

EMC Test Report Application for Grant of Equipment Authorization Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Model: SDC-WB40NBT

IC CERTIFICATION #: 6616A-SDCWB40NBT FCC ID: TWG-SDCWB40NBT

> APPLICANT: Summit Data Communications 526 South Main St. Suite 805 Akron, OH 44311

TEST SITE(S): Elliott Laboratories 41039 Boyce Road. Fremont, CA. 94538-2435

IC SITE REGISTRATION #: REPORT DATE: FINAL TEST DATES: 2845B-3; 2845B-4, 2845B-5, 2845B-7

February 15, 2012

October 19, 20 and 21 and November 19 and 24, 2010 and May 11, August 2, 4, 10, 12, 13, 16, 17, 18 19, 20, 23, 24, 26 and October 6, 7, 19, 20 and 26 and November 3, 4, 7, 8, 9, 15, 2011

TOTAL NUMBER OF PAGES:

144

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill

Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	2-15-2012	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	6
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHZ)	7
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	8
MEASUREMENT UNCERTAINTIES	9
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL.	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	10
MODIFICATIONS	
SUPPORT EQUIPMENT	11
EUT INTERFACE PORTS	
EUT OPERATION	11
TEST SITE	12
GENERAL INFORMATION	12
CONDUCTED EMISSIONS CONSIDERATIONS	12
RADIATED EMISSIONS CONSIDERATIONS	12
MEASUREMENT INSTRUMENTATION	13
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	14
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	14
INSTRUMENT CALIBRATION	14
TEST PROCEDURES	15
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	28
END OF REPORT	144

SCOPE

An electromagnetic emissions test has been performed on the Summit Data Communications model SDC-WB40NBT, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074 D01, Dated 1/18/2012

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Summit Data Communications model SDC-WB40NBT complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Summit Data Communications model SDC-WB40NBT and therefore apply only to the tested sample. The sample was selected and prepared by Ron Seide of Summit Data Communications.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11b: 9.0MHz 802.11g: 15.1MHz 802.11n20: 15.1MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11b: 15.2dBm (0.033 Watts) 802.11g: 12.6dBm (0.018 Watts) 802.11n20: 9.5dBm (0.009W) EIRP = 0.066 W ^{Note 1}	1 Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11b: -5.3dBm/3kHz 802.11g: -11.8dBm/3kHz 802.11n20: -14.4dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All spurious emissions < -30dBc	< -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.9dBµV/m @ 2497.6MHz (-0.1dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	802.11a: 15.0MHz 802.11n20: 16.8MHz	>500kHz	Complies
15.247 (b)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11a: 7.9dBm (0.006 Watts) 802.11n20: 10.6dBm (0.012 Watts) EIRP = 0.052 W ^{Note 1}	1 Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	802.11a: -11.8dBm/3kHz 802.11n20: -10.2dBm/3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -30dBc	< -30dBc ^{Note 2}	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	53.8dBµV/m @ 11608.7MHz (-0.2dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies
Note 2: Limit		because the power was r	for the highest EIRP syst neasured using the UNII		m power

DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	EUT uses u.FL connectors	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	32.7dBµV @ 0.457MHz (-14.1dB)	Refer to page 19	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	49.0dBµV/m @ 2994.7MHz (-5.0dB)	Refer to page 20	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11b: 12.8MHz 802.11g: 16.7MHz 2.4GHz, 802.11n20: 17.9MHz 802.11a: 16.9MHz 5GHz, 802.11n20: 18.2MHz	Information only	N/A

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	$\pm 0.52 \text{ dB}$
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of transmitter	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Conducted emission of receiver	dBm	25 to 26500 MHz	$\pm 0.7 \text{ dB}$
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz 1000 to 40000 MHz	$\frac{\pm 3.6 \text{ dB}}{\pm 6.0 \text{ dB}}$
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Summit Data Communications model SDC-WB40NBT is an 802.11abgn 1x1 with Bluetooth 2.1 module.

The sample was received on October 19, 2010 and tested on October 19, 20 and 21 and November 19 and 24, 2010 and May 11, August 2, 4, 10, 12, 13, 16, 17, 18 19, 20, 23, 24, 26 and October 6, 7, 19, 20 and 26 and November 3, 4, 7, 8, 9, 15, 2011. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Summit	SDC-	802.11abgn 1x	Prototype	TWG-
	WB40NBT	with BT		SDCWB40NBT

OTHER EUT DETAILS

The EUT supports single transmit chain operation. The EUT supports 20MHz operation only.

ANTENNA SYSTEM

Monopole Antenna - 2.4 and 5GHz bands - Huber+Suhner, SOA 2459/360/5/0/V_C, 3dBi (2.4GHz), 6.5dBi (5GHz)

Dipole Antenna #1 - 2.4 and 5GHz bands - Larsen, R380.500.314, 1.6dBi (2.4GHz), 5dBi (5GHz)

Dipole Antenna #2 - 2.4 GHz only - Cisco Air-Ant 4941 2dBi(2.4GHz)

Magnetic Dipole - 2.4GHz and 5GHz bands - Ethertronics, 2.5dBi (2.4GHz), 5dBi (5GHz)

In the 2.4GHz range, the Huber+Suhner (H&S), Cisco and Ethertronics antennas were tested as they represented the highest gain antennas of each available type.

In the 5GHz range, the H&S, Larsen, and Ethertronics antennas were tested as the represented the highest gain antennas of each available type.

The antenna connects to the EUT via a non-standard u.FL antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Lenovo	Inspiron 1545	Laptop Computer	953R2K1	DoC
		(Note 1)		
GME	GFP181U-A330	AC/DC Adapter	1005-000194	-
		(Note 2)		
-	-	Battery Pack	-	-
		(Note 3)		

Note 1 - Used to configure the EUT and then disconnected prior to testing

Note 2 – Used for AC conducted emissions only

Note 3 – Used for radiated spurious emissions tests

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Polt	То	Description	Shielded or Unshielded	Length(m)
AC/DC Adapter – DC out	WB40	2wire	Unshielded	1.5m
Battery Pack	WB40	2wire	Unshielded	0.1m

EUT OPERATION

During testing, the EUT was configured to transmit continuously at the lowest data rate for the mode as this resulted in the highest output power.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont,
Chamber 7	A2LA	2845B-7	CA 94538-2435
Chamber /	accreditation	2043D-/	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

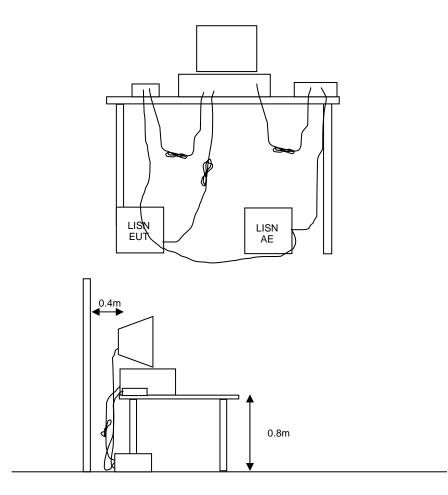
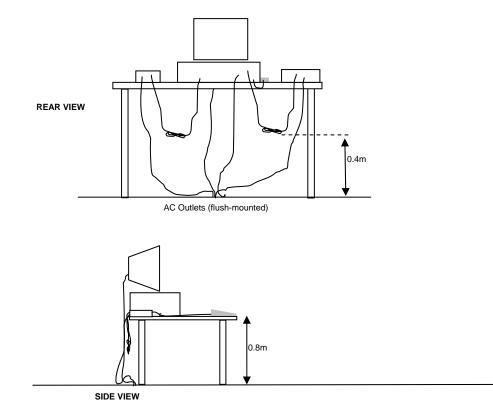
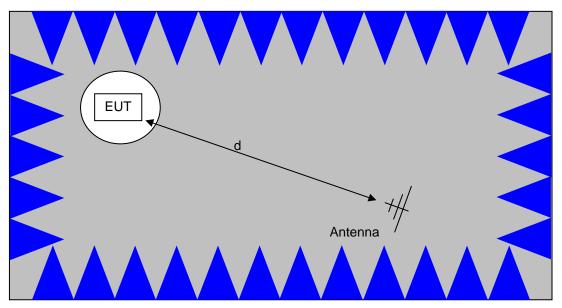


Figure 1 Typical Conducted Emissions Test Configuration

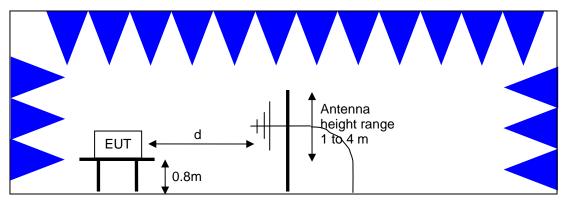

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

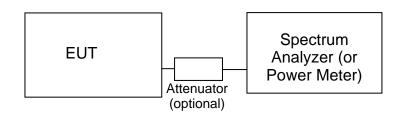
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = 1000000 \sqrt{30 P}$ microvolts per meter

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radiated Emissions, 2	1000 - 26,500 MHz, 19-Oct-10			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/26/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
TX Spurious Emissior	ns, 20-Oct-10			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/26/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	Head (Inc W1-W4, 1143, 2198) Red	84125C	1145	1/13/2011
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
A.H. Systems	Spare System Horn, 18-40GHz	SAS-574, p/n: 2581	2162	1/19/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2249	10/11/2011
Radio (Radiated BE), 2	21-Oct-10			
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	11/10/2010
Rohde & Schwarz	Power Sensor 100 uW - 10 Watts	NRV-Z53	1555	2/5/2011
Rohde & Schwarz	Attenuator, 20 dB , 50 ohm, 10W, DC-18 GHz	20dB, 10W, Type N	1556	2/5/2011
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	1771	8/26/2011
Radiated Emissions, 2	1000 - 26,500 MHz, 11-May-11			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	5/26/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/21/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	5/14/2011
Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue	84125C	1620	5/9/2012
A.H. Systems	Blue System Horn, 18-40GHz	SAS-574, p/n: 2581	2159	3/23/2012
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2249	10/11/2011

	1000 - 26,000 MHz, 02-Aug-11			
<u>Manufacturer</u> Hewlett Packard	Description Microwave Preamplifier, 1-	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 12/8/2011
	26.5GHz		200	
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	2/17/2012
Hewlett Packard	SpecÁn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/12/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	1683	8/10/2011
A.H. Systems	Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	2/9/2012
	30 - 26,500 MHz, 10-Aug-11			
Manufacturer	Description Microwaya Dreamplifier 1	<u>Model</u> 8449B	<u>Asset #</u>	<u>Cal Due</u> 12/8/2011
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	0449D	263	12/0/2011
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/12/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2238	10/1/2011
Radiated Emissions,	30 - 40,000MHz, 19-Aug-11			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/12/2011
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	10/1/2011
Padiated Spurious Fr	nissions, 1 - 26.5 GHz, 19-Aug-11			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-	8449B	263	12/8/2011
EMCO	26.5GHz Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Micro-Tronics	Band Reject Filter, 2400-2500	BRM50702-02	2238	10/1/2011
	MHz			
Radiated Emissions,	1000 - 18,000 MHz, 20-Aug-11			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Micro-Tronics	Band Reject Filter, 2400-2500	BRM50702-02	2238	10/1/2011
	MHz		o	
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	2415	7/28/2012
	Purple			

	1000 - 26,500 MHz, 23-Aug-11			
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	Asset # 785	<u>Cal Due</u> 5/18/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	8/9/2012
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Head (Inc W1-W4, 1742 , 1743) Blue	3115 84125C	1561 1620	6/22/2012 5/9/2012
A.H. Systems Micro-Tronics	Blue System Horn, 18-40GHz Band Reject Filter, 2400-2500 MHz	SAS-574, p/n: 2581 BRM50702-02	2159 2249	3/23/2012 10/11/2011
Radio Antenna Port (I <u>Manufacturer</u> Hewlett Packard	Power and Spurious Emissions), 2 <u>Description</u> SpecAn 9 kHz - 40 GHz, (SA40) Purple	23-Aug-11 <u>Model</u> 8564E (84125C)	<u>Asset #</u> 2415	<u>Cal Due</u> 7/28/2012
Radio Antenna Port (I <u>Manufacturer</u> Hewlett Packard	Power and Spurious Emissions), 2 <u>Description</u> SpecAn 9 kHz - 40 GHz, FT (SA40) Plue	24-Aug-11 <u>Model</u> 8564E (84125C)	<u>Asset #</u> 1393	<u>Cal Due</u> 8/9/2012
Rohde & Schwarz	(SA40) Blue EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	11/2/2011
	1000 - 26,500 MHz, 03-Nov-11	N - 1 - 1	A 1 //	
<u>Manufacturer</u> Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 12/8/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	(SA40-Red) SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
Radio Antenna Port (I <u>Manufacturer</u> Hewlett Packard	Power and Spurious Emissions), (Description SpecAn 30 Hz -40 GHz, SV (SA40) Pod	04-Nov-11 <u>Model</u> 8564E (84125C)	<u>Asset #</u> 1148	<u>Cal Due</u> 8/15/2012
Radiated Spurious Er <u>Manufacturer</u> Hewlett Packard	(SA40) Red nissions, 1000 - 18,000 MHz, 04-N <u>Description</u> Microwave Preamplifier, 1-	ov-11 <u>Model</u> 8449B	<u>Asset #</u> 785	<u>Cal Due</u> 5/18/2012
Hewlett Packard	26.5GHz SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	8/9/2012
EMCO Micro-Tronics	Antenna, Horn, 1-18 GHz Band Reject Filter, 5725-5875 MHz	3115 BRC50705-02	1561 2241	6/22/2012 10/4/2012
Radio Antenna Port (I <u>Manufacturer</u> Hewlett Packard	Power and Spurious Emissions), (<u>Description</u> SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	04-Nov-11 <u>Model</u> 8564E (84125C)	<u>Asset #</u> 1393	<u>Cal Due</u> 8/9/2012

	1000 - 18,000 MHz, 07-Nov-11		_	
Manufacturer	Description	<u>Model</u> HPF 180	<u>Asset #</u> 821	<u>Cal Due</u> 3/23/2012
Narda West EMCO	High Pass Filter, 8 GHz Antenna, Horn, 1-18 GHz	3115	o∠1 1386	3/23/2012 9/21/2012
Lineo	(SA40-Blu)	0110	1000	0,21,2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2012
Micro-Tronics	Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	10/4/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	7/28/2012
Radiated Emissions,	1000 - 40000MHz, 08-Nov-11			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	2/17/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
A.H. Systems	Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	2/9/2012
Radiated Emissions,	1000 - 40000MHz, 09-Nov-11			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	8/2/2012
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	2/17/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
A.H. Systems	Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	2/9/2012
Conducted Emissions <u>Manufacturer</u> EMCO	s - AC Power Ports, 16-Dec-11 <u>Description</u> LISN, 10 kHz-100 MHz, 25A	<u>Model</u> 3825/2	<u>Asset #</u> 1292	<u>Cal Due</u> 3/1/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	4/6/2012

Appendix B Test Data

T80878 Pages 29 – 134 T83198 Pages 135 - 143

Elliott

EMC Test Data

An UZA	5 company		
Client:	Summit Data Communications	Job Number:	J78403
Model:	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80878
		Account Manager:	Christine Krebill
Contact:	Ron Seide		-
Emissions Standard(s):	FCC 15.247/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Summit Data Communications

Model

SDC-WB40 (1x1 802.11abg + BT 2.1)

Date of Last Test:

Elliott

EMC Test Data

	An Dar company		
Client:	Summit Data Communications	Job Number:	J78403
Model:	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80878
	SDC-WD40 (1XT 602.11aby + DT 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		
Standard:	FCC 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

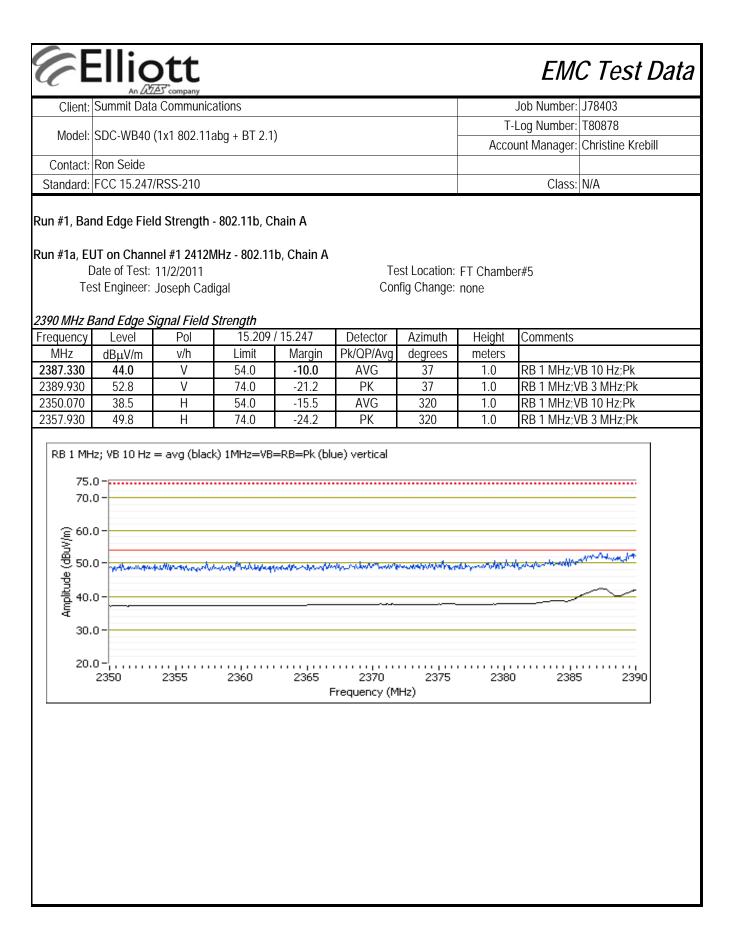
New Modul	e #2011-129	6, Laptop #2	2011-2312, L	Inux Shell			
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
Run #1	802.11b	#1 2412MHz	H&S	-	Restricted Band Edge at 2390 MHz	15.209	44.0dBµV/m @ 2387.3MHz (-10.0dB)
KUII#I	Chain A	#11 2462MHz	H&S	-	Restricted Band Edge at 2483.5 MHz	15.209	53.9dBµV/m @ 2497.6MHz (-0.1dB)
Run # 2	802.11g	#1 2412MHz	H&S	-	Restricted Band Edge at 2390 MHz	15.209	48.1dBµV/m @ 2390.0MHz (-5.9dB)
Ruii # 2	Chain A	#11 2462MHz	H&S	-	Restricted Band Edge at 2483.5 MHz	15.209	52.3dBµV/m @ 2483.5MHz (-1.7dB)
Run # 3	802.11n20	#1 2412MHz	H&S	-	Restricted Band Edge at 2390 MHz	15.209	47.9dBµV/m @ 2390.0MHz (-6.1dB)
ruii # 3	Chain A	#11 2462MHz	H&S	-	Restricted Band Edge at 2483.5 MHz	15.209	45.9dBµV/m @ 2483.5MHz (-8.1dB)

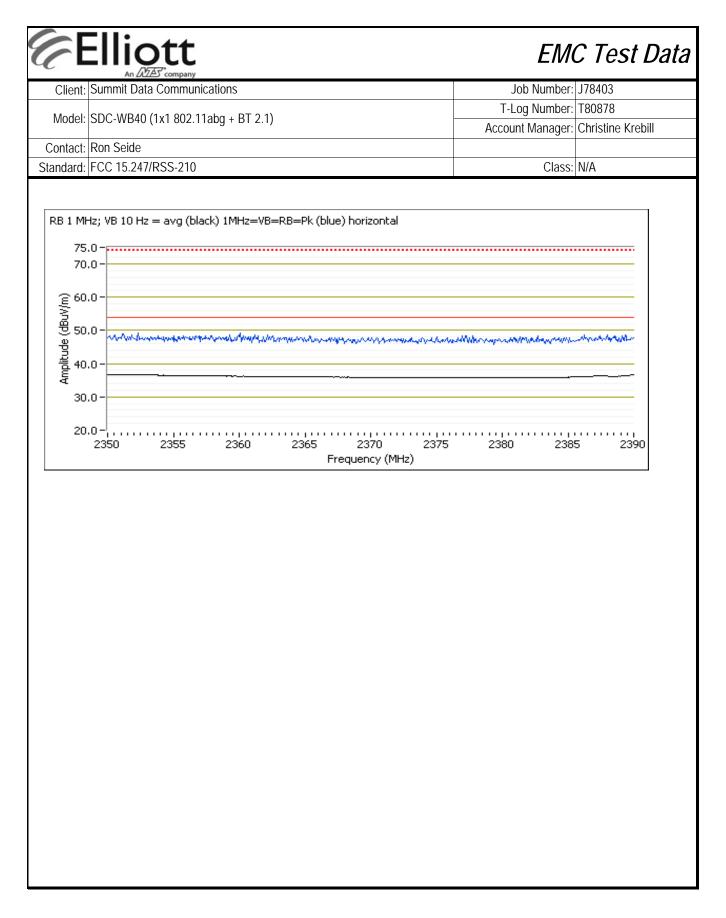
Test Specific Details

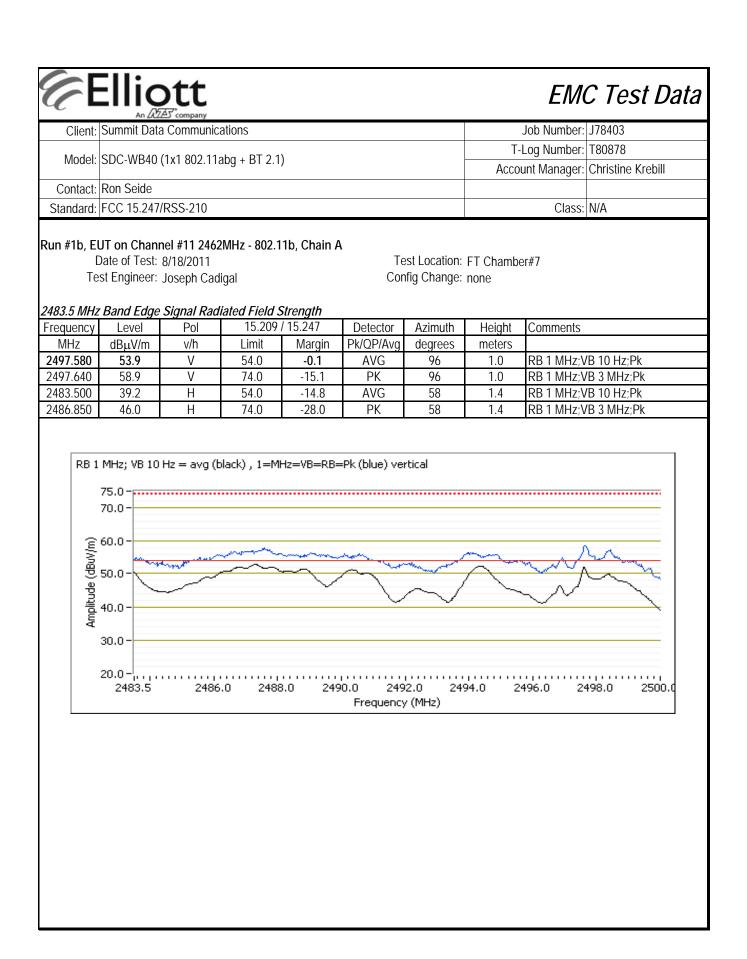
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

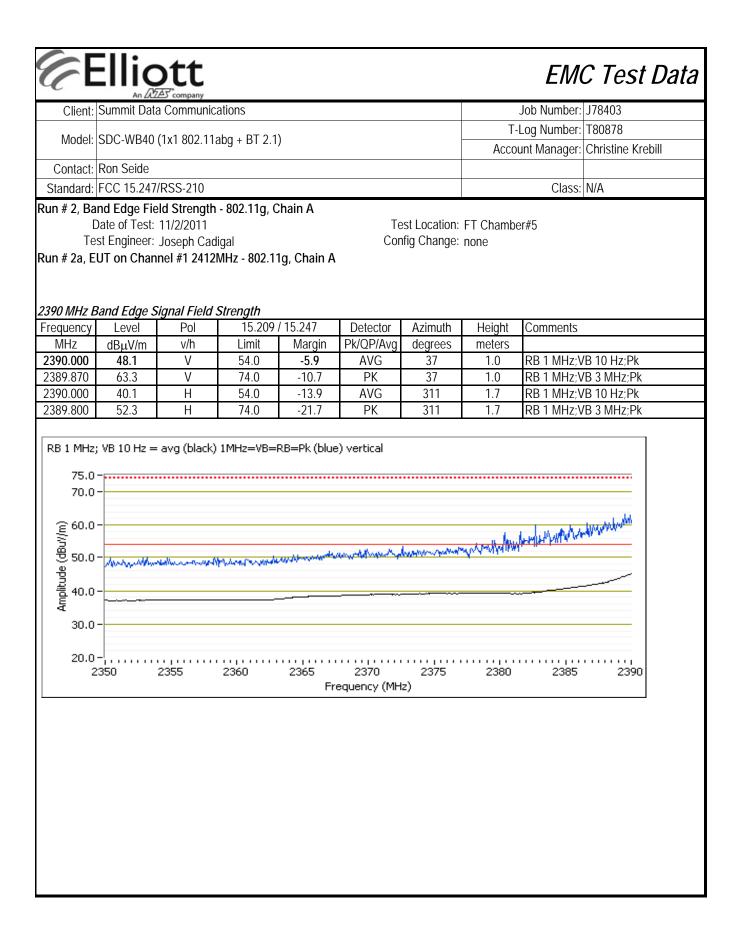
General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

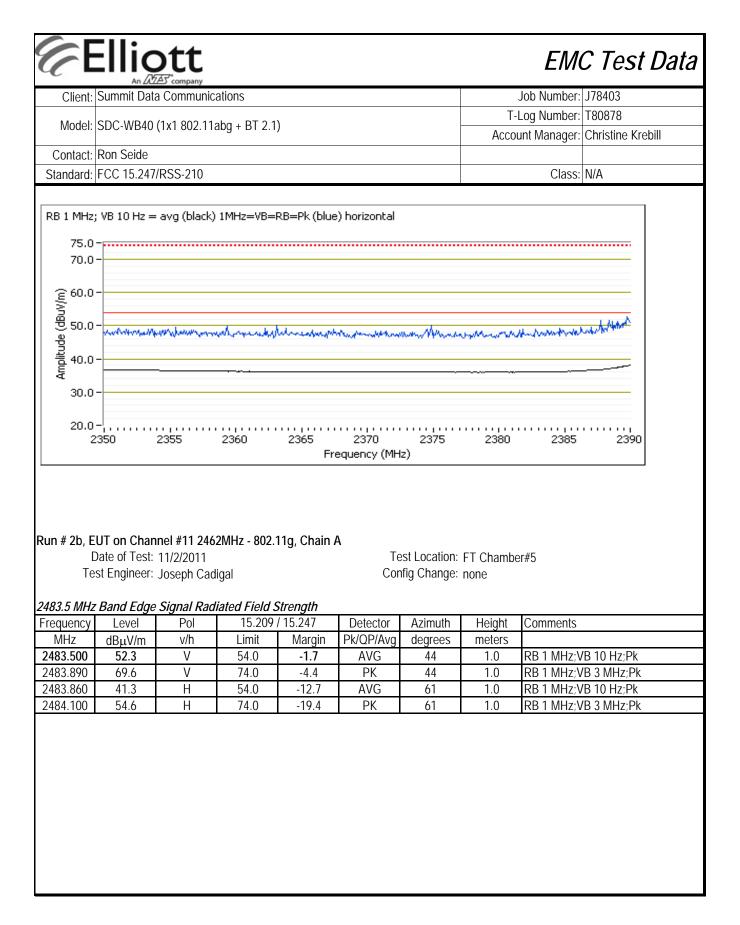

Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	40-50 %

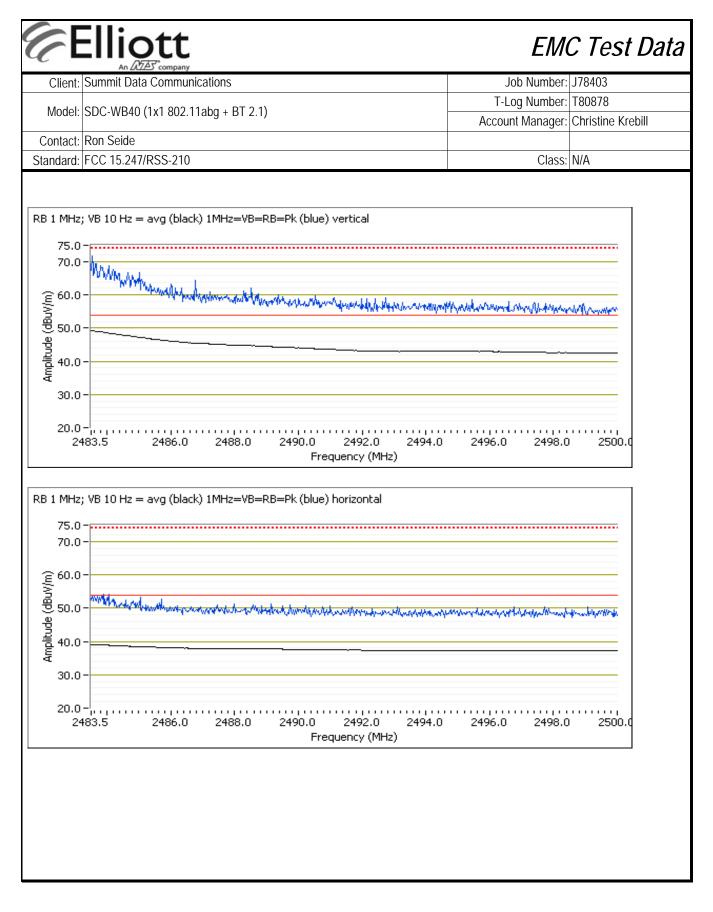

Modifications Made During Testing

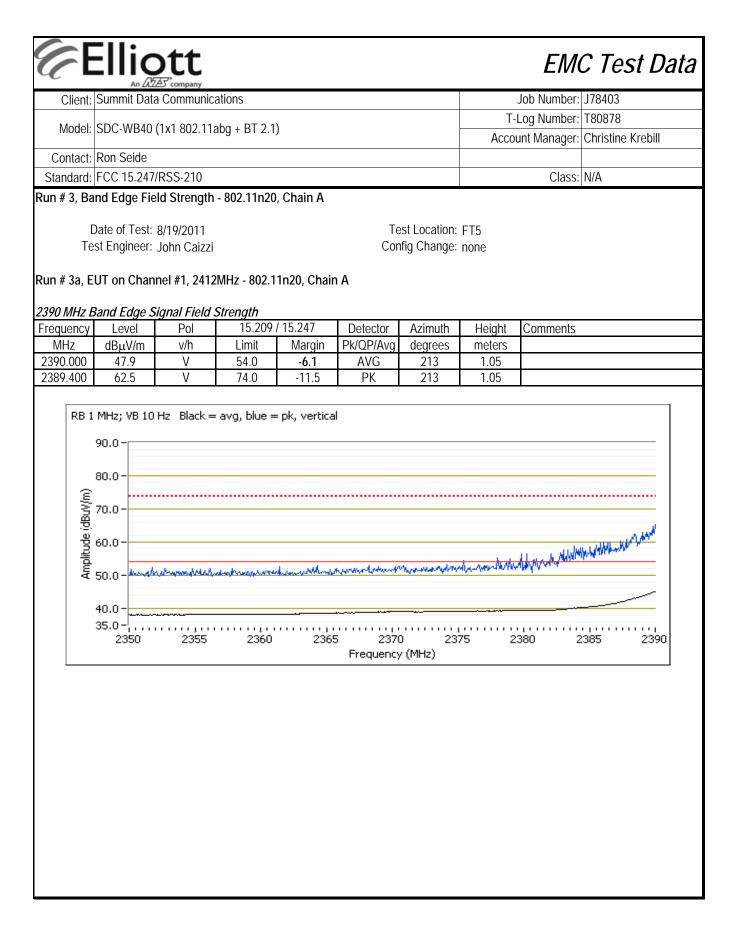

No modifications were made to the EUT during testing


Deviations From The Standard

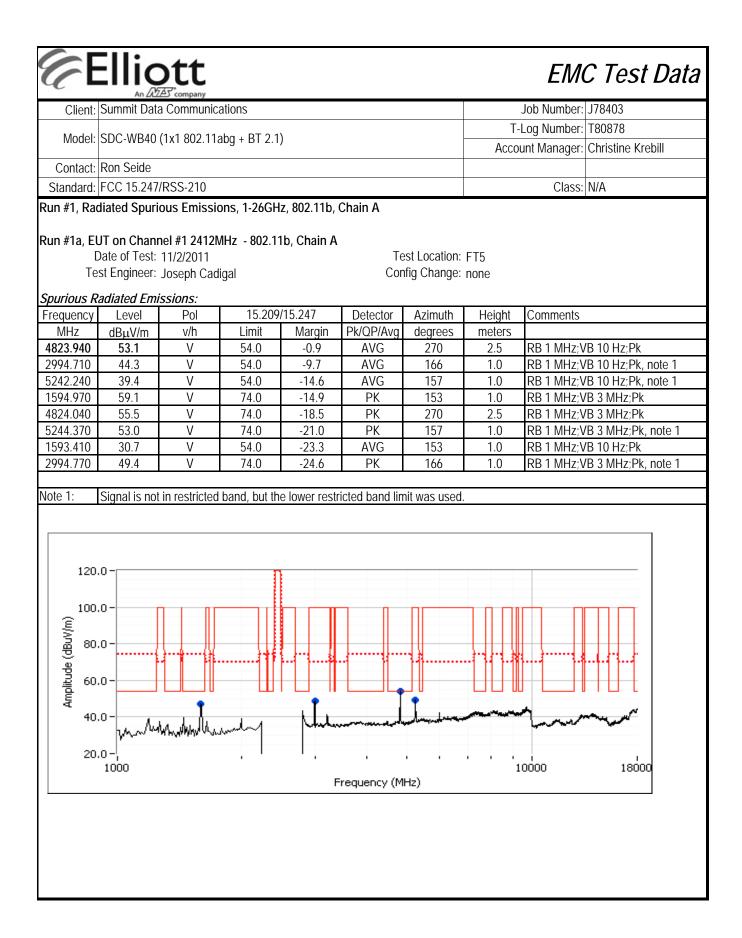
No deviations were made from the requirements of the standard.

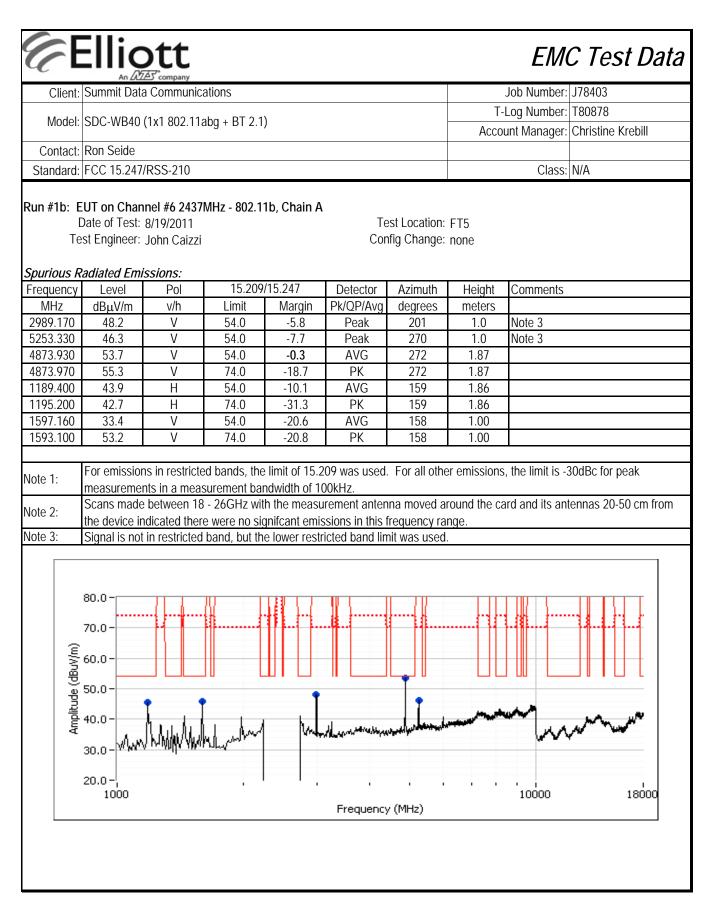




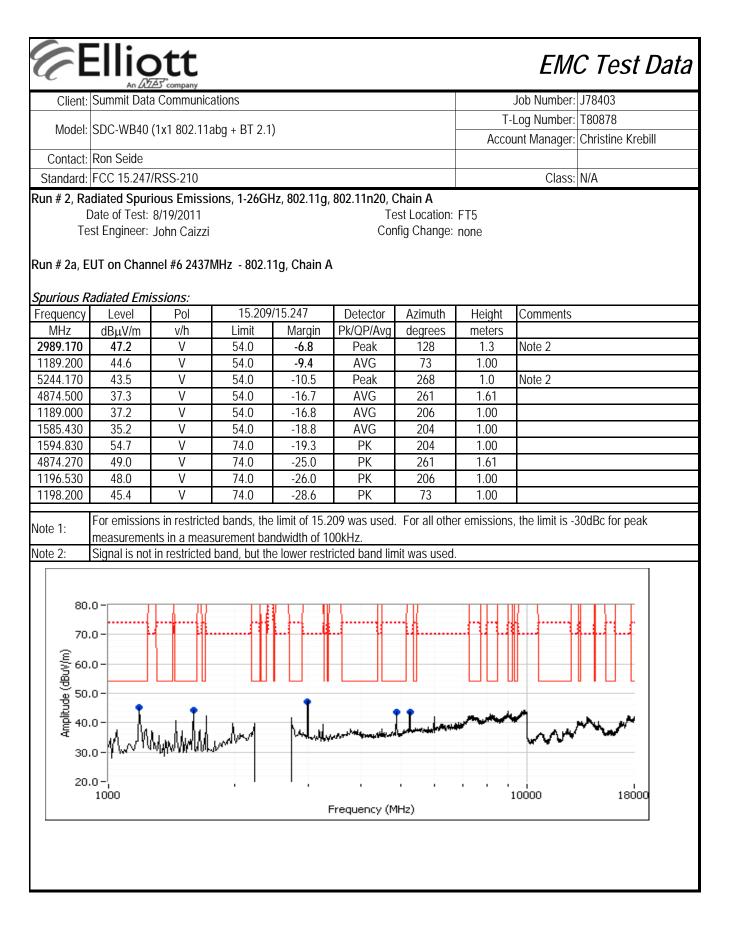


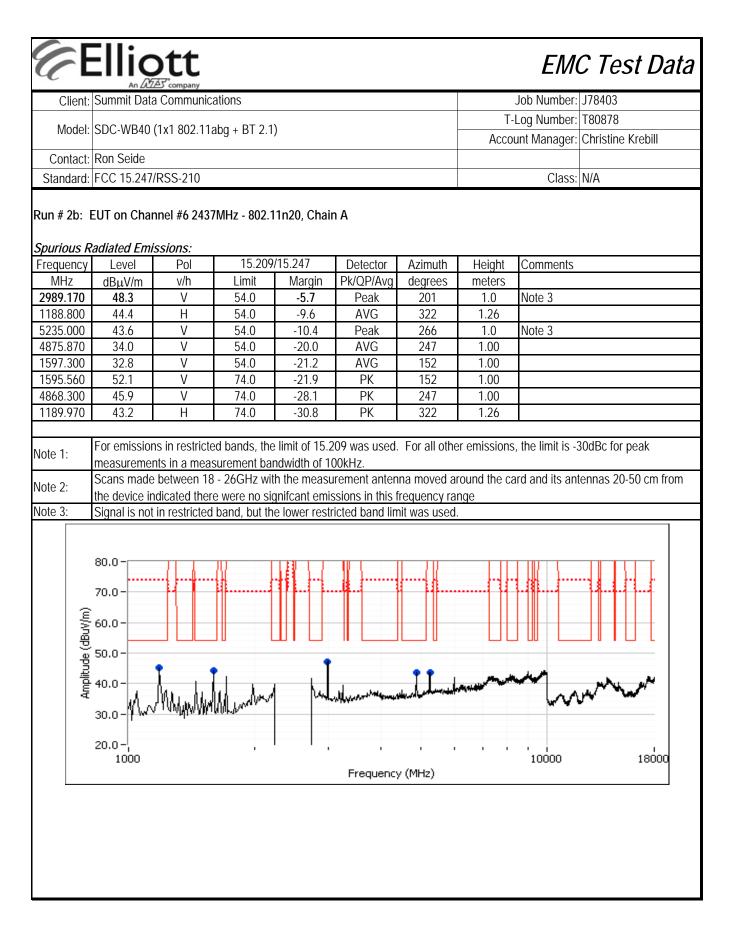
R85916

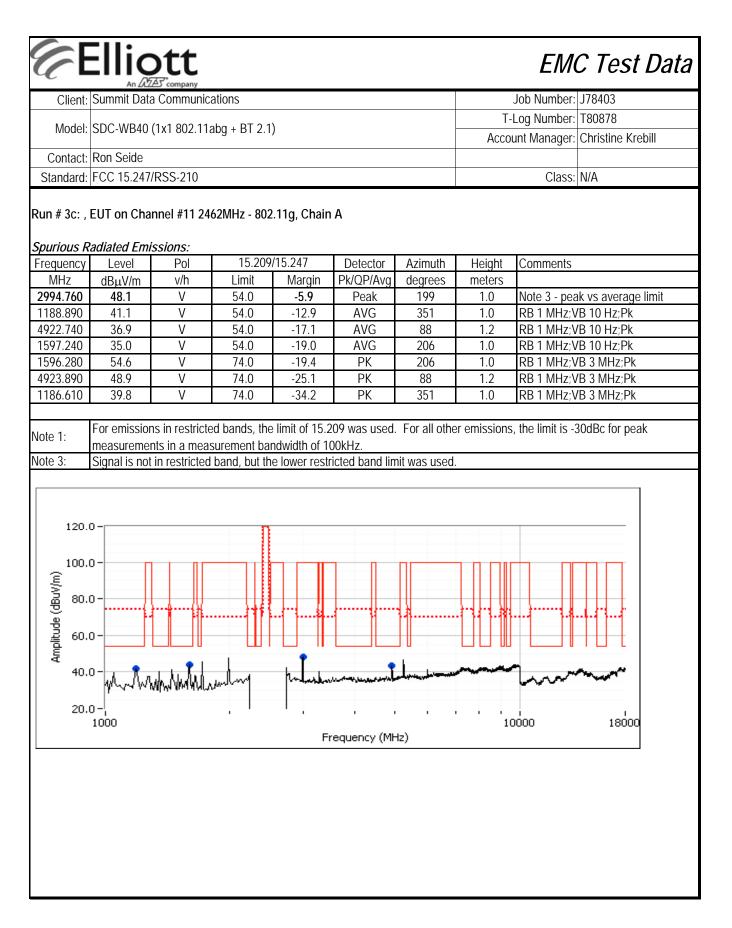


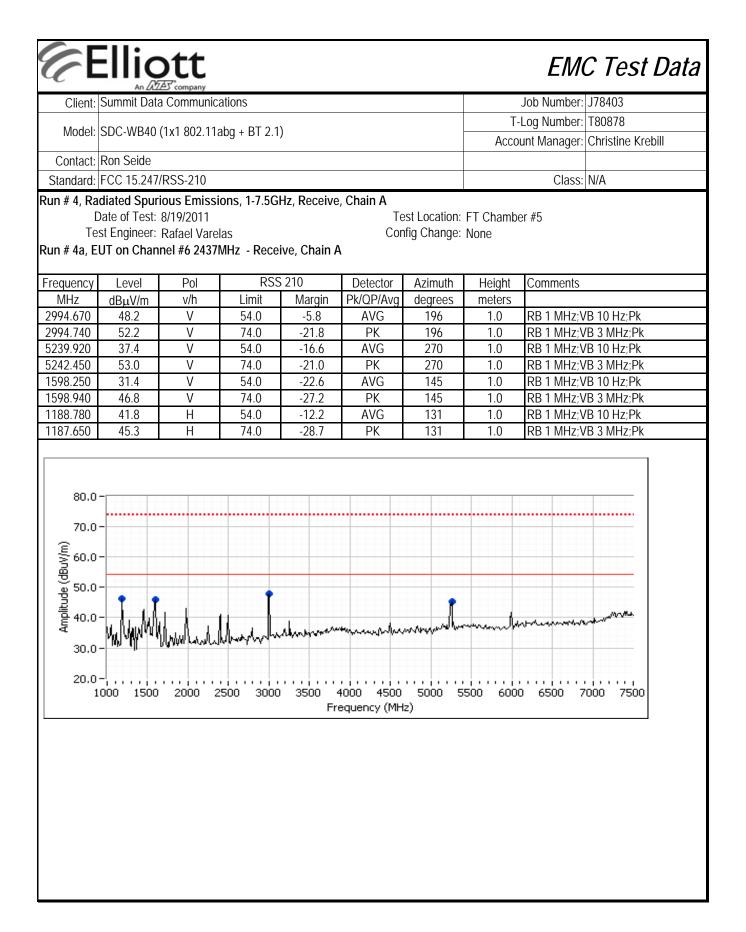


Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80878 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.247/RSS-210 Class: N/A Run # 3b, EUT on Channel #11 2462MHz - 802.11n20, Chain A 2483.5 MHz Band Edge Signal Radiated Field Strength Level Pol 15.209 / 15.247 Detector Azimuth Comments Frequency Height MHz Limit Margin Pk/QP/Avg meters dBµV/m v/h degrees 2483.500 V AVG 1.25 45.9 54.0 -8.1 215 V 2485.230 59.9 74.0 -14.1 ΡK 215 1.25 RB 1 MHz; VB 10 Hz Black = avg, blue = pk, vertical 90.0-80.0 (m/m) 60.0 50.0 have when Man Marker Marker Sound Sugar State Marker Sugar Sugar Strange 40.0 35.0 - <mark>|</mark>, , 2483.5 2486.0 2488.0 2490.0 2492.0 2494.0 2496.0 2498.0 2500.0 Frequency (MHz)


Client		a Communica	ations			Job Number:	178403
Client.	Summe Dat					T-Log Number:	
Model:	SDC-WB40	(1x1 802.11a	abg + BT 2.1)		Account Manager:	
Contact:	Ron Seide						
Standard:	FCC 15.247	//RSS-210				Class:	N/A
-	/ of Resul		Operatin	g in the 24	DTS) Radiated Sp 100-2483.5 MHz Ban	ourious Emissior d	IS
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
Run #1	802.11b Chain A	#1 2412MHz #6 2437MHz #11 2462MHz	H&S	-	Radiated Emissions, 1 - 26 GHz	FCC 15.209 / 15.247	53.1dBµV/m @ 4823.9MHz (-0.9dE 53.7dBµV/m @ 4873.9MHz (-0.3dE 53.0dBµV/m @ 4924.0MHz (-1.0dE
cans on ce	1	l in both OFD	M modes to	determine th	e worst case	1	
Run # 2	802.11g Chain A 802.11n20 Chain A	#6 2437MHz #6 2437MHz	H&S	-	Radiated Emissions, 1 - 26 GHz	FCC 15.209 / 15.247	47.2dBµV/m @ 2989.2MHz (-6.8dE 48.3dBµV/m @ 2989.2MHz (-5.7dE
op and bo		s in worst cas	se OFDM mo	ode:			
Run # 3	802.11n20 Chain A	#11 2462MHz	H&S	-	Radiated Emissions, 1 - 26 GHz	FCC 15.209 / 15.247	47.7dBμV/m @ 2994.8MHz (-6.3dE 48.1dBμV/m @ 2994.8MHz (-5.9dE
	purious Emi				Radiated Emissions,	DSS 210	48.2dBµV/m @
Run # 4	Receive	#6, Chain A	H&S	-	1 - 7.5 GHz	RSS 210	2994.7MHz (-5.8dE


Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80878 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.247/RSS-210 Class: N/A Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 40-50 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio Antenna: H&S




0110110	Summit Data	Communic	ations					Job Number:	J78403
Model	SDC WRAG (1v1 000 11	ba + DT 2.1)			T-	Log Number:	T80878
wouer.	SDC-WB40 (1X1 002.116	ару + рт 2.т)			Acco	unt Manager:	Christine Krebill
	Ron Seide								
Standard:	FCC 15.247/	RSS-210						Class:	N/A
Te	UT on Chann Date of Test: { est Engineer:	3/19/2011 John Caizzi	2MHz - 802.´	11b, Chain <i>i</i>	Те	est Location: ifig Change:			
Spurious R Frequency	Radiated Emis	Pol	15 209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2989.170	48.5	V	54.0	-5.5	Peak	197	1.0	Note 3	
5244.170	44.0	V	54.0	-10.0	Peak	214	1.0	Note 3	
4923.950	53.0	V	54.0	-1.0	AVG	76	1.63		
4923.950	54.6	V	74.0	-19.4	PK	76	1.63		
1585.540 1598.340	37.3 38.9	H H	54.0 74.0	-16.7 -35.1	AVG PK	41 41	1.06 1.06		
1189.060	38.3	V	54.0	-35.1	AVG	264	1.00		
1196.660	46.4	V	74.0	-27.6	PK	264	1.00		
Amplitude (dBuV/m)	80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -								,
Amplitu				Ι.	, Frequency	(111-)		10000	18000

								EM		
Client:	Summit Data	Communica	ations					Job Number:	J78403	
Madal	SDC MPAO	(1,1 000 11)	ba DT 0 1	١			T-Log Number: T80878		T80878	
	SDC-WB40 ((1X1 002.116	ару + бт 2.т)			Account Manager: Christine Krebill			
	Ron Seide									
Standard:	FCC 15.247/	RSS-210					Class: N/A			
ا Te R un # 3a, E	adiated Spuri Date of Test: est Engineer: EUT on Chani	8/19/2011 Rafael Varel nel #1 24121	las		Te Con	est Location: fig Change:		er #5		
	Radiated Emis		15 200	/15.247	Detector	A , inc th	Llaight	Commonto		
requency MHz	Level dBµV/m	Pol v/h	Limit		Detector Pk/QP/Avg	Azimuth	Height meters	Comments		
2994.840	αΒμν/m 47.7	V/n V	54.0	Margin -6.3	PR/QP/Avg Peak	degrees 191	1.3	Note 3 - nes	ak vs average limit	
1188.890	39.0	V	54.0	-15.0	AVG	238	1.0	RB 1 MHz;V		
1822.950	37.0	V	54.0	-16.9	AVG	230	1.0	RB 1 MHz;V		
1596.650	51.5	V	74.0	-22.5	PK	32	1.2		/B 3 MHz;Pk	
1819.690	49.2	V	74.0	-24.8	PK	239	1.0		/B 3 MHz;Pk	
	77.2									
	28.8	V	54.0	-25.2	AVG	32	1.2	RB 1 MHz;V	/B 10 Hz;Pk	
1597.400 1190.990	28.8 37.5	V V	74.0	-25.2 -36.5	PK	238	1.0	RB 1 MHz;V	/B 10 Hz;Pk /B 3 MHz;Pk 30dBc for peak	

Elliott

EMC Test Data

 Client:
 Summit Data Communications
 Job Number:
 J78403

 Model:
 SDC-WB40 (1x1 802.11abg + BT 2.1)
 T-Log Number:
 T80878

 Contact:
 Ron Seide
 Christine Krebill

 Standard:
 FCC 15.247/RSS-210
 Class:
 N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

New Module #2011-1296, Laptop #2011-2312, Linux Shell

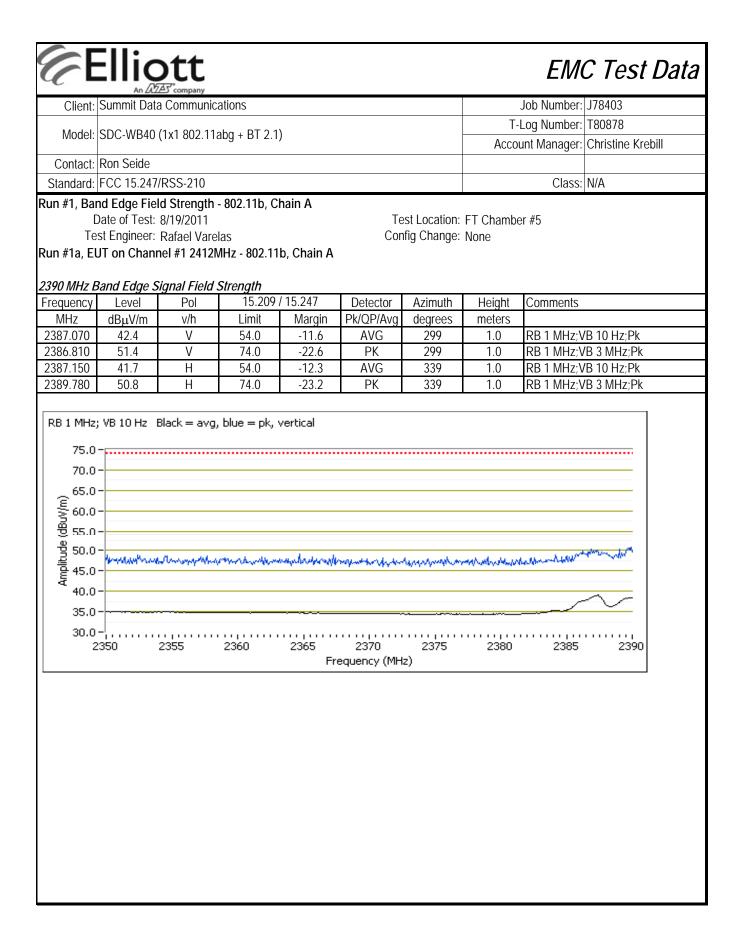
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
		#1	Ethertronic		Restricted Band Edge	15.209	42.4dBµV/m @
Dun #1	Run #1 802.11b Chain A		S	-	at 2390 MHz	13.207	2387.1MHz (-11.6dB)
Null # 1			Ethertronic		Restricted Band Edge	15.209	39.5dBµV/m @
			S	-	at 2483.5 MHz	15.209	2483.5MHz (-14.5dB)
		#1	Ethertronic		Restricted Band Edge	15.209	44.0dBµV/m @
Run # 2	802.11g	2412MHz	S	-	at 2390 MHz	13.207	2389.8MHz (-10.0dB)
π	Chain A	#11	Ethertronic		Restricted Band Edge	15.209	41.2dBµV/m @
		2462MHz	S	-	at 2483.5 MHz	13.207	2483.6MHz (-12.8dB)
		#1	Ethertronic		Restricted Band Edge	15.209	39.7dBµV/m @
Run # 3	802.11n20	2412MHz	S	-	at 2390 MHz	13.207	2390.0MHz (-14.3dB)
	Chain A	#11	Ethertronic		Restricted Band Edge	15.209	39.2dBµV/m @
		2462MHz	S	-	at 2483.5 MHz	13.207	2483.5MHz (-14.8dB)

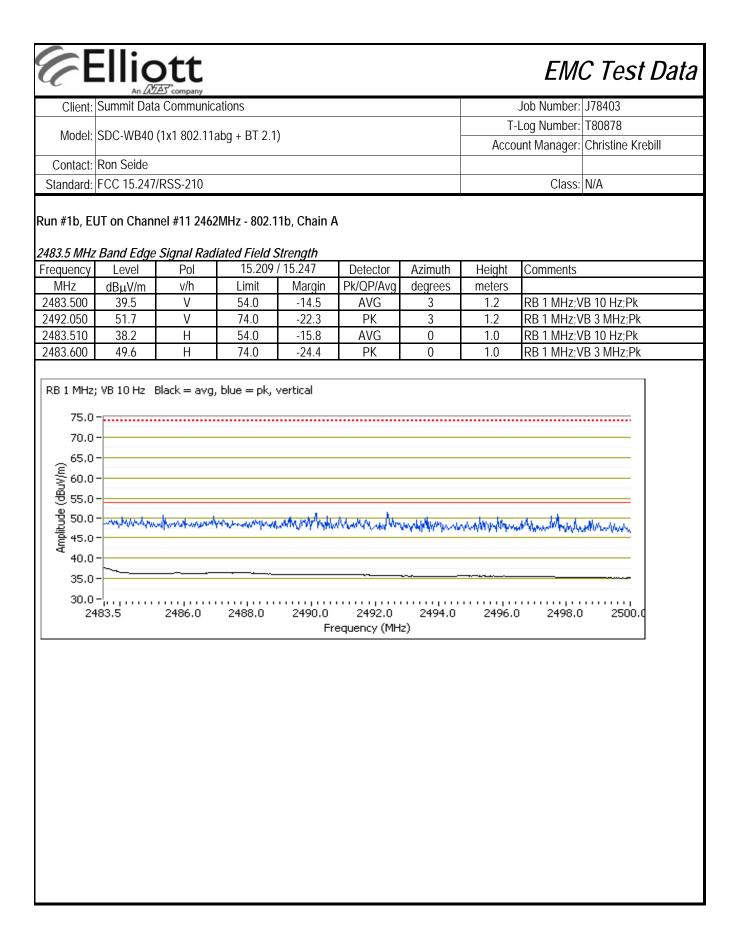
Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

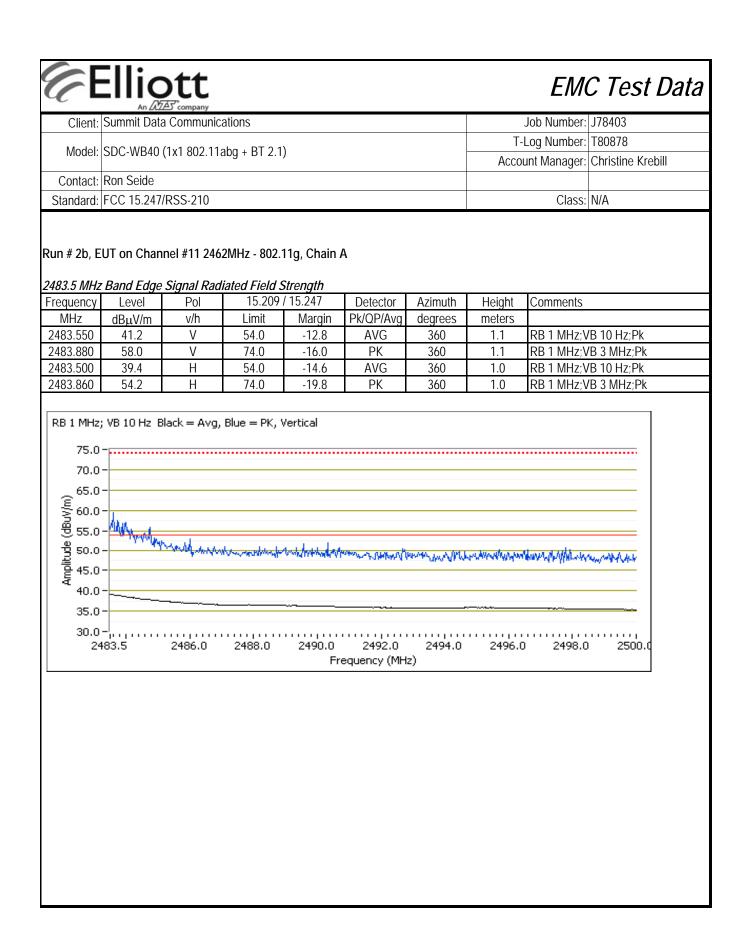
General Test Configuration

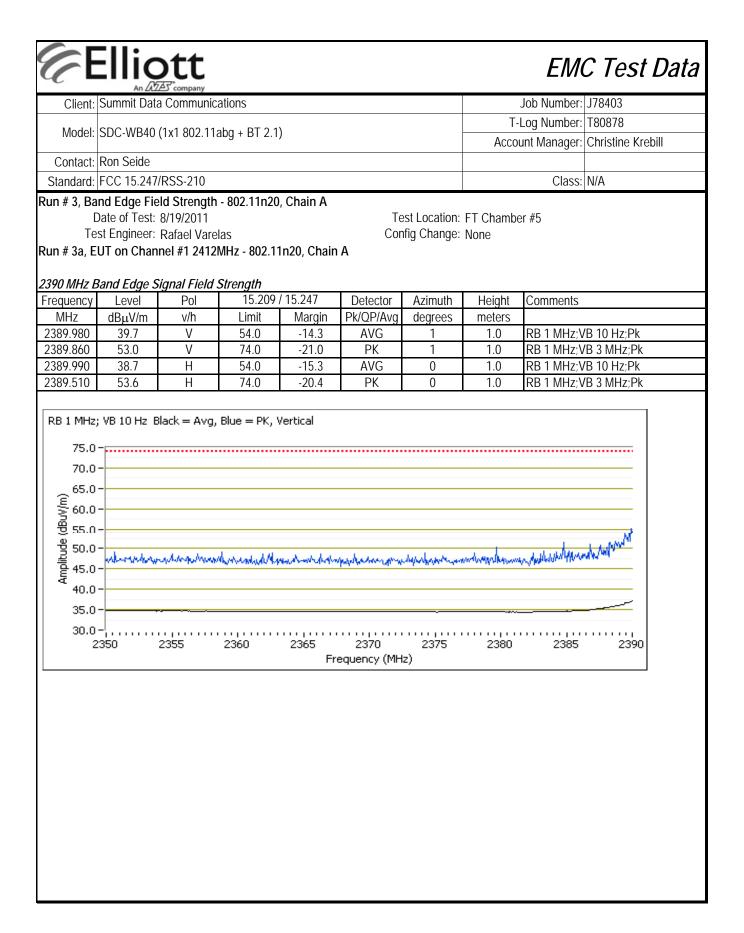
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

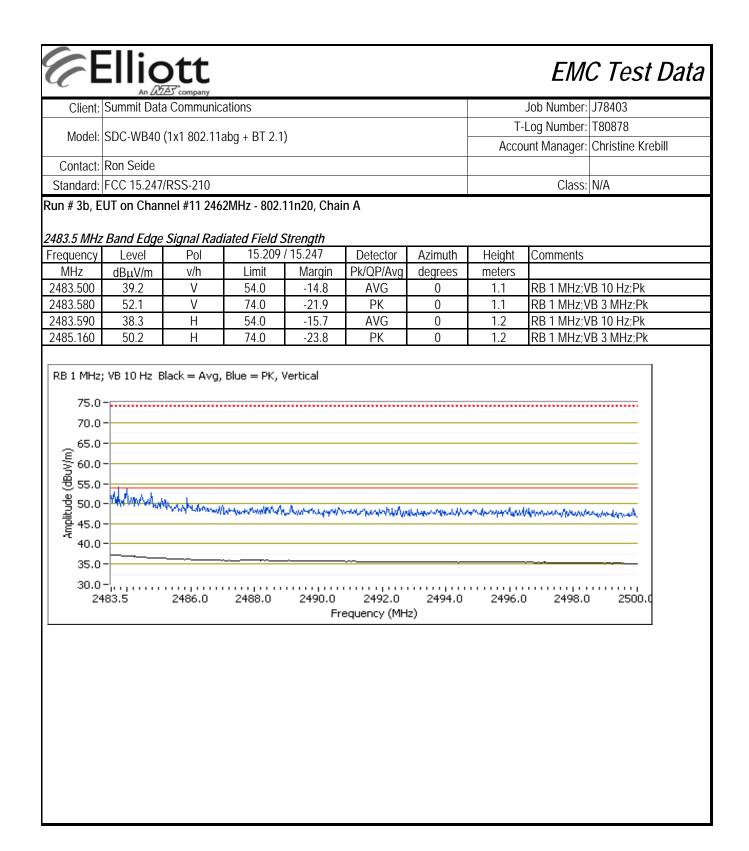

Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	40-50 %


Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.



Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80878 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.247/RSS-210 Class: N/A RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions Summary of Results - Device Operating in the 2400-2483.5 MHz Band New Module #2011-1296, Laptop #2011-2312, Linux Shell Power Test Performed Limit Result / Margin Run # Mode Channel Antenna Setting #1 Ethertronic 53.2dBµV/m @ 2412MHz 4823.9MHz (-0.8dB) S Ethertronic 53.5dBµV/m @ 802.11b #6 Radiated Emissions, Run #1 FCC 15.209 / 15.247 1 - 26 GHz 4873.9MHz (-0.5dB) Chain A 2437MHz S #11 Ethertronic 46.3dBµV/m @ 2462MHz 2994.7MHz (-7.7dB) S Scans on center channel in all three OFDM modes to determine the worst case 802.11g Ethertronic 48.3dBµV/m @ #6 Radiated Emissions, 2437MHz Chain A 2994.5MHz (-5.7dB) S Run # 2 FCC 15.209 / 15.247 802.11n20 #6 Ethertronic 1 - 26 GHz 47.6dBµV/m @ 2437MHz Chain A 2994.5MHz (-6.4dB) Top and bottom channels in worst case OFDM mode: #1 Ethertronic 47.8dBuV/m @ 802.11g 2412MHz Radiated Emissions, 2994.5MHz (-6.2dB) S Run # 3 FCC 15.209 / 15.247 Chain A #11 Ethertronic 1 - 26 GHz 47.5dBuV/m @ 2462MHz 2994.5MHz (-6.5dB) S Receiver Spurious Emissions Ethertronic Radiated Emissions, 45.2dBµV/m @ Run # 4 Receive #6, Chain A **RSS 210** 1 - 7.5 GHz 1585.4MHz (-8.8dB) S Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

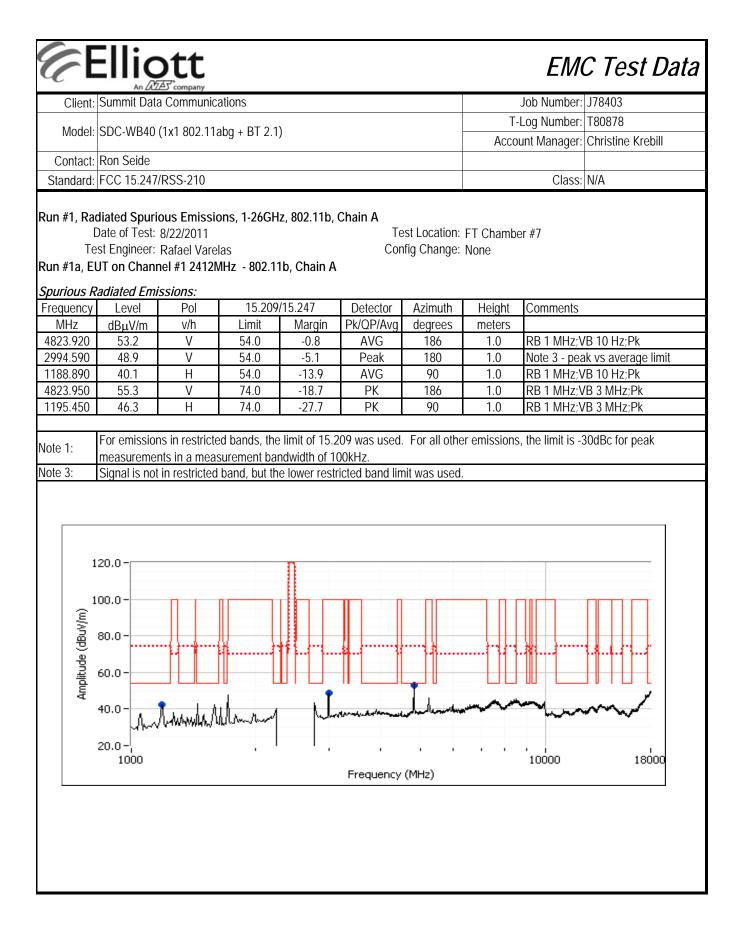
Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	40-50 %

Elliott

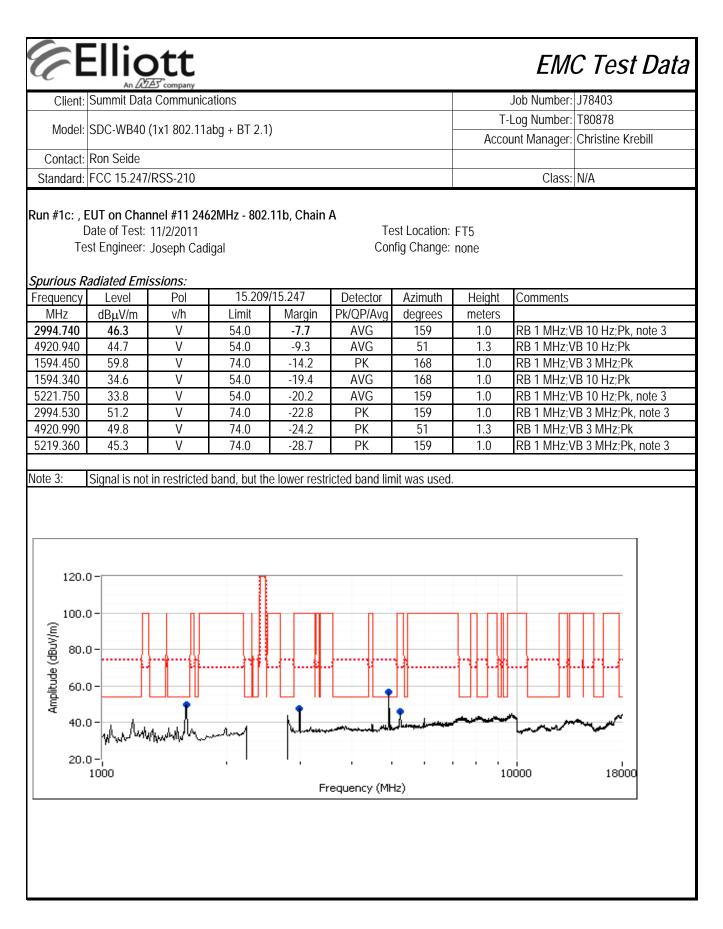
EMC Test Data

-	An 2(22=) company		
Client:	Summit Data Communications	Job Number:	J78403
Model	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80878
Mouel.	SDC-WD40 (1X1 002.11aby + D1 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		
Standard:	FCC 15.247/RSS-210	Class:	N/A

Modifications Made During Testing

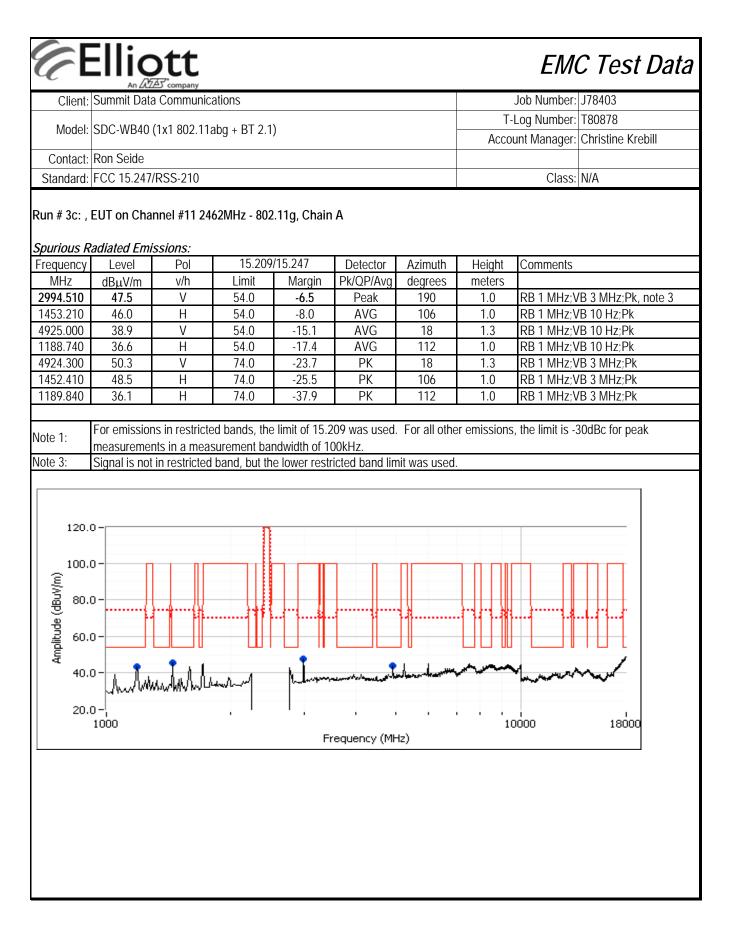

No modifications were made to the EUT during testing

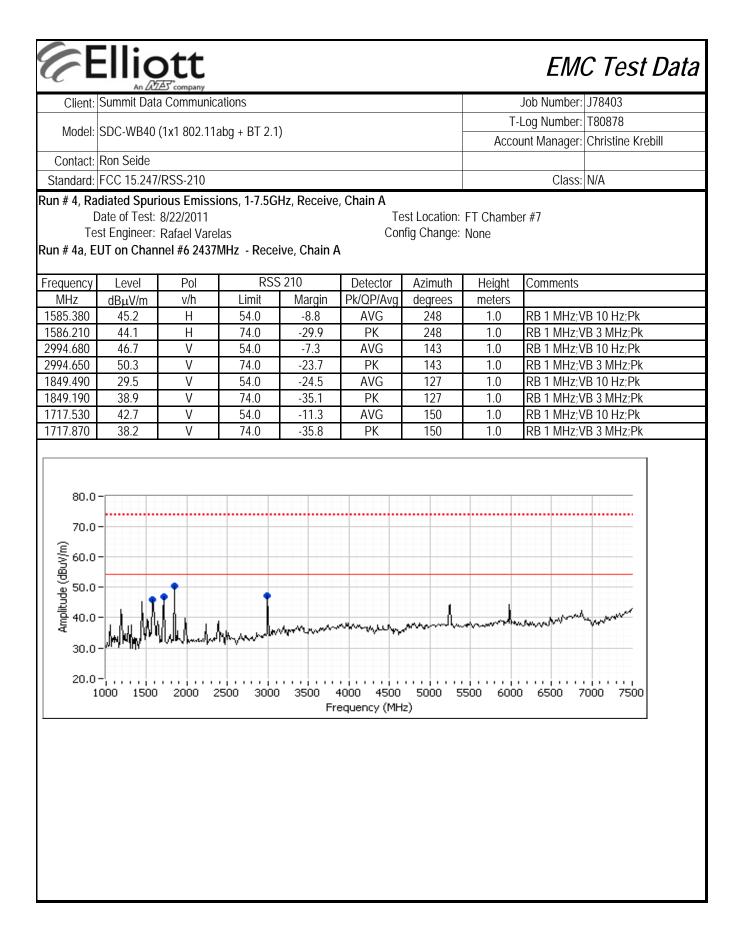
Deviations From The Standard


No deviations were made from the requirements of the standard.

Notes:

Preliminary testing showed no emissions below 1 GHz related to the radio Antenna: Ethertronics


Client:	Summit Data		ations					Job Number:	
Model:	SDC-WB40	(1x1 802.11a	aba + BT 2.1)				Log Number:	
		(Acco	unt Manager:	Christine Krebill		
	Ron Seide								
Standard:	FCC 15.247	RSS-210						Class:	N/A
un #1b: .	EUT on Char	nel #6 2437	'MHz - 802.1	1b. Chain A	4				
I	Date of Test:	11/2/2011			Те	st Location:			
Te	est Engineer:	Joseph Cad	igal		Con	fig Change:	none		
ourious R	Radiated Emi	ssions							
requency	1	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
873.940	53.5	V	54.0	-0.5	AVG	37	1.3	RB 1 MHz;V	
994.720	45.6	V V	54.0	-8.4	AVG PK	160	1.0		B 10 Hz;Pk, note 3
597.740 873.900	58.1 56.1	V	74.0 74.0	-15.9 -17.9	PK PK	160 37	1.3 1.3	RB 1 MHz;V RB 1 MHz;V	
598.110	33.5	V	54.0	-20.5	AVG	160	1.3	RB 1 MHz;V	
221.840	33.4	V	54.0	-20.6	AVG	229	1.0		'B 10 Hz;Pk, note 3
994.680	50.1	V	74.0	-23.9	PK	160	1.0		'B 3 MHz;Pk, note 3
221.780	45.1	V	74.0	-28.9	PK	229	1.0	RB 1 MHz;V	B 3 MHz;Pk, note 3
te 2: te 3:	device indica	between 18 Ited there we	- 26GHz wit ere no signifo	h the measu ant emissio		uency range	ound the ca	ard and its and	ennas 20-50cm from
Amplitude (dBuV/m)	20.0 - 00.0 - 80.0 - 60.0 - 40.0 - 40.0 - 1000	umuhuh	1		Frequency (×	18000



(F		tt						EM	C Test Data
Client:	Summit Data	Communica	ations					Job Number:	J78403
Model	SDC-WB40 (1v1 000 11c	ba + DT 2 1)			T-	Log Number:	T80878
		111 002.112	10y + DT 2.1)			Accou	unt Manager:	Christine Krebill
	Ron Seide								
Standard:	FCC 15.247/	RSS-210					Class:	N/A	
۲ Te Run # 2a , E	diated Spurid Date of Test: { st Engineer: F UT on Chann	8/22/2011 Rafael Varel Ie l #6 2437N	as		T∈ Cor	Chain A est Location: ifig Change:		er #7	
Frequency	adiated Emis	Pol	15 209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2994.510	48.3	V	54.0	-5.7	Peak	192	1.0	RB 1 MHz;V	/B 3 MHz;Pk, note 3
1189.110	40.7	Н	54.0	-13.3	AVG	328	1.0	RB 1 MHz;V	/B 10 Hz;Pk
4875.750	38.2	V	54.0	-15.8	AVG	181	1.0	RB 1 MHz;V	
4874.920	50.0	V	74.0	-24.0	PK	181	1.0	RB 1 MHz;V	
1448.470	29.2	H	54.0	-24.8	AVG	248	1.0	RB 1 MHz;V	
1197.080 1446.630	49.0 37.3	H H	74.0 74.0	-25.0 -36.7	PK PK	328 248	1.0 1.0	RB 1 MHz;V RB 1 MHz;V	
1440.030	37.3	Π	74.0	-30.7	ΓN	240	1.0		
Note 1:	measuremen	ts in a meas	surement bar	ndwidth of 1	DOkHz.			, the limit is -3	30dBc for peak
Note 3:	Signal is not i	n restricted	band, but th	e lower restr	icted band lin	nit was used.			
120.0 100.0 (w/\ngp) 80.0 80.0 40.0 40.0)-)-)-)- ,,,,,,,,,,,,,,,,,,,,,,,,,,,			le la					18000
				F1	requency (MH	12)			

		Company						EM	C Test Data
Client:	Summit Data	Communica	ations					Job Number:	
Model:	SDC-WB40 (1x1 802.11a	abg + BT 2.1))			T-Log Number: T80878 Account Manager: Christine Krebill		
Contact:	Ron Seide								
Standard:	FCC 15.247/F	RSS-210				Class:	N/A		
	EUT on Chan adiated Emis				in A				
Frequency	Level	Pol	15.209/	1	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2994.510 1188.910	47.6 40.2	V V	54.0 54.0	-6.4 -13.8	Peak AVG	152 288	1.0 1.0	RB 1 MHZ;V RB 1 MHZ;V	B 3 MHz;Pk, note 3
1594.720	40.2 55.2	V	54.0 74.0	-13.8 -18.8	PK	196	1.0	RB 1 MHZ;V	
1597.150	32.3	V	54.0	-21.7	AVG	196	1.0	RB 1 MHz;V	
1189.740	37.0	V	74.0	-37.0	PK	288	1.0	RB 1 MHz;V	
120.0 100.0 (m/ mpitrade (dBn/ mbitrade (dBn/ mbitr									
40.0	ANN M	when	wythered	hunter		والاستريبية المريسي المر		W	May Mar
20.0	1000						10	0000	18000
				Fi	requency (MH	łz)			

		Stt						EM	C Test Data
Client	Summit Data	Communica	ations					Job Number:	J78403
Model	SDC-WB40 (1v1 000 11	ba DT 2 1)			T-	Log Number:	T80878
MOUEL	SDC-11040 (1X1 002.116	109 + БТ 2.Т)			Acco	unt Manager:	Christine Krebill
Contact	Ron Seide								
Standard	FCC 15.247/	RSS-210				Class:	N/A		
⊺∈ Run # 3a, E	adiated Spuri Date of Test: { est Engineer: EUT on Chanr	8/22/2011 Rafael Varel nel #1 24121	as		T∈ Cor	est Location: fig Change:		er #7	
S <i>purious F</i> Frequency	Radiated Emis	ssions: Pol	15 209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	COMINCHIS	
2994.510	47.8	V	54.0	-6.2	Peak	144	1.0	RB 1 MHz;V	'B 3 MHz;Pk, note 3
1189.220	38.7	V	54.0	-15.3	AVG	123	1.0	RB 1 MHz;V	/B 10 Hz;Pk
4825.200	35.8	V	54.0	-18.2	AVG	26	1.0	RB 1 MHz;V	
1593.410	53.0	V	74.0	-21.0	PK	147	1.0	RB 1 MHz;V	
1593.780	31.5	V	54.0	-22.5	AVG	147	1.0	RB 1 MHz;V	
4825.700	48.5	V V	74.0	-25.5	PK PK	26 123	1.0	RB 1 MHz;V	
1188.940	44.2	V	74.0	-29.8	PK	123	1.0	RB 1 MHz;V	B 3 IVIHZ;PK
Note 1: Note 3:	measuremen	its in a meas	surement bar	ndwidth of 1			r emissions	, the limit is -3	30dBc for peak
120. (W/\ngp) apn1jidwy 40.	0-	mdhalla		L. L					

Elliott

EMC Test Data

 Client:
 Summit Data Communications
 Job Number:
 J78403

 Model:
 SDC-WB40 (1x1 802.11abg + BT 2.1)
 T-Log Number:
 T80878

 Account Manager:
 Christine Krebill

 Contact:
 Ron Seide
 Christine Krebill

 Standard:
 FCC 15.247/RSS-210
 Class:
 N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

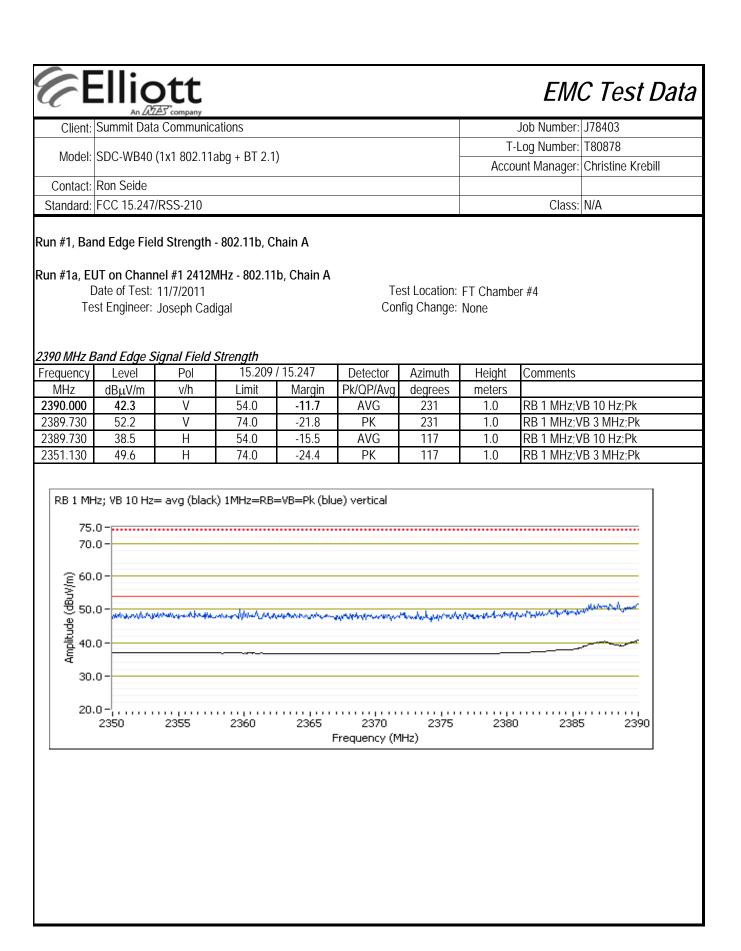
000.							
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
Run #1 802.11b		#1 2412MHz	Cisco	-	Restricted Band Edge at 2390 MHz	15.209	42.3dBµV/m @ 2390.0MHz (-11.7dB)
KUII#I	Chain A	#11 2462MHz	Cisco	-	Restricted Band Edge at 2483.5 MHz	15.209	49.4dBµV/m @ 2483.5MHz (-4.6dB)
Run # 2	802.11g	#1 2412MHz	Cisco	-	Restricted Band Edge at 2390 MHz	15.209	53.6dBµV/m @ 2390.0MHz (-0.4dB)
Kull # Z	Chain A	#11 2462MHz	Cisco	-	Restricted Band Edge at 2483.5 MHz	15.209	72.5dBµV/m @ 2483.7MHz (-1.5dB)
Dun # 2	Bup # 2 802.11n20		Cisco	-	Restricted Band Edge at 2390 MHz	15.209	45.9dBµV/m @ 2389.9MHz (-8.1dB)
Run # 3 Chain A		#11 2462MHz	Cisco	-	Restricted Band Edge at 2483.5 MHz	15.209	50.1dBµV/m @ 2483.5MHz (-3.9dB)

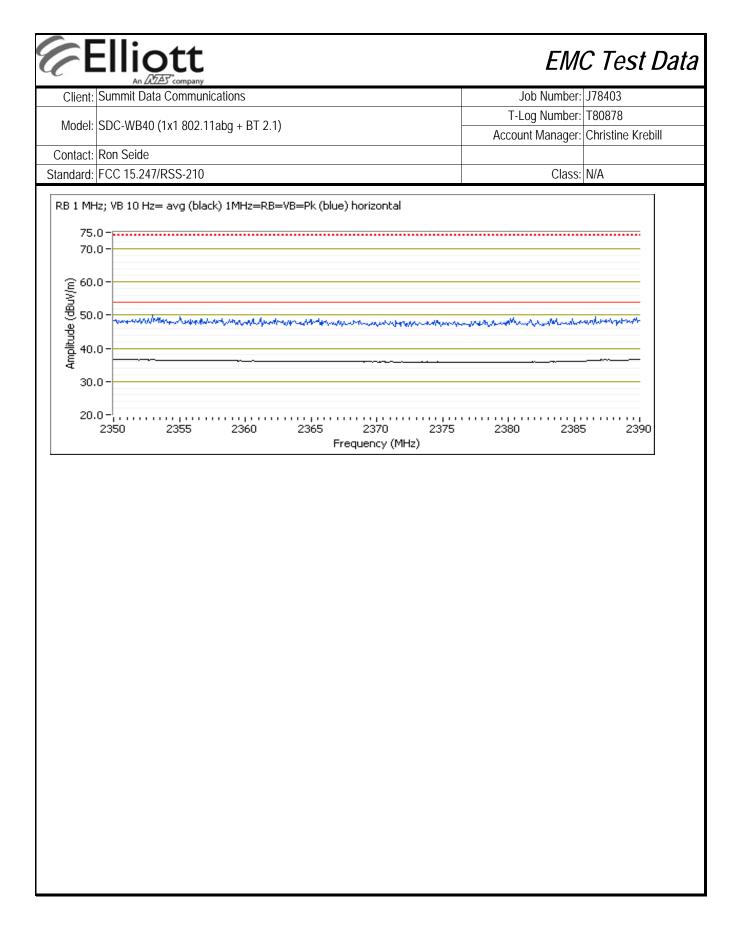
Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

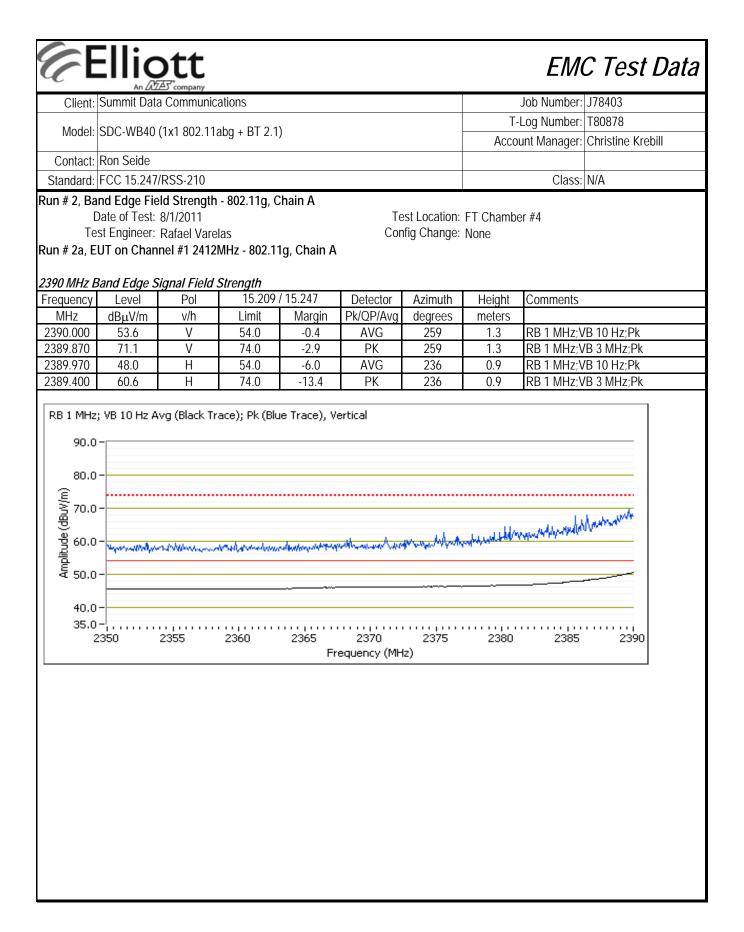
General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

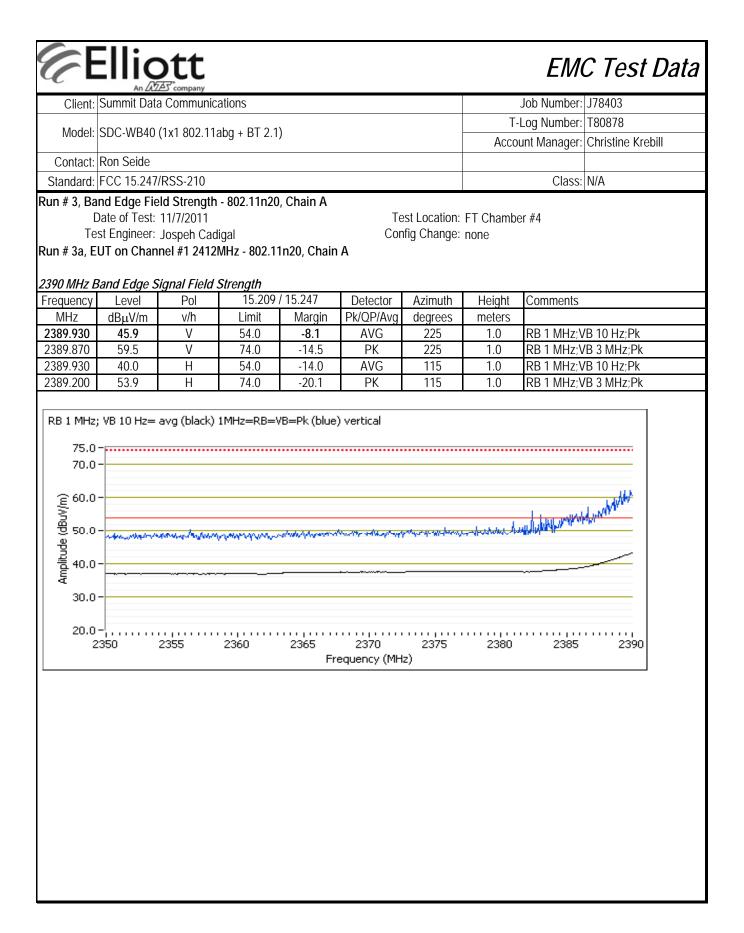

Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	40-50 %

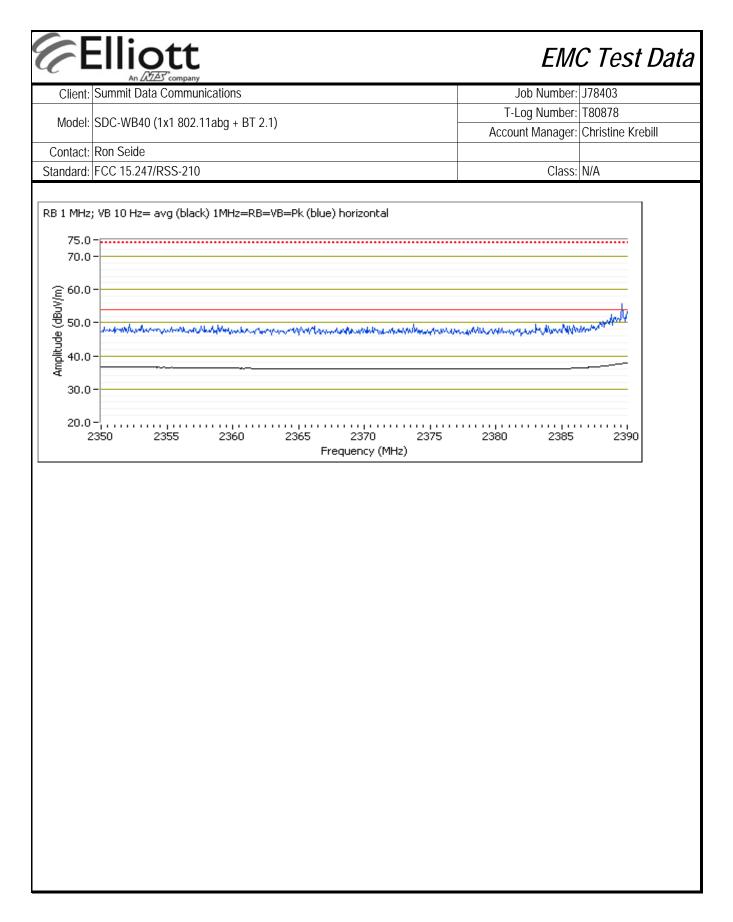

Modifications Made During Testing

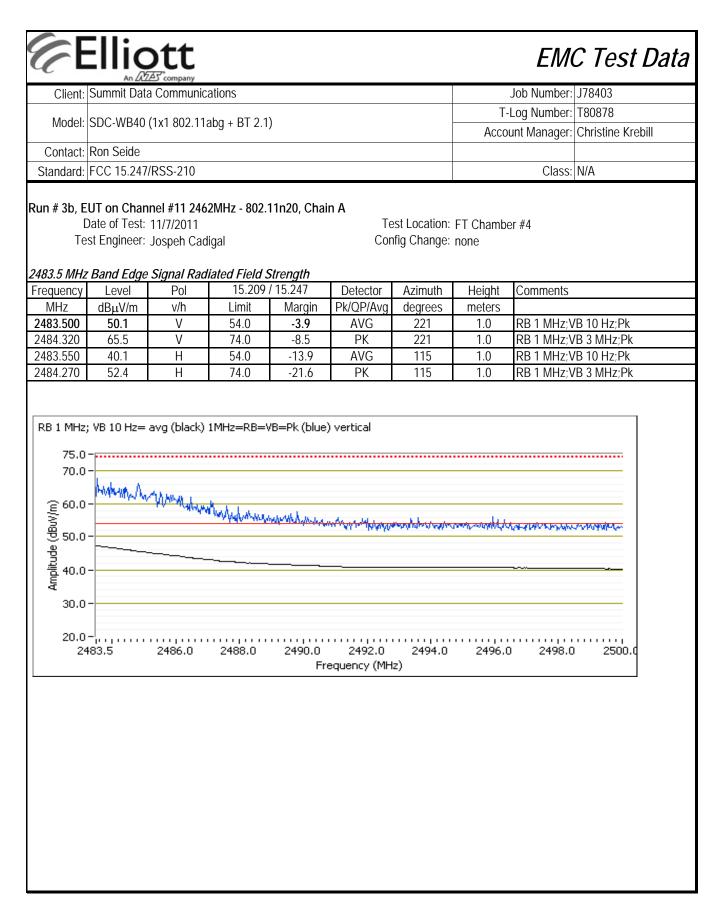

No modifications were made to the EUT during testing

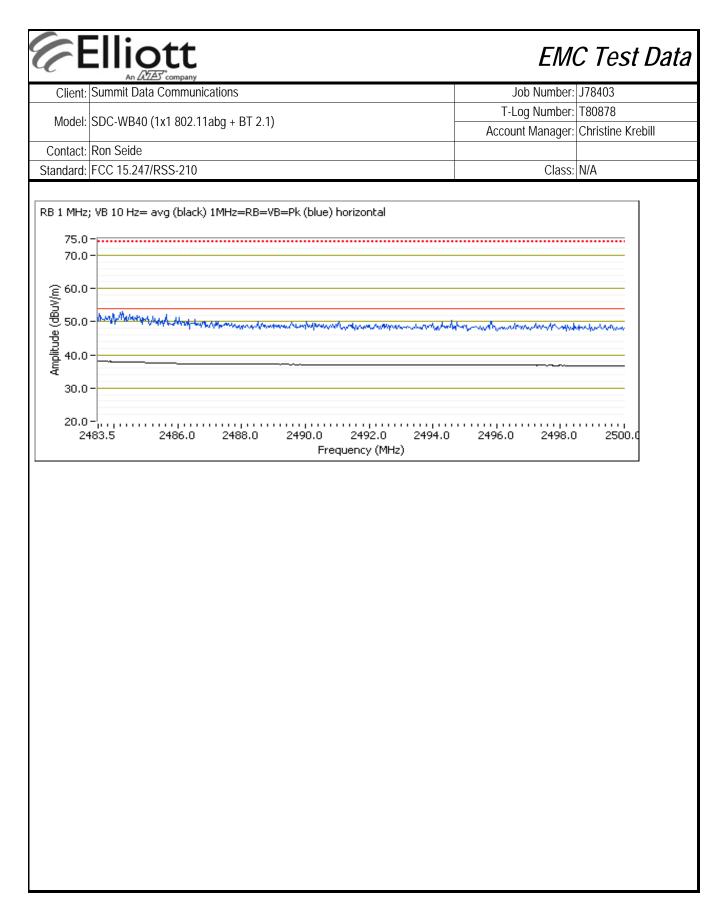

Deviations From The Standard


No deviations were made from the requirements of the standard.









EMC Test Data

4		AS company					
Client:	Summit Data	a Communic	ations			Job Number:	J78403
Model	SDC-WB40	(1v1 000 11)	ha DT 0 1	١		T-Log Number:	T80878
wouer.	300-10040	(181 002.116	aby + DT 2.1)		Account Manager:	Christine Krebill
Contact:	Ron Seide						
Standard:	FCC 15.247	/RSS-210				Class:	N/A
Summary				•	DTS) Radiated Sp 100-2483.5 MHz Ban	ourious Emission	S
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
Dun #1		#1 2412MHz	Cisco	-			49.4dBµV/m @ 4824.0MHz (-4.6dB)
	802.11b Chain A	#6 2437MHz	Cisco	-	Radiated Emissions 1 - 26 GHz	FCC 15.209 / 15.247	40.5dBµV/m @ 4874.0MHz (-13.5dB
		#11 2462MHz	Cisco	-			46.5dBµV/m @ 4924.0MHz (-7.5dB)
Scans on	center chann	nel in all two	OFDM mode	es to determir	ne the worst case		
Run # 2	802.11g Chain A	#6 2437MHz	Cisco	-	Radiated Emissions	FCC 15.209 / 15.247	58.2dBµV/m @ 1597.2MHz (-15.8dB
	802.11n20 Chain A	#6 2437MHz	Cisco	-	1 - 26 GHz	FCC 15.2097 15.247	39.4dBµV/m @ 1196.8MHz (-14.6dB
Top and b	oottom chann	els in worst (case OFDM i	mode:			
Run # 3	802.11n20	#1 2412MHz	Cisco	-	Radiated Emissions	FCC 15.209 / 15.247	49.8dBµV/m @ 2994.7MHz (-20.2dB
	Chain A	#11 2462MHz	Cisco	-	1 - 26 GHz	1 00 13.2077 13.247	40.7dBµV/m @ 1197.9MHz (-13.3dB
Receiver	Spurious Er	nissions					
Run # 4	Receive	#6 Chain A	Cisco	-	Radiated Emissions 1 - 7.5 GHz	RSS 210	49.0dBµV/m @ 2994.7MHz (-5.0dB)

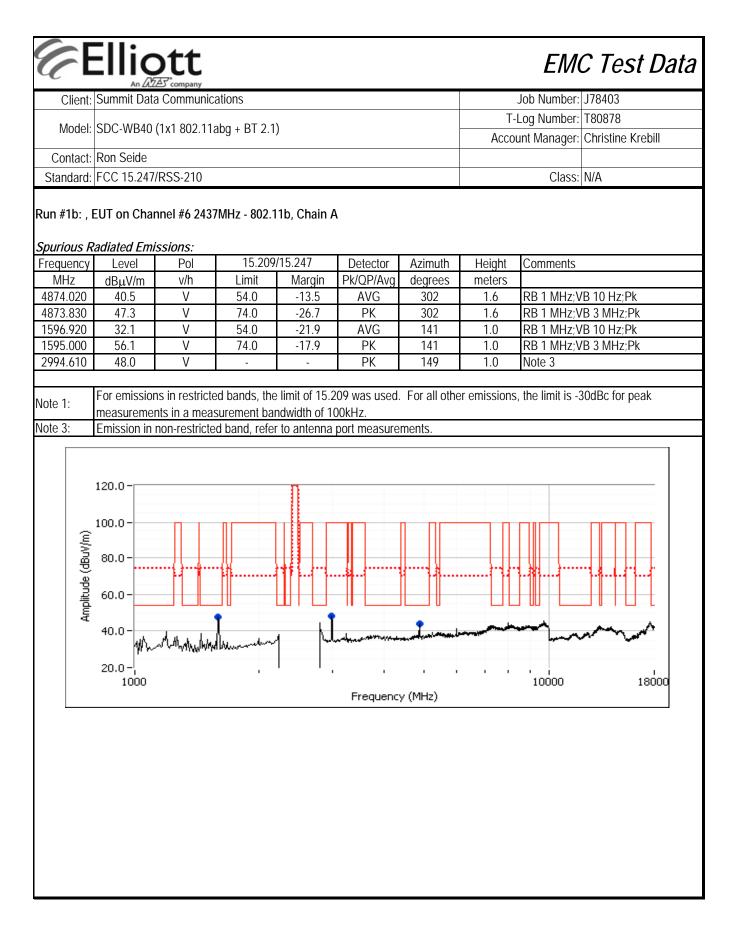
Test Specific Details

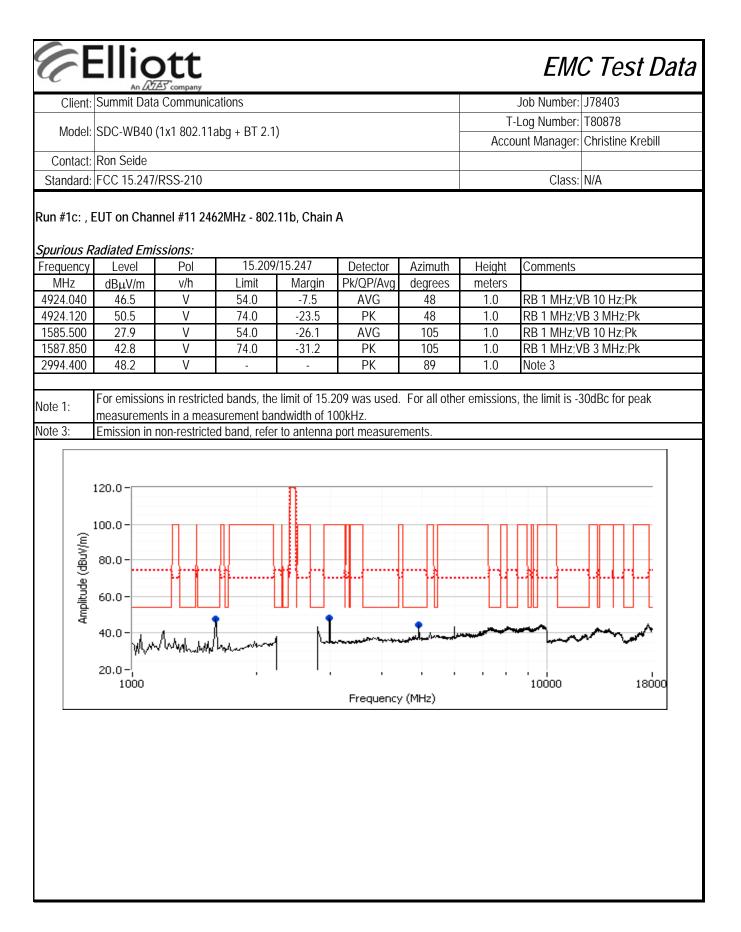
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

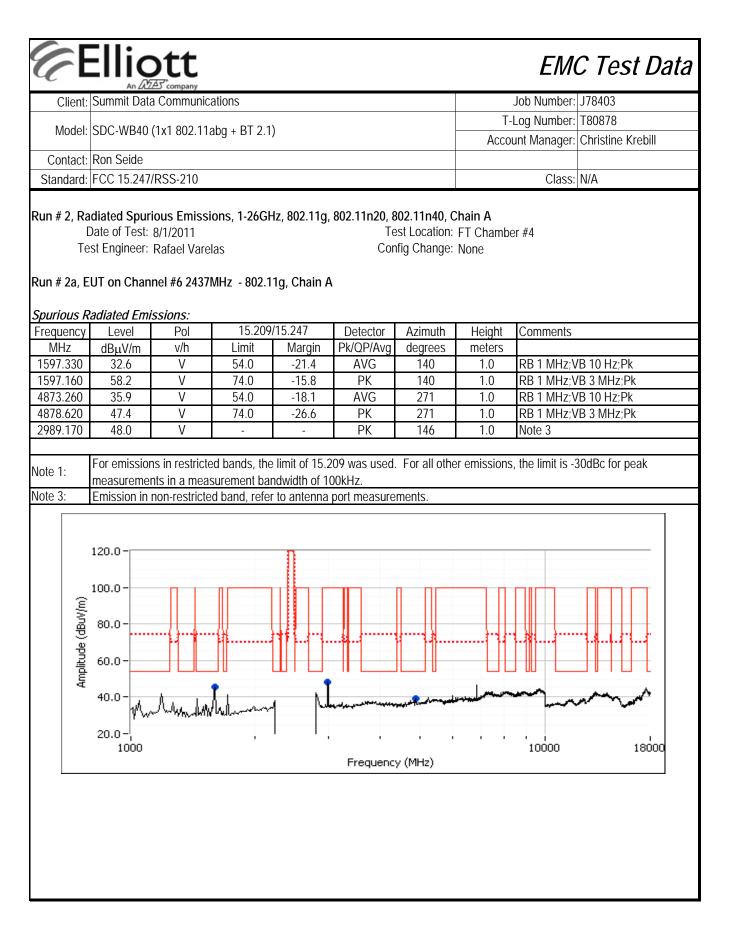
General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	40-50 %

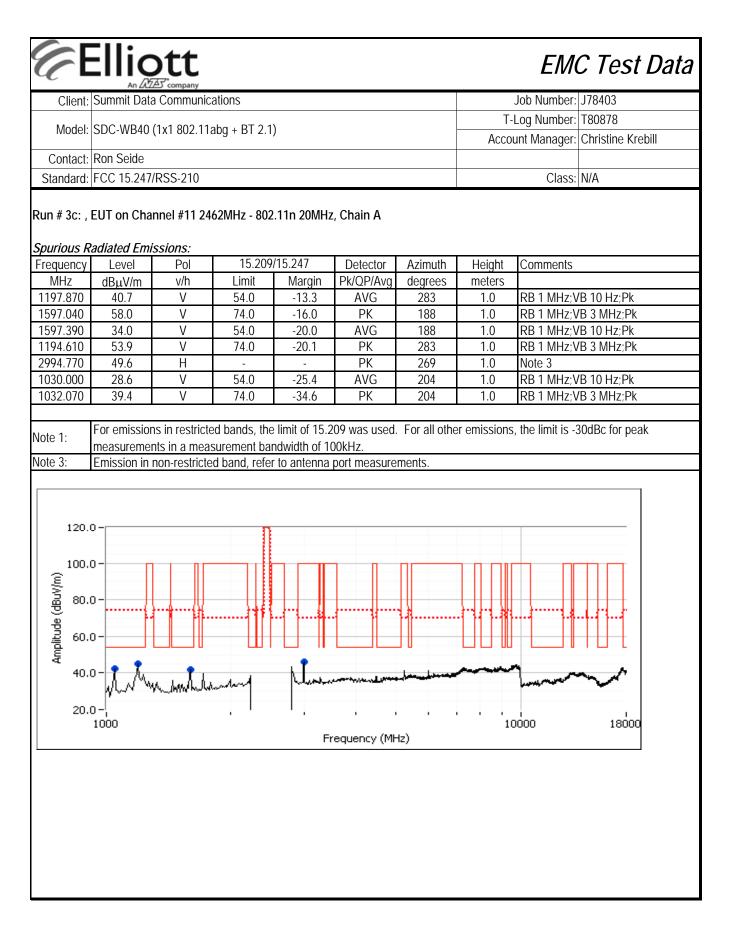

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

								EM	C Test Dat
Client:	Summit D	ata Communic	ations					Job Number:	
Model:	SDC-WB4	40 (1x1 802.11a	aba + BT 2.1			_og Number:			
				/			Αссоι	int Manager:	Christine Krebill
	Ron Seide								
Standard:	FCC 15.2	47/RSS-210						Class:	N/A
Antenna: Run #1, Ra I Te	Cisco diated Spi Date of Tes est Enginee	showed no emis urious Emissio st: 8/1/2011 er: Rafael Vare annel #1 2412M	ons, 1-26GH las	z, 802.11b, (Chain A Te		FT Chambe None	r #4	
/		missions:							
Frequency		Pol		/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m		Limit	Margin	Pk/QP/Avg	degrees	meters		
4824.020	49.4	V	54.0	-4.6	AVG	163	1.0	RB 1 MHz;\	
4823.830	54.1	V	74.0	-19.9	PK	163	1.0		'B 3 MHz;Pk
1594.350	32.3	V	54.0	-21.7	AVG	112	1.0	RB 1 MHz;\	
1596.760	57.7	V	74.0	-16.3	PK	112	1.0	RB 1 MHz;\	'B 3 MHz;Pk
2994.570	52.4	V	-	-	PK	149	1.0	Note 3	
lote 1:	For emiss	ions in restricte	ed bands, the	e limit of 15.2	09 was used.	For all othe	er emissions,	, the limit is -	30dBc for peak
iole I.	measurer	nents in a meas	surement bar	ndwidth of 10)0kHz.				
lote 3:	Emission	in non-restricte	d band, refer	r to antenna	port measure	ments.			
Amplitude (dBuV/m)	120.0 - 100.0 - 80.0 - 60.0 - 40.0 - 40.0 -		- - - - - - - - - - - - - -					· · · · · · · · · · · · · · · · · · ·	18000
	1000	•			Frequency	···· ·			



(7 E								EMO	C Test Data
Client:	Summit Data	Communica	ations					Job Number:	J78403
Model	SDC-WB40 (′1v1 802 11a	aha + BT 2 1			-		Log Number:	
		181 002.110	ibg + D1 2.1,				Accou	unt Manager:	Christine Krebill
Contact:	Ron Seide								
Standard:	FCC 15.247/	RSS-210						Class:	N/A
Run # 2b: , <i>Spurious R</i>	EUT on Chai adiated Emis								
Frequency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1196.840	39.4	V V	54.0	-14.6	AVG	277	1.5	RB 1 MHz;V	
1596.490 2994.700	55.8 49.7	V H	74.0 -	-18.2	PK PK	196 266	1.0 1.0	RB 1 MHz;V Note 3	Ο Ο ΙΝΙΠΖ;ΡΚ
1597.290	33.0	V	54.0	-21.0	AVG	196	1.0	RB 1 MHz;V	'B 10 Hz:Pk
1197.740	51.7	V	74.0	-22.3	PK	277	1.5	RB 1 MHz;V	
120.0 - 100.0 - 100.0 - 60.0 - 40.0 -									
20.0 - 10000 18000 Frequency (MHz)									

		ott						EM	C Test Data
Client	An 22	A Communica	ations					Job Number:	J78403
Madal		(11 000 11.		N N			T-I	Log Number:	T80878
Model	SDC-WB40	(1X1 802.118	abg + BT 2.1)			Αссоι	unt Manager:	Christine Krebill
Contact	Ron Seide								
Standard	FCC 15.247	/RSS-210						Class:	N/A
Te	adiated Spur Date of Test: est Engineer: EUT on Chan	8/2/2011 M. Birgani			Con	n A est Location: fig Change:	FT Chambe	er #7	
nurious l	Radiated Emi	ssions							
Frequency		Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1453.030	44.0	Н	54.0	-10.0	AVG	15	1.0	RB 1 MHz;V	'B 10 Hz;Pk
1197.360	40.3	V	54.0	-13.7	AVG	156	1.0	RB 1 MHz;V	'B 10 Hz;Pk
202.460	55.6	V	74.0	-18.4	PK	156	1.0	RB 1 MHz;V	'B 3 MHz;Pk
994.730	49.8	Н	-	-	PK	266	1.0	Note 3	
1456.220	51.2	Н	74.0	-22.8	PK	15	1.0	RB 1 MHz;V	'B 3 MHz;Pk
ote 3: 120. 100. (July (ggn/, w) 80. 60. 60.	.0 -								

	Client:	Summit Data	a Communic	ations					Job Number:	J78403
Contact: Ron Seide Standard: FCC 15.247/RSS-210 Class: N/A un # 4, Radiated Spurious Emissions, 1-7.5GHz, Receive, Chain A Date of Test: B/1/2011 Test Location: FT Chamber #4 Test Engineer: Rafeel Varelas Config Change: None un # 4a, EUT on Channel #6 2437MHz - Receive, Chain A requency Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 994.700 51.2 V 74.0 -22.8 PK 148 1.0 RB 1 MHz:VB 10 Hz:Pk 188.570 49.6 V 74.0 -22.8 PK 148 1.0 RB 1 MHz:VB 10 Hz:Pk 188.570 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz:VB 10 Hz:Pk 593.950 35.0 V 54.0 1.90 AVG 124 1.0 RB 1 MHz:VB 10 Hz:Pk 593.950 35.0 V 74.0 -18.4 PK 124 1.0<	Model	SDC-WB40	(1x1 802 11)	aha + BT 2 1)			T-	Log Number:	T80878
Standard: FCC 15.247/RSS-210 Class: N/A un # 4, Radiated Spurious Emissions, 1-7.5GHz, Receive, Chain A Date of Test: 8/1/2011 Test Location: FT Chamber #4 Test Engineer: Rafael Varelas Config Change: None un # 4a, EUT on Channel #6 2437MHz - Receive, Chain A requency Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 994.700 49.0 V 54.0 -5.0 AVG 148 1.0 RB 1 MHz;VB 10 Hz;Pk 994.700 51.2 V 74.0 -22.8 PK 148 1.0 RB 1 MHz;VB 3 MHz;Pk 188.810 47.6 V 54.0 -6.4 AVG 276 1.4 RB 1 MHz;VB 3 MHz;Pk 188.810 47.6 V 74.0 -22.4 PK 276 1.4 RB 1 MHz;VB 3 MHz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 3 MHz;Pk <			(171 002.116	uby + D1 2.1	/			Acco	unt Manager:	Christine Krebill
un # 4, Radiated Spurious Emissions, 1-7.5GHz, Receive, Chain A Date of Test: 8/1/2011 Test Location: FT Chamber #4 Config Change: None un # 4a, EUT on Channel #6 2437MHz - Receive, Chain A requency Level Pol RSS 210 Detector Azimuth Height Comments MHz dBµ//m Vh Limit Margin Pk/OP/Avg degrees meters 994.700 49.0 V 54.0 -5.0 AVG 148 1.0 RB1 MHz:VB 10 Hz;Pk 994.700 51.2 V 74.0 -22.8 PK 148 1.0 RB1 MHz:VB 30 MHz;Pk 188.810 47.6 V 54.0 -6.4 AVG 276 1.4 RB 1 MHz;VB 30 MHz;Pk 188.870 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz;VB 30 MHz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 30 MHz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 30 MHz;Pk 90.0									01	N1/A
Date of Test: 8/1/2011 Test Engineer: Rafael Varelas	Standard:	FCC 15.247	/RSS-210						Class:	N/A
Date of Test: 8/1/2011 Test Engineer: Rafael Varelas	un # 4, Ra	diated Spur	ious Emissi	ons, 1-7.5G	Hz, Receive	e, Chain A				
In # 4a, EUT on Channel #6 2437MHz - Receive, Chain A requency Level Pol RSS 210 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9994.700 49.0 V 54.0 -5.0 AVG 148 1.0 RB 1 MHz;VB 10 Hz;Pk 188.810 47.6 V 74.0 -22.8 PK 148 1.0 RB 1 MHz;VB 3 MHz;Pk 188.810 47.6 V 74.0 -22.8 PK 148 1.0 RB 1 MHz;VB 3 MHz;Pk 188.970 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz;VB 3 MHz;Pk 188.570 49.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 10 Hz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 3 MHz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 60.0					,	Te			er #4	
requency Level Pol RSS 210 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 994.700 49.0 V 54.0 -5.0 AVG 148 1.0 RB 1 MHz;VB 10 Hz;Pk 994.700 51.2 V 74.0 -22.8 PK 148 1.0 RB 1 MHz;VB 10 Hz;Pk 188.810 47.6 V 54.0 -6.4 AVG 276 1.4 RB 1 MHz;VB 3 MHz;Pk 188.570 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz;VB 3 MHz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 3 MHz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 40.0 - - - - - - - - - - -	Te	st Engineer:	Rafael Vare	las		Cor	nfig Change:	None		
requency Level Pol RSS 210 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9994.700 49.0 V 54.0 -5.0 AVG 148 1.0 RB 1 MHz;VB 10 Hz;Pk 9994.700 51.2 V 74.0 -22.8 PK 148 1.0 RB 1 MHz;VB 10 Hz;Pk 188.810 47.6 V 54.0 -6.4 AVG 276 1.4 RB 1 MHz;VB 3 MHz;Pk 188.570 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz;VB 3 MHz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 3 MHz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 40.0 - - - - - - - - - - - <td>up # 4a El</td> <td>UT on Chan</td> <td>nol #4 0107</td> <td></td> <td>ivo Chain</td> <td>^</td> <td></td> <td></td> <td></td> <td></td>	up # 4a El	UT on Chan	nol #4 0107		ivo Chain	^				
MHZ dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 994.700 49.0 V 54.0 -5.0 AVG 148 1.0 RB 1 MHz;VB 10 Hz;Pk 994.700 51.2 V 74.0 -22.8 PK 148 1.0 RB 1 MHz;VB 3 MHz;Pk 188.810 47.6 V 54.0 -6.4 AVG 276 1.4 RB 1 MHz;VB 10 Hz;Pk 188.570 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz;VB 3 MHz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 3 MHz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 9 50.0 - - - - 1.0 RB 1 MHz;VB 3 MHz;Pk 9 50.0 - - - - - - - - - - -							Azimuth	Heiaht	Comments	
994.700 51.2 V 74.0 -22.8 PK 148 1.0 RB 1 MHz;VB 3 MHz;Pk 188.810 47.6 V 54.0 -6.4 AVG 276 1.4 RB 1 MHz;VB 3 MHz;Pk 188.570 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz;VB 3 MHz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 3 MHz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 3 MHz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 590.0 - - - - 18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 90.0 -										
188.810 47.6 V 54.0 -6.4 AVG 276 1.4 RB 1 MHz;VB 10 Hz;Pk 188.570 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz;VB 3 MHz;Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 3 MHz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 60.0 - - - - 18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 90.0 - - - - - 100 RB 1 MHz;VB 3 MHz;Pk 90.0 - - - - - - - - 91.0 - - - - - - - - 92.0 - - - - - - - - - 93.0	2994.700	49.0								
188.570 49.6 V 74.0 -24.4 PK 276 1.4 RB 1 MHz; VB 3 MHz; Pk 593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz; VB 3 MHz; Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz; VB 3 MHz; Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz; VB 3 MHz; Pk 60.0 - - - - 80.0 -	2994.700									
593.950 35.0 V 54.0 -19.0 AVG 124 1.0 RB 1 MHz;VB 10 Hz;Pk 594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 80.0 70.0 - - - 124 1.0 RB 1 MHz;VB 3 MHz;Pk 80.0 - - - - 124 1.0 RB 1 MHz;VB 3 MHz;Pk 90 - - - - - - - - 100 - - - - - - - - - 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500										
594.510 55.6 V 74.0 -18.4 PK 124 1.0 RB 1 MHz;VB 3 MHz;Pk 80.0 - - - - - - - - - 70.0 - - - - - - - - - 90,0 - - - - - - - - - 100 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500										
80.0 70.0 70.0 (Wodd) 50.0 30.0 20.0 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500										
	3	30.0- 44°44 20.0-1						whore man		
		1000	2000	. 2000 .				5566	0000 0000	, ,000 ,000

EMC Test Data

	An 2022 Company		
Client:	Summit Data Communications	Job Number:	J78403
Model	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80878
wouer.	SDC-WD40 (1XT 602.11aby + DT 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		
Standard:	FCC 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Summary of Results - Device Operating in the 5725 - 5850 MHz Band SCU:

Run #	Mode	Channel	Antenna	Measured Power	Test Performed	Limit	Result / Margin
		#149 5745MHz	H&S	-			50.1dBµV/m @ 2392.9MHz (-3.9dB)
Run # 1	802.11n20 Chain A	#157 5785MHz	H&S	-	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15.247	49.6dBµV/m @ 2390.8MHz (-4.4dB)
		#161 5805MHz	H&S	-			48.6dBµV/m @ 2994.7MHz (-5.4dB)

Test Specific Details

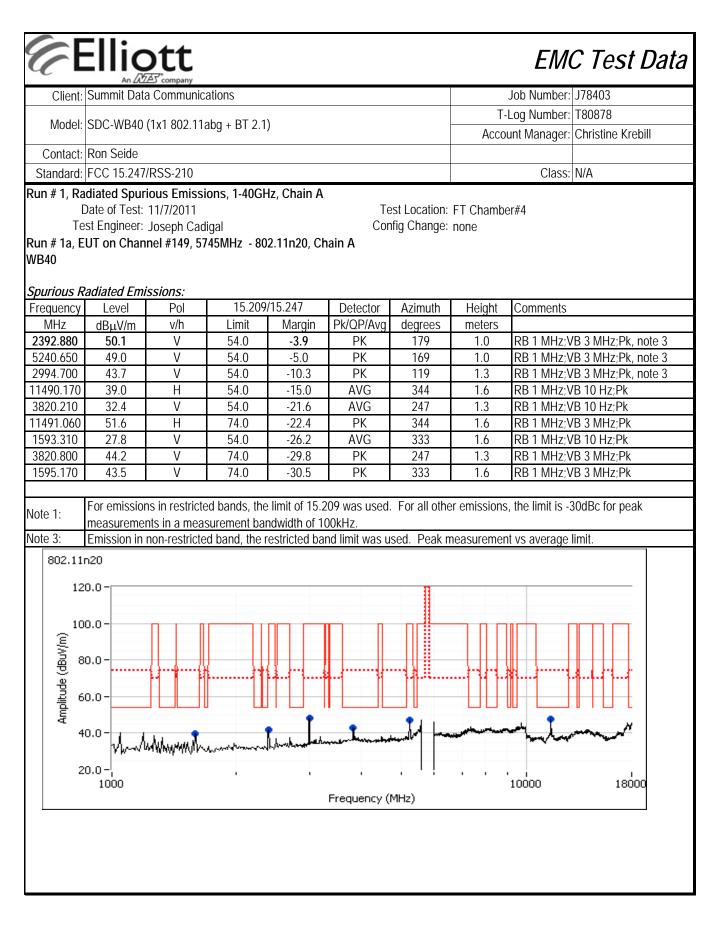
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

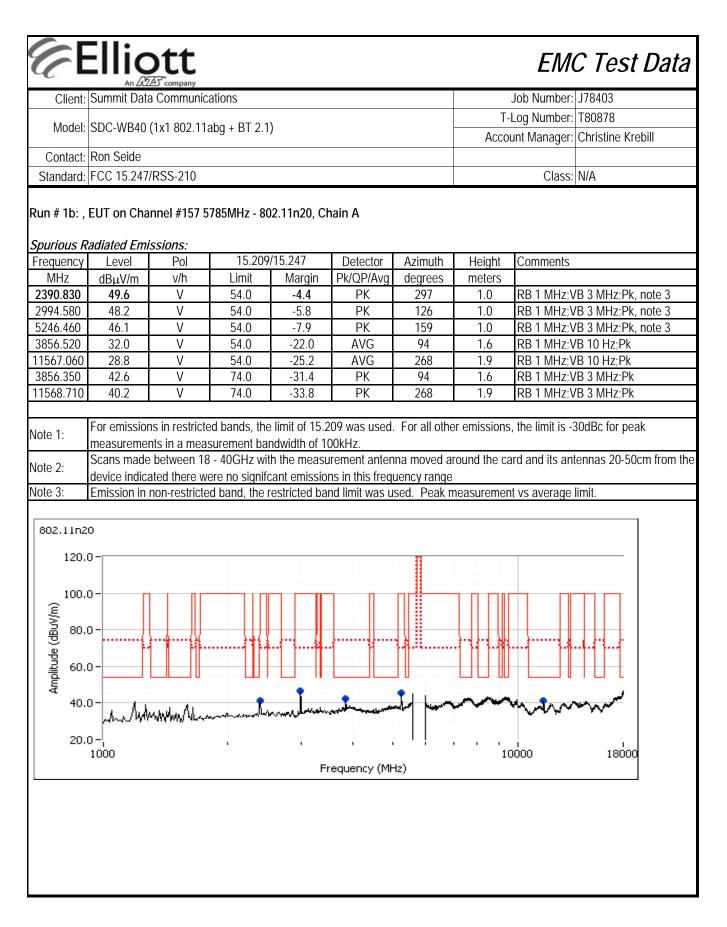
General Test Configuration

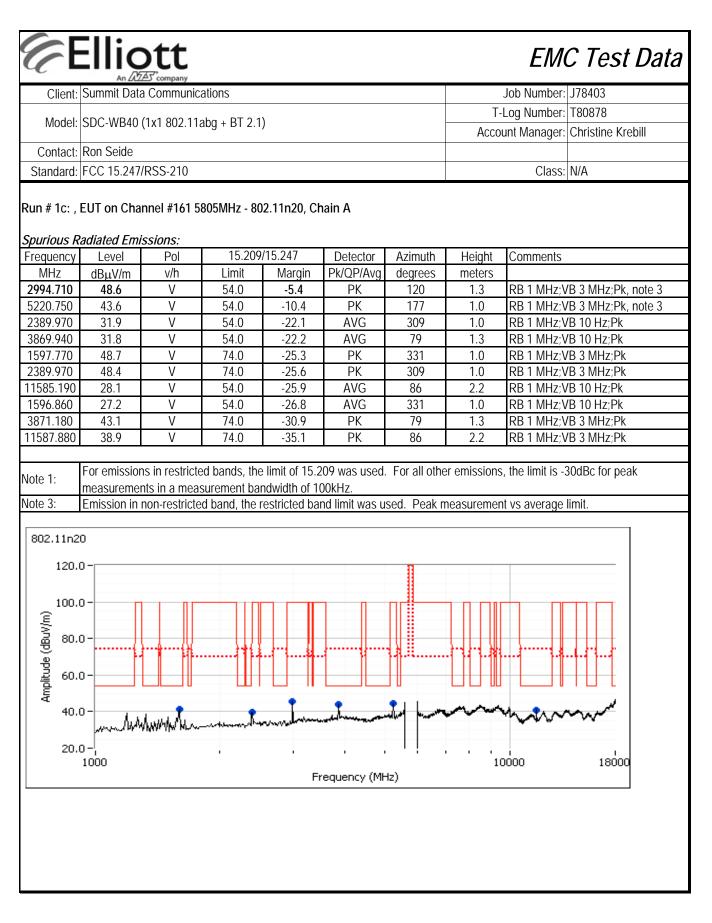
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	40-50 %

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Notes:

Preliminary testing showed no emissions below 1 GHz related to the radio Antenna: H&S

EMC Test Data

Client:	Summit Data Communications	Job Number:	J78403				
Madal	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80878				
wouer.	SDC-WD40 (1X1 602.11dby + D1 2.1)	Account Manager:					
Contact:	Ron Seide						
Standard:	FCC 15.247/RSS-210	Class:	N/A				

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Summary of Results - Device Operating in the 5725 - 5850 MHz Band

Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
		#149	Larsen	-			46.5dBµV/m @
Run # 1	802.11n20 Chain A	5745MHz				FCC 15.209 / 15.247	2392.5MHz (-7.5dB)
		#157	Larsen	-	Radiated Emissions, 1 - 40 GHz		52.5dBµV/m @
		5785MHz					11568.9MHz (-1.5dB)
		#161	1	-			53.8dBµV/m @
		5805MHz	Larsen				11608.7MHz (-0.2dB)

Test Specific Details

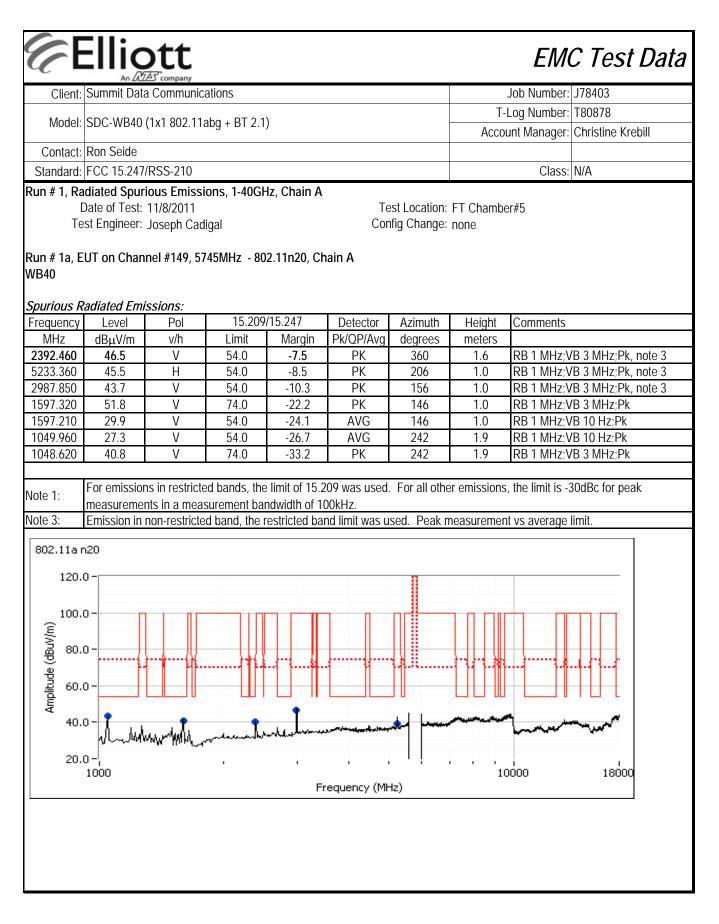
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

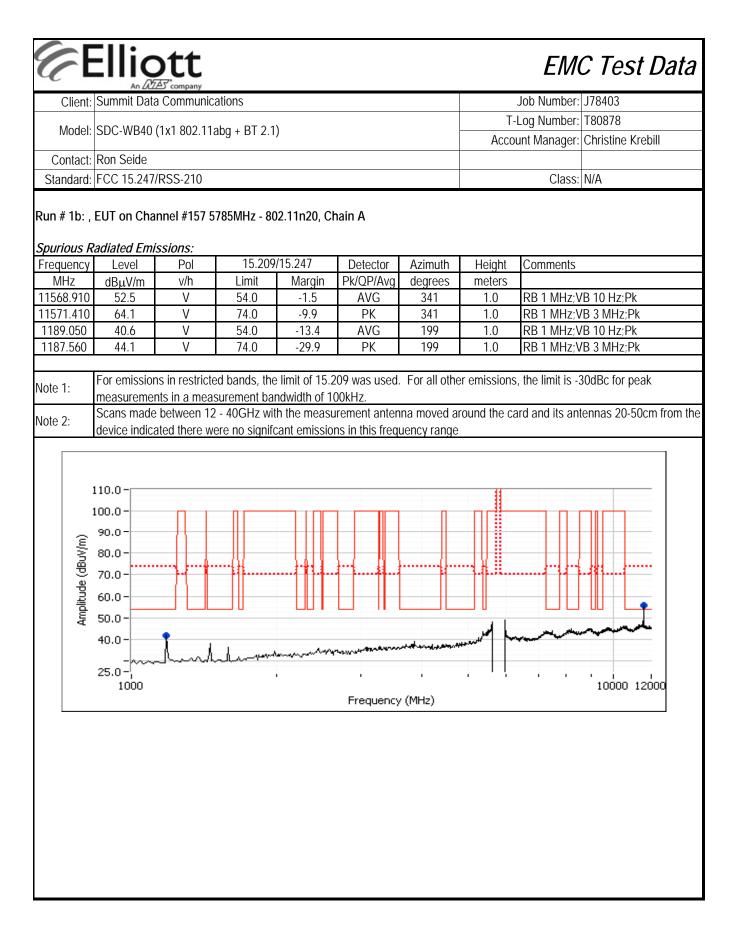
General Test Configuration

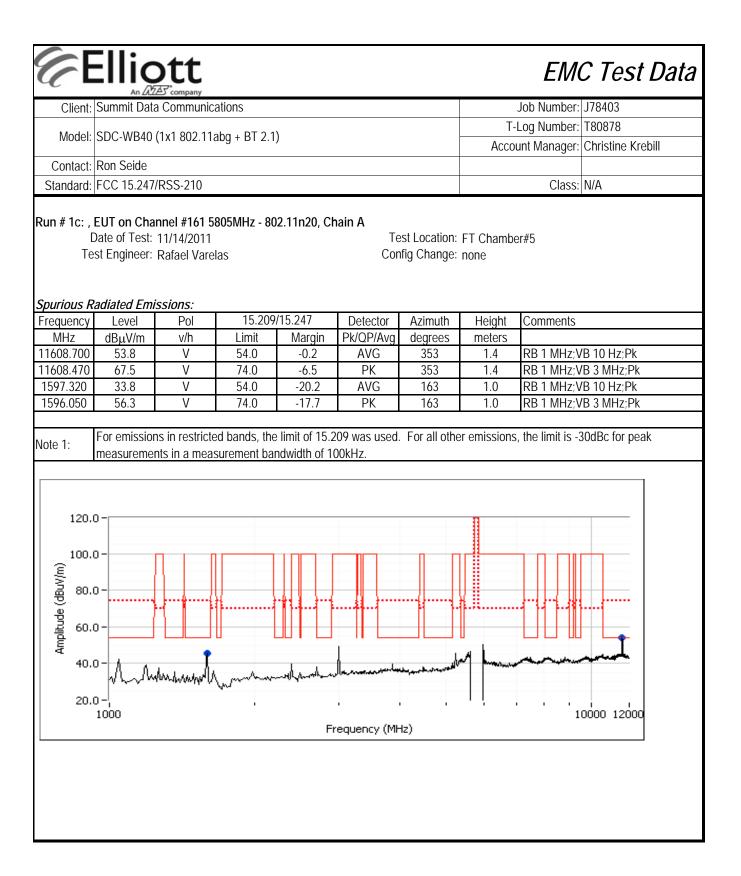
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	40-50 %

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Notes:

Preliminary testing showed no emissions below 1 GHz related to the radio Antenna: Larsen

EMC Test Data

Client:	Summit Data Communications	Job Number:	J78403
Madal	SDC-WB40 (1x1 802.11abg + BT 2.1)	T-Log Number:	T80878
wouer.	SDC-WD40 (1XT 602.11aby + DT 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		
Standard:	FCC 15.247/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Summary of Results - Device Operating in the 5725 - 5850 MHz Band

	C #2011-125	$\frac{1}{2}$, Laptop $\frac{1}{2}$	2011-2312				
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
		#149	Ethertronic				49.9dBµV/m @
		5745MHz	S	-			11490.4MHz (-4.1dB)
Run # 1	802.11n20	#157	Ethertronic		Radiated Emissions,	FCC 15.209 / 15.247	44.5dBµV/m @
Rull# I	Chain A	5785MHz	S	-	1 - 40 GHz	FCC 13.2097 13.247	1188.4MHz (-9.5dB)
		#161	Ethertronic				47.5dBµV/m @
		5805MHz	S	-			1453.2MHz (-6.5dB)

Test Specific Details

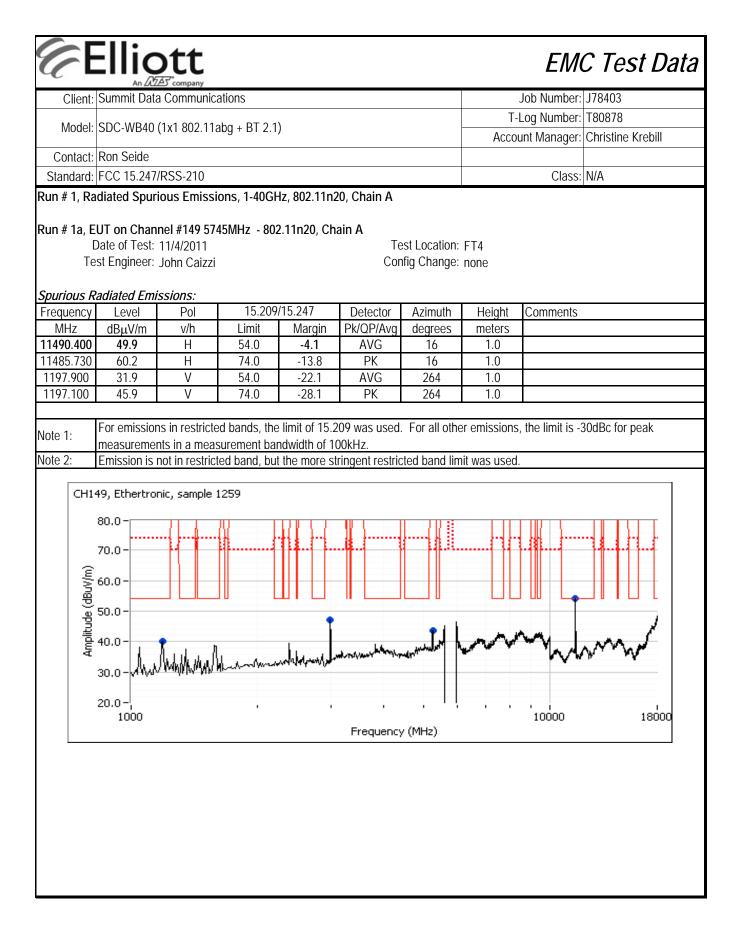
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	20-25 °C
	Rel. Humidity:	40-50 %

Modifications Made During Testing

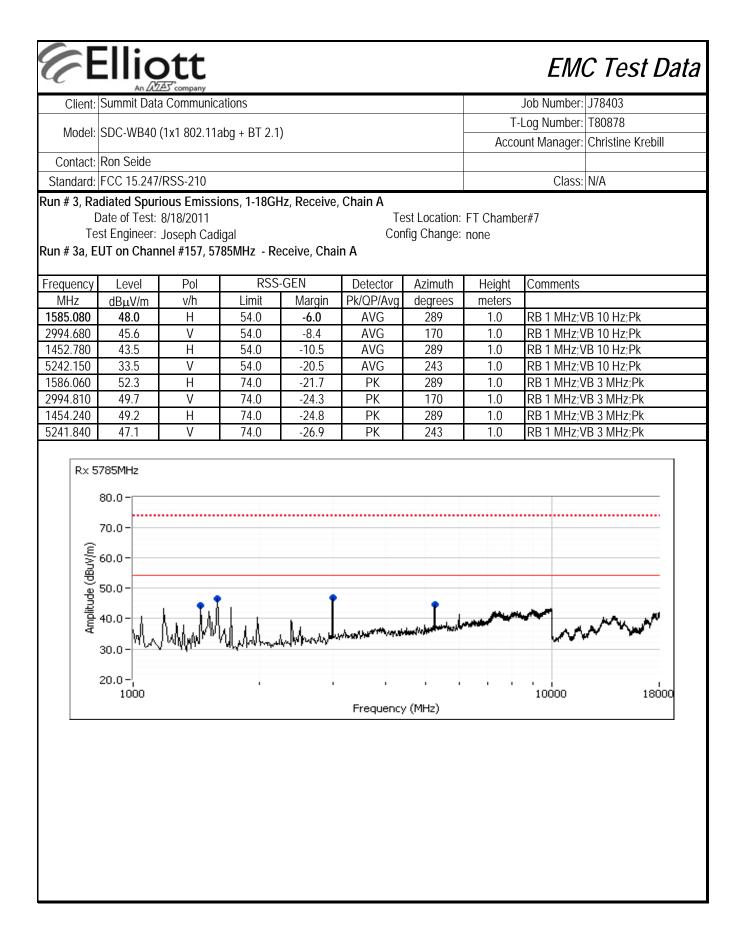

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

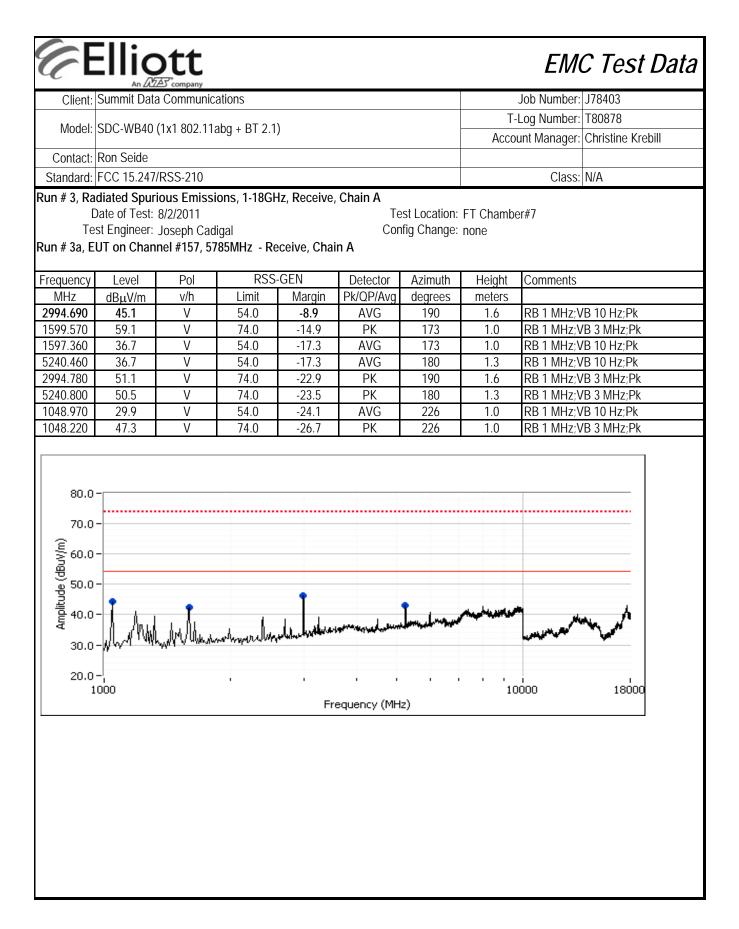
Notes:

Preliminary testing showed no emissions below 1 GHz related to the radio Antenna: Ethertronics

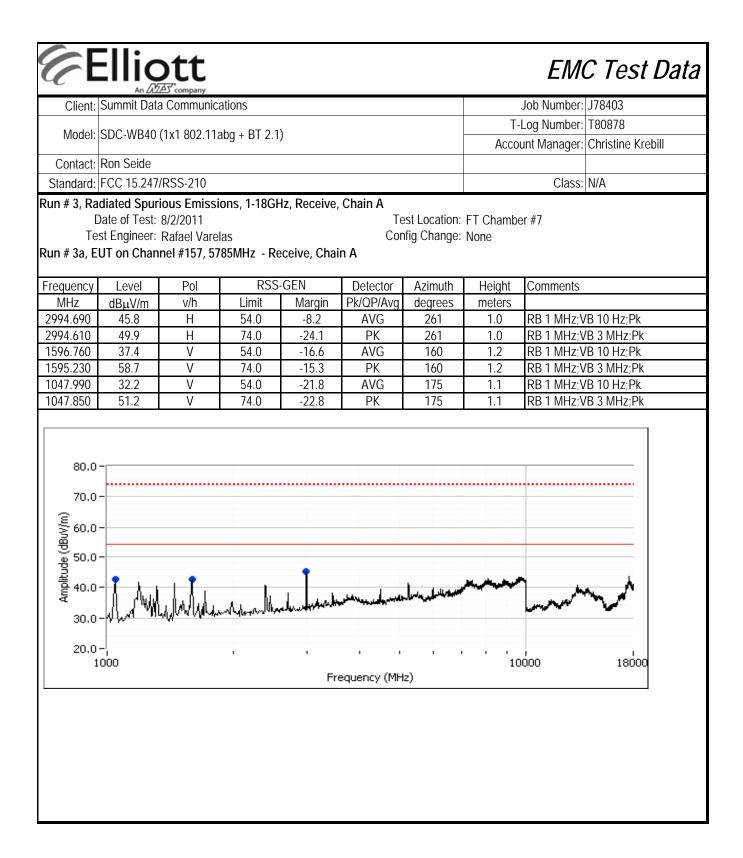


Client:	Summit Data	Communic	ations					Job Number:	
Model:	SDC-WB40 (1x1 802.11abg + BT 2.1)							Log Number:	
								unt Manager:	Christine Krebill
	Ron Seide								
Standard:	FCC 15.247/	RSS-210						Class:	N/A
I Te	EUT on Char Date of Test: 7 est Engineer: 2 Padiated Emis	11/7/2011 Jack Liu	785MHz - 80)2.11n20, Cł	Te	st Location: fig Change:			
Frequency	Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1188.400	44.5	Н	54.0	-9.5	AVG	207	1.3		
1188.400	35.4	Н	74.0	-38.6	PK	207	1.3		
1453.170	43.0	Н	54.0	-11.0	AVG	24	1.6		
1453.570	46.0	H	74.0	-28.0	PK	24	1.6		
11569.800	38.9	V	54.0	-15.1	AVG	257	1.6		
	515	V	/4 ()	-22 5	PK I	277	16		
11571.470 Note 1:	measuremen Scans made	<u>ts in a meas</u> between 18	<u>surement bar</u> - 40GHz wit	ndwidth of 10 h the measu	DOkHz.	na moved ar			30dBc for peak tennas 20-50cm from th

Client:	Summit Data	a Communica	ations					Job Number:	J78403
Model	SDC-WB40	(1x1 802 11;	aha + BT 2 1			Log Number:			
		(171.002.116	10g + D1 2.1		Acco	unt Manager:	Christine Krebill		
	: Ron Seide								
	: FCC 15.247/RSS-210 , EUT on Channel #161 5805MHz - 802.11n20, Chain A							Class:	N/A
	Date of Test:		8051VIHZ - 81	02.11N20, C		est Location:	FT5		
	est Engineer:					fig Change:			
Courious D	Dadiatad Emi	icolono.							
Frequency	Radiated Emi Level	Pol	15.209	/15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1453.240	47.5	Н	54.0	-6.5	AVG	29	1.0		
1189.460	45.2	H	54.0	-8.8	AVG	221	1.9		
11607.730	36.6	V	54.0	-17.4	AVG	254	1.2		
11608.600	48.6 44.9	V H	74.0 74.0	-25.4 -29.1	PK PK	254 29	<u>1.2</u> 1.0		
	44.7	17							
1199.800 lote 1: lote 2:	measuremer Emission is i 61, Ethertroi	H ns in restricte nts in a meas not in restrict	74.0 ed bands, the surement ban ted band, but	-34.7 e limit of 15.2 ndwidth of 10	PK 209 was used	221 For all othe	1.9 r emissions		30dBc for peak
1199.800 Note 1: Note 2:	For emissior measuremer Emission is 1 61, Ethertron 80.0 – 70.0 –	H ns in restricte nts in a meas not in restrict	74.0 ed bands, the surement ban ted band, but	-34.7 e limit of 15.2 ndwidth of 10	PK 209 was used. 20kHz.	221 For all othe	1.9 r emissions		30dBc for peak
1199.800 Note 1: Note 2:	For emission measuremen Emission is i 61, Ethertroi 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 -	H ns in restricte nts in a meas not in restrict	74.0 ed bands, the surement ban ted band, but	-34.7 e limit of 15.2 ndwidth of 10	PK 209 was used. 20kHz.	221 For all othe	1.9 r emissions		
Note 1: Note 2:	For emission measuremen Emission is 1 61, Ethertron 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -	H ns in restricte nts in a meas not in restrict	74.0 ed bands, the surement ban ted band, but	-34.7 e limit of 15.2 ndwidth of 10	PK 209 was used. 20kHz.	221 For all other ted band lim	1.9 r emissions		30dBc for peak


EMC Test Data

Client							
Client	: Summit Data	a Communic	ations		Job Number:	J78403	
Madal		(1v1 000 11)	aba + PT 2 1	\		T-Log Number:	T80878
woder	: SDC-WB40	(1X1 802.118	ару + БТ Z.Т.)		Account Manager:	Christine Krebill
Contact	: Ron Seide						
Standard	: FCC 15.247	/RSS-210			Class:	N/A	
			e Operating	g in the 57	ted Spurious Em 25 - 5850 MHz Banc		
New Modu	le #2011-129	6, Laptop #2	2011-2312, L				r
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin
Receiver S	purious Emi						
Run # 3	Receive Chain A	#157, Chain A	Ethertronic s		Radiated Emissions, 1 - 18 GHz	RSS-GEN	48.0dBµV/m @ 1585.1MHz (-6.0dB)
			5				
	Test Config and all local		oment were l	ocated on the	e turntable for radiated so	ourious emissions testina	
The EUT For radia	and all local	support equi	measuremen	t antenna wa	e turntable for radiated sp is located 3 meters from t		
The EUT For radia	and all local	support equi	measuremen				
The EUT For radia Ambient Modifica	and all local	support equi s testing the r s: • During T	measuremen T Ri esting	t antenna wa emperature: el. Humidity:	is located 3 meters from t		
The EUT For radia Ambient Modifica No modif Deviatior	and all local ted emissions Conditions tions Made	support equip s testing the r s: During T made to the ne Standa	measuremen T Re esting EUT during t	t antenna wa emperature: el. Humidity: testing	is located 3 meters from t 20-25 °C 40-50 %		
The EUT For radia Ambient Modifica No modif Deviation No devia No devia Prelimina	and all local ted emissions Conditions tions Made fications were	support equip support equip s testing the r s: e During T made to the ne Standa r ade from the	measuremen T Re Euting EUT during f rd requirements	t antenna wa emperature: el. Humidity: testing s of the stand	is located 3 meters from t 20-25 °C 40-50 % lard.		



EMC Test Data

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: Ambient Conditions Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio	
Model: SDC-WB40 (1x1 802.11abg + B1 2.1) Account Manager: Christine Kreb Contact: Ron Seide Class: NA RSS-GEN Radiated Spurious Emissions Summary of Results - Device Operating in the 5725 - 5850 MHz Band Scu: v3.03.01 Run # Mode Channel Antenna Measured Power Test Performed Limit Result / M Receiver Spurious Emissions # # Account Manager: Christine Kreb Run # 3 Receiver #157, Chain A H&S - Test Performed Limit Result / M Receive #157, H&S H&S - Radiated Emissions, 1 - 18 GHz RSS-GEN 45.1dBµV Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 40-50 % Modifications were made t	
Contact: Ron Seide Construct Report Standard: FCC 15.247/RSS-210 Class: N/A RSS-GEN Radiated Spurious Emissions Summary of Results - Device Operating in the 5725 - 5850 MHz Band SCU: v3.03.01 Run # Mode Channel Antenna Measured Test Performed Limit Result / N Receive #157 Run # 3 Receive #157 H&S - Radiated Emissions, RSS-GEN 45.1dBµV Receive #157 Run # 3 Chain A H&S - Radiated Emissions, RSS-GEN 45.1dBµV Receive #157 Run # 3 Chain A H&S - Radiated Emissions, RSS-GEN 2994.7MHz For Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration Temperature: 20-25 °C Rel Humidity: 40-50 % Modefications Made During Testing Deviations From The Standard <td></td>	
Standard: FCC 15.247/RSS-210 Class: N/A RSS-GEN Radiated Spurious Emissions Summary of Results - Device Operating in the 5725 - 5850 MHz Band SCU: v3.03.01 Run # Mode Channel Antenna Measured Power Test Performed Limit Result / M Run # Mode Channel Antenna Measured Power Test Performed Limit Result / M Receive spurious Emissions Run # 3 Receive #157, Chain A H&S - Radiated Emissions, 1 - 18 GHz RSS-GEN 45.1dBµV 2994.7MHz Fest Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 40-50 % Vodifications were made to the EUT during testing Deviations From The Standard No de	oill
RSS-GEN Radiated Spurious Emissions Summary of Results - Device Operating in the 5725 - 5850 MHz Band SCU: v3.03.01 Run # Mode Channel Antenna Measured Power Test Performed Limit Result / M Receive Spurious Emissions Run # Mode Channel Antenna Measured Power Test Performed Limit Result / M Receive #157, H&S Radiated Emissions, RSS-GEN 45.1dBµV Run # 3 Chain A H&S Chain A Chain A H&S Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration Temperature: 20-25 °C Rel. Humidity: 40-50 % Modifications Wade During Testing Deviations From The Standard No deviations were made to the EUT during testing Deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio	
Summary of Results - Device Operating in the 5725 - 5850 MHz Band SCU: v3.03.01 Run # Mode Channel Antenna Measured Test Performed Limit Result / N Receiver Spurious Emissions Mode Chain A H&S 1 1 Result / N Receiver Spurious Emissions #157, H&S 1 1.18 GHz RSS-GEN 45.1dBµV Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration Temperature: 20-25 °C Run Himidity: 40-50 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations were made from the requirements of the standard. No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio	
Run # Mode Channel Antenna Power Test Performed Limit Result / M Receiver Spurious Emissions #157, H&S - Radiated Emissions, RSS-GEN 45.1dBµV 2994.7MHz Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration Temperature: 20-25 °C Rel. Humidity: 40-50 % Mode During Testing No modifications were made to the EUT during testing Deviations were made from the requirements of the standard. No deviations were made from the requirements of the standard.	
Run # 3 Receive Chain A #157, Chain A H&S - Radiated Emissions, 1 - 18 GHz RSS-GEN 45.1dBµV 2994.7MHz Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration Temperature located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 40-50 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio 1 GHz	/largin
Ruh # 3 Chain A Chain A H&S 1 - 18 GHz RSS-GEN 2994.7MHz Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: 40-50 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio	
Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 20-25 °C Rel. Humidity: Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio	
Rel. Humidity: 40-50 % Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio	
No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio	
No deviations were made from the requirements of the standard. Notes: Preliminary testing showed no emissions below 1 GHz related to the radio	
Preliminary testing showed no emissions below 1 GHz related to the radio	
Antenna: H&S	

Elliott <i>EMC Test Data</i>									
Client:	Summit Data	a Communica	ations			Job Number:	J78403		
Model:	SDC-WB40	(1x1 802.11a	abg + BT 2.1))	T-Log Number:				
Contact	Ron Seide		-		Account Manager:	Christine Kredili			
	FCC 15.247	/RSS-210		Class:	N/A				
RSS-GEN Radiated Spurious Emissions Summary of Results - Device Operating in the 5725 - 5850 MHz Band									
Run #	Mode	Channel	Antenna	Power Setting	Test Performed	Limit	Result / Margin		
Receiver Sp Run # 3	ourious Emi Receive Chain A	ssions #157, Chain A	Larsen	-	Radiated Emissions, 1 - 18 GHz	RSS-GEN	45.8dBµV/m @ 2994.7MHz (-8.2dB)		
The EUT a For radiate		support equips testing the r	neasuremen		e turntable for radiated sp as located 3 meters from t 20-25 °C				
Modificat	ions Made	e During T	R	el. Humidity:					
	s From Th ons were ma		r d requirements	s of the stand	lard.				
Notes: Preliminar Antenna:		wed no emis	sions below	1 GHz relate	ed to the radio				

EMC Test Data

Client:Summit Data CommunicationsJob Number:J78403Model:SDC-WB40 (1x1 802.11abg + BT 2.1)T-Log Number:T80878Contact:Ron SeideChristine KrebillStandard:FCC 15.247/RSS-210Class:N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11b Mode)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 8/23/2011 Test Engineer: John Caizzi / Rafael Varelas Test Location: FT4 and Lab #4 Config. Used: 2 Config Change: no antennas EUT Voltage: 3.3 VDC

General Test Configuration

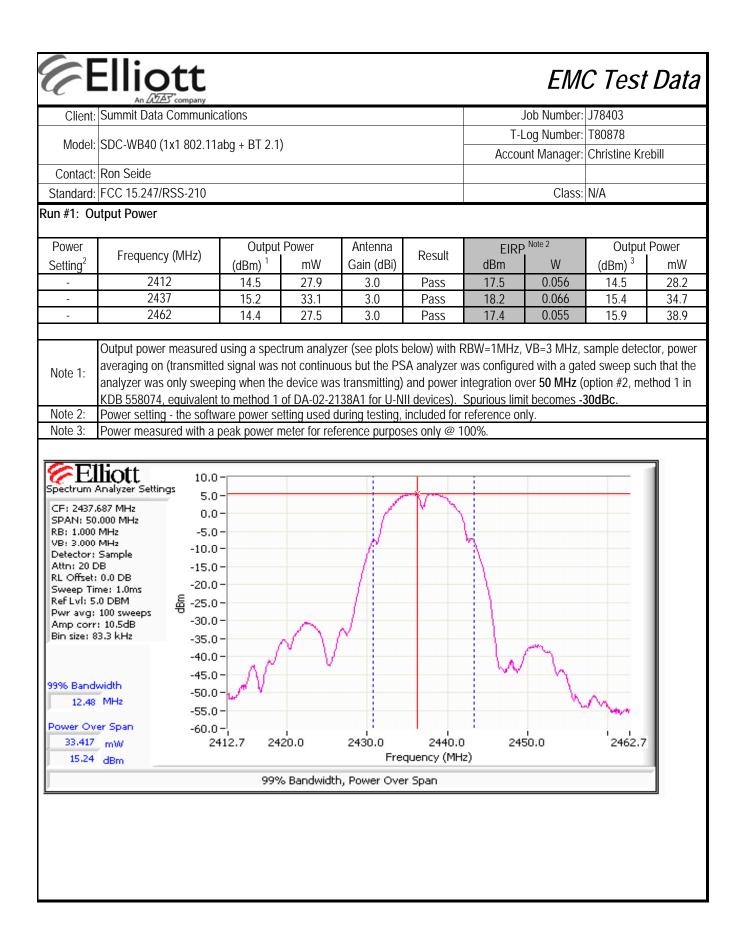
The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

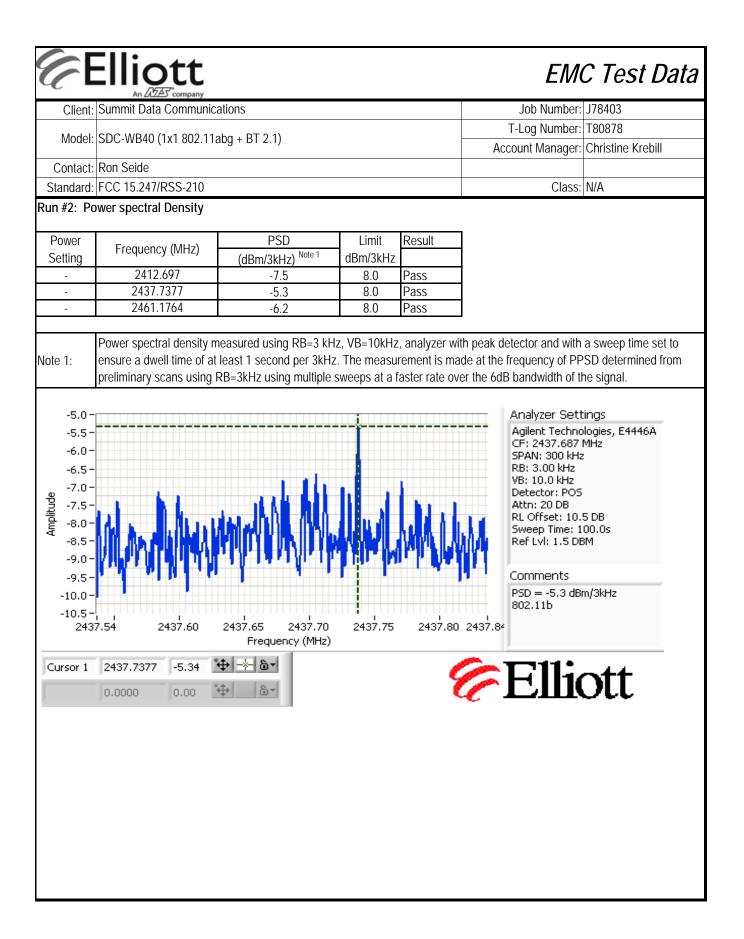
All measurements have been corrected to allow for the external attenuators used.

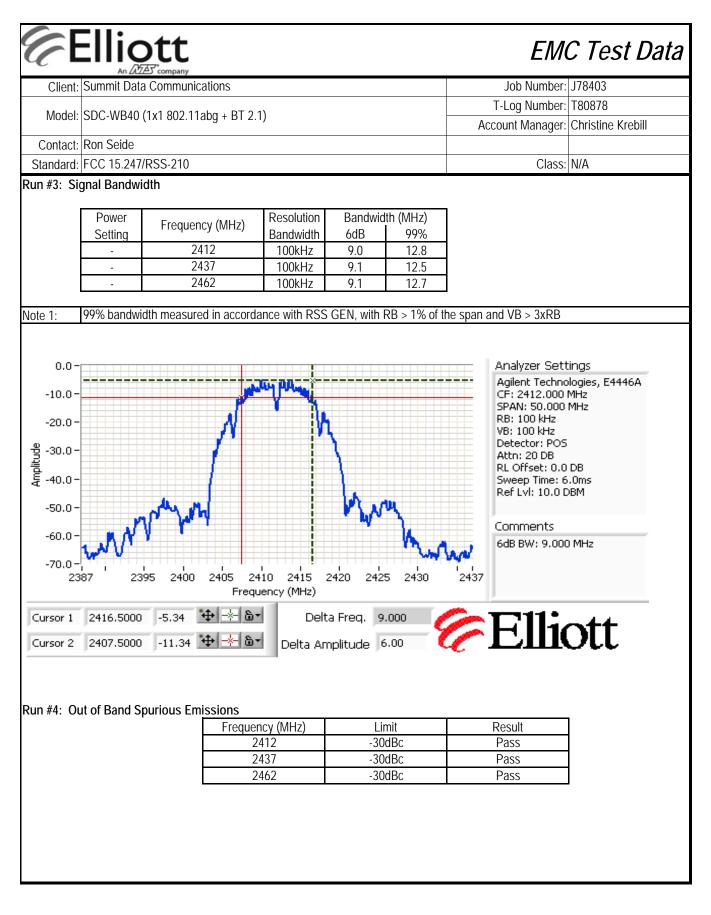
Ambient Conditions:

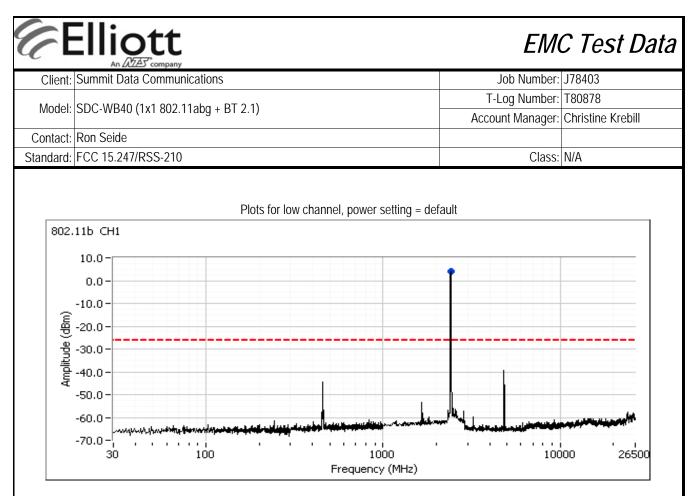
Temperature:	23 °C
Rel. Humidity:	37 %

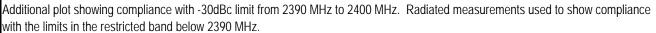
Summary of Results

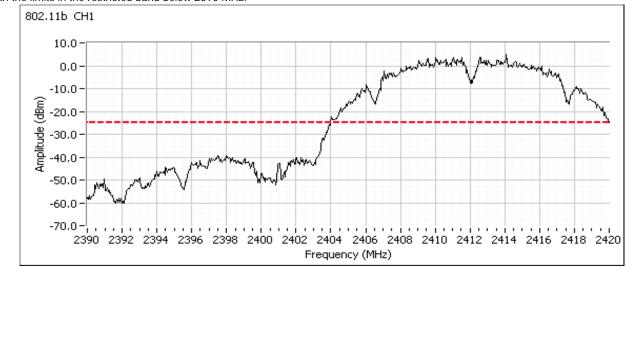

Run #	Pwr setting	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	Output Power	15.247(b)	Pass	15.2 dBm
2	-	Power spectral Density (PSD)	15.247(d)	Pass	-5.3 dBm/3kHz
3	-	Minimum 6dB Bandwidth	15.247(a)	Pass	9.0 MHz
3	-	99% Bandwidth	RSS GEN	-	12.8 MHz
4	-	Spurious emissions	15.247(b)	Pass	All emissions < -30 dBc

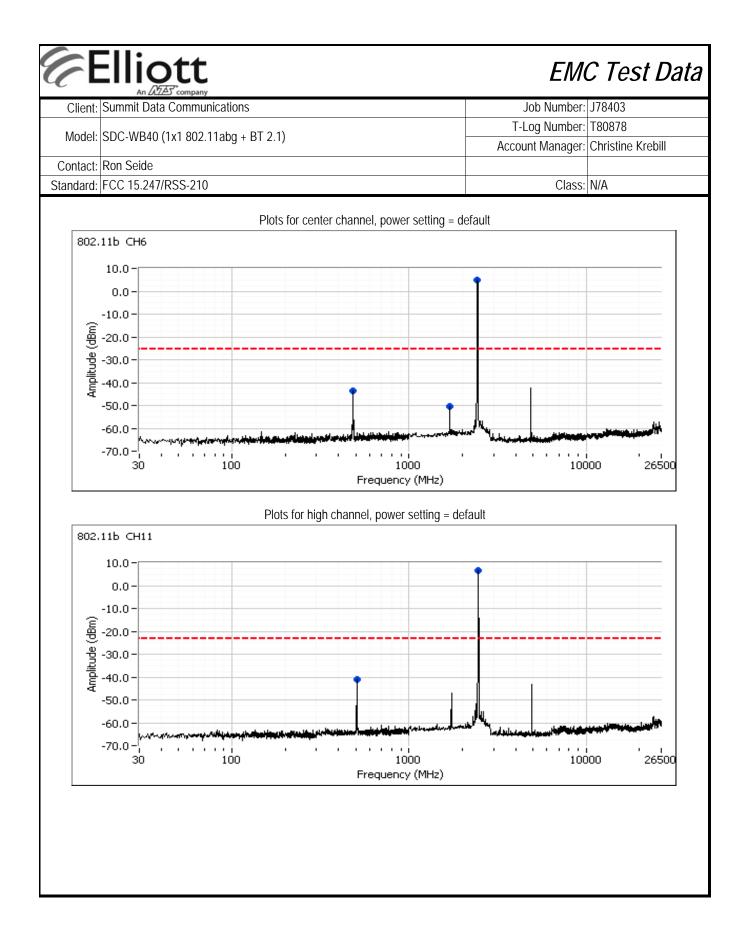

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.





Elliott

EMC Test Data

 Client:
 Summit Data Communications
 Job Number:
 J78403

 Model:
 SDC-WB40 (1x1 802.11abg + BT 2.1)
 T-Log Number:
 T80878

 Contact:
 Ron Seide
 Christine Krebill

 Standard:
 FCC 15.247/RSS-210
 Class:
 N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11g Mode)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 8/23/2011 Test Engineer: John Caizzi / Rafael Varelas Test Location: FT4 and Lab #4 Config. Used: 2 Config Change: no antennas EUT Voltage: 3.3 VDC

General Test Configuration

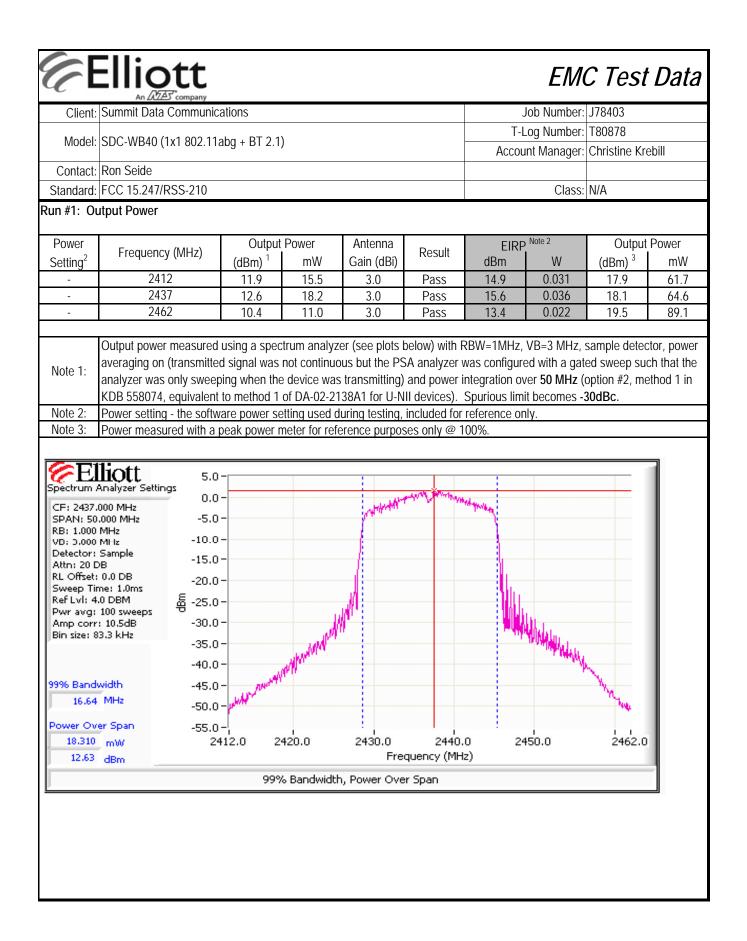
The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

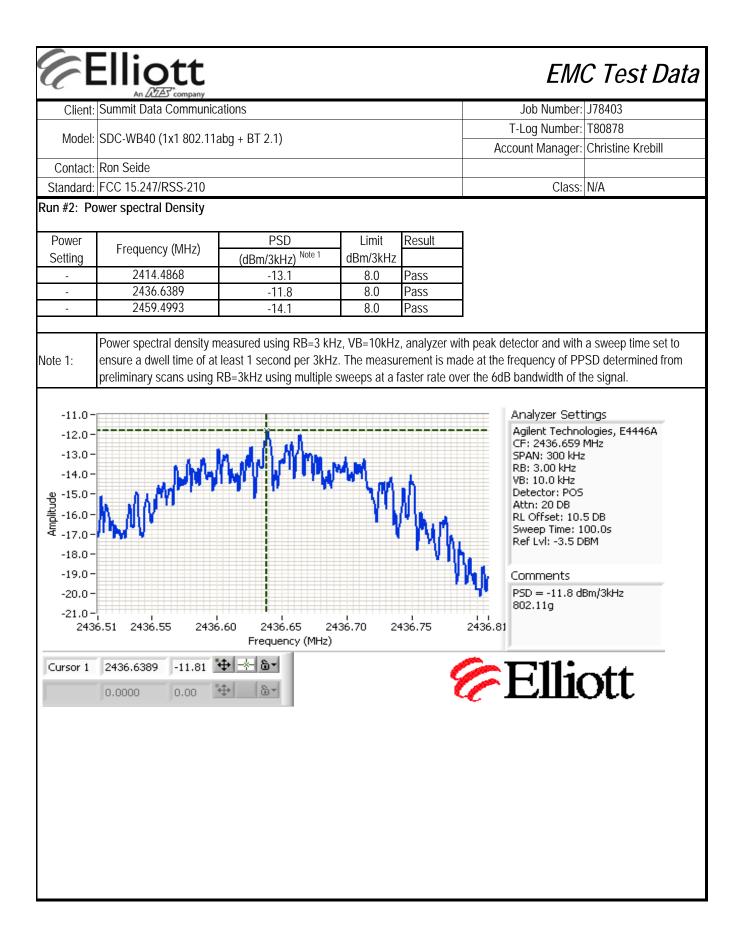
All measurements have been corrected to allow for the external attenuators used.

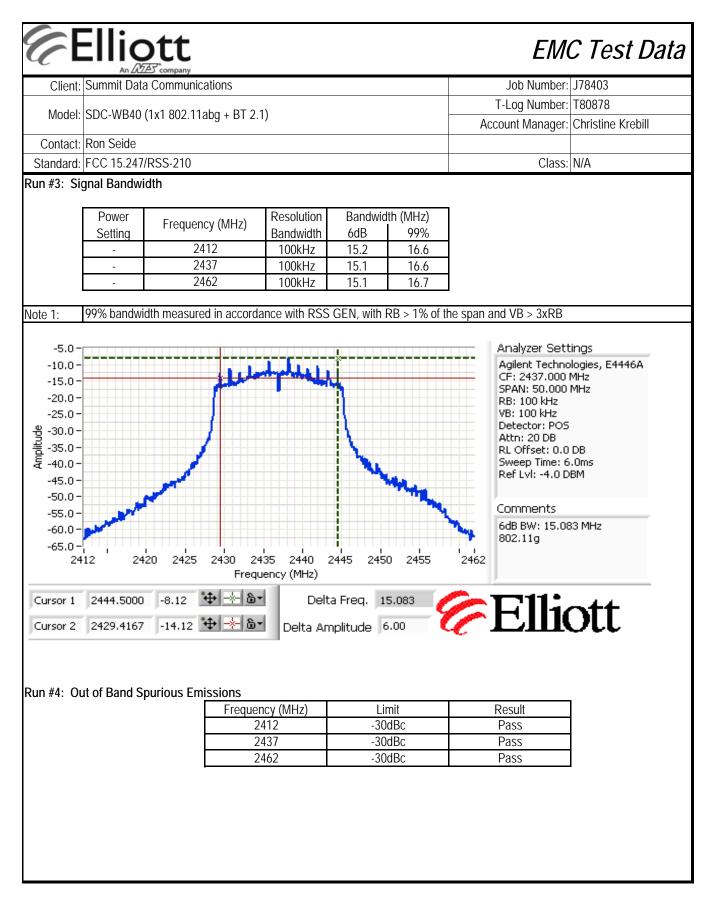
Ambient Conditions:

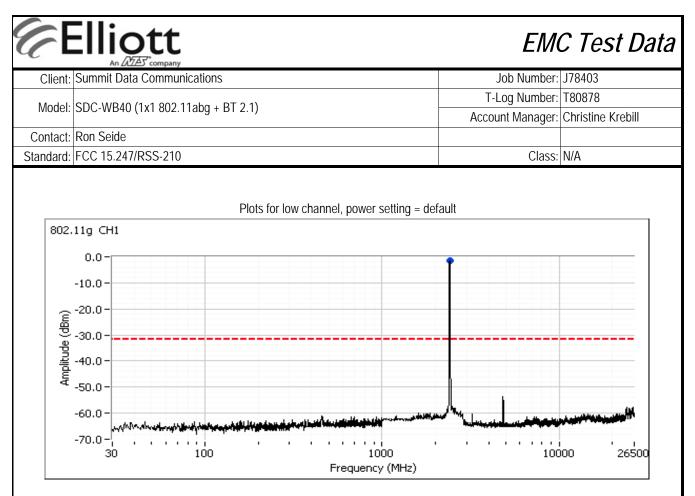
Temperature:	23 °C
Rel. Humidity:	37 %

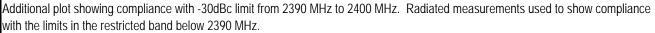
Summary of Results

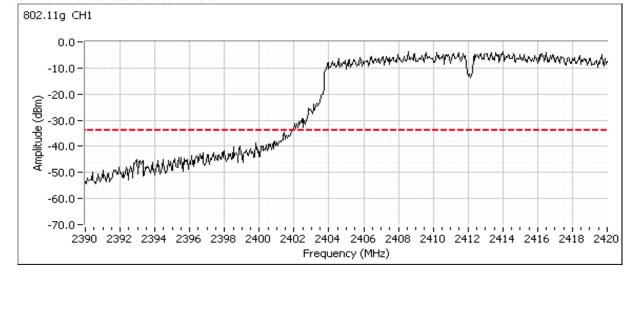

Run #	Pwr setting	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	Output Power	15.247(b)	Pass	12.6 dBm
2	-	Power spectral Density (PSD)	15.247(d)	Pass	-11.8 dBm/3kHz
3	-	Minimum 6dB Bandwidth	15.247(a)	Pass	15.1 MHz
3	-	99% Bandwidth	RSS GEN	-	16.7 MHz
4	-	Spurious emissions	15.247(b)	Pass	All emissions < -30 dBc

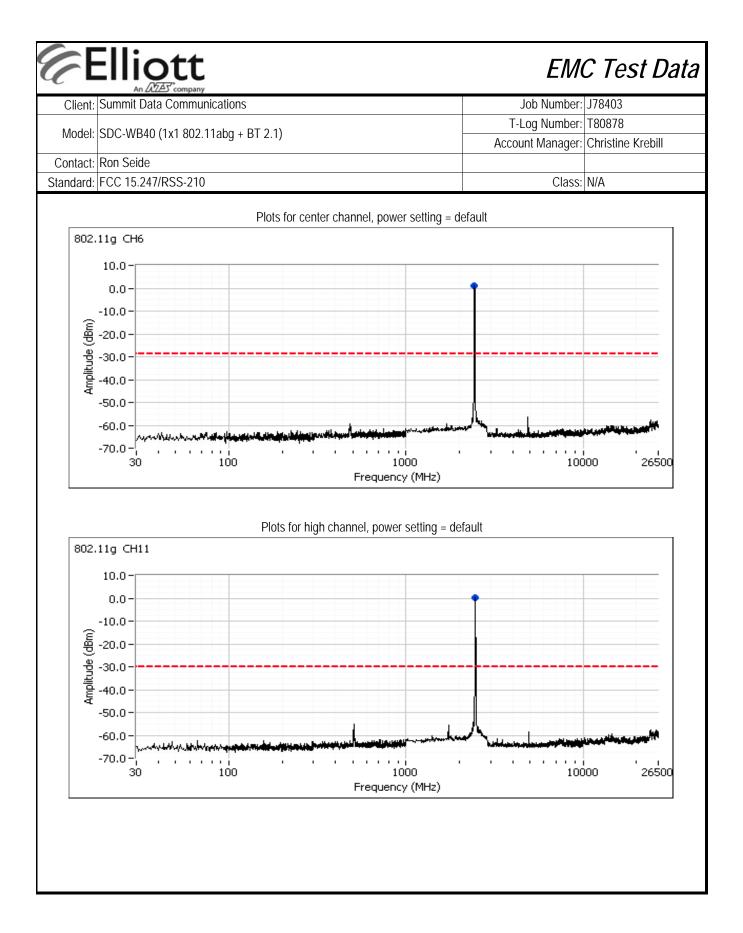

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.





Elliott

EMC Test Data

Client:Summit Data CommunicationsJob Number:J78403Model:SDC-WB40 (1x1 802.11abg + BT 2.1)T-Log Number:T80878Contact:Ron SeideChristine KrebillStandard:FCC 15.247/RSS-210Class:N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11n20 Mode)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 8/23/2011 Test Engineer: John Caizzi / Rafael Varelas Test Location: FT4 and Lab #4 Config. Used: 2 Config Change: no antennas EUT Voltage: 3.3 VDC

General Test Configuration

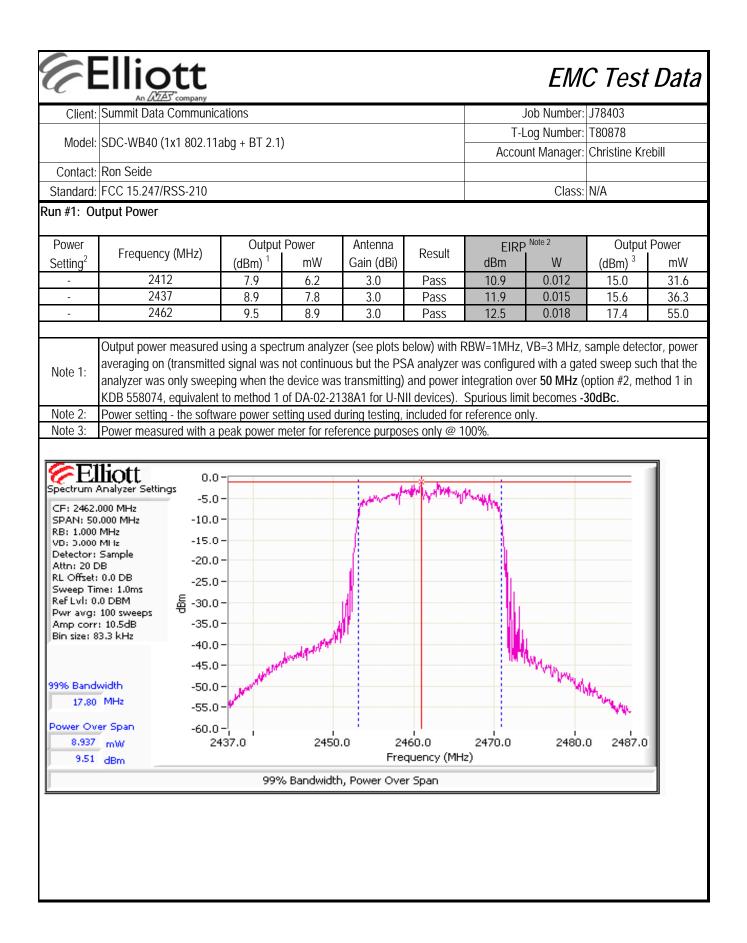
The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

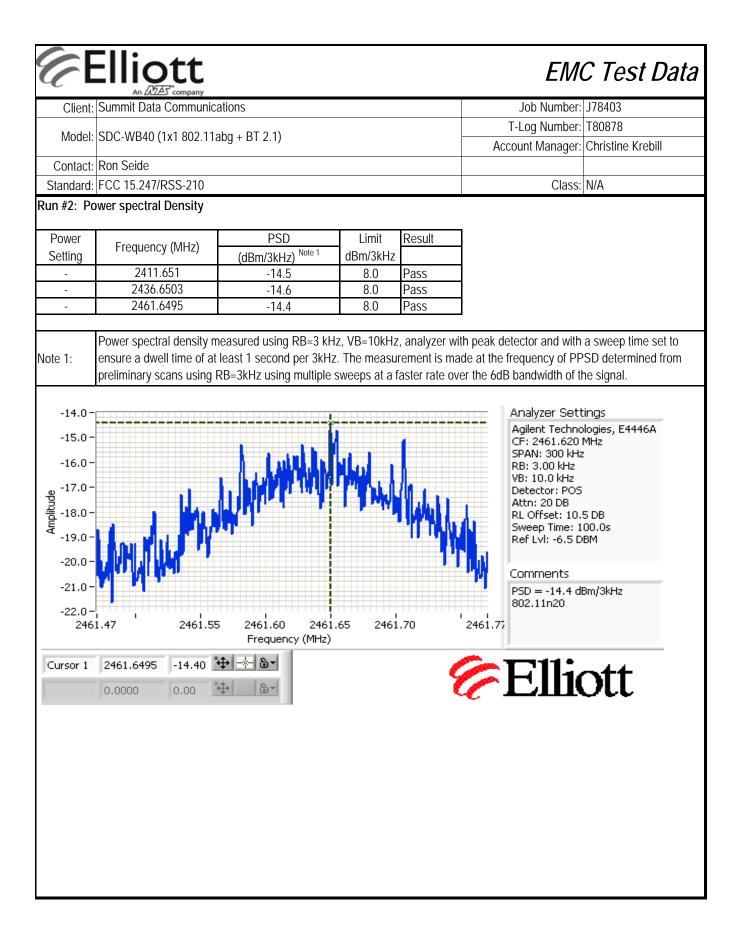
All measurements have been corrected to allow for the external attenuators used.

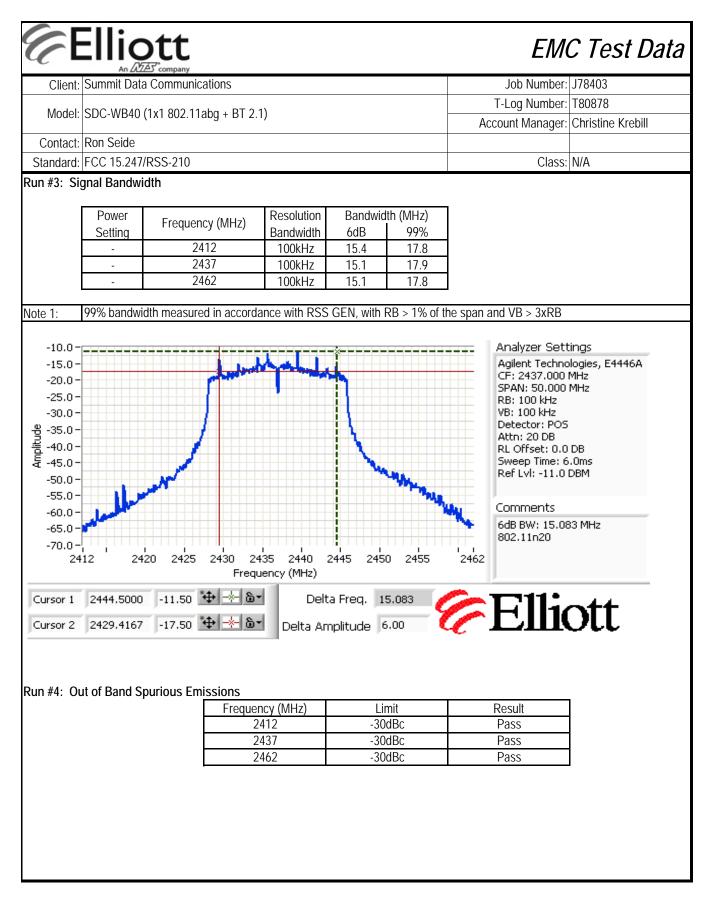
Ambient Conditions:

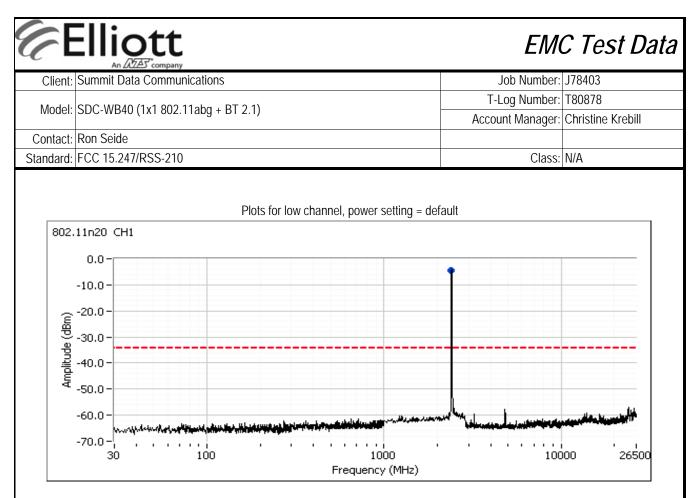
Temperature:	23 °C
Rel. Humidity:	37 %

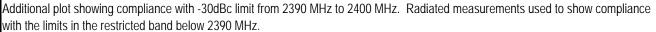
Summary of Results

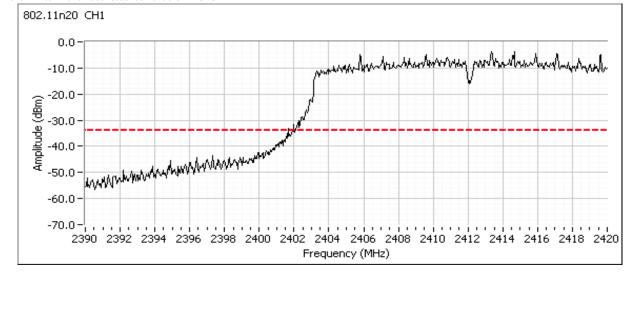

Run #	Pwr setting	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	Output Power	15.247(b)	Pass	9.5 dBm
2	-	Power spectral Density (PSD)	15.247(d)	Pass	-14.4 dBm/3kHz
3	-	Minimum 6dB Bandwidth	15.247(a)	Pass	15.1 MHz
3	-	99% Bandwidth	RSS GEN	-	17.9 MHz
4	-	Spurious emissions	15.247(b)	Pass	All emissions < -30 dBc

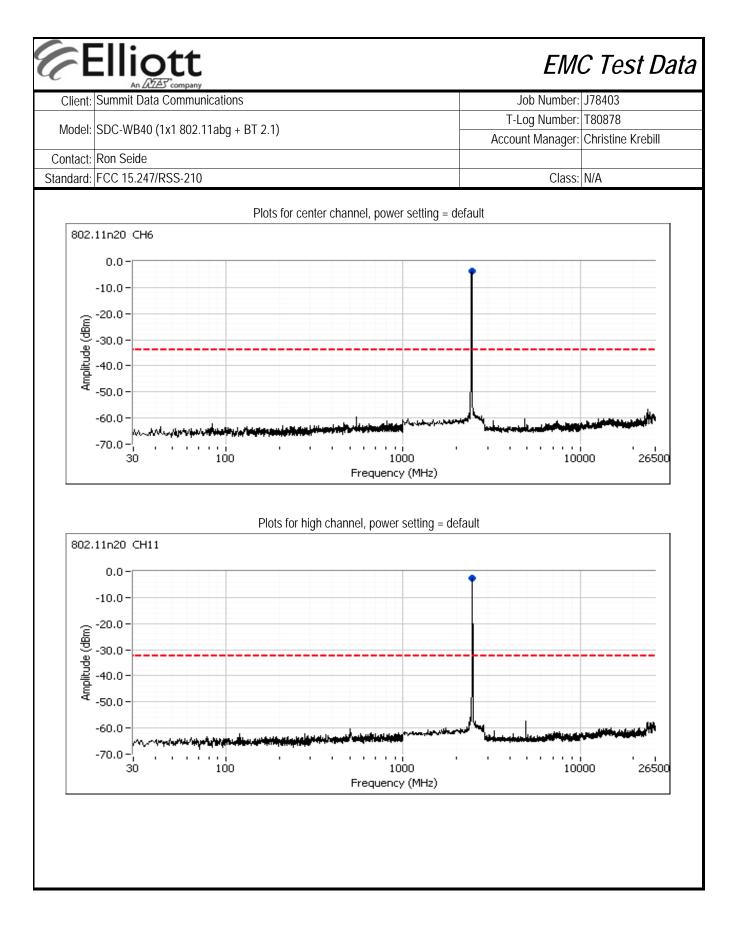

Modifications Made During Testing

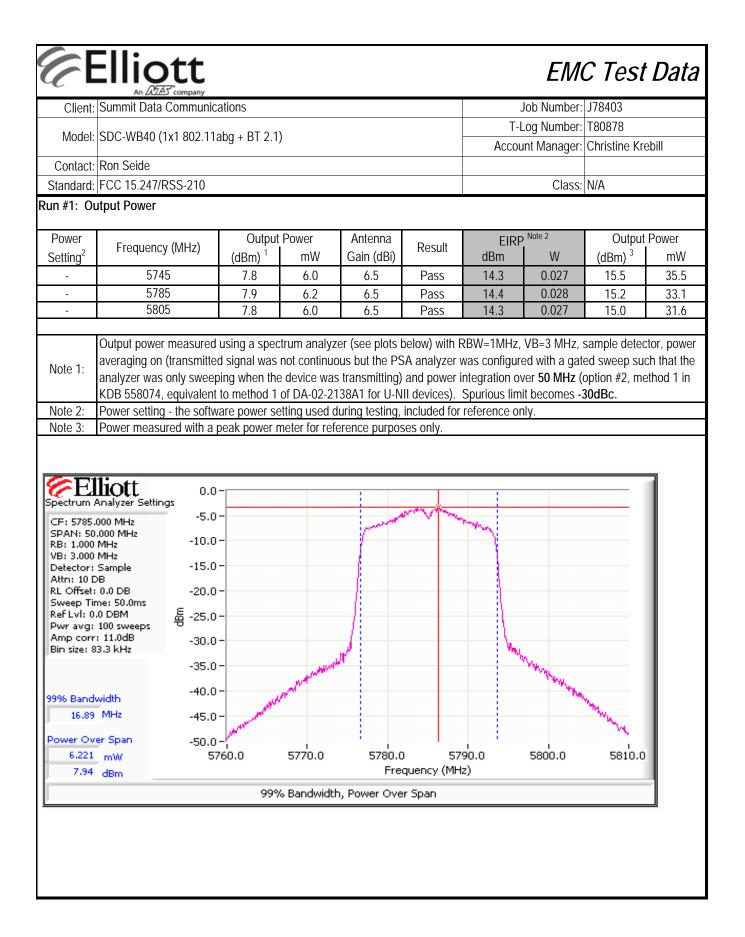

No modifications were made to the EUT during testing

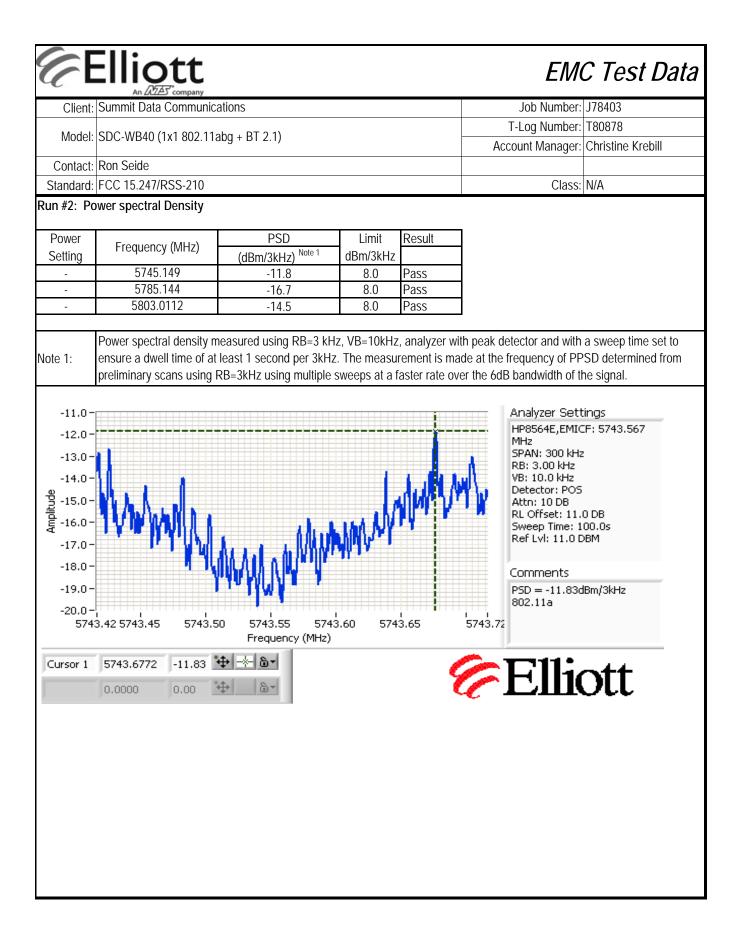

Deviations From The Standard

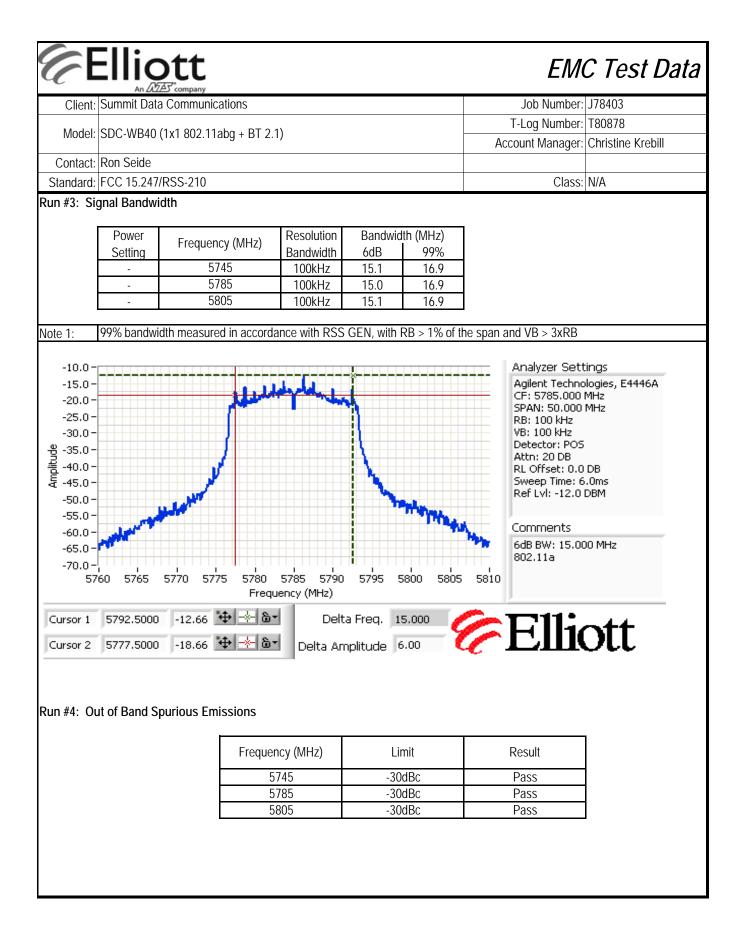

No deviations were made from the requirements of the standard.

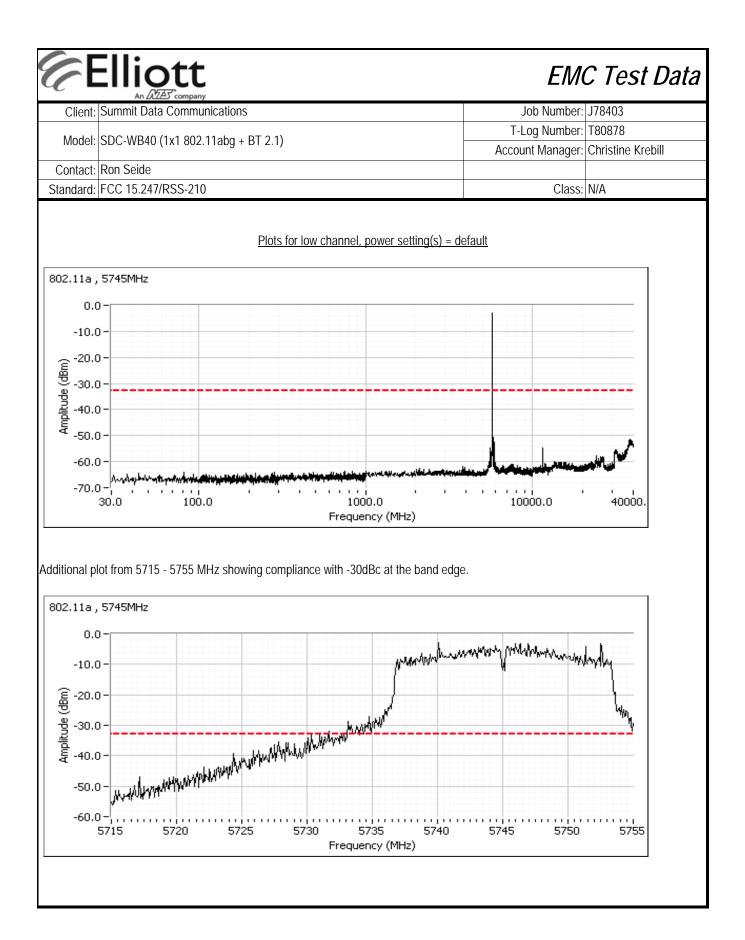


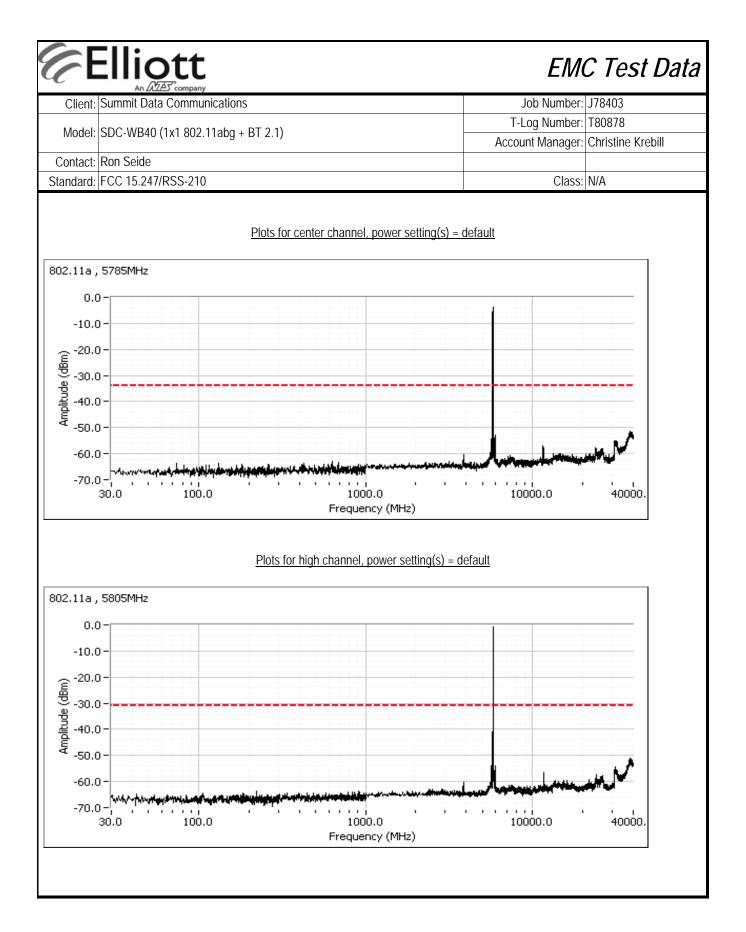


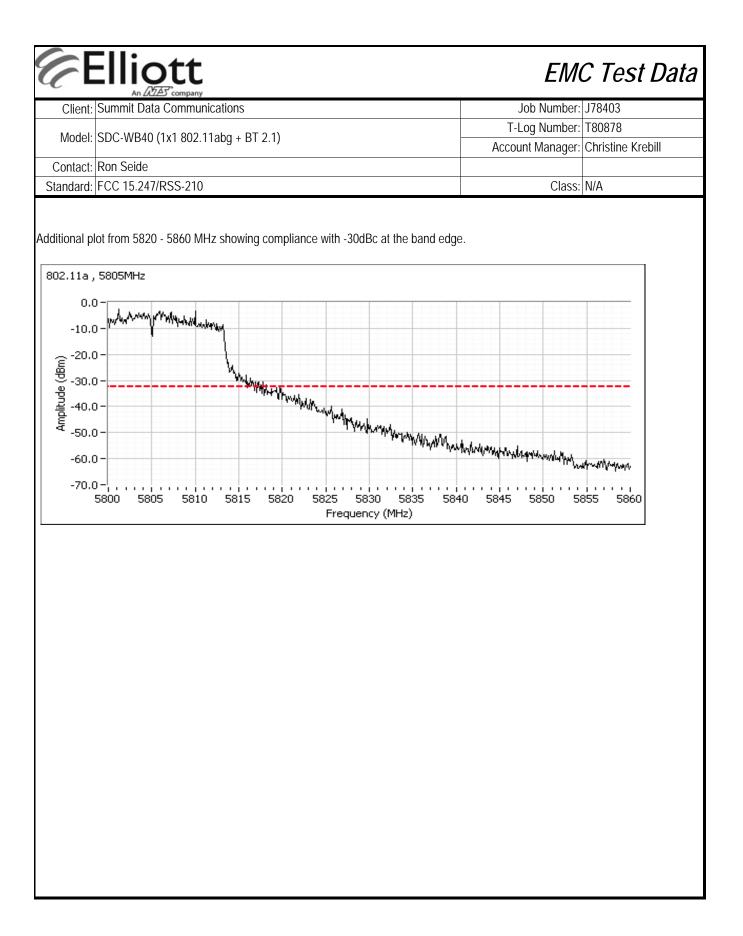


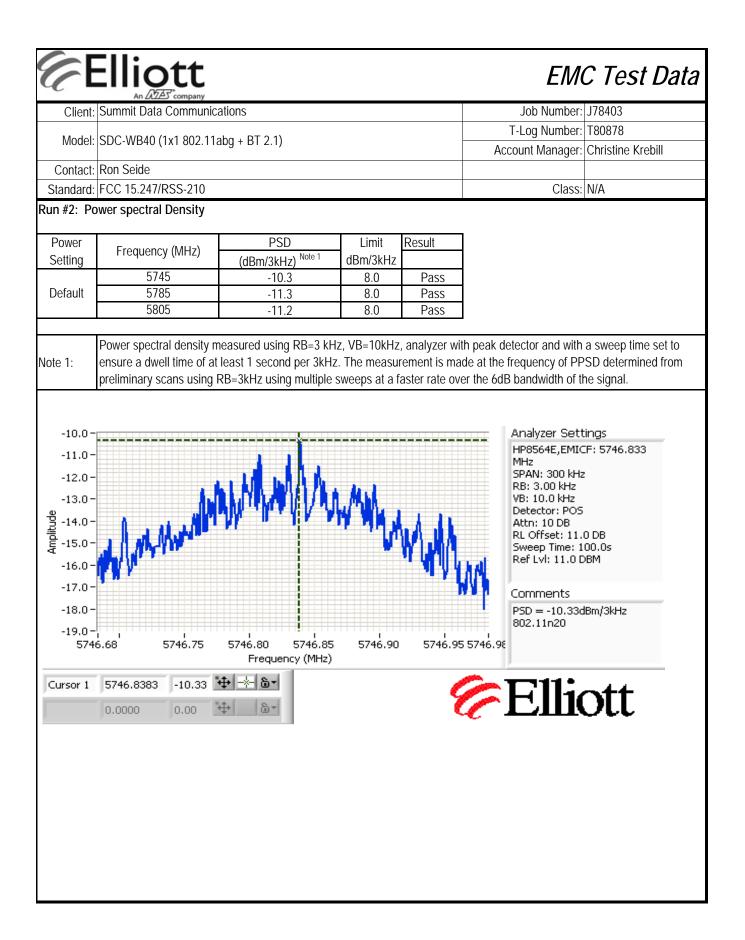


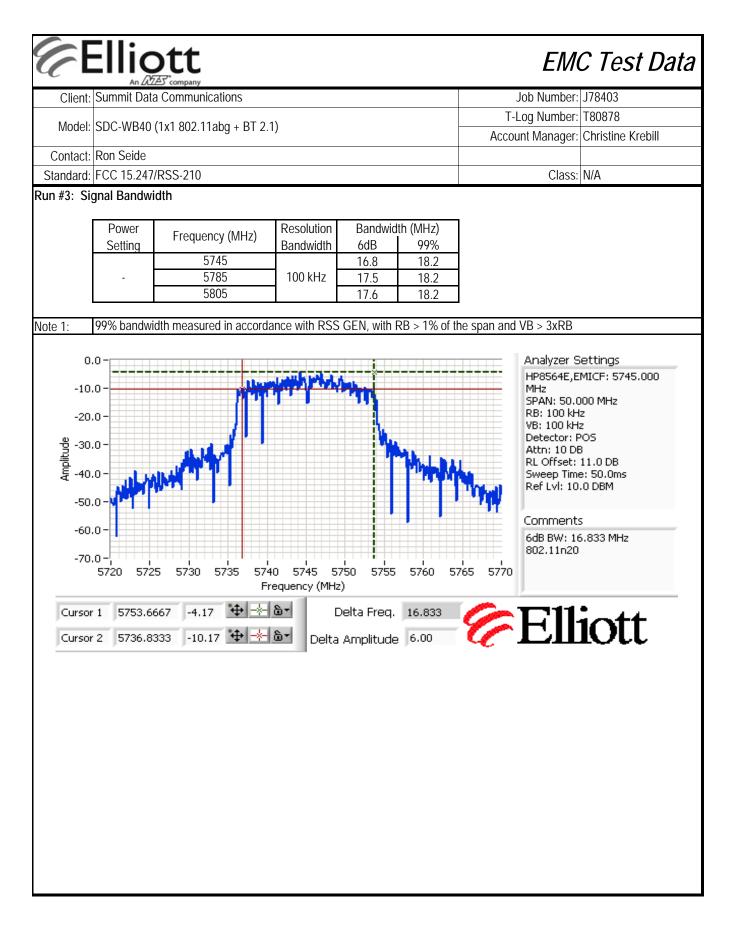


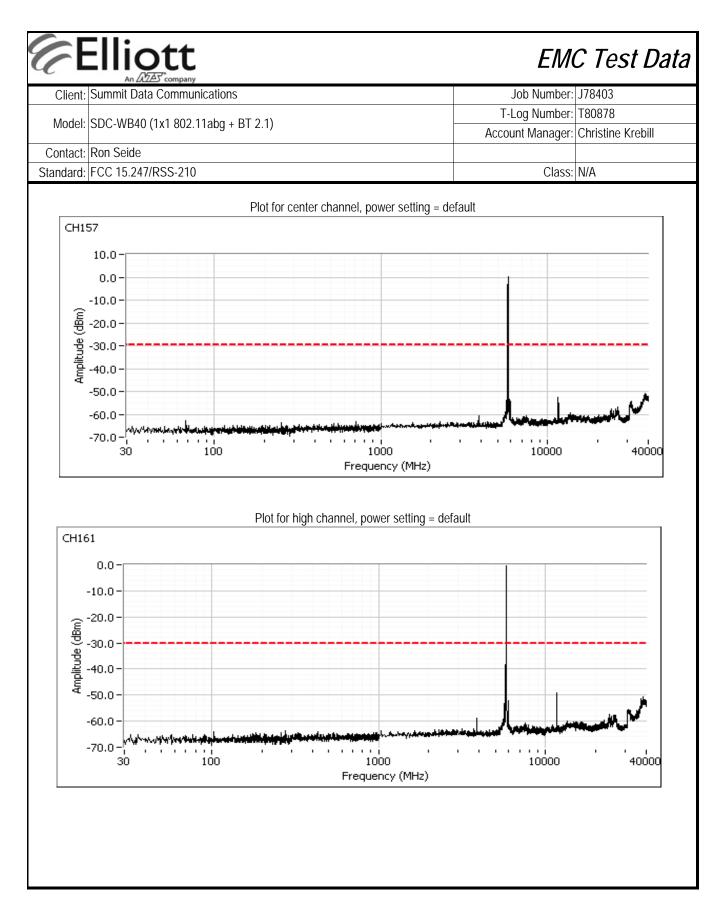


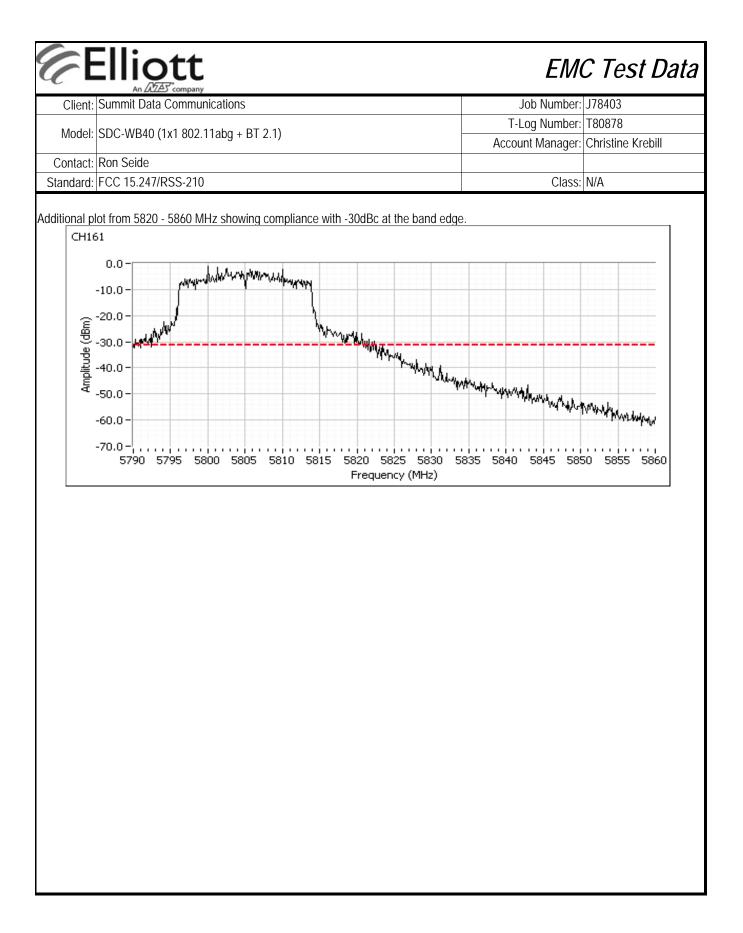

Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80878 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.247/RSS-210 Class: N/A RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11a) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Config. Used: 2 Date of Test: 11/3/2011 Config Change: none Test Engineer: Joseph Cadigal Test Location: FT Chamber#4 EUT Voltage: 3.3Vdc General Test Configuration The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain. All measurements have been corrected to allow for the external attenuators used. Ambient Conditions: Temperature: 23 °C Rel. Humidity: 37 % Summary of Results Run # Pwr setting Test Performed Limit Pass / Fail Result / Margin 7.9 dBm default **Output Power** 15.247(b) Pass 1 2 default Power spectral Density (PSD) 15.247(d) Pass -11.8dBm/3kHz 15.247(a) 15.0 MHz 3 default Minimum 6dB Bandwidth Pass 3 default 99% Bandwidth RSS GEN 16.9MHz 15.247(b) All emissions < -30 dBc 4 default Spurious emissions Pass Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard.








Elliott EMC Test Data Client: Summit Data Communications Job Number: J78403 T-Log Number: T80878 Model: SDC-WB40 (1x1 802.11abg + BT 2.1) Account Manager: Christine Krebill Contact: Ron Seide Standard: FCC 15.247/RSS-210 Class: N/A RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11n20 - 5GHz) Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Config. Used: 2 Date of Test: 11/3/2011 & 11/4/11 Config Change: none Test Engineer: Joseph Cadigal & John Caizzi Test Location: FT Chamber#4 EUT Voltage: 3.3Vdc General Test Configuration The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain. All measurements have been corrected to allow for the external attenuators used. Ambient Conditions: Temperature: 24 °C Rel. Humidity: 43 % Summary of Results Result / Margin Run # Pwr setting Avg Pwr Test Performed Limit Pass / Fail 10.6 dBm **Output Power** 15.247(b) Pass 1 2 Power spectral Density (PSD) 15.247(d) Pass -10.3 dBm/3kHz 15.247(a) 16.8 MHz 3 Minimum 6dB Bandwidth Pass 3 99% Bandwidth RSS GEN 18.2 15.247(b) All emissions < -30 dBc 4 Spurious emissions Pass Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard.

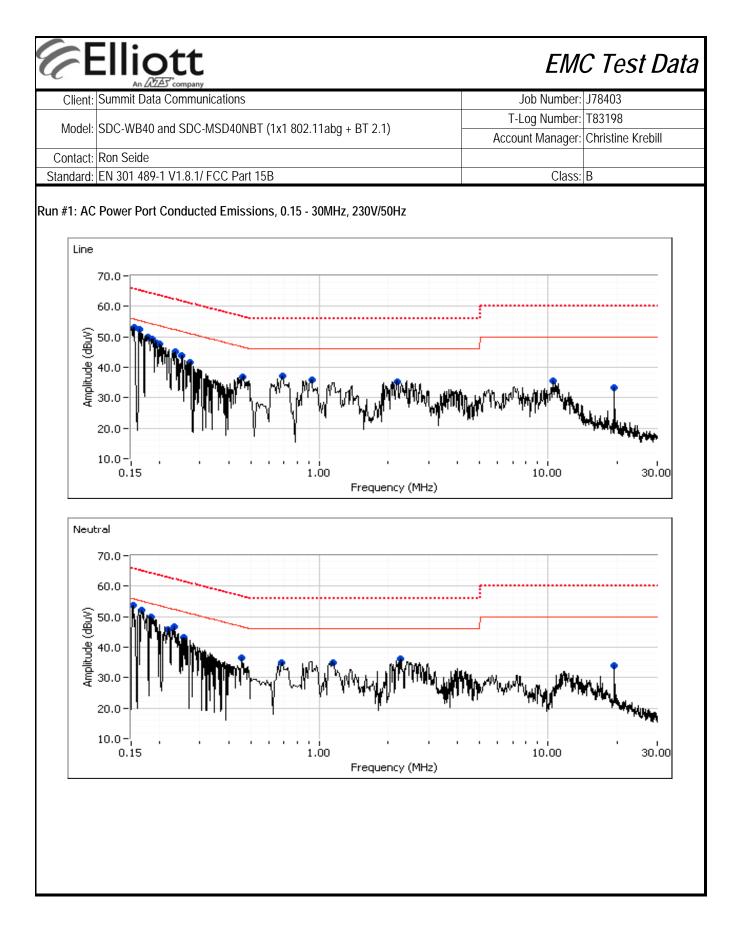

Client:	Summit Data Co	mmunicatio	ons				J	ob Number:	J78403	
Modal	SDC-WB40 (1x1	202 11abr	n , RT 0 1)			T-L	og Number:	T80878	
	-	002.1100	у + DT Z.T)			Accou	nt Manager:	Christine Kre	ebill
	Ron Seide									
	FCC 15.247/RSS	5-210						Class:	N/A	
in #1: Ol	Itput Power									
Power	Fraguanau	AL 1-7)	Output	Power	Antenna	Decult	EIRP	Note 2	Output	Power
Setting ²	Frequency (N	/IHZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
	5745		10.6	11.6	6.5	Pass	17.1	0.052	16.2	41.7
-	5785 5805		10.3	10.8 10.5	6.5 6.5	Pass	16.8	0.048	15.7	37.2
	5005		10.2	10.5	0.0	Pass	16.7	0.047	15.6	36.3
Spectru	um Analyzer Settin	-			the state of the s	and the second second	the grown ster			
Spectru	Elliott Jm Analyzer Settin		D			مر المر الم	then .			
	745.000 MHz	-5.0	0-		Provent		hanner			
RB: 1.	: 50.000 MHz 000 MHz	-10.0	0-							
Detect	000 MHz or: Sample	-15.0	n-							
Attn: RL Off	10 DB set: 0.0 DB	10.0								
	o Time: 50.0ms 1: 0.0 DBM	-20.0 특	D-							
	vg: 100 sweeps :orr: 11.0dB	节 -25.0	0-		Martin Contraction			he was		
Bin siz	e: 83.3 kHz	-30.0	o-	- ANN	P.			J. W. WWW		
		-35.0	n-	Martin					The state of the s	
9996 B	andwidth		M	<i></i>					and the second	
18	3.22 MHz	-40.0	D- John Ca						Spee	
	Over Span	-45.0	o - [1					
	575 mW	5	5720.0	5730.	0 57	40.0 Frequency (5750.0	5760.0	577	0.0
	.64 dBm				vidth, Power		(962)			

EMC Test Data

All DLL	Company		
Client:	Summit Data Communications	Job Number:	J78403
Model:	SDC-WB40 and SDC-MSD40NBT (1x1 802.11abg +	T-Log Number:	T83198
	BT 2.1)	Account Manager:	Christine Krebill
Contact:	Ron Seide		-
Emissions Standard(s):	EN 301 489-1 V1.8.1/ FCC Part 15B	Class:	В
Immunity Standard(s):	EN 301 489-1 V1.8.1	Environment:	-

EMC Test Data

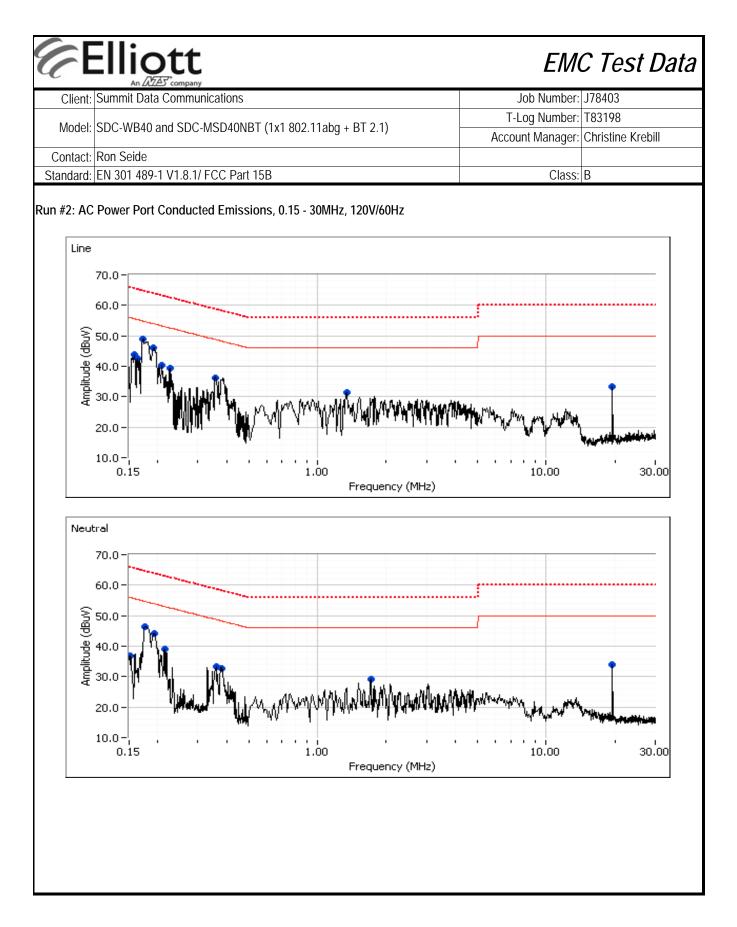
For The


Summit Data Communications

Model

SDC-WB40 and SDC-MSD40NBT (1x1 802.11abg + BT 2.1)

Date of Last Test: 12/16/2011


Job Number: J78403 T-Log Number: T83198 Account Manager: Christine Krebill Class: B Dissions Semi-Anechoic Chamber) al qualification testing of the EUT with respect to the
Account Manager: Christine Krebill Class: B hissions v, Semi-Anechoic Chamber)
Class: B nissions v, Semi-Anechoic Chamber)
nissions v, Semi-Anechoic Chamber)
r, Semi-Anechoic Chamber)
al qualification testing of the EUT with respect to the
Config. Used: 2 onfig Change: none t Unit Voltage 120V / 60Hz & 230V / 50Hz
1 °C 3 %
imit Result Margin
ass B Pass 31.0dBµV @ 0.687MHz (-15.0dB ass B Pass 31.9dBµV @ 19.501MHz (-18.1dl

6	Ellic						EM	C Test Data
Client:		a Communic	ations				Job Number:	J78403
					T-Log Number:	T83198		
Model:	SDC-WB40	and SDC-MS	SD40NBT (1		Account Manager:			
Contact	Ron Seide						necount manager.	
		0-1 V1.8.1/ FC	C Dart 15R				Class:	P
Stariuaru.	LIN JUT 407	- 1 V 1.0.1/10					Class.	D
Droliminary	u naak raadi	nas canturo	d during pro	scan (noak	readings	vs. average limi	it)	
Frequency	Level	AC		ss B	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	Comments		
0.153	53.0	Line	55.8	-2.8	Peak			
0.163	52.3	Line	55.3	-3.0	Peak	1		
0.178	49.8	Line	54.6	-4.8	Peak			
0.185	49.1	Line	54.3	-5.2	Peak			
0.195	48.1	Line	53.9	-5.8	Peak			
0.202	47.6	Line	53.6	-6.0	Peak			
0.234	45.1	Line	52.3	-7.2	Peak			
0.250	43.9	Line	51.7	-7.8	Peak			
0.687	37.0	Line	46.0	-9.0	Peak			
0.271	41.5	Line	51.1	-9.6	Peak			
0.464	36.9	Line	46.6	-9.7	Peak			
0.916	35.9	Line	46.0	-10.1	Peak			
2.173	35.2	Line	46.0	-10.8	Peak			
10.533	35.6	Line	50.0	-14.4	Peak			
19.501	33.3	Line	50.0	-16.7	Peak			
0.153	53.7	Neutral	55.8	-2.1	Peak			
0.167	52.1	Neutral	55.1	-3.0	Peak			
0.185	49.8	Neutral	54.3	-4.5	Peak			
0.232	46.7	Neutral	52.4	-5.7	Peak			
0.217	45.8	Neutral	52.9	-7.1	Peak			
0.255	43.2	Neutral	51.6	-8.4	Peak			
2.279	36.3	Neutral	46.0	-9.7	Peak			
0.458	36.6	Neutral	46.7	-10.1	Peak			
0.685	35.0	Neutral	46.0	-11.0	Peak			
1.141	34.8	Neutral	46.0	-11.2	Peak			
19.502	34.0	Neutral	50.0	-16.0	Peak			

Model: S Contact: F Standard: E	Summit Data SDC-WB40 Ron Seide EN 301 489	a Communica and SDC-MS					Job Number:	170402
Model: S Contact: F Standard: E nal quasi-p requency	SDC-WB40 Ron Seide EN 301 489	and SDC-MS						J78403
Contact: F Standard: E nal quasi-p requency	Ron Seide EN 301 489		D40NBT (1)				T-Log Number:	
Standard: E nal quasi-p requency	EN 301 489	4.14.0.1155			Account Manager:			
nal quasi-p		4 1 /4 0 - / = -					3	
nal quasi-p		-1 V1.8.1/ FC	C Part 15B				Class:	В
equency	and and a							
	beak and av	verage readii	ngs					
MHz	Level	AC	Clas	ss B	Detector	Comments		
	dBµV	Line	Limit	Margin	QP/Ave			
0.153	17.5	Line	55.8	-38.3	AVG			
0.153	46.1	Line	65.8	-19.7	QP			
0.163	16.8	Line	55.3	-38.5	AVG			
0.163	44.7	Line	65.3	-20.6	QP			
0.178	16.1	Line	54.6	-38.5	AVG			
0.178	42.8	Line	64.6	-21.8	QP			
0.185	15.9	Line	54.3	-38.4	AVG			
0.185	41.8	Line	64.3	-22.5	QP			
0.195	15.7	Line	53.8	-38.1	AVG			
0.195	40.8	Line	63.8	-23.0	QP			
0.202	15.4	Line	53.5	-38.1	AVG			
0.202	40.1	Line	63.5	-23.4	QP			
0.687	31.0	Line	46.0	-15.0	AVG			
0.687	36.5	Line	56.0	-19.5	QP			
0.463	25.5	Line	46.6	-21.1	AVG			
0.463	34.1	Line	56.6	-22.5	QP			
0.916	28.9	Line	46.0	-17.1	AVG			
0.916	34.9	Line	56.0	-21.1	QP			
2.173	7.9	Line	46.0	-38.1	AVG			
2.173	33.6	Line	56.0	-22.4	QP			
10.533	20.5	Line	50.0	-29.5	AVG			
10.533	30.6	Line	60.0	-29.4	QP			
19.501	31.1	Line	50.0	-18.9	AVG			
19.501	32.0	Line	60.0	-28.0	QP			
0.153	17.6	Neutral	55.8	-38.2	AVG			
0.153	46.2	Neutral	65.8	-19.6	QP			
0.167	16.5	Neutral	55.1	-38.6	AVG			
0.167	44.3	Neutral	65.1	-20.8	QP			
0.185	15.8	Neutral	54.3	-38.5	AVG			
0.185	42.1	Neutral	64.3	-22.2	QP			
0.232	21.4	Neutral	52.4	-31.0	AVG			
0.232	37.5	Neutral	62.4	-24.9	QP			
0.216	14.6	Neutral	53.0	-38.4	AVG			
0.216	39.2	Neutral	63.0	-23.8	QP			
2.279	25.1	Neutral	46.0	-20.9	AVG			
2.279	32.6	Neutral	56.0	-23.4	QP			
0.458	28.8 33.8	Neutral Neutral	46.7 56.7	-17.9 -22.9	AVG QP	ļ		

Job Number: J78403 T-Log Number: T83198 Account Manager: Christine Krebill Class: B s B Detector Comments Margin QP/Ave
Account Manager: Christine Krebill Class: B S B Detector Comments
s B Detector Comments
s B Detector Comments
s B Detector Comments
Margin OP/Ave
-16.6 AVG
-21.2 QP
-18.3 AVG
-21.5 QP
-28.7 QP
-21.5 QP -19.8 AVG -28.7 QP

				P		y .	ompany		A C	≜ com	company	pany	y													C Test Da
			ons	tions	catio	inica	ommunic	Commur	a Co	a Com	ommu	mun	inic	icat	ations									ob Numb		
SDC-WB40 and SDC-MSD40NBT (1x1 802.11abg + BT 2.1)												og Numb														
				5 10115			020		ana							(~9 ·	2. 2,				Accour	nt Manag	er:	Christine Krebill
			Part 15B	C Part 1	CC F	FC	1.8.1/ F(1 V1.8.1/	-1 V	1 V1.	/1.8.1/	3.1/ F	/ F(CC	C Part 15E	В								Clas	SS:	В
Detector	iss B	se B		ngs	ung:	adir	AC	erage rea	vera	<u> </u>	<u> </u>		au	ain		20	rs B		Dotoctor	C	ommer	ite				
			Limit	Limi				Line								105	Margin			C	Uniner	115				
			54.8					Line									-40.8									
			64.8					Line									-20.5									
			54.0					Line						╈		1	-20.5			\uparrow						
		-	64.0					Line						╈		T	-19.6			T						
			55.6					Line									-42.9		AVG							
34.1 QP	-34.1		65.6				Line	Line		Li	Line	ne					-34.1		QP							
	-38.1	-,	48.8	48.8			Line	Line		Li	Line	ne			48.8		-38.1									
26.6 QP	-26.6	-:	58.8	58.8			Line	Line		Li	Line	ne			58.8		-26.6		QP							
41.0 AVG	-41.0		55.3	55.3			Line	Line		Li	Line	ne			55.3		-41.0		AVG							
24.3 QP	-24.3	-	65.3				Line	Line		Li	Line	ne					-24.3		QP							
37.3 AVG	-37.3	-	53.3	53.3			Line	Line		Li	Line	ne			53.3		-37.3		AVG							
	-28.7	-	63.3				Line	Line		Li	Line	ne					-28.7									
		-	52.6				Line	Line		Li	Line	ne					-40.9									
		-	62.6					Line									-38.7									
		-	46.0					Line									-24.7									
			56.0					Line									-26.5									
			50.0					Line									-20.2									
			60.0					Line									-29.6									
		-	54.7					Neutral									-38.3									
			64.7		_			Neutral						+		4	-20.3	_		_						
		-	53.9		_			Neutral						+		+	-26.0	_		-						
			63.9		-			Neutral						+		+	-21.3	+		-						
			53.1					Neutral						+		+	-40.9	+		+						
			63.1					Neutral						+		+	-30.0	_		-						
			48.3		+			Neutral						+		+	-24.6	+		+						
			58.3		-			Neutral						+		+	-27.6	+		+						
			48.7 58.7		-			Neutral						+		+	-31.4 -29.4	_		-						
			50.0			_		Neutral Neutral						+		+	- <u>29.4</u> -18.1	+-		+						
		-	60.0					Neutral						+		+	-10.1	+-		+						
			46.0		-			Neutral						+		+	-27.4	+		+						
			40.0 56.0		-			Neutral						+		+	-35.3	+		+						
			55.9					Neutral						+		+	-44.5	-		+						
			65.9		+			Neutral						╉		+	-44.5	+		+						

End of Report

This page is intentionally blank and marks the last page of this test report.