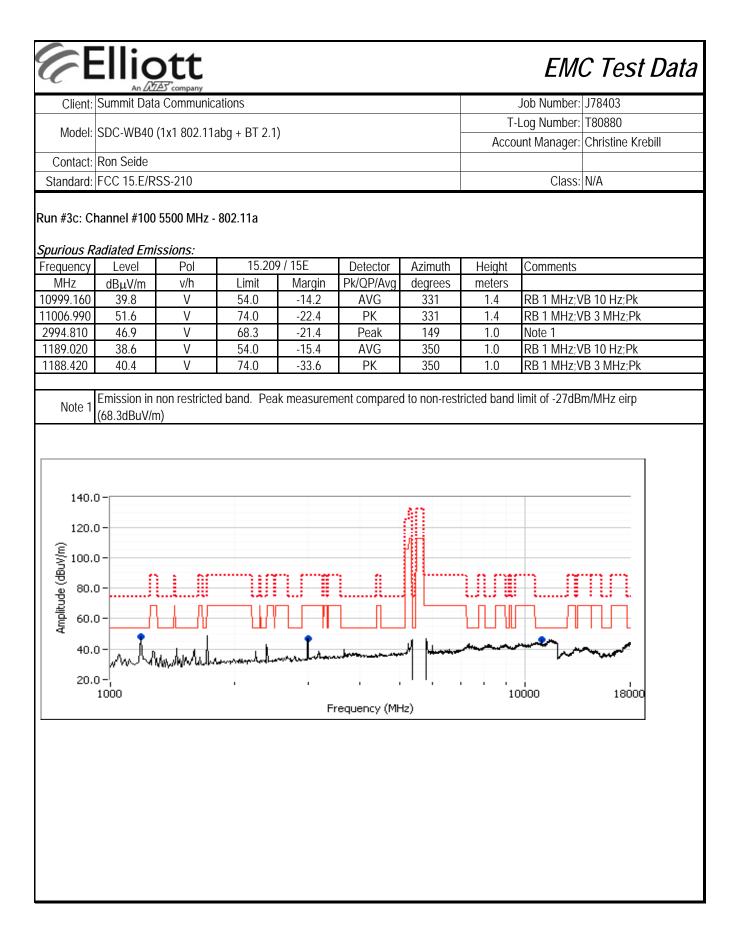
Note 1 Emission in non restricted band. Peak measurement compared to non-restricted band limit of -27dBm/MHz eirp (68.3dBuV/m)

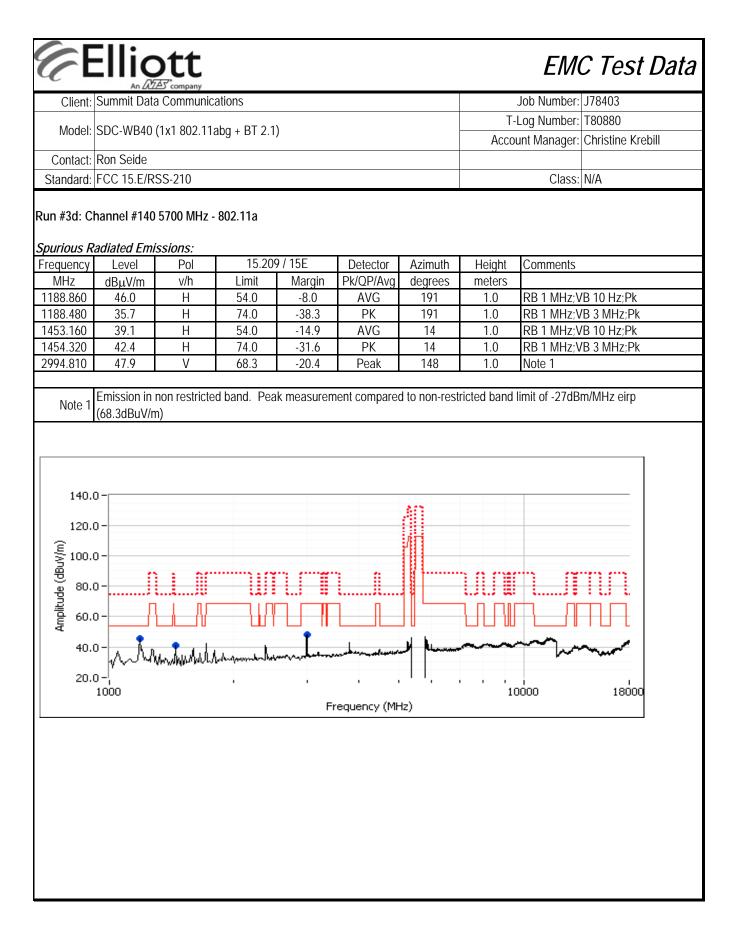


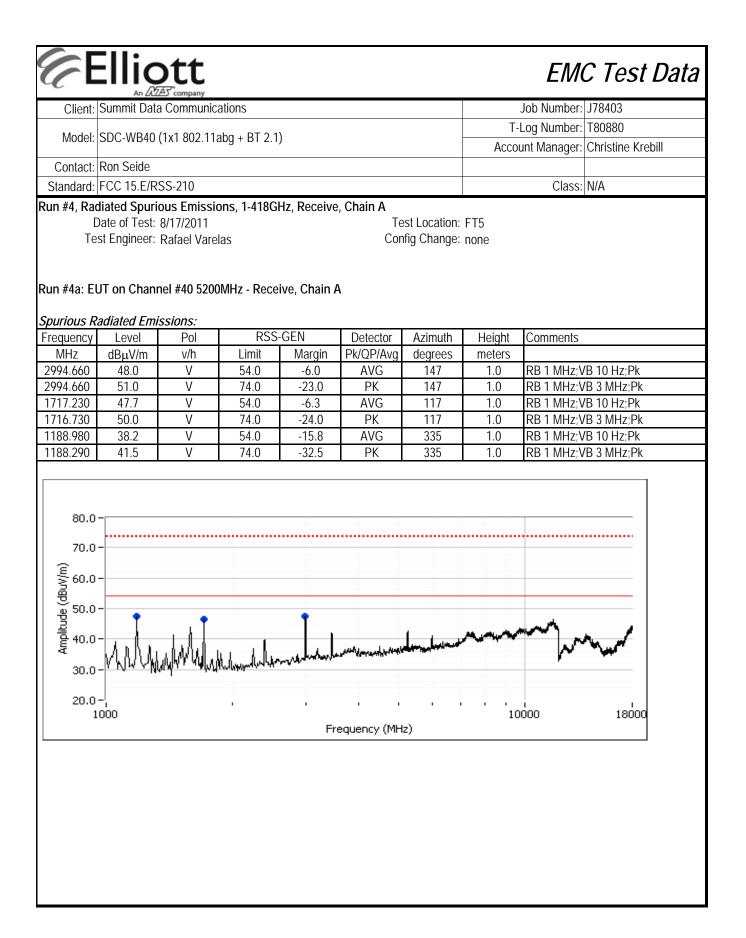


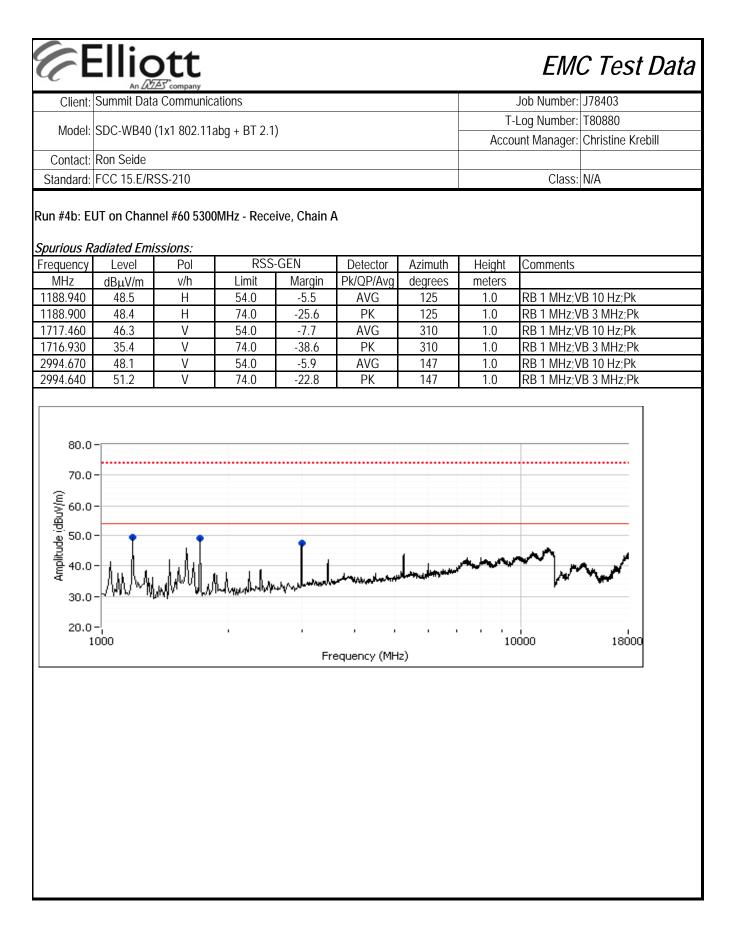



©Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #2, Radiated Spurious Emissions, 1-40GHz, Center Channel 5250-5350MHz - 802.11a, n20 Date of Test: 8/17/2011 Test Location: FT5 Test Engineer: Rafael Varelas Config Change: none For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). Run #2a: Channel #60 5300MHz - 802.11a,Chain A Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments MHz v/h Limit Margin Pk/QP/Avg meters dBµV/m degrees 5459.110 AVG RB 1 MHz; VB 10 Hz; Pk 50.7 V 54.0 -3.3 309 1.2 5459.380 60.2 V 74.0 -13.8 ΡK 309 1.2 RB 1 MHz;VB 3 MHz;Pk 10600.160 39.3 V 54.0 -14.7 AVG 132 RB 1 MHz; VB 10 Hz; Pk 1.0 49.6 V 74.0 -24.4ΡK 132 10600.600 1.0 RB 1 MHz;VB 3 MHz;Pk 1597.110 30.5 V 54.0 -23.5 AVG 186 1.0 RB 1 MHz; VB 10 Hz; Pk 1596.380 52.6 V 74.0 -21.4 ΡK 1.0 RB 1 MHz;VB 3 MHz;Pk 186 54.0 AVG RB 1 MHz;VB 10 Hz;Pk 1188.740 41.2 V -12.8 331 1.0 -32.5 331 1195.230 V ΡK 1.0 RB 1 MHz;VB 3 MHz;Pk 41.5 74.0 2994.830 47.7 V 68.3 -20.6 Peak 151 1.0 Note 1 Emission in non restricted band. Peak measurement compared to non-restricted band limit of -27dBm/MHz eirp Note 1 (68.3dBuV/m) 140.0 120.0 4mplitude (dBuV/m) 100.0 80.0 60.0 40.0 20.0-18000 1000 10000 Frequency (MHz)








Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #3, Radiated Spurious Emissions, 1-40GHz, Center Channel 5470-5725MHz - 802.11a, n20 Date of Test: 8/17/2011 Test Location: FT5 Test Engineer: Rafael Varelas Config Change: none For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit is -27dBm eirp (68.3dBuV/m @3m). Run #3a: Channel #116 5580MHz - 802.11a,Chain A Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Avg MHz dBµV/m v/h Limit Margin degrees meters 1188.900 48.0 V 54.0 -6.0 AVG 132 1.0 RB 1 MHz;VB 10 Hz;Pk 1188.500 50.1 V 74.0 -23.9 ΡK 132 RB 1 MHz; VB 3 MHz; Pk 1.0 54.0 -22.9 AVG 182 1.0 1597.110 31.1 V RB 1 MHz;VB 10 Hz;Pk 1598.720 54.1 V 74.0 -19.9 ΡK 182 1.0 RB 1 MHz; VB 3 MHz; Pk 11159.180 39.3 54.0 -14.7 AVG 1.4 RB 1 MHz;VB 10 Hz;Pk Η 8 50.9 RB 1 MHz;VB 3 MHz;Pk 11162.480 Η 74.0 -23.1 ΡK 8 1.4 2994.830 47.8 V -20.5 152 1.0 68.3 Peak Note 1 Emission in non restricted band. Peak measurement compared to non-restricted band limit of -27dBm/MHz eirp Note 1 (68.3dBuV/m) 140.0 120.0 Amplitude (dBuV/m) 100.0 80.0 60.0 40.0 20.0 1000 10000 18000 Frequency (MHz)

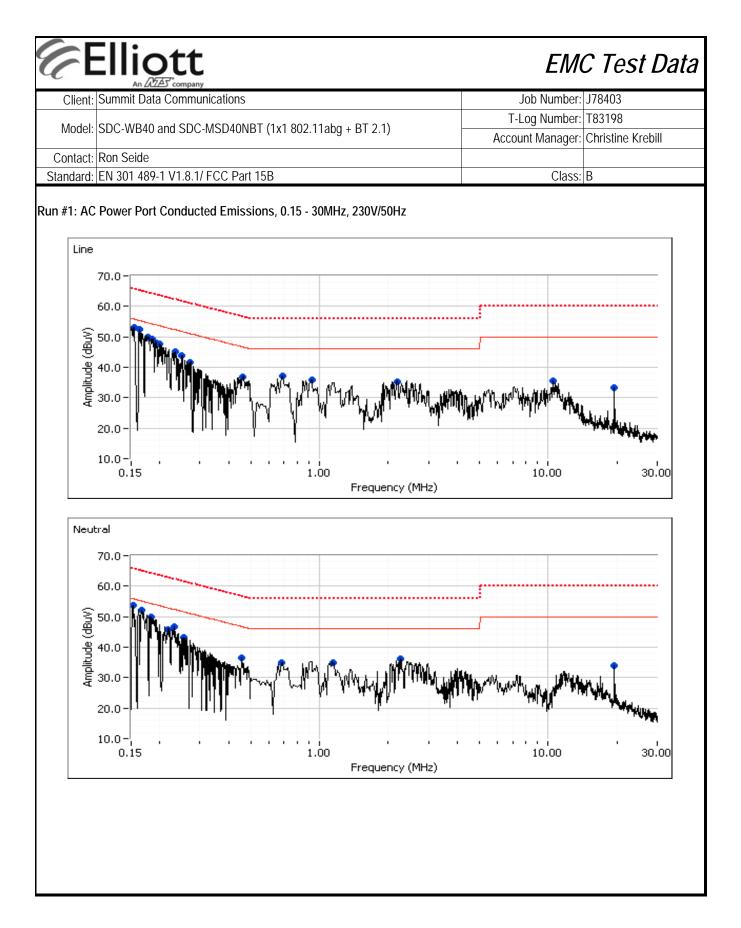
Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80880 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.E/RSS-210 Class: N/A Run #4c: EUT on Channel #116 5580MHz - Receive, Chain A Spurious Radiated Emissions: **RSS-GEN** Frequency Level Pol Detector Azimuth Height Comments MHz Margin Pk/QP/Avg dBµV/m v/h Limit degrees meters 2994.670 46.2 V 54.0 -7.8 AVG 180 1.0 RB 1 MHz;VB 10 Hz;Pk V -22.9 2994.730 51.1 74.0 РΚ 180 1.0 RB 1 MHz;VB 3 MHz;Pk V 1188.870 40.5 54.0 -13.5 AVG 3 1.0 RB 1 MHz; VB 10 Hz; Pk 43.6 V 74.0 -30.4 ΡK RB 1 MHz;VB 3 MHz;Pk 1188.200 3 1.0 1717.330 39.3 V 54.0 -14.7 AVG 140 1.0 RB 1 MHz;VB 10 Hz;Pk V -29.7 ΡK 1717.250 74.0 140 1.0 RB 1 MHz;VB 3 MHz;Pk 44.3 80.0 70.0 Amplitude (dBuV/m) 60.0 50.0 40.0 30.0 20.0 -¦ 18000 1000 10000 Frequency (MHz)

EMC Test Data

All DLL	Company		
Client:	Summit Data Communications	Job Number:	J78403
Model:	SDC-WB40 and SDC-MSD40NBT (1x1 802.11abg +	T-Log Number:	T83198
	BT 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		-
Emissions Standard(s):	EN 301 489-1 V1.8.1/ FCC Part 15B	Class:	В
Immunity Standard(s):	EN 301 489-1 V1.8.1	Environment:	-

EMC Test Data

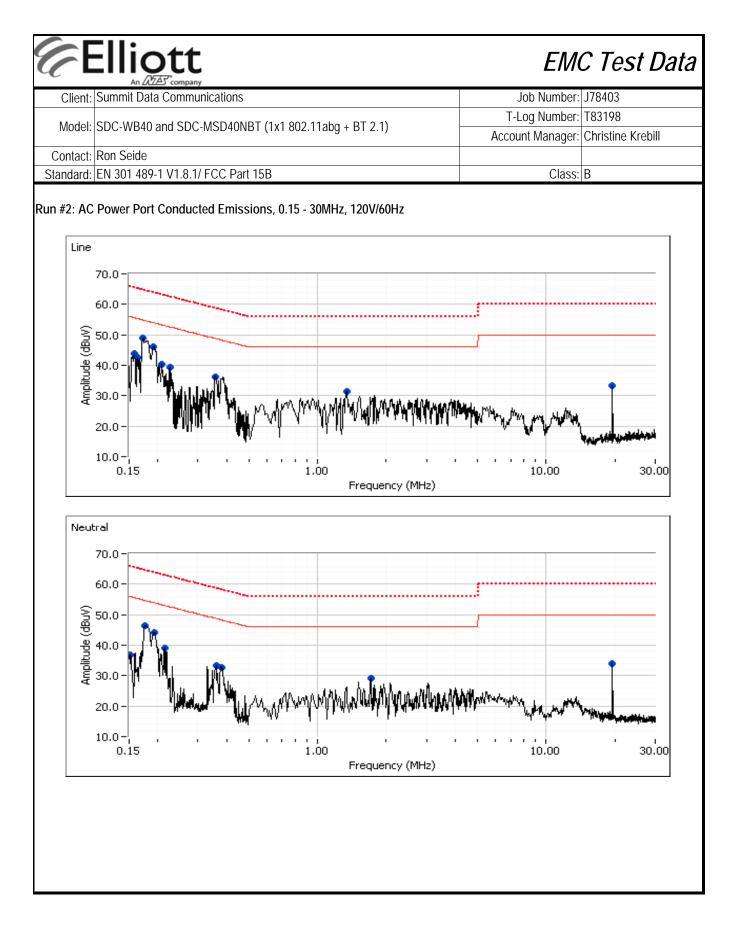
For The


Summit Data Communications

Model

SDC-WB40 and SDC-MSD40NBT (1x1 802.11abg + BT 2.1)

Date of Last Test: 12/16/2011


Ellic				EM	C Test Data
Client: Summit Data				Job Number:	J78403
Model: SDC-WB40	and SDC-MSD40NBT (1x1 802.11abg +	BT 2.1)		Log Number:	
		2.2,	Acco	unt Manager:	Christine Krebill
Contact: Ron Seide Standard: EN 301 489-	1 V1.8.1/ FCC Part 15B			Class:	В
	Conduct (Elliott Laboratories Fremon	ed Emissions t Facility, Semi-And		ber)	
	S The objective of this test session is to pe specification listed above.	erform final qualificat	tion testing of t	he EUT with I	respect to the
Date of Test: Test Engineer:	12/16/2011	Config. Use Config Chang Host Unit Volta	ge: none	z & 230V / 50	Hz
	he EUT host system was located on a w from the LISN. The EUT was transmitti : Temperature:				40 cm from a vertical
Summary of Result	Rel. Humidity: S	33 %			
Run #	Test Performed	Limit	Result	Margin	
1	CE, AC Power, 230V/50Hz	Class B	Pass	<u> </u>	₽ 0.687MHz (-15.0dB)
	CE, AC Power, 120V/60Hz	Class B	Pass	31.9dBuV @	
2 Modifications Made			1		≥ 17.50 IWITZ (*10. IUD,

		a Communica	ations				Job Number:	178403
Client	Summit Dat		alions					
Model:	SDC-WB40	and SDC-MS	SD40NBT (1	x1 802.11ab	g + BT 2.1)		T-Log Number:	
					· ·		Account Manager:	Christine Krebill
	Ron Seide							
Standard:	EN 301 489	-1 V1.8.1/ FC	C Part 15B				Class:	В
						s. average limi	t)	
Frequency	Level	AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.153	53.0	Line	55.8	-2.8	Peak			
0.163	52.3	Line	55.3	-3.0	Peak			
0.178	49.8	Line	54.6	-4.8	Peak			
0.185	49.1	Line	54.3 53.9	-5.2	Peak			
0.195	48.1 47.6	Line Line	53.9	-5.8 -6.0	Peak Peak			
0.202	47.0	Line	52.3	-0.0	Peak			
0.234	43.1	Line	52.5 51.7	-7.2	Peak			
0.230	43.9	Line	46.0	-7.8	Peak			
0.271	41.5	Line	51.1	-9.6	Peak			
0.464	36.9	Line	46.6	-9.7	Peak			
0.916	35.9	Line	46.0	-10.1	Peak			
2.173	35.2	Line	46.0	-10.8	Peak			
10.533	35.6	Line	50.0	-14.4	Peak			
19.501	33.3	Line	50.0	-16.7	Peak			
0.153	53.7	Neutral	55.8	-2.1	Peak			
0.167	52.1	Neutral	55.1	-3.0	Peak			
0.185	49.8	Neutral	54.3	-4.5	Peak			
0.232	46.7	Neutral	52.4	-5.7	Peak			
0.217	45.8	Neutral	52.9	-7.1	Peak			
0.255	43.2	Neutral	51.6	-8.4	Peak			
2.279	36.3	Neutral	46.0	-9.7	Peak			
0.458	36.6	Neutral	46.7	-10.1	Peak			
0.685	35.0	Neutral	46.0	-11.0	Peak			
1.141	34.8	Neutral	46.0	-11.2	Peak			
19.502	34.0	Neutral	50.0	-16.0	Peak			

7		Dtt					EM	C Test D
Client:	Summit Dat	a Company	ations				Job Number:	J78403
							T-Log Number:	
Model:	SDC-WB40	and SDC-MS	5D40NBT (1)	k1 802.11ab	g + BT 2.1)		Account Manager:	
Contact:	Ron Seide						g	
		-1 V1.8.1/ FC	C Part 15B				Class:	В
	1							I
nal quasi	i-peak and a	verage readi	ngs					
requency	Level	AC	Clas	ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
0.153	17.5	Line	55.8	-38.3	AVG			
0.153	46.1	Line	65.8	-19.7	QP			
0.163	16.8	Line	55.3	-38.5	AVG			
0.163	44.7	Line	65.3	-20.6	QP			
0.178	16.1	Line	54.6	-38.5	AVG			
0.178	42.8	Line	64.6	-21.8	QP			
0.185	15.9	Line	54.3	-38.4	AVG			
0.185	41.8	Line	64.3	-22.5	QP			
0.195	15.7	Line	53.8	-38.1	AVG			
0.195	40.8	Line	63.8	-23.0	QP			
0.202	15.4	Line	53.5	-38.1	AVG			
0.202	40.1	Line	63.5	-23.4	QP			
0.687	31.0	Line	46.0	-15.0	AVG			
0.687	36.5	Line	56.0	-19.5	QP			
0.463	25.5	Line	46.6	-21.1	AVG			
0.463	34.1	Line	56.6	-22.5	QP			
0.916	28.9	Line	46.0	-17.1	AVG			
0.916	34.9	Line	56.0	-21.1	QP			
2.173	7.9	Line	46.0	-38.1	AVG			
2.173	33.6	Line	56.0	-22.4	QP			
10.533	20.5	Line	50.0	-29.5	AVG			
10.533	30.6	Line	60.0	-29.4	QP			
19.501	31.1	Line	50.0	-18.9	AVG			
19.501	32.0	Line	60.0	-28.0	QP			
0.153	17.6	Neutral	55.8	-38.2	AVG			
0.153	46.2	Neutral	65.8	-19.6	QP			
0.167	16.5	Neutral	55.1	-38.6	AVG			
0.167	44.3	Neutral	65.1	-20.8	QP			
0.185	15.8	Neutral	54.3	-38.5	AVG QP			
0.185	42.1	Neutral	64.3	-22.2				
0.232	21.4	Neutral	52.4 62.4	-31.0	AVG QP			
0.232 0.216	37.5	Neutral	62.4	-24.9	AVG			
0.216	14.6 39.2	Neutral	53.0 63.0	-38.4	QP			
	1	Neutral	46.0	-23.8	AVG			
<u>2.279</u> 2.279	25.1 32.6	Neutral Neutral	<u>46.0</u> 56.0	-20.9 -23.4	QP			
0.458	28.8	Neutral	46.7	-23.4 -17.9	AVG			
	L 20.0	INCUIIDI	40.7	-17.7	AVG			

	ummit Dat		ations				Job Number:	178/03
Model: SI							T-Log Number:	
	DC-WB40	and SDC-MS	D40NBT (1)	k1 802.11abq	g + BT 2.1)		Account Manager:	
Contact: Ro	Pon Soido						Account Manager.	
		-1 V1.8.1/ FC	C Dart 15R				Class:	B
Statiualu. Li	.11 301 407	-1 V1.0.1/10					Class.	D
requency	Level	AC	Cla	ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	oominionto		
0.685	29.4	Neutral	46.0	-16.6	AVG			
0.685	34.8	Neutral	56.0	-21.2	QP			
1.141	27.7	Neutral	46.0	-18.3	AVG			
1.141	34.5	Neutral	56.0	-21.5	QP			
19.502	30.2	Neutral	50.0	-19.8	AVG			
19.502	31.3	Neutral	60.0	-28.7	QP			

	ebill
Model: SDC-WB40 and SDC-MSD40NB1 (1x1 802.11abg + B1 2.1) Account Manager: Christine Ki Contact: Ron Seide Class: B Standard: EN 301 489-1 V1.8.1/ FCC Part 15B Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class: B Prequency Level AC Class B Detector Comments MHz dBµV Line Limit Margin QP/Ave	ebill
Contact: Ron Seide Account Manager: Christine Ki Standard: EN 301 489-1 V1.8.1/ FCC Part 15B Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class: B Preliminary peak readings captured during pre-scan (peak readings vs. average limit) Class: B Preliminary dBµV Line Limit Margin QP/Ave 0.173 48.8 Line 54.8 -6.0 Peak 0.190 46.2 Line 53.9 -7.7 Peak 0.158 43.8 Line 55.5 -11.7 Peak 0.357 36.3 Line 48.8 -12.5 Peak	ebill
Standard: EN 301 489-1 V1.8.1/ FCC Part 15BClass: BClass: BClass: BPreliminary peak readings captured during pre-scan (peak readings vs. average limit)FrequencyLevelACClass BDetectorCommentsMHzdBµVLineLimitMarginQP/AveClassClass0.17348.8Line54.8-6.0Peak	
Preliminary peak readings captured during pre-scan (peak readings vs. average limit)FrequencyLevelACClass BDetectorCommentsMHzdBμVLineLimitMarginQP/AveQP/Ave0.17348.8Line54.8-6.0Peak0.19046.2Line53.9-7.7Peak0.15843.8Line55.5-11.7Peak0.35736.3Line48.8-12.5Peak	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
MHz dBμV Line Limit Margin QP/Ave 0.173 48.8 Line 54.8 -6.0 Peak 0.190 46.2 Line 53.9 -7.7 Peak 0.158 43.8 Line 55.5 -11.7 Peak 0.357 36.3 Line 48.8 -12.5 Peak	
0.173 48.8 Line 54.8 -6.0 Peak 0.190 46.2 Line 53.9 -7.7 Peak 0.158 43.8 Line 55.5 -11.7 Peak 0.357 36.3 Line 48.8 -12.5 Peak	
0.190 46.2 Line 53.9 -7.7 Peak 0.158 43.8 Line 55.5 -11.7 Peak 0.357 36.3 Line 48.8 -12.5 Peak	
0.158 43.8 Line 55.5 -11.7 Peak 0.357 36.3 Line 48.8 -12.5 Peak	
0.357 36.3 Line 48.8 -12.5 Peak	
0.208 40.4 Line 53.3 -12.9 Peak	
0.225 39.3 Line 52.6 -13.3 Peak	
1.337 31.4 Line 46.0 -14.6 Peak	
19.502 33.2 Line 50.0 -16.8 Peak	
0.176 46.4 Neutral 54.7 -8.3 Peak	
0.192 44.0 Neutral 53.9 -9.9 Peak	
0.213 39.1 Neutral 53.0 -13.9 Peak	
0.379 32.8 Neutral 48.3 -15.5 Peak	
0.360 33.2 Neutral 48.7 -15.5 Peak	
19.501 34.0 Neutral 50.0 -16.0 Peak	
1.717 29.2 Neutral 46.0 -16.8 Peak	
0.152 36.9 Neutral 55.9 -19.0 Peak	

0		Company					1.1 51 1	170400
Client	Summit Dat	a Communica	ations				Job Number:	
Model	SDC-WB40	and SDC-MS	D40NBT (1)	x1 802.11ab	g + BT 2.1)		T-Log Number:	
					g · _ · _ · · ,		Account Manager:	Christine Krebill
	Ron Seide							
Standard	EN 301 489	-1 V1.8.1/ FC	C Part 15B				Class:	В
requency	-	verage readi AC	<u> </u>	ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	Comments		
0.173	14.0	Line	54.8	-40.8	AVG			
0.173	44.3	Line	64.8	-20.5	QP			
0.190	33.5	Line	54.0	-20.5	AVG			
0.190	44.4	Line	64.0	-19.6	QP			
0.158	12.7	Line	55.6	-42.9	AVG			
0.158	31.5	Line	65.6	-34.1	QP			
0.357	10.7	Line	48.8	-38.1	AVG			
0.357	32.2	Line	58.8	-26.6	QP			
0.164	14.3	Line	55.3	-41.0	AVG			
0.164	41.0	Line	65.3	-24.3	QP			
0.208	16.0	Line	53.3	-37.3	AVG			
0.208	34.6	Line	63.3	-28.7	QP			
0.225	11.7	Line	52.6	-40.9	AVG			
0.225	23.9	Line	62.6	-38.7	QP			
1.337	21.3	Line	46.0	-24.7	AVG			
1.337	29.5	Line	56.0	-26.5	QP			
19.502	29.8	Line	50.0	-20.2	AVG			
19.502	30.4	Line	60.0	-29.6	QP			
0.176	16.4	Neutral	54.7	-38.3	AVG			
0.176	44.4	Neutral	64.7	-20.3	QP			
0.192	27.9	Neutral	53.9	-26.0	AVG			
0.192	42.6 12.2	Neutral	63.9 52.1	-21.3	QP AVG			
0.213	33.1	Neutral	53.1 63.1	-40.9 -30.0	AVG QP			
0.213	23.7	Neutral Neutral	63.1 48.3	-30.0	AVG			
0.379	30.7	Neutral	48.3 58.3	-24.6	QP			
0.379	17.3	Neutral	48.7	-27.0	AVG			
0.360	29.3	Neutral	58.7	-29.4	QP			
19.501	31.9	Neutral	50.0	-29.4	AVG			
19.501	32.6	Neutral	60.0	-27.4	QP			
1.717	10.7	Neutral	46.0	-35.3	AVG			
1.717	18.8	Neutral	56.0	-37.2	QP			
0.152	11.4	Neutral	55.9	-44.5	AVG			
0.152	30.6	Neutral	65.9	-35.3	QP	1		

End of Report

This page is intentionally blank and marks the last page of this test report.