

Elliott Laboratories www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E on the Summit Data Communications Inc. Transmitter 802.11abg Compact Flash Card model SDC-MCF10AG

> UPN: 6616A-SDCMCF10AG FCC ID: TWG-SDCMCF10AG

GRANTEE: Summit Data Communications Inc. 526 South Main St, Suite 805 Akron, OH 44311

TEST SITE(S): **Elliott Laboratories** 684 W. Maude Ave Sunnyvale, CA 94086 IC Site Registration #: IC 2845-1

REPORT DATE:

March 26, 2009

FINAL TEST DATE:

February 23, February 26, February 27, March 4, March 6, March 10 and March 12, 2009

AUTHORIZED SIGNATORY:

al

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R74979 Rev 1 Page 1 of 21

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	May 13, 2009	First Release	-

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	6
UNII / LELAN DEVICES GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	9
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL ANTENNA SYSTEM ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION	
TEST SITE	
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION.	12 12 13 13 13 13

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	14
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	17
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES	
OUTPUT POWER AND SPURIOUS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation EXHIBIT 10: RF Exposure Information	
EAIIIDII 10. AF Exposure injormation	10

SCOPE

An electromagnetic emissions test has been performed on the Summit Data Communications Inc. 802.11abg Compact Flash Card model SDC-MCF10AG pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Summit Data Communications Inc. 802.11abg Compact Flash Card model SDC-MCF10AG and therefore apply only to the tested sample. The sample was selected and prepared by Jerry Pohmurski of Summit Data Communications Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Summit Data Communications Inc. 802.11abg Compact Flash Card model SDC-MCF10AG complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (1)		26dB Bandwidth	20.9 MHz	N/A – limits output power if < 20MHz	N/A
15.407 (a) (1)	A9.2(1)	Output Power	12.3 dBm (0.017W)	17dBm	Complies
15.407 (a) (1)		Power Spectral	-0.2 dBm/MHz	4 dBm/MHz	Complies
	A9.5 (2)	Density	-0.2 dBm/MHz	5 dBm/MHz	Complies

Operation in the 5.15 – 5.25 GHz Band

Operation in the 5.25 – 5.35 GHz Band

Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 - 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(a)(1) and RSS 210 6.2.2 q1 (i)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	20.9 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	14.2 dBm (0.026W)	24dBm	Complies
15.407(a) (2))		Power Spectral Density	1.6 dBm/MHz	11 dBm/MHz	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density		11 dBm / MHz^1	Complies
	A9.5 (2)	Peak Spectral Density	1.6 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)	ituie i uit	26dB Bandwidth	21.0 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	22 dBm (0.159W)	24 dBm / 250mW (eirp < 30dBm)	Complies
15.407(a) (2))		Power Spectral Density	10.1 dBm/MHz	11 dBm/MHz	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density		$11 \text{ dBm} / \text{MHz}^2$	Complies
N/A		Non-operation in 5600 – 5650 MHz sub band			Complies

General requirements for all bands

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
	A9.5a	Modulation	Digital Modulation is used (OFDM)	Digital modulation is required	Complies
	RSP 100	99% bandwidth	18.2 MHz	Information only	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No radio emissions below 1 GHz detected	Refer to Standard	Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	50.0dBµV/m @ 11200.7MHz (-4.0dB)	Refer to Standard	Complies
15.407(a)(6)	-	Peak Excursion Ratio	10.9 dB	< 13dB	Complies
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom and center channels	N/A
15			Measurements on three channels in each band	in each band	

¹ Reduced from 11dBm because highest value exceeded the average value by more than 3dB

² Reduced from 11dBm because highest value exceeded the average value by more than 3dB

-				Report Dute. March	-)
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 20ppm		Complies
15.407 (h1)	A9.4	Transmit Power Control	TPC is not required as the device operates at below 500mW eirp	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies
15.407 (h2)	A9.4	Dynamic frequency Selection (device without radar detection)	Refer to separate test report, reference R74895	Channel move time < 10s Channel closing transmission time < 260ms	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	The EUT uses a u.FL connector.		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	40.9dBμV/m (110.9μV/m) @ 16798.5MHz (-13.1dB)	Refer to standard	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	31.1dBµV @ 0.810MHz (-14.9dB)	Refer to standard	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding detachable antenna	

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$ \pm 2.4 \pm 3.0 \pm 3.6 \pm 6.0 $

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Summit Data Communications Inc. 802.11abg Compact Flash Card model SDC-MCF10AG is a 802.11ag compliant wireless LAN radio Module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC =/-5%. It's typical power consumption is 400mA (1320mW) while in transmit mode, 180mA (594mW) while in receive mode and 10mA (33mW) while in standby mode.

The sample was received on February 23, 2009 and tested on February 23, February 26, February 27, March 4, March 6, March 10 and March 12, 2009. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number
Summit Data	MCF10AG	802.11AG Mini	
Communications Inc.		Compact Flash	
		Module with	
		antenna connectors	

ANTENNA SYSTEM

The antenna connects to the EUT via a standard u.fl antenna connector, thereby meeting the requirements of FCC 15.203.

There were two antennas included in the testing: Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a system.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	iPAQ	Handheld Computer	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)		
FOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
iPAQ Power	AC Mains	2wire	Unshielded	1.5
Flash Module	iPAQ Module Port	-	-	-

EUT OPERATION

During emissions testing the EUT was configured to transmit at the Low, Middle, and High Channel. Testing performed at 6Mbs for 802.11a mode.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on February 23, February 26, February 27, March 4, March 6, March 10 and March 12, 2009 at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with Industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	
SVOATS #1	90592	IC 2845-1	684 West Maude Ave, Sunnyvale CA 94085-3518

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception, on OATS sites, of predictable local TV, radio, and mobile communications traffic. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

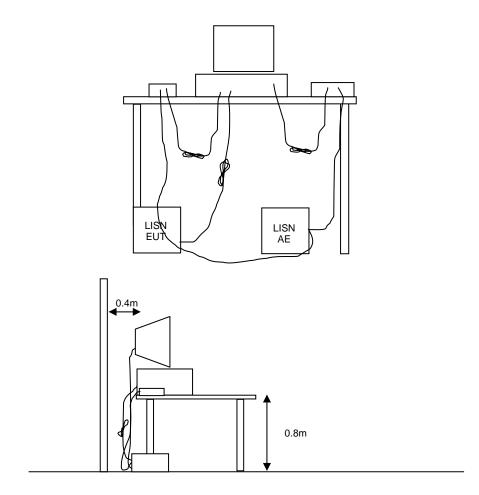
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

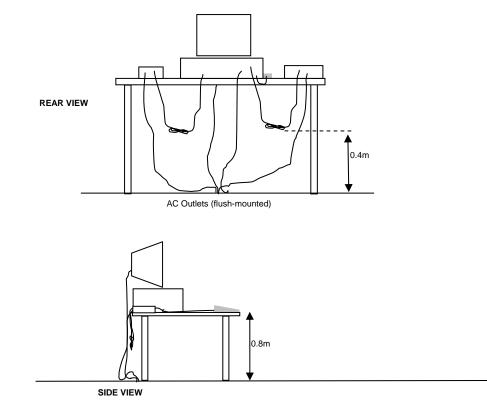

TEST PROCEDURES

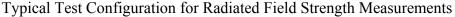
EUT AND CABLE PLACEMENT

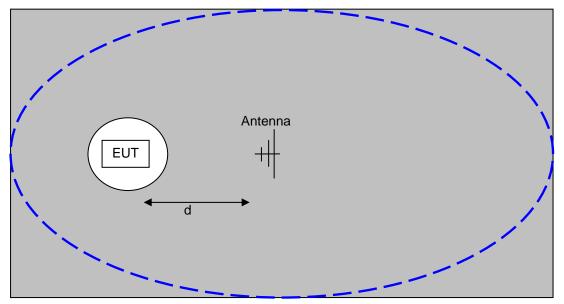
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

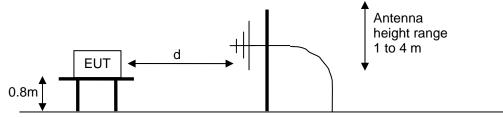
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

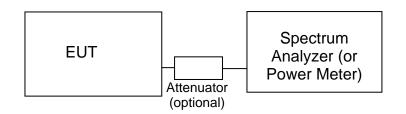

RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.


The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
	200 H/ (22 ID) :	
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	250 mW (24 dBm) ¹ 1W (30dBm) eirp	11 dBm/MHz
5470 - 5725	$250 \text{ mW} (24 \text{ dBm})^2$ 1W (30dBm) eirp	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER AND SPURIOUS LIMITS – UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed -7dBm/MHz (68.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to -17dBm/MHz.

¹ If EIRP exceeds 500mW the device must employ TPC

² If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 $\begin{array}{lll} F_d &=& {\rm Distance\ Factor\ in\ dB} \\ D_m &=& {\rm Measurement\ Distance\ in\ meters} \\ D_S &=& {\rm Specification\ Distance\ in\ meters} \end{array}$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_c = R_r + F_d$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

2 Pages

Radiated Emissions, 1000 -	26,500 MHz, 24-Feb-09			
Engineer: Rafael Varelas Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	06-Jun-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	12-Mar-10
Hewlett Packard	High Pass filter, 3.5 GHz (Red System)	P/N 84300-80038 (84125C)	1403	28-Aug-09
Radio Spurious Emissions	•			
Engineer: Suhaila Khushza				0-1 0-1
<u>Manufacturer</u> Hewlett Packard	Description Microweve Preemplifier 1 26 50117	Model #	Asset #	<u>Cal Due</u> 09-Oct-09
EMCO	Microwave Preamplifier, 1-26.5GHz Antenna, Horn, 1-18 GHz (SA40-Red)	8449B 3115	870 1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40-Red)	8564E (84125C)	1142	12-Mar-10
newiell Fackalu	Specal 30 Hz -40 GHz, 3V (SA40) Red	6304E (64123C)	1140	12-1110
Radio Spurious Emissions	•			
Engineer: Suhaila Khushza	d			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset #	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Mar-09
Radiated Emissions, 1,000 ·	- 18,000 MHz, 04-Mar-09			
Engineer: Mehran Birgani				
<u>Manufacturer</u>	Description	Model #	Asset #	
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	09-Oct-09
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	15-Jul-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Mar-09

, 10-Mar-09 Engineer: Suhaila Khushzad <u>Manufacturer</u> Hewlett Packard , 12-Mar-09 Engineer: Suhaila Khushzad <u>Manufacturer</u> Hewlett Packard

Description Test Sys (SA40, 30Hz - 40GHz),

Model #	Asset #	Cal Due
85620A	Rental	20-Apr-09

Description

Test Sys (SA40, 30Hz - 40GHz),

Model #
85620AAsset #
RentalCal Due
20-Apr-09

EXHIBIT 2: Test Measurement Data

T74642 34 Pages T74643 30 Pages

6EI	liott
	An DCZP5 company

EMC Test Data

An UKLP	5 company		
Client:	Summit Data Communications	Job Number:	J74548
Model:	802.11abg Compact Flash Card	T-Log Number:	T74642
		Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski		
Emissions Standard(s):	FCC 15.E/RSS 210	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Summit Data Communications

Model

802.11abg Compact Flash Card

Date of Last Test: 3/9/2009

@Elliott

EMC Test Data

Pill Arbitis	2 condend		
Client:	Summit Data Communications	Job Number:	J74548
Model:	802.11abg Compact Flash Card	T-Log Number:	T74642
		Account Manger:	Christine Krebill
Contact:	Jerry Pohmurski		
Emissions Standard(s):	FCC 15.E/RSS 210	Class:	-
Immunity Standard(s):	-	Environment:	-

EUT INFORMATION

The following information was collected during the test session(s). The client agreed to provide the following information after the test session(s).

General Description

The EUT is a 802.11ag compliant wireless LAN radio Module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC = /-5%. It's typical power consumption is 400mA (1320mW) while in transmit mode, 180mA (594mW) while in receive mode and 10mA (33mW) while in standby mode.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Summit Data	MCF10AG	802.11AG Mini Compact		TWG-SDCMCF10AG
Communications Inc.		Flash Module with		
		antenna connectors		

EUT Antenna (Intentional Radiators Only)

The antenna connects to the EUT via a standard u.f1 antenna connector, thereby meeting the requirements of FCC 15.203. There were two antennas included in the testing:

Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

Modification History

Mod. #	Test	Date	Modification
1			No modifications were made to the EUT during testing.
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Elliott

EMC Test Data

Ser LALLS company		
Client: Summit Data Communications	Job Number:	J74548
Model: 802.11abg Compact Flash Card	T-Log Number:	T74642
	Account Manger:	Christine Krebill
Contact: Jerry Pohmurski		
Emissions Standard(s): FCC 15.E/RSS 210	Class:	-
Immunity Standard(s): -	Environment:	-

Test Configuration #1

The following information was collected during the test session(s). The client agreed to provide the following information after the test session(s).

		Local Support Equipm	ent	
Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	iPAQ	Handheld Computer	-	-
	R	emote Support Equipr	nent	
Manufacturor	Medel	Description	Sorial Number	

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

Cabling and Ports

Port	Connected To	Cable(s)			
		Description	Shielded or Unshielded	Length(m)	
iPAQ Power	AC Mains	2wire	Unshielded	1.5	
Flash Module	iPAQ Module Port	-	-	-	

EUT Operation During Emissions Tests

During emissions testing the EUT was configured to transmit at the Low, Middle, and High Channel. Testing performed at 6Mbs for 802.11a mode.

Elliott

EMC Test Data

	An Z(ZZA) company		
Client:	Summit Data Communications	Job Number:	J74548
Model: 802 1	802.11abg Compact Flash Card	T-Log Number:	T74642
Mouel.	ouz. Haby Compact Flash Calu	Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski		
Standard:	FCC 15.E/RSS 210	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions (Larson Antenna)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

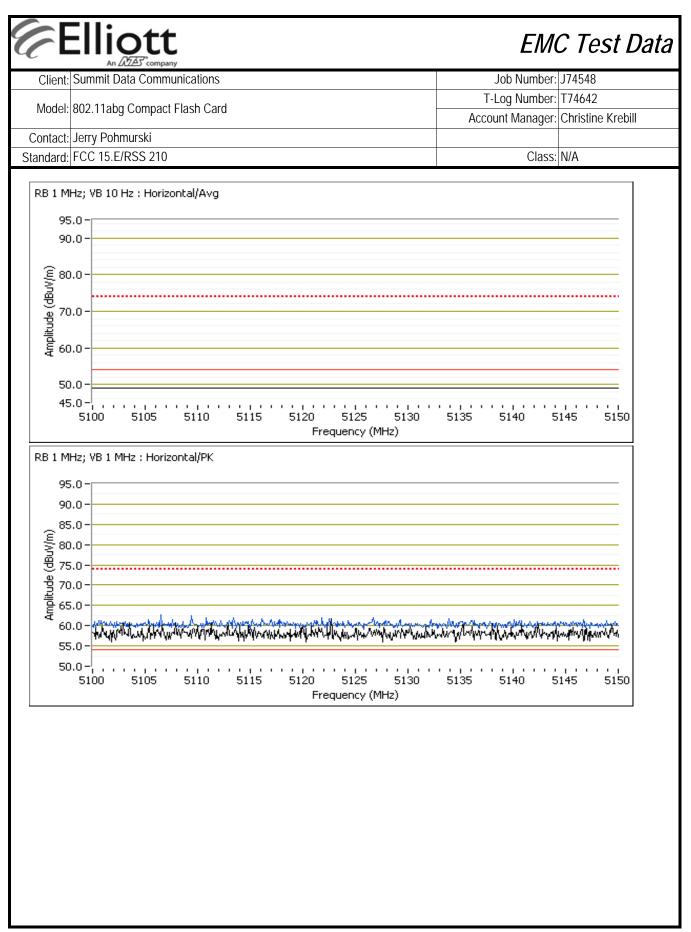
NOTE: A preliminary check of output power was performed. The port with the highest power was used for the final testing. Preliminary tests showed no radio related emissions below 1 GHz.

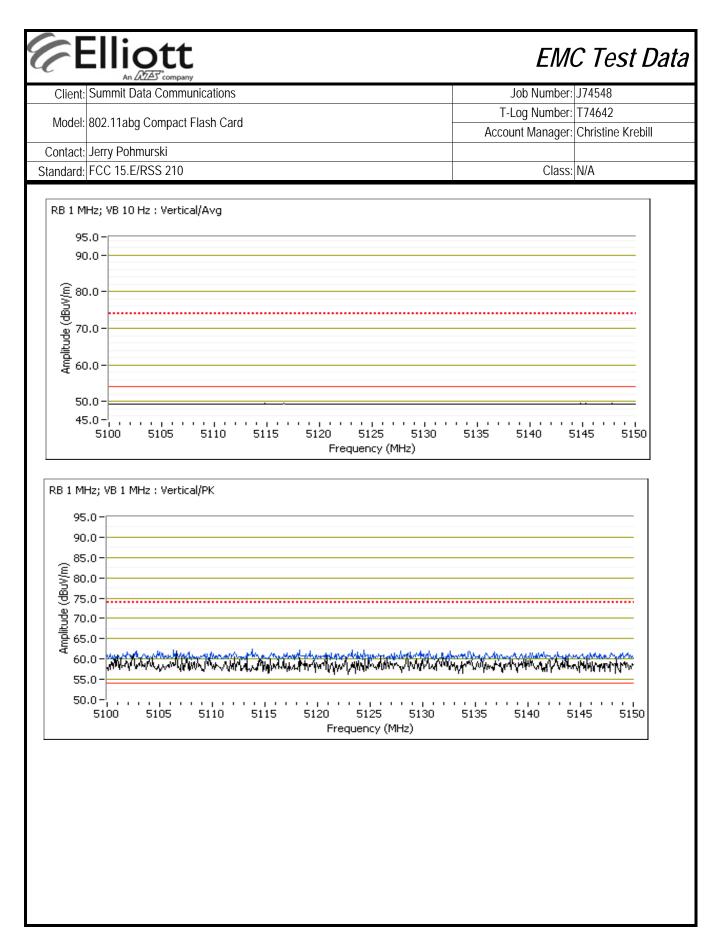
Run #	Mode	Channel	Power Setting	Port	Test Performed	Limit	Result / Margin
	802.11a	5150-5250	100%	A	Restricted Band Edge at	15.209	49.4dBµV/m @
	Chain A	Low	100%	Aux	5150 MHz	15.209	5147.0MHz (-4.6dB)
	802.11a	5150-5250	1000/	A	Radiated Emissions,	FCC 15.209 / 15 E	39.2dBµV/m @
1	Chain A	Low	100%	Aux	1 - 40 GHz	FUU 10.2097 10 E	15557.1MHz (-14.8dB)
I	802.11a	5150-5250	100%	Aux	Radiated Emissions,	FCC 15.209 / 15 E	39.3dBµV/m @
	Chain A	Center	100%	Aux	1 - 40 GHz	1 CC 15.2077 15 L	15579.5MHz (-14.7dB)
	802.11a	5150-5250	100%	Aux	Radiated Emissions,	FCC 15.209 / 15 E	38.9dBµV/m @
	Chain A	High	100%	Aux	1 - 40 GHz	100 13.2077 13 L	15700.5MHz (-15.1dB)
	802.11a	5250-5350	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	40.4dBµV/m @
	Chain A	Low	100%	IVIdIII	1 - 40 GHz	FCC 15.2097 15 E	15778.5MHz (-13.6dB)
	802.11a	5250-5350	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	47.1dBµV/m @
C	Chain A	Center	100%	IVIdIII	1 - 40 GHz	FCC 15.2097 15 E	10600.2MHz (-6.9dB)
Z	802.11a	5250-5350	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	48.2dBµV/m @
	Chain A	High	10076	IVIAIII	1 - 40 GHz	1 CC 15.2077 15 L	10640.0MHz (-5.8dB)
	802.11a	5250-5350	100%	Main	Restricted Band Edge at	15.209	49.7dBµV/m @
	Chain A	High	10070	IVIAILI	5350 MHz	13.207	5350.0MHz (-4.3dB)

Elliott

EMC Test Data

	An ZA12	A company					
Client:	Summit Dat	a Communica	ations			Job Number:	J74548
Madal	002 11aba (Compact Flag	h Cord			T-Log Number:	T74642
woder:	802. I Taby (Compact Flas	ncalu	Account Manager: Christine Krebill			
Contact:	Jerry Pohmu	urski					
Standard:	FCC 15.E/R	SS 210				Class:	N/A
	802.11a	5470-5725	100%	Main	Restricted Band Edge at	15.209	49.7dBµV/m @
	Chain A	Low	100%	IVIAIII	5460 MHz	13.209	5457.9MHz (-4.3dB)
	802.11a	5470-5725	100%	Main	Restricted Band Edge at	15.209	49.7dBµV/m @
	Chain A	Low	10076	IVIAIII	5470 MHz	15.209	5469.3MHz (-18.6dB)
2	802.11a	5470-5725	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	44.6dBµV/m @
5	Chain A	Low	10070	IVIAIIT	1 - 40 GHz	1 CC 13.2077 13 L	11000.2MHz (-9.4dB)
	802.11a	5470-5725	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	50.0dBµV/m @
	Chain A	Center	100%	IVIdIII	1 - 40 GHz	FCC 15.2097 15 E	11200.7MHz (-4.0dB)
	802.11a	5470-5725	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	39.4dBµV/m @
	Chain A	High	100%	IVIAIII	1 - 40 GHz	T CC 15.2097 15 E	11398.1MHz (-14.6dB)

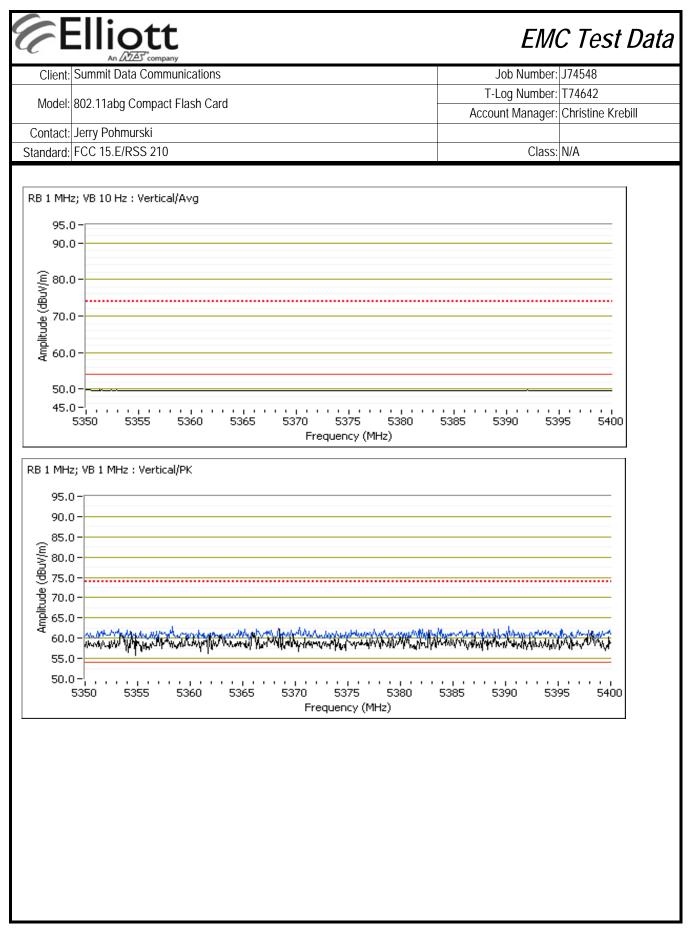

Modifications Made During Testing

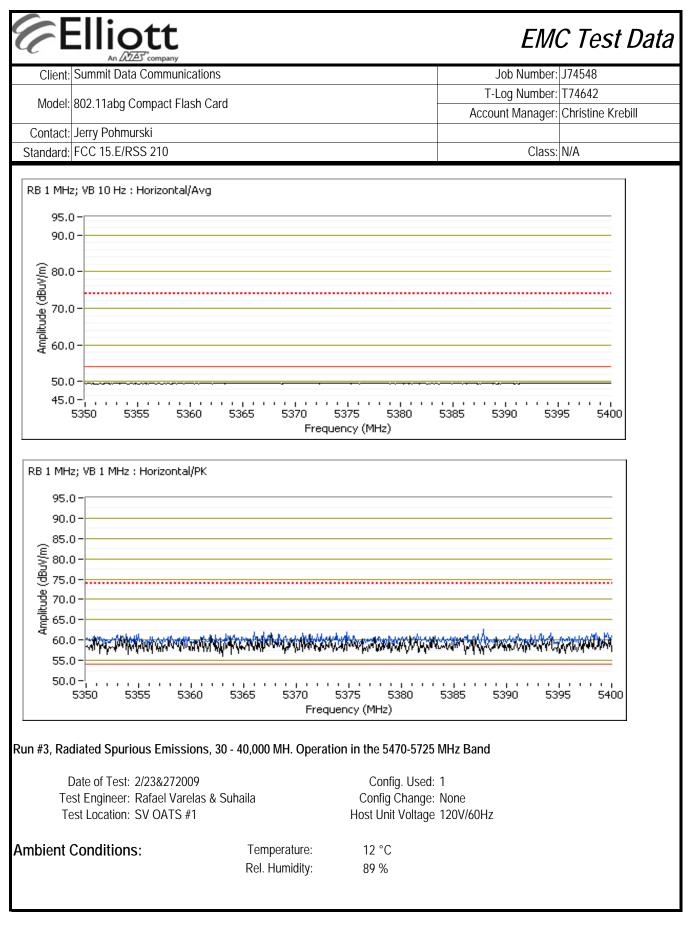

No modifications were made to the EUT during testing

Deviations From The Standard

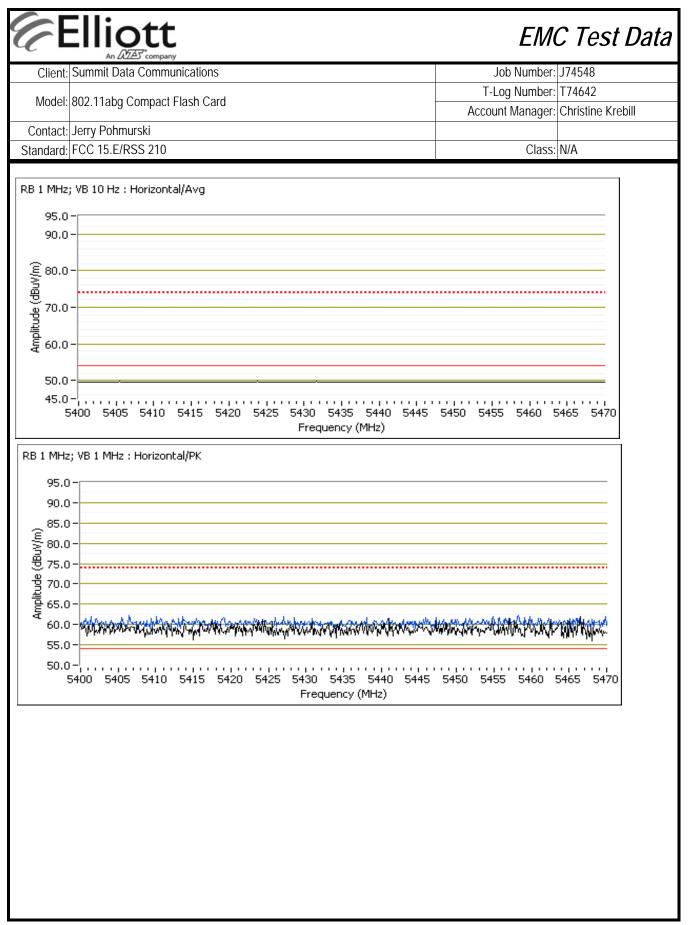
No deviations were made from the requirements of the standard.

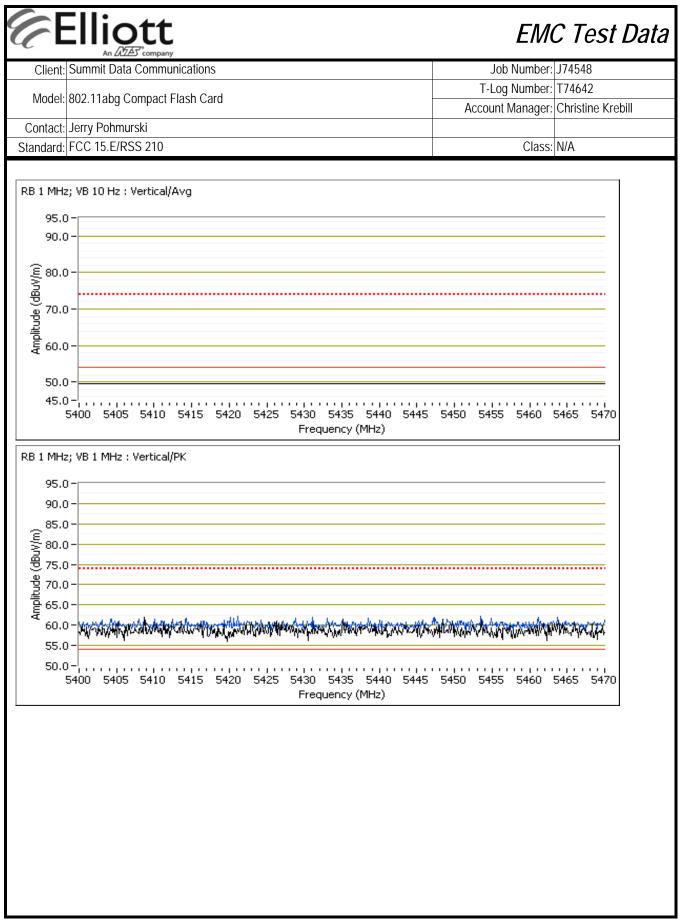
Cliont	Summit Data	A Communic	ations					Job Number:	171519
Cilent.			10015				т		
Model:	802.11abg C	Compact Flas	h Card					Log Number:	Christine Krebil
Contact:	Jerry Pohmu	urski						g	
Standard:	FCC 15.E/R	SS 210						Class:	N/A
Run #1, Ra	diated Spuri	ous Emissic	ons, 30 - 40,	000 MH. Op	eration in the	e 5150-5250	MHz Band		
	Date of Test:	2/228.26/200	10		C	onfig. Used:	1		
	est Engineer:			4		lfig Change:			
	est Location:			1		Unit Voltage			
						ernt Fondgo	1200100112		
Ambient	Conditions	S:	Т	emperature:	12	°C			
			R	el. Humidity:	89	%			
	ow Channel								
	<i>tal Signal Fie</i> Level	Pol	15 200	9/15.E	Detector	Azimuth	Hoight	Comments	
Frequency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	Height meters	Comments	
5184.800	80.9	H	-	-	AVG	87	1.0	RB 1 MHz;	VB [.] 10 Hz
5184.900	89.0	H	-	_	PK	87	1.0	RB 1 MHz;	
5185.670	94.4	V	-	-	AVG	357	1.0	RB 1 MHz; '	
5184.900	102.7	V	-	-	PK	357	1.0	RB 1 MHz;	
	Band Edge S							1.	
Frequency		Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5147.000 5149.440	49.4 62.1	V V	54.0	-4.6	Avg	357 357	1.0	RB 1 MHz;	
5149.440	49.1	V H	74.0 54.0	-11.9 -4.9	PK Avg	87	1.0 1.0	RB 1 MHz; RB 1 MHz;	
5147.610	61.6	H	74.0	-12.4	PK	87	1.0	RB 1 MHz;	
0117.010	01.0		71.0	12.1		07	1.0		
Spurious R	Radiated Emi	issions:							
Frequency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
15557.060		Н	54.0	-14.8	AVG	157	1.0	RB 1 MHz;	
15534.340	49.5	H	74.0	-24.5	PK	157	1.0	RB 1 MHz;	
10526.080	41.5	V	68.3	-26.8	AVG	134	1.1	RB 1 MHz;	
10527.740	61.2 39.1	V V	88.3	-27.1 -14.9	PK AVG	134 108	1.1 1.0	RB 1 MHz;	
15557.200 15543.510	39.1 50.8	V	54.0 74.0	-14.9 -23.2	PK	108	1.0	RB 1 MHz; RB 1 MHz;	
10361.500	39.3	V H	68.3	-23.2	AVG	216	1.0	RB 1 MHZ; RB 1 MHZ;	
10360.240	50.4	H	88.3	-27.0	PK	210	1.0	RB 1 MHz; '	
	50.7		00.0	51.7		210	1.0		
	For emissior	ns in restricte	d bands, the	e limit of 15.2	209 was used.	For all othe	r emissions	, the average	e limit was set to
Note 1:		(~68dBuV/n						5	





	Summit Data	a Communica	ations					Job Number:	
Model:	802.11abg C	ompact Flas	h Card			Log Number:	1 /4642 Christine Krebill		
Contact	Jerry Pohmu	irski			ALLU	uni manayer.			
	FCC 15.E/RS							Class:	N/A
Run #1b: (Center Chann	iel @ 5200 N	/IHz						
	Radiated Emis		15.00	0/155					
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters		/D, 10 U-
15579.470	39.3		54.0	-14.7	AVG	217	1.0	RB 1 MHz;	
15617.540 10400.410	50.8	V V	74.0	-23.2	PK	217	1.0 1.5	RB 1 MHz;	
10400.410	44.2 54.5	V V	68.3 88.3	-24.1 -33.8	AVG PK	279 279	1.5	RB 1 MHz; ' RB 1 MHz; '	
15578.500	39.1	V H	54.0	-33.8 -14.9	AVG	59	1.5	RB 1 MHZ;	
15602.970	50.2	H	74.0	-14.9	PK	59 59	1.0	RB 1 MHZ; '	
				-20.0		J7	1.0	IND T WITE,	
					AV/G	112	16	RB 1 MHz·	/R· 10 Hz
0400.230 0404.910	41.3 52.2	H H ns in restricte	68.3 88.3 d bands, the	-27.0 -36.1	AVG PK 209 was used.	112 112 For all othe	1.6 1.6 r emissions	RB 1 MHz; RB 1 MHz; the average	
10400.230 10404.910 Jote 1:	41.3 52.2 For emission	H H ns in restricte (~68dBuV/m	68.3 88.3 d bands, the n).	-27.0 -36.1	PK	112	1.6	RB 1 MHz;	VB: 1 MHz
10400.230 10404.910 Jote 1: Run #1c: F	41.3 52.2 For emission 27dBm/MHz High Channel Radiated Emis	H H (~68dBuV/m @ 5240 MH ssions:	68.3 88.3 d bands, the n).	-27.0 -36.1	PK 209 was used.	112 For all othe	1.6 r emissions	RB 1 MHz; '	VB: 1 MHz
10400.230 10404.910 Note 1: Run #1c: F Spurious K Frequency	41.3 52.2 For emission 27dBm/MHz ligh Channel Radiated Emis Level	H H s in restricte (~68dBuV/m @ 5240 MH ssions: Pol	68.3 88.3 d bands, the n). Iz	-27.0 -36.1 e limit of 15.2 9 / 15E	PK 209 was used. Detector	112 For all othe Azimuth	1.6 r emissions Height	RB 1 MHz;	VB: 1 MHz
10400.230 10404.910 Jote 1: Run #1c: F Spurious R Frequency MHz	41.3 52.2 For emission 27dBm/MHz ligh Channel Radiated Emis Level dBμV/m	H H is in restricte (~68dBuV/m @ 5240 MH ssions: Pol v/h	68.3 88.3 d bands, the n). Iz 15.20 Limit	-27.0 -36.1 e limit of 15.2 9 / 15E Margin	PK 209 was used. Detector Pk/QP/Avg	112 For all othe Azimuth degrees	1.6 r emissions Height meters	RB 1 MHz; '	VB: 1 MHz
10400.230 10404.910 lote 1: Run #1c: F Spurious R Frequency MHz 15700.500	41.3 52.2 For emission 27dBm/MHz ligh Channel Cadiated Emis Level dBµV/m 38.9	H H Is in restricte (~68dBuV/m @ 5240 MH <u>ssions:</u> Pol V/h H	68.3 88.3 d bands, the n). Iz 15.20 Limit 54.0	-27.0 -36.1 e limit of 15.2 9 / 15E Margin -15.1	PK 209 was used. Detector Pk/QP/Avg AVG	112 For all othe Azimuth degrees 12	1.6 r emissions Height meters 2.5	RB 1 MHz; ' the average Comments RB 1 MHz; '	VB: 1 MHz e limit was set to -
10400.230 10404.910 Jote 1: Run #1c: F Spurious K Frequency MHz 15700.500 15740.270	41.3 52.2 For emission 27dBm/MHz High Channel Radiated Emis Level dBµV/m 38.9 49.9	H H Is in restricte (~68dBuV/m @ 5240 MH ssions: Pol V/h H H	68.3 88.3 d bands, the n). z 15.20 Limit 54.0 74.0	-27.0 -36.1 e limit of 15.2 9 / 15E Margin -15.1 -24.1	PK 209 was used. Detector Pk/QP/Avg AVG PK	112 For all othe Azimuth degrees 12 12	1.6 r emissions Height meters 2.5 2.5	RB 1 MHz; ' the average Comments RB 1 MHz; ' RB 1 MHz; '	VB: 1 MHz e limit was set to - WB: 10 Hz VB: 1 MHz
10400.230 10404.910 lote 1: Run #1c: H Spurious K Frequency MHz 15700.500 15740.270 10480.300	41.3 52.2 For emission 27dBm/MHz ligh Channel Radiated Emis Level dBμV/m 38.9 49.9 43.6	H H is in restricte (~68dBuV/m @ 5240 MH ssions: Pol V/h H H V	68.3 88.3 d bands, the n). z 15.20 Limit 54.0 74.0 68.3	-27.0 -36.1 e limit of 15.2 9 / 15E Margin -15.1 -24.1 -24.7	PK 209 was used. Detector Pk/QP/Avg AVG PK AVG	112 For all other Azimuth degrees 12 12 100	1.6 r emissions Height meters 2.5 2.5 1.6	RB 1 MHz; ' the average Comments RB 1 MHz; ' RB 1 MHz; ' RB 1 MHz; '	VB: 1 MHz e limit was set to - WB: 10 Hz VB: 1 MHz VB: 10 Hz
10400.230 10404.910 Jote 1: Run #1c: F Spurious R Frequency MHz 15700.500 15740.270 10480.300 10479.000	41.3 52.2 For emission 27dBm/MHz ligh Channel Cadiated Emis Level dBμV/m 38.9 49.9 43.6 55.6	H H ns in restricte (~68dBuV/m @ 5240 MH ssions: Pol V/h H H V V V	68.3 88.3 d bands, the n). Iz Limit 54.0 74.0 68.3 88.3	-27.0 -36.1 e limit of 15.2 9 / 15E Margin -15.1 -24.1 -24.7 -32.7	PK 209 was used. Detector Pk/QP/Avg AVG PK AVG PK	112 For all other Azimuth degrees 12 12 100 100	1.6 r emissions Height meters 2.5 2.5 1.6 1.6	RB 1 MHz; ' the average Comments RB 1 MHz; ' RB 1 MHz; ' RB 1 MHz; ' RB 1 MHz; '	VB: 1 MHz e limit was set to - VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 1 MHz
IO400.230 IO404.910 Iote 1: Come the second	41.3 52.2 For emission 27dBm/MHz ligh Channel Cadiated Emis Level dBμV/m 38.9 49.9 43.6 55.6 38.8	H H is in restricte (~68dBuV/m @ 5240 MH ssions: Pol V/h H H V V V V	68.3 88.3 d bands, the n). z 15.20 Limit 54.0 74.0 68.3 88.3 54.0	-27.0 -36.1 e limit of 15.2 9 / 15E Margin -15.1 -24.1 -24.7 -32.7 -15.2	PK 209 was used. 209 was used. Pk/QP/Avg AVG PK AVG PK AVG AVG	112 For all othe Azimuth degrees 12 12 100 100 83	1.6 r emissions Height meters 2.5 2.5 1.6 1.6 1.0	RB 1 MHz; ' the average Comments RB 1 MHz; ' RB 1 MHz; '	VB: 1 MHz e limit was set to - VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz
10400.230 10404.910 Jote 1: Jote 1: Frequency MHz 15700.500 10479.000 15700.500 15735.210	41.3 52.2 For emission 27dBm/MHz High Channel Cadiated Emis Level dBμV/m 38.9 49.9 43.6 55.6 38.8 50.1	H H is in restricte (~68dBuV/m @ 5240 MH @ 5240 MH ssions: Pol V/h H H H V V V V V	68.3 88.3 d bands, the n). Iz Limit 54.0 74.0 68.3 88.3 54.0 74.0	-27.0 -36.1 e limit of 15.2 9 / 15E Margin -15.1 -24.1 -24.7 -32.7 -15.2 -23.9	PK 209 was used. 209 was used. 200 was used.	112 For all othe Azimuth degrees 12 12 100 100 83 83	1.6 r emissions Height meters 2.5 2.5 1.6 1.6 1.0 1.0 1.0	RB 1 MHz; ' the average Comments RB 1 MHz; ' RB 1 MHz; '	VB: 1 MHz e limit was set to - VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz
10400.230 10404.910 Jote 1: Run #1c: H Spurious K Frequency MHz 15700.500 15740.270 10480.300	41.3 52.2 For emission 27dBm/MHz ligh Channel Cadiated Emis Level dBμV/m 38.9 49.9 43.6 55.6 38.8	H H is in restricte (~68dBuV/m @ 5240 MH ssions: Pol V/h H H V V V V	68.3 88.3 d bands, the n). z 15.20 Limit 54.0 74.0 68.3 88.3 54.0	-27.0 -36.1 e limit of 15.2 9 / 15E Margin -15.1 -24.1 -24.7 -32.7 -15.2	PK 209 was used. 209 was used. Pk/QP/Avg AVG PK AVG PK AVG AVG	112 For all othe Azimuth degrees 12 12 100 100 83	1.6 r emissions Height meters 2.5 2.5 1.6 1.6 1.0	RB 1 MHz; ' the average Comments RB 1 MHz; ' RB 1 MHz; '	VB: 1 MHz e limit was set to - VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz
I0400.230 I0404.910 Iote 1: Run #1c: F Spurious R Frequency MHz I5700.500 I5740.270 I0480.300 I0479.000 I5735.210 I0480.020	41.3 52.2 For emission 27dBm/MHz ligh Channel Cadiated Emis Level dBμV/m 38.9 49.9 43.6 55.6 38.8 50.1 38.3 58.6	H H ns in restricte (~68dBuV/m)) (~68dBuV/m (~68dBuV/m)) (~68dBuV/m) (~68dBuV/m)) (~68dBuV/m) (~68dBuV/m))) (~68dBuV/m)) (~68dBuV/m))) (~68dBuV/m))) (~68dBuV/m))) (~68dBuV/m))) (~68dBuV/m))) (~68dBuV/m)))) (~68dBuV/m	68.3 88.3 d bands, the n). z 15.20 Limit 54.0 74.0 68.3 88.3 54.0 74.0 68.3 88.3 54.0 74.0 68.3 88.3	-27.0 -36.1 e limit of 15.2 9 / 15E Margin -15.1 -24.1 -24.7 -32.7 -15.2 -23.9 -30.0 -29.7	PK 209 was used. 209 was used. 200 was used.	112 For all other Azimuth degrees 12 12 100 100 83 83 149 149	1.6 r emissions Height meters 2.5 2.5 1.6 1.6 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; ' the average Comments RB 1 MHz; ' RB 1 MHz; '	VB: 1 MHz e limit was set to - VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz


Model: T-Log Number: T74642 Account Manager: Christine Kre Standard; FCC 15.E/RSS 210 Class: N/A Run #2, Radiated Spurious Emissions, 30 - 40.000 MH. Operation in the 5250-5350 MHz Band Date of Test: 2/26/2009 Config. Used: 1 Test Engineer: Ratel Varelas Config. Used: 1 Test Engineer: Ratel Varelas Config. Used: 1 Test Engineer: Ratel Varelas Config. Used: 1 Host Unit Voltage 120V/60Hz Revenue Ambient Conditions: Temperature: 11 °C Revenue	Client:	Summit Data	a Communic			Job Number:	J74548			
Model: 802.11 ang Compact Flash Card Account Manager: Christine Kre Contact: Jerry Pohnurski Class: IV/A Standard; FCC 15.E/RSS 210 Class: IV/A Run #2, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Class: IV/A Date of Test: 2/26/2009 Config. Used: 1 Test Engineer: Rafael Varelas Config. Used: 1 Test Location: SVOATS #1 Host Unit Voltage 120V/60Hz Ambient Conditions: Temperature: 11 °C Rei. Humidity: 91 % Run #2a: Low Channel Spurious Radiated Emissions: Spurious Radiated Emissions: Detector Adte: If device is not for indoor use only then measure 5250 MHz band edge to compty with -68.3dBuV/m limit Frequency Level Pol 15.209/15E Detector MHz dBuV/m vh Limit Margin Pk/OP/Avg degrees M1778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz: VB: 10 Hz 15778.500 40.4 45.0 -22.5 PK 0 1.0 RB 1 MHz: VB: 10 Hz					T-	Log Number:	T74642			
Contact: Jerry Pohmurski Class: N/A Standard: FCC 15.E/RSS 210 Class: N/A Standard: FCC 15.E/RSS 210 Class: N/A Standard: FCC 15.E/RSS 210 Class: N/A Date of Test: 2/26/2009 Config. Used: 1 Config. Change: None Test Engineer: Ralael Varelas Config. Change: None Test Engineer: Ralael Varelas Test Location: SVOATS #1 Host Unit Voltage 120V/60Hz Manite Conditions: Temperature: 11 °C Rel. Humidity: 91 % Rel. Mumidity: 91 % Run #2a: Low Channel Spurious Radiated Emissions: Comments Comments St778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15778.500 40.4 V 54.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.680 51.5 H 74.0 -22.5 PK 0 1.	Model:	802.11abg C	Compact Flas	sh Card					-	
Standard: FCC 15.E/RSS 210 Class: IV/A Aun #2, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Date of Test: 2/26/2009 Config Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Engineer: Rafael Varelas Test Location: SVOATS #1 Host Unit Voltage 120V/60Hz Host Unit Voltage 120V/60Hz Ambient Conditions: Temperature: 11 *C Rel. Humidity: 91 % Run #2a: Low Channel Spurious Radiated Emissions: Interview is not for indoor use only then measure 5250 MHz band edge to comply with -68.3dBuV/m limit Temperature: 10 R8 1 MHz; VB: 10 Hz St778.500 40.4 H 54.0 -13.6 AVG 0 1.0 R8 1 MHz; VB: 10 Hz 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 R8 1 MHz; VB: 10 Hz 15779.6800 51.5 H 74.0 -21.7 PK 0 1.0 R8 1 MHz; VB: 10 Hz 10518.600 42.7 H 68.3 -22.8 AVG 110 1.8 R8 1 MHz; VB: 10 Hz	Contact:	Jerry Pohmu	ırski						5	
Run #2, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Date of Test: 2/26/2009 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: SVOATS #1 Host Unit Voltage 120V/60Hz Ambient Conditions: Temperature: 11 °C Rel. Humidity: 91 % Run #2a: Low Channel Spurious Radiated Emissions: Spurious Radiated Emissions: Detector Iote: If device is not for indoor use only then measure 5250 MHz band edge to comply with -68.3dBuV/m limit Frequency Level Pol 15.209/15E Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin Pk/OP/Avg degrees meters 15778.500 40.4 V 54.0 15779.500 51.5 H 74.0 15779.500 40.4 V 68.3 15779.500 40.4 42.7 H 168.3 -		,							Class:	N/A
Test Engineer: Rafael Varelas Test Location: Config Čhange: None Host Unit Voltage 120V/60Hz Ambient Conditions: Temperature: 11 °C Rel. Humidity: 91 % Run #2a: Low Channel Spurious Radiated Emissions: Program Jole:: I device is not for indoor use only then measure 5250 MHz band edge to compty with -68.3dBuV/m limit Frequency Level Pol 15.209 / 152 VMLz Blgu/m v/h Limit Margin Pk/OP/Avg degrees meters 15778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.590 52.3 V 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.690 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.607 62.1 H 88.3 -26.2 PK 110 1.8 <td></td> <td></td> <td></td> <td>ons, 30 - 40,</td> <td>000 MH. Op</td> <td>eration in the</td> <td>e 5250-5350</td> <td>MHz Band</td> <td></td> <td></td>				ons, 30 - 40,	000 MH. Op	eration in the	e 5250-5350	MHz Band		
Test Engineer: Rafael Varelas Test Location: Config Change: None Host Unit Voltage 120V/60Hz Ambient Conditions: Temperature: 11 °C Rel. Humidity: 91 % Ambient Conditions: Temperature: 11 °C Rel. Humidity: 91 % Spurious Radiated Emissions: Detector Azimuth Height Comments MHz Blaµ/m V/h Limit Margin Pk/OP/Avg degrees meters 15778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.500 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.600 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10518.600 42.7 H 68.3 -22.6 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.601 57.9 V 88.3 -30.4 PK 110 1.8	[Date of Test:	2/26/2009			С	onfig. Used:	1		
Ambient Conditions: Temperature: 11 °C Rel. Humidlity: 91 % Run #2a: Low Channel Spurious Radiated Emissions: lote: If device is not for indoor use only then measure 5250 MHz band edge to comply with -68.3dBuV/m limit Frequency Level Pol 15.209 / 15E Defector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 15778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.680 51.5 H 74.0 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -26.6 AVG 197 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 11 MHz	Те	st Engineer:	Rafael Vare	las		Cor	fig Change:	None		
Rel. Humidity: 91 % Run #2a: Low Channel Spurious Radiated Emissions: lote: If device is not for indoor use only then measure 5250 MHz band edge to comply with -68.3dBuV/m limit Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m w/h Limit Margin Pk/QP/Avg degrees meters 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.590 52.3 V 74.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.680 51.5 H 74.0 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10520.00 45.5 V 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -30.	Te	est Location:	SVOATS #1			Host	Unit Voltage	120V/60Hz		
Rel. Humidity: 91 % Run #2a: Low Channel Spurious Radiated Emissions: Note: If device is not for indoor use only then measure 5250 MHz band edge to comply with -68.3dBuV/m limit Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dB _µ V/m v/m Limit Margin Pk/OP/Avg degrees meters Image: Comments 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.990 52.3 V 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15220.000 45.5 V 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10520.000 45.5 V 68.3 -22.6 AVG 197 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.500 57.9 V 88.3 -30.4 PK 110	mbient (Conditions	S:	Т	emperature:	11	°C			
Spurious Radiated Emissions: Sourious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin PK/OP/Avg degrees meters 15778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.90 52.3 V 74.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.90 52.3 V 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10520.000 45.5 V 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.1 H 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz										
Spurious Radiated Emissions: Sourious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.990 52.3 V 74.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10520.000 45.5 V 68.3 -22.6 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.1 H 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz 10518.540					-					
Interview Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 15778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.900 52.3 V 74.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.9680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -22.6 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz 105	un #2a: Lo	ow Channel								
Note: If device is not for indoor use only then measure 5250 MHz band edge to comply with -68.3dBuV/m limit Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 15778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.900 52.3 V 74.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -25.6 AVG 197 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H<	Spurious R	adiated Emi	ssions:							
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 15778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.990 52.3 V 74.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 11 MHz 15779.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10520.000 45.5 V 68.3 -22.6 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.670 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz				nly then mea	sure 5250 N	IHz band edg	e to comply	with -68.3dE	BuV/m limit	
15778.500 40.4 V 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15778.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz 15779.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 15779.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz 104e 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set 27dBm/MHz (-68dBuV/m). Run #2b	requency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments	
IST78.500 40.4 H 54.0 -13.6 AVG 0 1.0 RB 1 MHz; VB: 10 Hz IST79.990 52.3 V 74.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 1 MHz IST79.900 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 1 MHz IST79.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 10 Hz IO520.000 45.5 V 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz IO518.500 42.7 H 68.3 -25.6 AVG 197 1.8 RB 1 MHz; VB: 10 Hz IO518.670 62.1 H 88.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz IO518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set Iote 1: Pol 15.209 / 15E Detector Azimuth Height <td>MHz</td> <td>dBµV/m</td> <td></td> <td>Limit</td> <td>Margin</td> <td>Pk/QP/Avg</td> <td>degrees</td> <td>meters</td> <td></td> <td></td>	MHz	dBµV/m		Limit	Margin	Pk/QP/Avg	degrees	meters		
15779.990 52.3 V 74.0 -21.7 PK 0 1.0 RB 1 MHz; VB: 1 MHz 15779.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 1 MHz 10520.000 45.5 V 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -25.6 AVG 197 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 10 Hz 10518.500 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 11 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 11 MHz 10611: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set 27dBm/MHz (-68dBuV/m). 104 1.8 RB 1 MHz; VB: 10 Hz		40.4		54.0	-13.6		0	1.0		
5779.680 51.5 H 74.0 -22.5 PK 0 1.0 RB 1 MHz; VB: 1 MHz 0520.000 45.5 V 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 0518.500 42.7 H 68.3 -25.6 AVG 197 1.8 RB 1 MHz; VB: 10 Hz 0518.670 62.1 H 88.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 11 MHz 0518.640 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 0518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 0518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 10 Hz 0518.540 57.9 V 88.3 -30.4 PK 110 1.8 Retriaged init was set 018 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set							0			
10520.000 45.5 V 68.3 -22.8 AVG 110 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 68.3 -25.6 AVG 197 1.8 RB 1 MHz; VB: 10 Hz 10518.500 42.7 H 88.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 1 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 1041 . For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set 27dBm/MHz (~68dBuV/m). . State of the set of the							-	1.0		
10518.500 42.7 H 68.3 -25.6 AVG 197 1.8 RB 1 MHz; VB: 10 Hz 10518.670 62.1 H 88.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 1 MHz 10518.670 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz 1041 H (-6.8dBuV/m). - - Azimuth Height Comments Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments										
IO518.670 62.1 H 88.3 -26.2 PK 197 1.8 RB 1 MHz; VB: 1 MHz IO518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz IO518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set 27dBm/MHz (-68dBuV/m). Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -13.6 AVG 199 1.6 </td <td></td>										
10518.540 57.9 V 88.3 -30.4 PK 110 1.8 RB 1 MHz; VB: 1 MHz Iote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set 27dBm/MHz (-68dBuV/m). For all other emissions, the average limit was set Run #2b: Center Channel Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 10601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2										
Interformation of the second procession of the second procesecond procession of the second procession of the s										
Lote I: 27dBm/MHz (~68dBuV/m). Run #2b: Center Channel Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 10601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz	0518.540	57.9	V	88.3	-30.4	PK	110	1.8	RB 1 MHZ;	VB: 1 MHZ
Ofe 1: 27dBm/MHz (-68dBuV/m). un #2b: Center Channel Spurious Radiated Emissions: Trequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 5898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 5898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 5898.500 41.6 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 5898.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 0601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 0		For emission	ns in restricte	d hands the	limit of 15.2	09 was used	For all othe	r emissions	the average	limit was set to
Bun #2b: Center Channel Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 16601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 15898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1 MHz; VB: 1 MHz	ote 1:					.07 was asca.			, the average	
Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -13.6 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 10601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 15898.650 53.5 H 74.0 -20.5 PK			(COUDUVI							
Spurious Radiated Emissions: Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -13.6 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 10601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 15898.650 53.5 H 74.0 -20.5 PK	un #2b: C	enter Chanr	nel							
Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters meters 10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 10601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 15898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1										
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 16601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 15898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1 MHz; VB: 1 MHz	Spurious R	adiated Emi	ssions:							
10600.210 47.1 V 54.0 -6.9 AVG 213 1.4 RB 1 MHz; VB: 10 Hz 15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 15898.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10601.500 40.4 H 54.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 15898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1 MHz; VB: 1 MHz	Frequency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments	
15898.500 41.6 V 54.0 -12.4 AVG 354 1.8 RB 1 MHz; VB: 10 Hz 15898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz 10601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 15898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1 MHz; VB: 1 MHz	MHz	dBµV/m		Limit	Margin	Pk/QP/Avg		meters		
IS898.500 41.6 H 54.0 -12.4 AVG 199 1.6 RB 1 MHz; VB: 10 Hz I0601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz I0600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz I5898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1 MHz; VB: 1 MHz		47.1		54.0	-6.9		213	1.4		
10601.500 40.4 H 54.0 -13.6 AVG 176 1.0 RB 1 MHz; VB: 10 Hz 10600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 15898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1 MHz; VB: 1 MHz								1.8		
0600.410 58.8 V 74.0 -15.2 PK 213 1.4 RB 1 MHz; VB: 1 MHz 5898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1 MHz; VB: 1 MHz										
5898.650 53.5 H 74.0 -20.5 PK 199 1.6 RB 1 MHz; VB: 1 MHz										
15901.040 52.8 V 74.0 -21.2 PK 354 1.8 RB 1 MHz; VB: 1 MHz 10599.510 51.5 H 88.3 -36.8 PK 176 1.0 RB 1 MHz; VB: 1 MHz		52 Q	V	74.0	-21.2	PK	354	1.8	RB 1 MHz; V	VB: 1 MHz


Client:	Summit Data	a Communica	ations		Job Number: J74548			
Model:	802.11abg C	Compact Flas	sh Card	T-Log Number: T74642				
	-	-					Ассо	unt Manager: Christine Krebill
	Jerry Pohmu							
	FCC 15.E/R							Class: N/A
Run #2c: H	igh Channe	l						
ſ	Date of Test:	2/23/2009			C	onfig. Used:	1	
	st Engineer:		as			fig Change:		
	est Location:					Unit Voltage		
Ambient (Conditions	S:		emperature				
			R	el. Humidity	89	%		
	al Cianal F'	ald Chronout						
<i>-undament</i> Frequency	<i>al Signal Fie</i> Level	Pol		9/15.E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5317.030	95.5	V	-	-	AVG	0	1.0	RB 1 MHz; VB: 10 Hz
5318.670	104.2	V	-	-	PK	0	1.0	RB 1 MHz; VB: 1 MHz
5313.900	82.1	Н	-	-	AVG	55	1.0	RB 1 MHz; VB: 10 Hz
5313.770	90.5	Н	-	-	PK	55	1.0	RB 1 MHz; VB: 1 MHz
	Band Edge S							L
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.000	49.7 62.3	V V	54.0	-4.3 -11.7	Avg PK	0	1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz
5351.180 5351.950	62.3 49.4	V H	74.0 54.0	-11.7 -4.6	Avg	0 55	1.0	RB 1 MHz; VB: 1 MHz
5350.050	61.9	H	74.0	-4.0	PK	55	1.0	RB 1 MHz; VB: 1 MHz
	adiated Emi		74.0	-12.1	TIX	55	1.0	
Frequency		Pol	15.20	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10639.960	48.2	V	54.0	-5.8	AVG	302	1.4	RB 1 MHz; VB: 10 Hz
10640.160	44.5	Н	54.0	-9.5	AVG	255	1.6	RB 1 MHz; VB: 10 Hz
15958.500	41.4	Н	54.0	-12.6	AVG	360	1.0	RB 1 MHz; VB: 10 Hz
15958.500	41.4	V	54.0	-12.6	AVG	336	1.0	RB 1 MHz; VB: 10 Hz
10638.710	60.0	V	74.0	-14.0	PK	302	1.4	RB 1 MHz; VB: 1 MHz
10638.590	56.4	H	74.0	-17.6	PK	255	1.6	RB 1 MHz; VB: 1 MHz
15958.860	52.9	V H	74.0	-21.1	PK PK	336	1.0	RB 1 MHz; VB: 1 MHz
15959.210	52.8	П	74.0	-21.2	۲K	360	1.0	RB 1 MHz; VB: 1 MHz
	For emission	ns in restricte	d hands the	limit of 15 2	Masusad 00	For all othe	remissions	, the average limit was set to
lote 1:		: (~68dBuV/n		, and of 10.2				
			·/·					

onern.	Summit Data	a Communica	ations					Job Number: J74548
Model	802.11abg C	`omnact Flas	ch Card					Log Number: T74642
		•	n Caru				Acco	unt Manager: Christine Krebill
	Jerry Pohmu							
Standard:	FCC 15.E/RS	SS 210						Class: N/A
	ow Channel tal Signal Fie	ald Strength						
Frequency	Level	Pol		9 / 15.E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5496.400	80.8	Н	-	-	AVG	71	1.0	RB 1 MHz; VB: 10 Hz
5505.070	90.1	Н	-	-	PK	71	1.0	RB 1 MHz; VB: 1 MHz
5495.570	93.3	V	-	-	AVG	301	1.0	RB 1 MHz; VB: 10 Hz
5501.670	103.2	V	-	-	PK	301	1.0	RB 1 MHz; VB: 1 MHz
5250-5460	MHz Restrict	tod Rand Ed	lao Sianal F	adiated Fiel	ld Strenath			
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonts
5457.920	49.7	V	54.0	-4.3	Avg	301	1.0	RB 1 MHz; VB: 10 Hz
5459.940	62.6	V	74.0	-11.4	PK	301	1.0	RB 1 MHz; VB: 1 MHz
5457.060	49.5	Ĥ	54.0	-4.5	Avg	71	1.0	RB 1 MHz; VB: 10 Hz
5458.230	61.4	Н	74.0	-12.6	PK	71	1.0	RB 1 MHz; VB: 1 MHz
								
5460-5470/	MHz Restrict	ed Band Ed	ge Signal R	adiated Fiel	ld Strenath			
	· · ·				T T			
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments
Frequency MHz	dBµV/m	v/h	Limit	Margin	Detector Pk/QP/Avg	degrees	meters	
Frequency MHz 5469.290	dBµV/m 49.7	v/h V	Limit 68.3	Margin -18.6	Detector Pk/QP/Avg Avg	degrees 301	meters 1.0	RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870	dBμV/m 49.7 62.6	v/h V V	Limit 68.3 88.3	Margin -18.6 -25.7	Detector Pk/QP/Avg Avg PK	degrees 301 301	meters 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz
Frequency MHz 5469.290 5467.870 5467.170	dBµV/m 49.7 62.6 49.5	v/h V V H	Limit 68.3 88.3 68.3	Margin -18.6 -25.7 -18.8	Detector Pk/QP/Avg Avg PK Avg	degrees 301 301 71	meters 1.0 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870	dBμV/m 49.7 62.6	v/h V V	Limit 68.3 88.3	Margin -18.6 -25.7	Detector Pk/QP/Avg Avg PK	degrees 301 301	meters 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz
Frequency MHz 5469.290 5467.870 5467.170 5467.670	dBμV/m 49.7 62.6 49.5 61.6	V/h V V H H	Limit 68.3 88.3 68.3	Margin -18.6 -25.7 -18.8	Detector Pk/QP/Avg Avg PK Avg	degrees 301 301 71	meters 1.0 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870 5467.170 5467.670 Spurious R	dBµV/m 49.7 62.6 49.5	V/h V V H H	Limit 68.3 88.3 68.3 88.3	Margin -18.6 -25.7 -18.8	Detector Pk/QP/Avg Avg PK Avg PK	degrees 301 301 71 71 71	meters 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz
Frequency MHz 5469.290 5467.870 5467.170 5467.670 Spurious R	dBµV/m 49.7 62.6 49.5 61.6 Padiated Emis Level	V/h V H H <i>issions:</i> Pol	Limit 68.3 88.3 68.3 88.3 15.200	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E	Detector Pk/QP/Avg Avg PK Avg PK Detector	degrees 301 301 71 71 71 Azimuth	meters 1.0 1.0 1.0 1.0 Height	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870 5467.170 5467.670 Spurious R Frequency MHz	dBμV/m 49.7 62.6 49.5 61.6 2adiated Emis Level dBμV/m	V/h V V H H	Limit 68.3 88.3 68.3 88.3	Margin -18.6 -25.7 -18.8 -26.7	Detector Pk/QP/Avg Avg PK Avg PK	degrees 301 301 71 71 71	meters 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz
Frequency MHz 5469.290 5467.870 5467.170 5467.670 Spurious R Frequency MHz 11000.230	dBµV/m 49.7 62.6 49.5 61.6 Padiated Emis Level	v/h V H H Sissions: Pol v/h	Limit 68.3 88.3 68.3 88.3 15.20 Limit	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E Margin	Detector Pk/QP/Avg Avg PK Avg PK Detector Pk/QP/Avg AVG	degrees 301 301 71 71 71 Azimuth degrees	meters 1.0 1.0 1.0 1.0 Height meters	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz
Frequency MHz 5469.290 5467.870 5467.170 5467.670 Spurious R Frequency MHz 11000.230 11012.970	dBμV/m 49.7 62.6 49.5 61.6 2adiated Emis Level dBμV/m 44.6	v/h V H H Ssions: Pol v/h	Limit 68.3 88.3 68.3 88.3 15.200 Limit 54.0	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E Margin -9.4	Detector Pk/QP/Avg Avg PK Avg PK Detector Pk/QP/Avg	degrees 301 301 71 71 Azimuth degrees 134	meters 1.0 1.0 1.0 1.0 Height meters 1.5	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz Comments RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870 5467.670 5467.670 5467.670 Spurious R Frequency MHz 11000.230 11012.970 11002.440	dBμV/m 49.7 62.6 49.5 61.6 Padiated Emis Level dBμV/m 44.6 39.1	v/h V H H Sissions: Pol v/h V	Limit 68.3 88.3 68.3 88.3 15.20 Limit 54.0 54.0	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E Margin -9.4 -14.9	Detector Pk/QP/Avg Avg PK Avg PK Detector Pk/QP/Avg AVG AVG	degrees 301 301 71 71 Azimuth degrees 134 54	weters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height meters 1.5 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870 5467.670 5467.670 Spurious R Frequency MHz 11000.230 11012.970 11002.440 10978.720	dBμV/m 49.7 62.6 49.5 61.6 Padiated Emis Level dBμV/m 44.6 39.1 56.9	v/h V H H Ssions: Pol v/h V H	Limit 68.3 88.3 68.3 88.3 15.20 Limit 54.0 54.0 74.0	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E Margin -9.4 -14.9 -17.1 -23.0	Detector Pk/QP/Avg Avg PK Avg PK Detector Pk/QP/Avg AVG AVG PK	degrees 301 301 71 71 71 Azimuth degrees 134 54 134	weters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height meters 1.5 1.0 1.5	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870 5467.670 5467.670 5467.670 Spurious R Frequency MHz 11000.230 11012.970 11002.440 10978.720 16508.270	dBμV/m 49.7 62.6 49.5 61.6 2000000000000000000000000000000000000	v/h V H H Ssions: Pol v/h V H	Limit 68.3 88.3 68.3 88.3 15.200 Limit 54.0 54.0 74.0 74.0 74.0	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E Margin -9.4 -14.9 -17.1	Detector Pk/QP/Avg Avg PK Avg PK Detector Pk/QP/Avg AVG AVG PK PK	degrees 301 301 71 71 71 Azimuth degrees 134 54 134 54	meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height meters 1.5 1.0 1.5 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz
Frequency MHz 5469.290 5467.870 5467.170 5467.670 5467.670 5467.670 8 50000000000000000000000000000000000	dBμV/m 49.7 62.6 49.5 61.6 2adiated Emis Level dBμV/m 44.6 39.1 56.9 51.0 40.4	v/h V H H Sissions: Pol v/h V H V H	Limit 68.3 88.3 68.3 88.3 15.200 Limit 54.0 54.0 74.0 74.0 68.3	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E Margin -9.4 -14.9 -17.1 -23.0 -27.9	Detector Pk/QP/Avg Avg PK Avg PK Detector Pk/QP/Avg AVG AVG PK PK AVG	degrees 301 301 71 71 71 Azimuth degrees 134 54 134 54 324	meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870 5467.670 5467.670 Spurious R Frequency MHz 11000.230 11012.970 11002.440 10978.720 16508.270 16510.920 16484.510	dBμV/m 49.7 62.6 49.5 61.6 2adiated Emis Level dBμV/m 44.6 39.1 56.9 51.0 40.4	v/h V H H Ssions: Pol v/h V H V H V H V H V H V H V H V H V H V	Limit 68.3 88.3 68.3 88.3 15.20 Limit 54.0 54.0 74.0 74.0 68.3 68.3	Margin -18.6 -25.7 -18.8 -26.7 0 / 15E Margin -9.4 -14.9 -17.1 -23.0 -27.9 -27.9	Detector Pk/QP/Avg Avg PK Avg PK Detector Pk/QP/Avg AVG AVG PK PK AVG AVG AVG	degrees 301 301 71 71 71 Azimuth degrees 134 54 134 54 324 126	org meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870 5467.170 5467.670 Spurious R Frequency	dBμV/m 49.7 62.6 49.5 61.6 Padiated Emis Level dBμV/m 44.6 39.1 56.9 51.0 40.4 51.6	v/h V H H Ssions: Pol v/h V H V H V H V H V H V H V H V H V H V H V H V H	Limit 68.3 88.3 68.3 88.3 15.20 Limit 54.0 54.0 74.0 74.0 68.3 68.3 88.3	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E Margin -9.4 -14.9 -17.1 -23.0 -27.9 -27.9 -27.9 -36.7	Detector Pk/QP/Avg Avg PK Avg PK Detector Pk/QP/Avg AVG AVG PK PK AVG AVG AVG AVG	degrees 301 301 71 71 71 Azimuth degrees 134 54 134 54 324 126 324	meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Height meters 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz
Frequency MHz 5469.290 5467.870 5467.670 5467.670 Spurious R Frequency MHz 11000.230 11012.970 11002.440 10978.720 16508.270 16510.920 16484.510	dBμV/m 49.7 62.6 49.5 61.6 Devel dBμV/m 44.6 39.1 56.9 51.0 40.4 51.6 51.0	v/h V H H Ssions: Pol v/h V H V H V H V H V H V H V H V H V H V H V H V	Limit 68.3 88.3 68.3 88.3 15.200 Limit 54.0 54.0 74.0 74.0 68.3 68.3 88.3 88.3	Margin -18.6 -25.7 -18.8 -26.7 9 / 15E Margin -9.4 -14.9 -17.1 -23.0 -27.9 -27.9 -27.9 -36.7 -37.3	Detector Pk/QP/Avg Avg PK Avg PK PK Detector Pk/QP/Avg AVG AVG PK PK AVG AVG PK PK PK	degrees 301 301 71 71 71 Azimuth degrees 134 54 134 54 324 126 324 126	meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz Comments RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 1 MHz RB 1 MHz; VB: 10 Hz RB 1 MHz; VB: 10 Hz

EMC Test Data

	An AZ	A company							
Client:	Summit Data	a Communica	ations					Job Number:	J74548
Madalı	002 11 aba (Compost Flor	h Card				T-	Log Number:	T74642
woder:	802.11abg (compact Flas	sh Card				Αссоι	unt Manager:	Christine Krebill
Contact:	Jerry Pohmu	urski							
Standard:	FCC 15.E/R	SS 210						Class:	N/A
Run #3b: C	enter Chanr	nel							
Spurious R	adiated Emi	issions:							
Frequency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11200.670	50.0	V	54.0	-4.0	AVG	314	1.3	RB 1 MHz; V	/B: 10 Hz
11200.320	46.3	Н	54.0	-7.7	AVG	263	1.5	RB 1 MHz; V	/B: 10 Hz
11202.440	65.5	V	74.0	-8.5	PK	314	1.3	RB 1 MHz; V	/B: 1 MHz
11202.790	61.4	Н	74.0	-12.6	PK	263	1.5	RB 1 MHz; V	/B: 1 MHz
16778.500	41.9	Н	68.3	-26.4	AVG	355	1.0	RB 1 MHz; V	/B: 10 Hz
16778.500	41.8	V	68.3	-26.5	AVG	27	1.0	RB 1 MHz; V	/B: 10 Hz
16820.020	52.8	V	88.3	-35.5	PK	27	1.0	RB 1 MHz; V	/B: 1 MHz

16778.680

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -Note 1: 27dBm/MHz (~68dBuV/m).

ΡK

355

1.0

RB 1 MHz; VB: 1 MHz

-35.6

Run #3c: High Channel

Spurious Radiated Emissions:

52.7

Η

88.3

Spanous K	aulaicu Lilli	3310113.						
Frequency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11398.110	39.4	Н	54.0	-14.6	AVG	252	1.0	RB 1 MHz; VB: 10 Hz
11399.080	39.1	V	54.0	-14.9	AVG	347	1.0	RB 1 MHz; VB: 10 Hz
11419.750	50.8	V	74.0	-23.2	PK	347	1.0	RB 1 MHz; VB: 1 MHz
11382.740	50.4	Н	74.0	-23.6	PK	252	1.0	RB 1 MHz; VB: 1 MHz
17081.590	43.9	Н	68.3	-24.4	AVG	203	1.0	RB 1 MHz; VB: 10 Hz
17081.770	43.9	V	68.3	-24.4	AVG	332	1.0	RB 1 MHz; VB: 10 Hz
17101.470	55.7	V	88.3	-32.6	PK	332	1.0	RB 1 MHz; VB: 1 MHz
17082.120	55.0	Н	88.3	-33.3	PK	203	1.0	RB 1 MHz; VB: 1 MHz

Note 1:

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was set to -27dBm/MHz (~68dBuV/m).

EMC Test Data

	An D(ZZZ) company		
Client:	Summit Data Communications	Job Number:	J74548
Madal	802.11abg Compact Flash Card	T-Log Number:	T74642
wouer.	ouz. Haby Compact Flash Caru	Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski		
Standard:	FCC 15.E/RSS 210	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions (PCB Antenna)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Summary of Results

NOTE: A preliminary check of output power was performed. The port with the highest power was used for the final testing. Preliminary tests showed no radio related emissions below 1 GHz.

			Power				
Run #	Mode	Channel	Setting	Port	Test Performed	Limit	Result / Margin
	802.11a	5150-5250	100%	Aux	Restricted Band Edge at	15.209	49.4dBµV/m @
	Chain A	Low	10076	Aux	5150 MHz	13.207	5148.2MHz (-4.6dB)
	802.11a	5150-5250	100%	Aux	Radiated Emissions,	FCC 15.209 / 15 E	39.3dBµV/m @
1	Chain A	Low	100%	Aux	1 - 40 GHz	FCC 15.2097 15 E	15575.7MHz (-14.7dB)
I	802.11a	5150-5250	100%	Aux	Radiated Emissions,	FCC 15.209 / 15 E	39.3dBµV/m @
	Chain A	Center	100%	Aux	1 - 40 GHz	100 13.2077 13 L	15578.7MHz (-14.7dB)
	802.11a	5150-5250	100%	Aux	Radiated Emissions,	FCC 15.209 / 15 E	39.2dBµV/m @
	Chain A	High	10076	Aux	1 - 40 GHz	1 CC 15.2077 15 L	15748.8MHz (-14.8dB)
	802.11a	5250-5350	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	80.0dBµV/m @
	Chain A	Low	10076	IVIAIII	1 - 40 GHz	1 CC 15.2077 15 L	10521.7MHz (-8.3dB)
	802.11a	5250-5350	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	42.2dBµV/m @
C	Chain A	Center	10076	IVIAILI	1 - 40 GHz	100 13.2077 13 L	10600.3MHz (-11.8dB)
Z	802.11a	5250-5350	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	44.6dBµV/m @
	Chain A	High	100%	IVIdIII	1 - 40 GHz	FCC 15.2097 15 E	10640.0MHz (-9.4dB)
	802.11a	5250-5350	100%	Main	Restricted Band Edge at	15.209	49.7dBµV/m @
	Chain A	High	100%	Main	5350 MHz	10.209	5350.0MHz (-4.3dB)

EMC Test Data

39.1dBµV/m @

11403.5MHz (-14.9dB)

C	An AZ	A company					
Client:	Summit Data	a Communica	ations			Job Number:	J74548
Model	002 11aba (Compact Flas	h Card			T-Log Number:	T74642
wouer.	ouz. Haby (Junipact rias	ii Calu			Account Manager:	Christine Krebill
Contact:	Jerry Pohmu	urski					
Standard:	FCC 15.E/R	SS 210				Class:	N/A
	802.11a	5470-5725	100%	Main	Restricted Band Edge at	15.209	49.5dBµV/m @
	Chain A	Low	100%	IVIdIII	5460 MHz	15.209	5457.0MHz (-4.5dB)
	802.11a	5470-5725	100%	Main	Restricted Band Edge at	15.209	49.6dBµV/m @
	Chain A	Low	100%	IVIdIII	5470 MHz	13.209	5467.4MHz (-18.7dB)
3	802.11a	5470-5725	100%	Main	Radiated Emissions,	FCC 15.209 / 15 E	45.0dBµV/m @
3	Chain A	Low	100%	IVIAILI	1 - 40 GHz	FCC 15.2097 15 E	10998.2MHz (-9.0dB)
	802.11a	5470-5725	1000/	Main	Radiated Emissions,	FCC 15.209 / 15 E	47.5dBµV/m @
	Chain A	Center	100%	Main	1 - 40 GHz	FCC 10.2097 10 E	11201.3MHz (-6.5dB)

Radiated Emissions,

1 - 40 GHz

FCC 15.209 / 15 E

Modifications Made During Testing

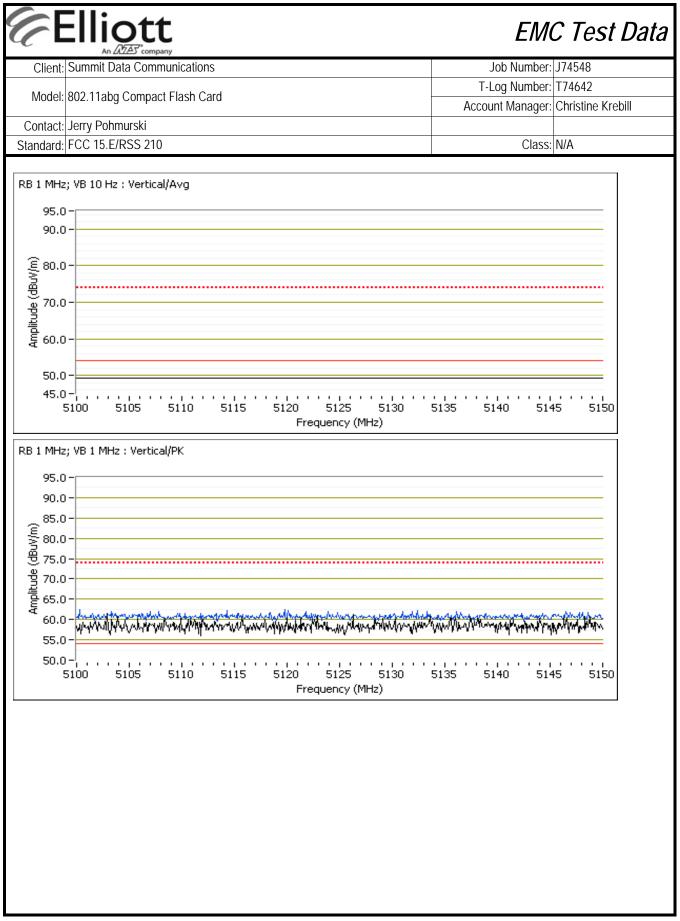
No modifications were made to the EUT during testing

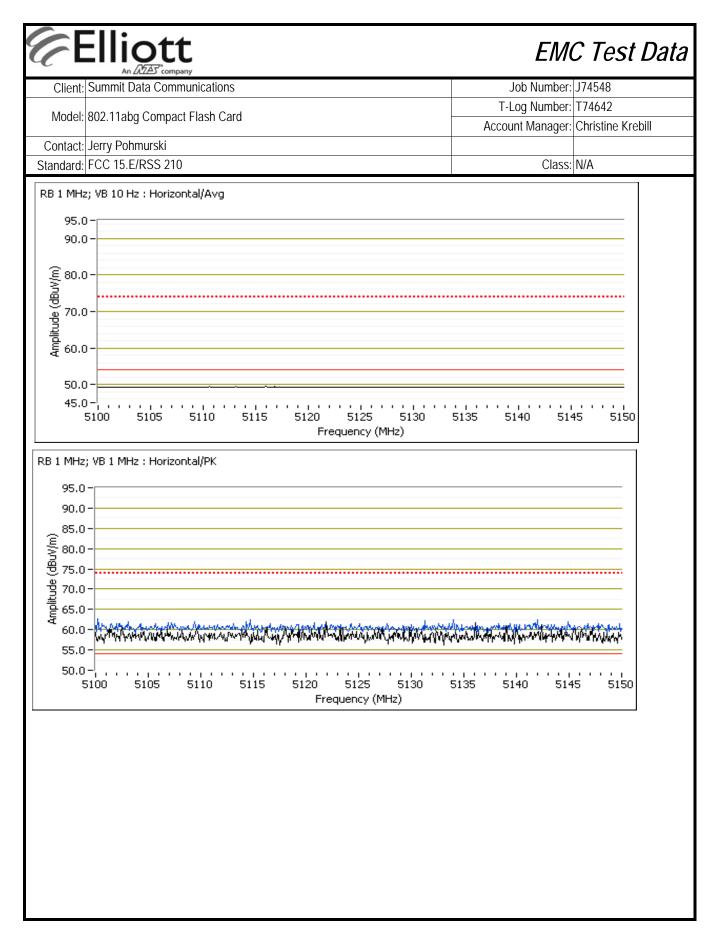
5470-5725

High

100%

Main

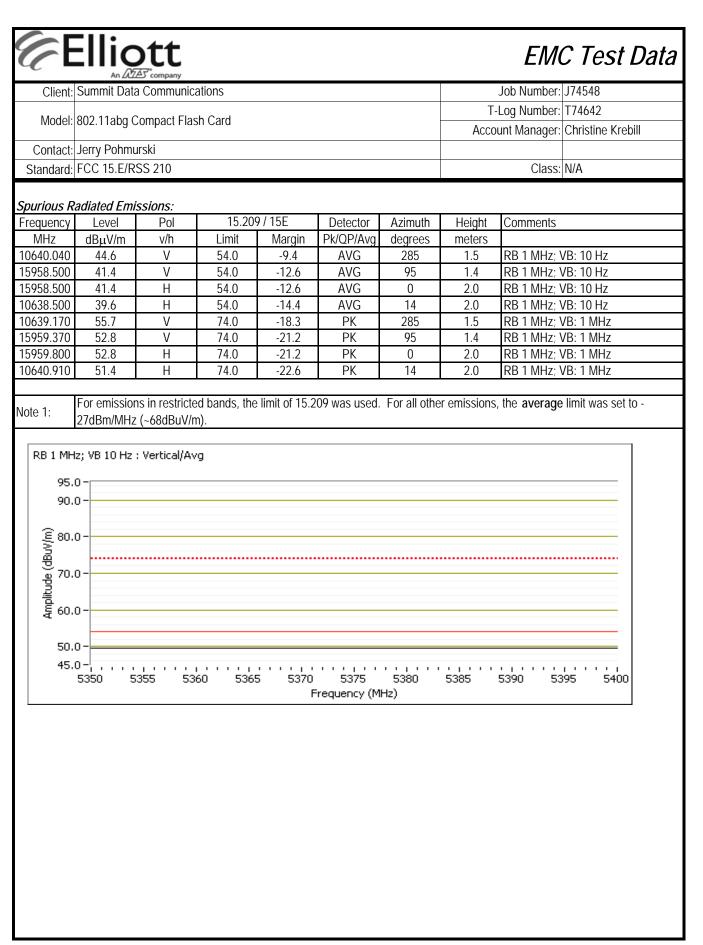

Deviations From The Standard

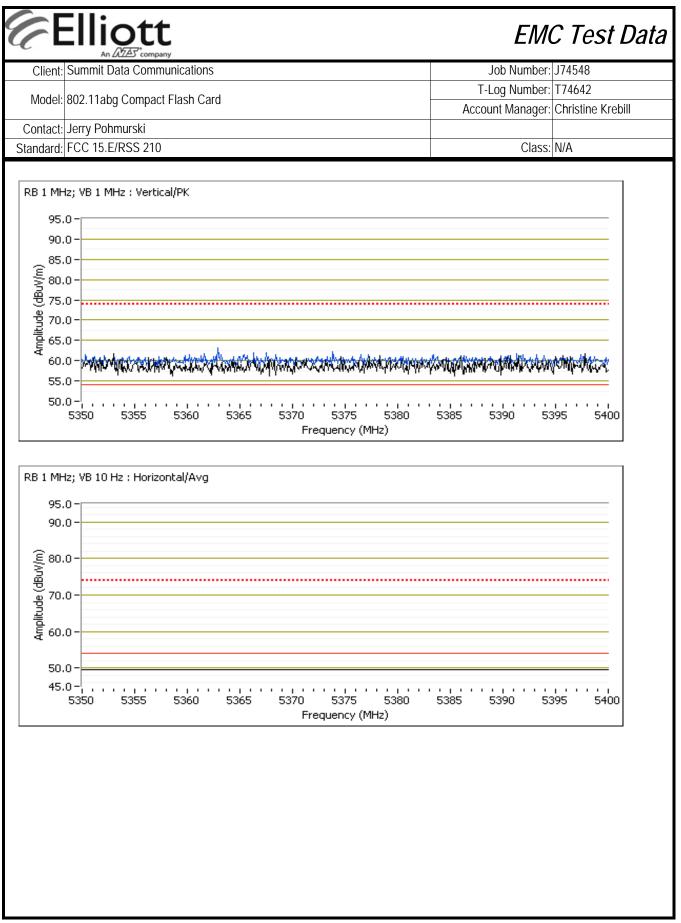

802.11a

Chain A

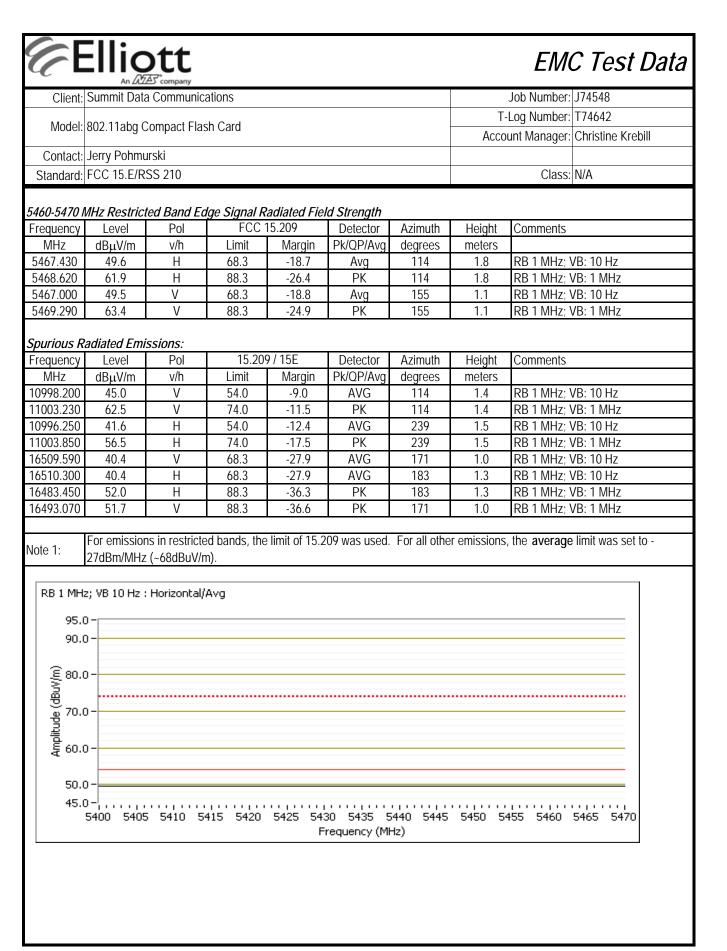
No deviations were made from the requirements of the standard.

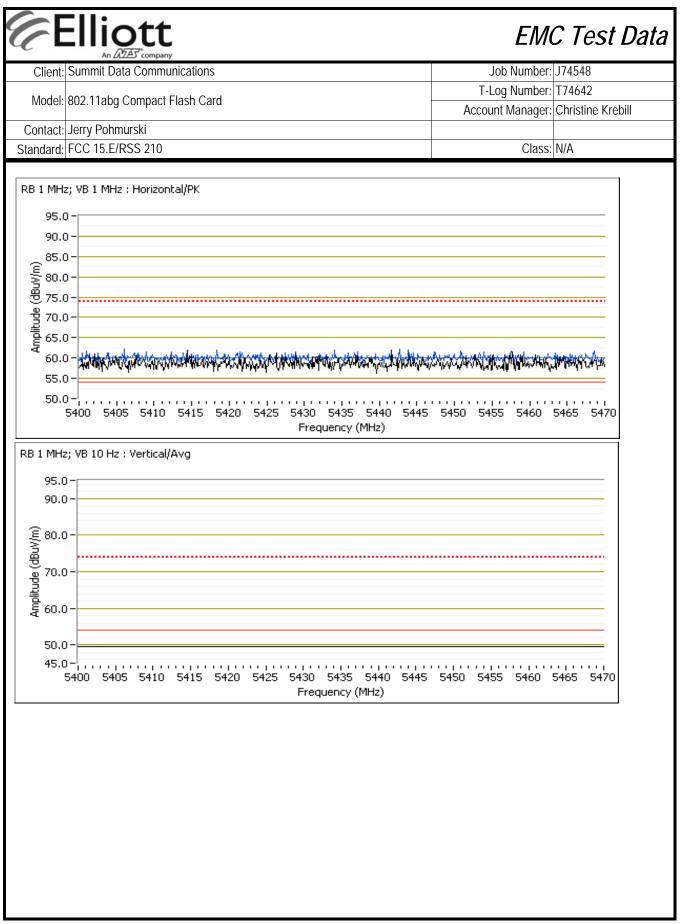
Client:	Summit Data	Communica	ations					Job Number:	J74548
								Log Number:	
Model:	802.11abg C	ompact Flas	h Card					0	Christine Krebil
Contact:	Jerry Pohmu	rski							
Standard:	FCC 15.E/RS	SS 210						Class:	N/A
un #1, Ra	diated Spurio	ous Emissio	ons, 30 - 40,	000 MH. Op	eration in the	e 5150-5250	MHz Band		
r		2122222100			0	ander Haad	1		
	Date of Test: st Engineer:					onfig. Used: nfig Change:			
	est Location:			1		Unit Voltage			
		01 0/110 #			1105(onit voltago	120 1700112		
Ambient	Conditions	5:	Т	emperature:	12	°C			
			R	el. Humidity:	89	%			
· · · · · · · · · · · · · · · · · · ·	ow Channel <i>al Signal Fie</i>	d Ctranath							
Frequency	Level	Pol	15 209	9/15.E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
5175.300	88.5	V	-	-	AVG	136	1.5	RB 1 MHz;	VB: 10 Hz
5174.630	96.6	V	-	-	PK	136	1.5	RB 1 MHz;	
5184.200	89.0	Н	-	-	AVG	67	1.0	RB 1 MHz;	VB: 10 Hz
5185.030	97.4	Н	-	-	PK	67	1.0	RB 1 MHz;	VB: 1 MHz
	Band Edge Si					A 1 11			
Frequency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters		
5148.190	49.4	V	54.0	-4.6	Avg	136	1.5	RB 1 MHz;	
5149.750	62.0	V H	74.0	-12.0	PK	136	1.5	RB 1 MHz;	
5147.040 5148.920	49.4 61.6	H	54.0 74.0	-4.6 -12.4	Avg PK	67 67	1.0 1.0	RB 1 MHz; ' RB 1 MHz; '	
5140.920	01.0	Π	74.0	-12.4	ΓN	07	1.0	KD I WIFIZ,	
Spurious R	adiated Emis	ssions:							
Frequency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
15575.700	39.3	V	54.0	-14.7	AVG	154	1.0	RB 1 MHz;	VB: 10 Hz
15554.090	50.6	V	74.0	-23.4	PK	154	1.0	RB 1 MHz;	
15519.430	39.0	Н	54.0	-15.0	AVG	67	1.0	RB 1 MHz;	
15557.270	50.6	Н	74.0	-23.4	PK	67	1.0	RB 1 MHz;	
10347.760	39.4	Н	68.3	-28.9	AVG	336	1.0	RB 1 MHz;	
10354.740	50.4	Н	88.3	-37.9	PK	336	1.0	RB 1 MHz;	
10360.390	42.0	V	68.3	-26.3	AVG	86	1.4	RB 1 MHz;	
10363.570	53.9	V	88.3	-34.4	PK	86	1.4	RB 1 MHz;	VB: 1 MHz
	F		d have by the		000	E		11	Parti
	IF or emission	is in restricte	a bands, the	e limit of 15.2	209 was used.	⊢or all othe	r emissions	, the average	e limit was set to





Client:	Summit Data	Communic	ations					Job Number:	J74548
Model	802.11abg C	omnact Flag	sh Card			-		Log Number:	
	Ū.	•					Ассо	unt Manager:	Christine Krebill
	Jerry Pohmu								
Standard:	FCC 15.E/RS	SS 210						Class:	N/A
un # ID: C	enter Chann	ei @ 5200 i	VIHZ						
	adiated Emis				, , , , , , , , , , , , , , , , , , ,			-	
requency	Level	Pol		9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5578.680	39.3	V	54.0	-14.7	AVG	32	1.0	RB 1 MHz; \	
5620.460	50.6	V V	74.0	-23.4	PK	32	1.0	RB 1 MHz; \	
0397.930 0398.910	43.1 57.2	V V	68.3 88.3	-25.2 -31.1	AVG PK	261 261	1.5 1.5	RB 1 MHz; \	
0398.910 5578.640	39.2	 H	88.3 54.0	-31.1	AVG	40	1.5	RB 1 MHz; \ RB 1 MHz; \	
	39.2 50.0	<u>н</u> Н	54.0 74.0	-14.8	PK	40	1.0	RB 1 MHZ; \	
5581×101		11	74.0	-24.0					
			68.3	-29.7	AVG	220	17	RR 1 MHz· \	/B· 10 Hz
0400.670 0386.710	38.6 49.9	H H s in restricte		-29.7 -38.4 e limit of 15.2	AVG PK 209 was used.	339 339 For all othe	1.7 1.7 r emissions	RB 1 MHz; \ RB 1 MHz; \ , the average	
	38.6 49.9 For emission	H H s in restricte (~68dBuV/r	88.3 ed bands, the n).	-38.4	PK	339	1.7	RB 1 MHz; \	/B: 1 MHz
0400.670 0386.710 ote 1:	38.6 49.9 For emission 27dBm/MHz	H H s in restricte (~68dBuV/r	88.3 ed bands, the n).	-38.4	PK	339	1.7	RB 1 MHz; \	/B: 1 MHz
0400.670 0386.710 ote 1:	38.6 49.9 For emission 27dBm/MHz igh Channel	H H s in restricte (~68dBuV/r	88.3 ed bands, the n).	-38.4	PK	339	1.7	RB 1 MHz; \	/B: 1 MHz
0400.670 0386.710 ote 1: ote 1: Hun #1c: H	38.6 49.9 For emission 27dBm/MHz igh Channel adiated Emis	H H s in restricte (~68dBuV/r @ 5240 MH	88.3 ed bands, the n).	-38.4	PK 209 was used.	339 For all othe	1.7 r emissions	RB 1 MHz; \	/B: 1 MHz
0400.670 0386.710 ote 1: ote 1: <i>purious R</i> requency MHz 5748.780	38.6 49.9 For emission 27dBm/MHz igh Channel adiated Emis Level dBµV/m 39.2	H H s in restricte (~68dBuV/r (~68dBuV/r (~68dBuV/r single for the second secon	88.3 ed bands, the n). Iz 15.20	-38.4 e limit of 15.2 9 / 15E	PK 209 was used. Detector Pk/QP/Avg AVG	339 For all othe Azimuth degrees 103	1.7 r emissions Height Height meters 1.0	RB 1 MHz; \ , the average Comments RB 1 MHz; \	/B: 1 MHz limit was set to /B: 10 Hz
D400.670 D386.710 Dte 1: Dte 1	38.6 49.9 For emission 27dBm/MHz igh Channel adiated Emis Level dBµV/m 39.2 49.9	H H s in restricte (~68dBuV/r (~68dBuV/r 55ions: Pol V/h H H H	88.3 ed bands, the n). Iz 15.20 Limit 54.0 74.0	-38.4 e limit of 15.2 9 / 15E Margin -14.8 -24.1	PK 209 was used. Detector Pk/QP/Avg AVG PK	339 For all othe Azimuth degrees 103 103	1.7 r emissions Height Height meters 1.0 1.0	RB 1 MHz; \ , the average Comments RB 1 MHz; \ RB 1 MHz; \	/B: 1 MHz limit was set to /B: 10 Hz /B: 10 Hz
0400.670 0386.710 ote 1: ote 1: <i>un #1c: H</i> <i>purious R</i> <u>requency</u> MHz 5748.780 5724.730 0478.520	38.6 49.9 For emission 27dBm/MHz igh Channel adiated Emis Level dBµV/m 39.2 49.9 40.0	H H s in restricte (~68dBuV/r (~68dBuV/r ssions: Pol v/h H H H	88.3 ed bands, the n). 1z 15.20 Limit 54.0 74.0 68.3	-38.4 e limit of 15.2 9 / 15E Margin -14.8 -24.1 -28.3	PK 209 was used. Detector Pk/QP/Avg AVG PK AVG	339 For all othe Azimuth degrees 103 103 266	1.7 r emissions Height meters 1.0 1.0 1.4	RB 1 MHz; \ , the average Comments RB 1 MHz; \ RB 1 MHz; \ RB 1 MHz; \	/B: 1 MHz limit was set to /B: 10 Hz /B: 1 MHz /B: 10 Hz
400.670 386.710 te 1: te 1: <i>urious R.</i> equency MHz 748.780 724.730 478.520 484.240	38.6 49.9 For emission 27dBm/MHz igh Channel adiated Emis Level dBµV/m 39.2 49.9 40.0 53.4	H H s in restricte (~68dBuV/r (~68dBuV/r ssions: Pol v/h H H H H H	88.3 ed bands, the n). 15.20 Limit 54.0 74.0 68.3 88.3	-38.4 e limit of 15.2 9 / 15E Margin -14.8 -24.1 -28.3 -34.9	PK 209 was used. Detector Pk/QP/Avg AVG PK AVG PK	339 For all othe Azimuth degrees 103 103 266 266	1.7 r emissions Height meters 1.0 1.0 1.4 1.4	RB 1 MHz; \ , the average Comments RB 1 MHz; \ RB 1 MHz; \ RB 1 MHz; \ RB 1 MHz; \	/B: 1 MHz limit was set to /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 1 MHz
0400.670 0386.710 te 1: te 1: <i>purious R</i> equency MHz 5748.780 5724.730 0478.520 0484.240 5738.080	38.6 49.9 For emission 27dBm/MHz igh Channel adiated Emis Level dBμV/m 39.2 49.9 40.0 53.4 38.9	H H s in restricte (~68dBuV/r (~68dBuV/r 55ions: Pol V/h H H H H H V	88.3 ed bands, the n). Iz 15.20 Limit 54.0 74.0 68.3 88.3 54.0	-38.4 e limit of 15.2 9 / 15E Margin -14.8 -24.1 -28.3 -34.9 -15.1	PK 209 was used. Detector Pk/QP/Avg AVG PK AVG PK AVG	339 For all othe Azimuth degrees 103 103 266 266 328	1.7 r emissions Height meters 1.0 1.4 1.4 1.4 1.0	RB 1 MHz; \ , the average Comments RB 1 MHz; \ RB 1 MHz; \	/B: 1 MHz limit was set to /B: 10 Hz /B: 10 Hz /B: 1 MHz /B: 1 MHz /B: 1 MHz /B: 10 Hz
D400.670 D386.710 Dte 1: Dte 1	38.6 49.9 For emission 27dBm/MHz igh Channel adiated Emis Level dBµV/m 39.2 49.9 40.0 53.4 38.9 49.7	H H s in restricter (-68dBuV/r))))))))))))))))))))))))))))))))))))	88.3 ed bands, the n). 15.20 Limit 54.0 74.0 68.3 88.3 54.0 74.0 74.0	-38.4 e limit of 15.2 9 / 15E Margin -14.8 -24.1 -28.3 -34.9 -15.1 -24.3	PK 209 was used. Detector Pk/QP/Avg AVG PK AVG PK AVG PK	339 For all othe Azimuth degrees 103 103 266 266 328 328	1.7 r emissions Height meters 1.0 1.0 1.4 1.4 1.0 1.0 1.0	RB 1 MHz; \ , the average Comments RB 1 MHz; \ RB 1 MHz; \	/B: 1 MHz limit was set to /B: 10 Hz /B: 10 Hz /B: 1 MHz /B: 1 MHz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz
D400.670 D386.710 ote 1: ote 1: <i>purious R</i> requency MHz 5748.780 5724.730 D478.520 D484.240 5738.080	38.6 49.9 For emission 27dBm/MHz igh Channel adiated Emis Level dBμV/m 39.2 49.9 40.0 53.4 38.9	H H s in restricte (~68dBuV/r (~68dBuV/r 55ions: Pol V/h H H H H H V	88.3 ed bands, the n). Iz 15.20 Limit 54.0 74.0 68.3 88.3 54.0	-38.4 e limit of 15.2 9 / 15E Margin -14.8 -24.1 -28.3 -34.9 -15.1	PK 209 was used. Detector Pk/QP/Avg AVG PK AVG PK AVG	339 For all othe Azimuth degrees 103 103 266 266 328	1.7 r emissions Height meters 1.0 1.4 1.4 1.4 1.0	RB 1 MHz; \ , the average Comments RB 1 MHz; \ RB 1 MHz; \	/B: 1 MHz limit was set to /B: 10 Hz /B: 10 Hz /B: 1 MHz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz /B: 10 Hz


Client	Summit Data	a Communic	ations					Job Number:	J74548
Client.	Summe Date							Log Number:	
Model:	802.11abg (Compact Flas	sh Card					3	Christine Krebil
Contact:	Jerry Pohmu	urski					710001	ant managon	
	FCC 15.E/R							Class:	N/A
			ons, 30 - 40,0	QO .HM 000	eration in the	5250-5350	MHz Band		
	Date of Test:					onfig. Used:			
	est Engineer: est Location:		shzad			fig Change:			
10	est location:	UAIS#1			HUSU	Jnit Voltage	120V/60HZ		
Ambient	Condition	S:	Т	emperature:	15	°C			
				el. Humidity:					
				-					
Run #2a: L	ow Channel	@ 5260 MHz	2						
Courique [adiated Emi	laciona							
,	adiated Emi		nlv then mea	sure 5250 M	1Hz band edg	e to comply	with -68 3dB	RuV/m limit	
Frequency	Level	Pol		9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
10521.680	80.0	Н	88.3	-8.3	PK	80	1.5	RB 1 MHz;	
10520.660	42.0	Н	68.3	-26.3	AVG	80	1.5	RB 1 MHz;	
10521.960	44.2	V	68.3	-24.1	AVG	251	1.4	RB 1 MHz;	
10523.530 15758.990	64.9 39.6	V	88.3 54.0	-23.4 -14.4	PK AVG	251 290	1.4 1.0	RB 1 MHz; ' RB 1 MHz; '	
	51.1	V	74.0	-14.4	PK	290	1.0	RB 1 MHz;	
15/89 020	39.4	H	54.0	-14.6	AVG	94	1.0	RB 1 MHz;	
15789.020 15758.500	37.4		74.0	-23.1	PK	94	1.0	RB 1 MHz;	
15758.500	50.9	Н	74.0						
15758.500 15776.480	50.9								
15758.500 15776.480	50.9	ns in restricte	d bands, the		09 was used.	For all othe	r emissions,	, the average	e limit was set to


Client:	Summit Data	Communica	ations					Job Number:	J74548
		. =					T	Log Number:	T74642
Model:	802.11abg C	ompact Flas	sh Card				Acco	unt Manager:	Christine Krebill
Contact:	Jerry Pohmu	rski						-	
Standard:	FCC 15.E/RS	SS 210						Class:	N/A
un #2b: C	enter Chann	el							I
Sourious D	adiated Emis	scions							
Frequency	Level	Pol	15.20	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
10600.300	42.2	V	54.0	-11.8	AVG	282	1.7	RB 1 MHz;	VB: 10 Hz
15898.500	41.7	V	54.0	-12.3	AVG	22	1.0	RB 1 MHz;	
15898.500	41.6	Н	54.0	-12.4	AVG	261	1.0	RB 1 MHz;	
10600.120	40.4	H	54.0	-13.6	AVG	122	1.5	RB 1 MHz;	
10600.790	53.3	V	74.0	-20.7	PK	282	1.7	RB 1 MHz;	
15900.610	53.2	V	74.0	-20.8	PK	22	1.0	RB 1 MHz;	
15899.260 10598.800	52.8 51.8	H H	74.0 88.3	-21.2 -36.5	PK PK	261 122	1.0 1.5	RB 1 MHz; RB 1 MHz;	
lote 1: Run #2c: Hi	For emission 27dBm/MHz igh Channel Date of Test: 2	s in restricte (~68dBuV/n 2/23/2009	d bands, the n).		209 was used. C	onfig. Used:	r emissions	, the average	e limit was set to -
Note 1: Run #2c: Hi D Tes	For emission 27dBm/MHz igh Channel	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel	ed bands, the n).		209 was used. C Cor		r emissions 1 None		e limit was set to -
Note 1: Run #2c: Hi D Tes Te	For emission 27dBm/MHz igh Channel Date of Test: 3 st Engineer: 1	s in restricte (~68dBuV/n 2/23/2009 Rafael Vare SV OATS # ²	ed bands, the n). las 1		209 was used. C Cor Host 1	onfig. Used: ifig Change: Unit Voltage °C	r emissions 1 None		e limit was set to -
Note 1: Run #2c: Hi D Tes Te Ambient C	For emission 27dBm/MHz igh Channel Date of Test: 2 st Engineer: 1 st Location: 2 Conditions al Signal Fie	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # ⁷ :: <i>Id Strength</i>	ed bands, the n). las 1 T R	e limit of 15.2 emperature: el. Humidity	209 was used. Cor Host 1 12 89	onfig. Used: Ifig Change: Unit Voltage °C %	r emissions 1 None 120V/60Hz		e limit was set to -
lote 1: Run #2c: Hi D Tes Te Ambient C	For emission 27dBm/MHz igh Channel Date of Test: 2 st Engineer: 1 est Location: 2 Conditions <u>al Signal Fie</u> Level	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # :: <i>Id Strength</i> Pol	ed bands, the n). las 1 T R 15.209	e limit of 15.2 Temperature: el. Humidity	209 was used. Cor Host 1 12 89 Detector	onfig. Used: ifig Change: Unit Voltage °C % Azimuth	r emissions 1 None 120V/60Hz Height		e limit was set to -
lote 1: Lun #2c: Hi D Tes Te Ambient C Fundamenta Frequency MHz	For emission 27dBm/MHz igh Channel Date of Test: 3 st Engineer: 1 est Location: 3 Conditions <u>al Signal Fie</u> Level dBµV/m	s in restricte (~68dBuV/n 2/23/2009 Rafael Vare SV OATS # SV OATS #	ed bands, the n). las 1 T R	e limit of 15.2 emperature: el. Humidity	209 was used. Cor Host 1 12 89 Detector Pk/QP/Avg	onfig. Used: fig Change: Unit Voltage °C % <u>Azimuth</u> degrees	r emissions 1 None 120V/60Hz Height meters	Comments	
lote 1: un #2c: Hi D Tes Te Sumbient C <u>Frequency</u> MHz 5317.030	For emission 27dBm/MHz igh Channel Date of Test: 3 st Engineer: 1 est Location: 3 Conditions Al Signal Fie Level dBµV/m 94.8	s in restricte (~68dBuV/n 2/23/2009 Rafael Vare SV OATS # SV OATS # <u>Id Strength</u> Pol v/h H	ed bands, the n). las 1 T R 15.209	e limit of 15.2 emperature: el. Humidity 2 / 15.E Margin	209 was used. Cor Host 12 Detector Pk/QP/Avg AVG	onfig. Used: Ifig Change: Unit Voltage °C % Azimuth degrees 63	r emissions 1 None 120V/60Hz Height meters 1.9	Comments RB 1 MHz;	VB: 10 Hz
lote 1: D D Tes Te Ambient C Cundamenta Frequency MHz 5317.030 5325.000	For emission 27dBm/MHz igh Channel Date of Test: 3 st Engineer: 1 st Location: 3 Conditions al Signal Fie Level dBµV/m 94.8 103.2	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # SV OATS # <u>Id Strength</u> Pol V/h H H	ed bands, the n). las 1 T R 15.209 Limit - -	e limit of 15.2 emperature: el. Humidity 9 / 15.E Margin -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK	onfig. Used: Ifig Change: Unit Voltage °C % <u>Azimuth</u> degrees 63 63	r emissions 1 None 120V/60Hz Height meters 1.9 1.9	Comments RB 1 MHz; RB 1 MHz;	VB: 10 Hz VB: 1 MHz
lote 1: un #2c: Hi Tes Te umbient C <u>undamenta</u> <u>Frequency</u> MHz 5317.030 5325.000 5318.870	For emission 27dBm/MHz igh Channel Date of Test: 2 st Engineer: 1 st Location: 2 Conditions al Signal Fie Level dBµV/m 94.8 103.2 87.7	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # SV OATS #	ed bands, the n). las 1 T R 15.209 Limit - -	e limit of 15.2 emperature: el. Humidity 0 / 15.E Margin - -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK AVG	onfig. Used: Ifig Change: Unit Voltage °C % <u>Azimuth</u> degrees 63 63 196	r emissions 1 None 120V/60Hz <u>Height</u> <u>meters</u> 1.9 1.9 1.0	Comments RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 10 Hz VB: 1 MHz VB: 10 Hz
lote 1: un #2c: Hi Tes Te umbient C <u>undamenta</u> <u>Frequency</u> MHz 5317.030 5325.000 5318.870	For emission 27dBm/MHz igh Channel Date of Test: 3 st Engineer: 1 st Location: 3 Conditions al Signal Fie Level dBµV/m 94.8 103.2	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # SV OATS # <u>Id Strength</u> Pol V/h H H	ed bands, the n). las 1 T R 15.209 Limit - -	e limit of 15.2 emperature: el. Humidity 9 / 15.E Margin -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK	onfig. Used: Ifig Change: Unit Voltage °C % <u>Azimuth</u> degrees 63 63	r emissions 1 None 120V/60Hz Height meters 1.9 1.9	Comments RB 1 MHz; RB 1 MHz;	VB: 10 Hz VB: 1 MHz VB: 10 Hz
lote 1: Lun #2c: Hi D Tes Te Ambient C Cundamenta Frequency MHz 5317.030 5325.000 5318.870 5316.900	For emission 27dBm/MHz igh Channel Date of Test: 2 st Engineer: 1 st Location: 2 Conditions al Signal Fie Level dBµV/m 94.8 103.2 87.7	s in restricte (~68dBuV/n 2/23/2009 Rafael Vare SV OATS # SV OATS # <u>Id Strength</u> Pol V/h H H H V V	ed bands, the n). las 1 T R 15.209 Limit - - - -	e limit of 15.2 emperature: el. Humidity 0 / 15.E Margin - - - -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK AVG	onfig. Used: Ifig Change: Unit Voltage °C % <u>Azimuth</u> degrees 63 63 196	r emissions 1 None 120V/60Hz <u>Height</u> <u>meters</u> 1.9 1.9 1.0	Comments RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 10 Hz VB: 1 MHz VB: 10 Hz
lote 1: Dun #2c: Hi Tes Te Te Ambient C Tequency MHz 5317.030 5325.000 5318.870 5316.900 350 MHz B Frequency	For emission 27dBm/MHz igh Channel Date of Test: 3 St Engineer: 1 St Location: 3 Conditions al Signal Fie Level dBµV/m 94.8 103.2 87.7 95.6 Cand Edge Si Level	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # SV OATS # SV OATS # N H H H H V V V	ed bands, the n). las 1 T R 15.209 Limit - - ted Field Str FCC	e limit of 15.2 emperature: el. Humidity 7 / 15.E Margin - - - - - - - - - - - - - - - - - - -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK	onfig. Used: fig Change: Unit Voltage °C % Azimuth degrees 63 63 196 196 196 Azimuth	r emissions 1 None 120V/60Hz <u>Height</u> <u>meters</u> 1.9 1.9 1.0	Comments RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 10 Hz VB: 1 MHz VB: 10 Hz
ote 1: un #2c: Hi Tes Te mbient C frequency MHz 5317.030 5318.870 5316.900 350 MHz B Frequency MHz	For emission 27dBm/MHz igh Channel Date of Test: 2 St Engineer: 1 St Location: 2 Conditions al Signal Fie Level dBµV/m 94.8 103.2 87.7 95.6 Cand Edge Si Level dBµV/m	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # SV OATS # SV OATS # N H Pol V/h H H V V V	ed bands, the n). las 1 T R 15.209 Limit - - - ted Field Str FCC Limit	e limit of 15.2 emperature: el. Humidity 2 / 15.E Margin - - - - - - - - - - - - - - - - - - -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK Detector Pk/QP/Avg	onfig. Used: fig Change: Unit Voltage °C % Azimuth degrees 63 63 196 196 196 Azimuth degrees	r emissions 1 None 120V/60Hz Height meters 1.9 1.0 1.0 Height meters	Comments RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz; Comments	VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 1 MHz
lote 1: Pun #2c: Hi Tes Te Ambient C Frequency MHz 5317.030 5325.000 5318.870 5316.900 5316.900 C Frequency MHz 5350 MHz B Frequency MHz 5350.000	For emission 27dBm/MHz igh Channel Date of Test: 2 St Engineer: 1 est Location: 2 Conditions al Signal Fie Level dBµV/m 94.8 103.2 87.7 95.6 Cand Edge Si Level dBµV/m 49.7	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # SV OATS # SV OATS # SV OATS # N N Pol V V V V V V V V V N H H H H H H H H H H	ed bands, the n). las 1 T R 15.209 Limit - - - ted Field Str FCC 7 Limit 54.0	e limit of 15.2 emperature: el. Humidity 2 / 15.E Margin - - - - - - - - - - - - - - - - - - -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK Detector Pk/QP/Avg Avg	onfig. Used: fig Change: Unit Voltage °C % Azimuth degrees 63 63 196 196 196 Azimuth degrees 63	r emissions 1 None 120V/60Hz Height meters 1.9 1.0 1.0 Height meters 1.9	Comments RB 1 MHz; ' RB 1 MHz; '	VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 1 MHz
lote 1: Pun #2c: Hi D Tes Te Ambient C Fundamenta Frequency MHz 5317.030 5325.000 5318.870 5316.900 5316.900 5316.900 5350.000 5350.000 5350.830	For emission 27dBm/MHz igh Channel Date of Test: 3 st Engineer: 1 est Location: 3 Conditions al Signal Fie Level dBµV/m 94.8 103.2 87.7 95.6 Cand Edge Si Level dBµV/m 49.7 62.6	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # SV OATS # SV OATS # <u>Id Strength</u> Pol V/h H H V V V ignal Radiat Pol V/h H H H	ed bands, the n). las 1 T R 15.209 Limit - - - ted Field Stu FCC Limit 54.0 74.0	e limit of 15.2 emperature: el. Humidity 2 / 15.E Margin - - - - - - - - - - - - - - - - - - -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	onfig. Used: fig Change: Unit Voltage °C % Azimuth degrees 63 196 196 196 196 Azimuth degrees 63 63 63 63 196	r emissions 1 None 120V/60Hz Height meters 1.9 1.0 1.0 Height meters 1.9 1.9 1.0 1.0 Height meters 1.9 1.9	Comments RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz; RB 1 MHz;	VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz
lote 1: Pun #2c: Hi Tes Te Ambient C Frequency MHz 5317.030 5325.000 5318.870 5316.900 5316.900 Frequency MHz 5350.000	For emission 27dBm/MHz igh Channel Date of Test: 2 St Engineer: 1 est Location: 2 Conditions al Signal Fie Level dBµV/m 94.8 103.2 87.7 95.6 Cand Edge Si Level dBµV/m 49.7	s in restricte (~68dBuV/n 2/23/2009 Rafael Varel SV OATS # SV OATS # SV OATS # SV OATS # N N Pol V V V V V V V V V N H H H H H H H H H H	ed bands, the n). las 1 T R 15.209 Limit - - ted Field Str FCC Limit 54.0	e limit of 15.2 emperature: el. Humidity 2 / 15.E Margin - - - - - - - - - - - - - - - - - - -	209 was used. C Cor Host 12 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK Detector Pk/QP/Avg Avg	onfig. Used: fig Change: Unit Voltage °C % Azimuth degrees 63 63 196 196 196 Azimuth degrees 63	r emissions 1 None 120V/60Hz Height meters 1.9 1.0 1.0 Height meters 1.9	Comments RB 1 MHz; ' RB 1 MHz; '	VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz

C -	Ellic	JLL						EMO	0 1051
Client	Summit Data	a Communica	ations					Job Number:	J74548
	000.11.1						Т	-Log Number:	T74642
Model	: 802.11abg C	Compact Flas	sh Card					-	Christine Kret
Contact	: Jerry Pohmu	urski							
tandard	: FCC 15.E/R	SS 210						Class:	N/A
RB 1 Mł	Hz; VB 1 MHz	: Horizontal	I/PK						
95	.0								
90	.0-								
_ 85	.0-								
\$80	.0-								
Amplitude (dBuV/m) 22 20 40 40 40 40 40 40 40 40 40 40 40 40 40									
ੁੱ70 ਬ੍ਰੈ70									
71 12 12 16 5									
Ψ.00		a have a	متعادية والعد	a second second		all been a	And the state of the la	white and a state of the second	Allower and a
		MATA AND AND A	alwala walaya ya	KAN SAN AND		WARDWARD	hoond the second	waradia	Mar American
	.0-								
50	.0-¦	1			5375	5380	5385	5390 53	
	5350 5	255 52	:60 536						
n #3, Ra	diated Spurie	ous Emissic 2/23&27/200	536 500 536 500 536 500 536	000 MH. Op	Frequency (M eration in the Co	Hz) • 5470-5725 onfig. Used:	MHz Band		395 5400
n #3, Ra T€ T	diated Spurie	ous Emissic 2/23&27/200 Rafael Varel SV OATS #	536 500 536 500 536 500 536 500 536 500 536 536 536 536 536 536 536 536 536 536	г 000 МН. Ор а	Frequency (M eration in the Con Con Host I	Hz) • 5470-5725 onfig. Used: ifig Change: Unit Voltage	MHz Band 1 None		395 5400
n #3, Ra T∉ T	diated Spurie Date of Test: est Engineer: est Location:	ous Emissic 2/23&27/200 Rafael Varel SV OATS #	536 500 536 500 536 500 536 536 536 536 536 536 536 536 536 536	ғ 000 MH. Ор	Frequency (M eration in the Con Con Host t	Hz) • 5470-5725 onfig. Used: fig Change: Unit Voltage °C	MHz Band 1 None		<u></u>
n #3, Ra Te T	diated Spurie Date of Test: est Engineer: est Location: Conditions	ous Emissic 2/23&27/200 Rafael Varel SV OATS #	536 500 536 500 536 500 536 536 536 536 536 536 536 536 536 536	F 000 MH. Op a Femperature:	Frequency (M eration in the Con Con Host t	Hz) • 5470-5725 onfig. Used: fig Change: Unit Voltage °C	MHz Band 1 None		395 5400
n #3, Ra Te T nbient n #3a: L	diated Spurie Date of Test: est Engineer: est Location: Conditions	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S:	536 500 536 500 536 500 536 536 536 536 536 536 536 536 536 536	F 000 MH. Op a Femperature:	Frequency (M eration in the Con Con Host t	Hz) • 5470-5725 onfig. Used: fig Change: Unit Voltage °C	MHz Band 1 None		<u></u>
n #3, Ra Te T n bient n #3a: L ndamen	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength	536 500 536 500 536 500 536 536 536 536 536 536 536 536 536 536	F 000 MH. Op a Temperature: Rel. Humidity:	Frequency (M eration in the Con Host I : 12 : 89	Hz) • 5470-5725 onfig. Used: ifig Change: Unit Voltage °C %	MHz Band 1 None 120V/60Hz		
1 #3, Ra Te T bient 0 #3a: L 0 <u>damen</u> quency	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol	ons, 30 - 40 , 09 las & Suhaila 1 T R	F 000 MH. Op a Femperature: 2el. Humidity: 9 / 15.E	Frequency (M eration in the Con Host I : 12 : 89 Detector	Hz) • 5470-5725 onfig. Used: ifig Change: Unit Voltage °C % Azimuth	MHz Band 1 None 120V/60Hz Height		
n #3, Ra Te T nbient n #3a: L n <u>damen</u> quency MHz	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength	536 500 536 500 536 500 536 536 536 536 536 536 536 536 536 536	F 000 MH. Op a Temperature: Rel. Humidity:	Frequency (M eration in the Con Host I : 12 : 89	Hz) • 5470-5725 onfig. Used: ifig Change: Unit Voltage °C %	MHz Band 1 None 120V/60Hz		
n #3, Ra Te T nbient n #3a: L n <u>damen</u> equency <u>MHz</u> 95.970	diated Spurie diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie Level dBµV/m	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol v/h	536 50ns, 30 - 40, 29 las & Suhaila 1 T R	F 000 MH. Op a Femperature: 2el. Humidity: 9 / 15.E	Frequency (M eration in the Con Host t 12 89 Detector Pk/QP/Avg	Hz) • 5470-5725 onfig. Used: ifig Change: Unit Voltage °C % Azimuth degrees	MHz Band 1 None 120V/60Hz Height meters	Comments	VB: 10 Hz
#3, Ra Te T bient #3a: L damen quency MHz 95.970 97.030	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie dBµV/m 92.1	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol v/h V V H	bu 536 ons, 30 - 40, 09 las & Suhaila 1 T R 15.200 Limit	F 000 MH. Op a Temperature: Rel. Humidity: 9 / 15.E Margin -	Frequency (M eration in the Con Host I : 12 : 89 Detector Pk/QP/Avg AVG	Hz) • 5470-5725 onfig. Used: fig Change: Unit Voltage °C % Azimuth degrees 155	MHz Band 1 None 120V/60Hz Height meters 1.1	Comments RB 1 MHz; V	VB: 10 Hz VB: 1 MHz
#3, Ra Te T bient #3a: L <u>damen</u> quency <u>AHz</u> 25.970 27.030 23.170	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie dBµV/m 92.1 101.3	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol v/h V V	ons, 30 - 40, 09 las & Suhaila 1 T R 15.20 Limit -	F 000 MH. Op a Temperature: Rel. Humidity: 9 / 15.E Margin - -	Frequency (M eration in the Con Host U : 12 : 89 Detector Pk/QP/Avg AVG PK	Hz) • 5470-5725 onfig. Used: ifig Change: Unit Voltage °C % Azimuth degrees 155 155	MHz Band 1 None 120V/60Hz Height meters 1.1 1.1	Comments RB 1 MHz; V RB 1 MHz; V	VB: 10 Hz VB: 1 MHz VB: 10 Hz
n #3, Ra Te T nbient n #3a: L ndamen equency MHz 95.970 97.030 93.170 93.800	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie dBµV/m 92.1 101.3 93.4 102.5	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol V/h V V H H H	536 500 536 500, 30 - 40, 09 las & Suhaila 1 1 7 R 15.20 15.20 15.20 15.20 15.20 15.20 15.20 15.20	F 000 MH. Op a Femperature: Rel. Humidity: 9 / 15.E Margin - - - - - - -	eration in the Cr Con Host t 12 89 Detector Pk/QP/Avg AVG PK AVG PK	Hz) s 5470-5725 onfig. Used: ifig Change: Unit Voltage °C % Azimuth degrees 155 155 114	MHz Band 1 None 120V/60Hz Height meters 1.1 1.1 1.8	Comments RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V	VB: 10 Hz VB: 1 MHz VB: 10 Hz
#3, Ra Te T bient #3a: L <u>damen</u> quency MHz 95.970 97.030 93.170 93.800 9-5460	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie dBµV/m 92.1 101.3 93.4 102.5 <i>MHz Restrict</i>	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol V/h V V H H H H	536 50ns, 30 - 40, 09 las & Suhaila 1 T R 15.20 Limit - - - - - - - - -	F 000 MH. Op a Femperature: 2el. Humidity: 9 / 15.E Margin - - - - - - - - - - - - -	Frequency (M eration in the Con Host I : 12 : 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	Hz) • 5470-5725 onfig. Used: fig Change: Unit Voltage °C % Azimuth degrees 155 155 155 114 114	MHz Band 1 None 120V/60Hz Height meters 1.1 1.1 1.8 1.8	Comments RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V	VB: 10 Hz VB: 1 MHz VB: 10 Hz
#3, Ra Te T bient bient #3a: L damen quency MHz 95.970 97.030 97.030 93.170 93.800 0-5460 quency	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie dBµV/m 92.1 101.3 93.4 102.5 MHz Restrict Level	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol V/h V V V H H H H	bu 536 ons, 30 - 40, 09 las & Suhaila 1 T R 1	F 000 MH. Op a Temperature: Rel. Humidity: 9 / 15.E Margin - - -	Frequency (M eration in the Con Host U : 12 : 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK Id Strength Detector	Hz) s 5470-5725 onfig. Used: ifig Change: Unit Voltage °C % Azimuth degrees 155 155 155 114 114 Azimuth	MHz Band 1 None 120V/60Hz 120	Comments RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V	VB: 10 Hz VB: 1 MHz VB: 10 Hz
n #3, Ra Te T nbient n #3a: L ndamen quency MHz 95.970 97.030 93.170 93.800 0-5460 quency MHz	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie dBµV/m 92.1 101.3 93.4 102.5 <i>MHz Restrict</i> Level dBµV/m	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol v/h V V H H H H H	bu 536 ons, 30 - 40, 09 las & Suhaila 1 T R 15.200 Limit - - - - - - - - - - - - - - - - - - -	F 000 MH. Op a Temperature: Rel. Humidity: 9 / 15.E Margin - - - Radiated Fiel 15.209 Margin	Frequency (M eration in the Con Host I : 12 : 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK Id Strength Detector Pk/QP/Avg	Hz) s 5470-5725 onfig. Used: ifig Change: Unit Voltage °C % Azimuth degrees 155 155 114 114 Azimuth degrees	MHz Band 1 None 120V/60Hz 120	Comments RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V	VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 1 MHz
n #3, Ra Te T nbient n #3a: L ndamen equency MHz 95.970 97.030 97.030 97.030 97.030 93.170 93.170 93.800 57.000	diated Spurie diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie dBµV/m 92.1 101.3 93.4 102.5 <i>MHz Restrict</i> Level dBµV/m 49.5	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol V/h V V H H H H H	536 500 536 500 536 500 - 40, 509 1as & Suhaila 1 1 1 1 1 1 1 1 1 1 1 1 1	F 000 MH. Op a Femperature: Rel. Humidity: 9 / 15.E Margin - - - - - - - - - - - - -	eration in the cration in the Con Host I : 12 : 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK Detector PK/QP/Avg Avg	Hz) s 5470-5725 onfig. Used: ifig Change: Unit Voltage °C % Azimuth degrees 155 114 114 Azimuth degrees 155	MHz Band 1 None 120V/60Hz 120	Comments RB 1 MHz; V RB 1 MHz; V	VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 1 MHz
n #3, Ra Te T nbient n #3a: L <u>ndamen</u> equency <u>MHz 95.970 97.030</u> 93.170 93.800	diated Spurie Date of Test: est Engineer: est Location: Conditions ow Channel tal Signal Fie dBµV/m 92.1 101.3 93.4 102.5 <i>MHz Restrict</i> Level dBµV/m	ous Emissic 2/23&27/200 Rafael Varel SV OATS # S: eld Strength Pol v/h V V H H H H H	bu 536 ons, 30 - 40, 09 las & Suhaila 1 T R 15.200 Limit - - - - - - - - - - - - - - - - - - -	F 000 MH. Op a Temperature: Rel. Humidity: 9 / 15.E Margin - - - Radiated Fiel 15.209 Margin	Frequency (M eration in the Con Host I : 12 : 89 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK Id Strength Detector Pk/QP/Avg	Hz) s 5470-5725 onfig. Used: ifig Change: Unit Voltage °C % Azimuth degrees 155 155 114 114 Azimuth degrees	MHz Band 1 None 120V/60Hz 120	Comments RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V	VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 10 Hz

Client: Summit Data Communications Job Number:: J74548 Model: 802.11abg Compact Flash Card T-Log Number:: T74642 Contact: Jerry Pohmurski Class: N/A Standard: FCC 15.E/RSS 210 Class: N/A RB 1 MHz; VB 1 MHz : Vertical/PK 95.0 90.0 95.0 90.0 90.0 86.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0 97.0.0	~		D tt						EM	C Test
Model: BU2.11/bi2 Contact: Jerry Pohmurski Standard: FCC 15.E/RSS 210 Class: N/A RB 1 MHz: VB 1 Mz: M	Client:	Summit Data	a Communic	ations					Job Number:	J74548
Model BU2 Trabs Compact Fiash Card Account Manage: Christine Contact: Jerry Pohmurski Class: IV/A Standard: FCC 15.E/RSS 210 Class: IV/A RB 1 MHz; VB 1 MHz : Vertical/PK 95.0 - 95.0 - 95.0 - 96.0 - 96.0 - 95.0 - 97.0 - 97.0 - 96.7 5.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 97.0 - 9								T-	Log Number:	T74642
Contact Jerry Pohmurski Class: N/A Standard: FCC 15.E/RSS 210 Class: N/A RB 1 MHz; VB 1 MHz; Vertical/PK 95.0 95.0 95.0 98.0 96.0 98.0 98.0 97.0 97.0 97.0 97.0 96.75,0 97.0 97.0 97.0 96.75,0 97.0 97.0 97.0 96.0,0 97.0 97.0 97.0 97.0,0 97.0 97.0 97.0 97.0,0 97.0 97.0 97.0 97.0,0 97.0 97.0 97.0 97.0,0 97.0 97.0 97.0 97.0,0 97.0 97.0 97.0 97.0,0 97.0 97.0 97.0 97.0,0 97.0 97.0 97.0 97.0,0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	Model:	802.11abg C	Compact Flas	sh Card					÷	
RB 1 MHz; VB 1 MHz : Vertical/PK 95.0	Contact:	Jerry Pohmu	urski							
95.0 96.0 98.0 98.0 98.0 98.0 97.0 97.0 97.0 97.0 97.0 97.0 98.0 <td>Standard:</td> <td>FCC 15.E/R</td> <td>SS 210</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Class:</td> <td>N/A</td>	Standard:	FCC 15.E/R	SS 210						Class:	N/A
95.0 96.0 97.0	RB 1 M	Hz: VB 1 MHz	: : Vertical/P	ĸ						
90.0 85.0 85.0 60.0 57.0 65.0 5.0 5.0 5.0 5.0 Frequency (MHz) Run #3b: Center Channel Spurious Radiated Emissions: Frequency (MHz) Run #3b: Center Channel Spurious Radiated Emissions: Frequency (MHz) MHz dBu/Ym wh Lizevel Pol 15.209/15E Detector Azimuth Height Comments MHz dBu/Ym wh Lizevel Comments MHz dBu Mz; VB: 10 Hz 11201.202 44.5 H 5.2.5 R Comments MHz MB 11201.202 Comments <t< td=""><td></td><td>r</td><td>•</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		r	•	-						
Note of the second seco										
Image: state of the										
Boold - Future intervention of the interventinterventinterene intervention of the interventintervention of the	1 2 85	.0-								
Bobb Control State And System A	1 3 80	.0-								
Bit of the second se	변 75	.0-								
Bits Comments 51.0 - 52.6 V	¹ 9 70	.0-								
Bollo Turner and the second se	[#] 65	.0-								
55.0 - <td>- E</td> <td>n-handle</td> <td>and the state</td> <td>margaret</td> <td></td> <td>Mary market</td> <td>Angles de</td> <td>Al-mont while</td> <td>the reputer</td> <td>a animumal</td>	- E	n-handle	and the state	margaret		Mary market	Angles de	Al-mont while	the reputer	a animumal
50.0 - 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5 Frequency (MHz) an #3b: Center Channel burious Radiated Emissions: requency (MHz) MHz dBit Margin V/V PV/0 State of the system 100 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5 Frequency (MHz) Tequency (MHz) an #3b: Center Channel burious Radiated Emissions: Tequency (MHz) 1201.290 47.5 V 54.0 -6.5 AVG 103 1.4 RB 1 MHz; VB: 10 Hz 1202.260 44.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz Colspan="2">Colspan= 2.6.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 6778.500 41.8 V 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was 27dBm/MHz (-68dBuV/m). an #32: High Channel burious Radiated Emissions: requency Level Pol 15			MAR TANK	have all the second	ሎፕዝብላተላትምላ		line of the second	- ANALANA	H WALLAND	waawayaa
5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5 Frequency (MHz) ar#3b: Center Channel parious Radiated Emissions: tequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m V/ 74.0 -6.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1201.290 47.5 V 54.0 -6.5 AVG 103 1.4 RB 1 MHz; VB: 10 Hz 1201.290 45.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 104.204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 104.204.290 52.6 V	55	.0								
Frequency (MHz) un #3b: Center Channel purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 1201.290 47.5 V 54.0 -6.5 AVG 103 1.4 RB 1 MHz; VB: 10 Hz 1202.260 44.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 6778.500 41.9 H 68.3 -26.4 AVG 145 1.0 RB 1 MHz; VB: 10 Hz 6785.920 52.6 V 88.3 -35.7 PK 35 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz	50	.0-¦				1				
Image: structure Image: structure<		5400 540	10 04IU ;	0410 0420) 3430 3	9400 0400	5405 54/1
purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1201.290 47.5 V 54.0 -6.5 AVG 103 1.4 RB 1 MHz; VB: 10 Hz 1199.960 65.2 V 74.0 -8.8 PK 103 1.4 RB 1 MHz; VB: 10 Hz 1202.260 44.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 6778.500 41.8 V 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 678.502 52.6 V 88.3 -35.7 PK 35 1.0 RB 1 MHz; VB: 11 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1						reducind (i.	11 IZY			
requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1201.290 47.5 V 54.0 -6.5 AVG 103 1.4 RB 1 MHz; VB: 10 Hz 1199.960 65.2 V 74.0 -8.8 PK 103 1.4 RB 1 MHz; VB: 10 Hz 1202.260 44.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 6778.500 41.9 H 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 6785.920 52.6 V 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 11MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 10Hz	un #2b: (Contor Chapr	201							
IHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1201.290 47.5 V 54.0 -6.5 AVG 103 1.4 RB 1 MHz; VB: 10 Hz 1199.960 65.2 V 74.0 -8.8 PK 103 1.4 RB 1 MHz; VB: 10 Hz 1202.260 44.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 6778.500 41.9 H 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 6778.500 41.8 V 68.3 -36.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz										
1201.290 47.5 V 54.0 -6.5 AVG 103 1.4 RB 1 MHz; VB: 10 Hz 1199.960 65.2 V 74.0 -8.8 PK 103 1.4 RB 1 MHz; VB: 10 Hz 1202.260 44.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 5778.500 41.9 H 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 5778.500 41.8 V 68.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 10 Hz 5812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 5812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB	ourious R	Padiated Emi	issions:	15 200	9 / 15F	Detector	Azimuth	Height	Comments	
1199.960 65.2 V 74.0 -8.8 PK 103 1.4 RB 1 MHz; VB: 1 MHz; VB: 1 MHz; 1202.260 44.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz; 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz; 5778.500 41.9 H 68.3 -26.4 AVG 145 1.0 RB 1 MHz; VB: 10 Hz; 5778.500 41.8 V 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz; 5778.500 41.8 V 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz; 5778.500 52.6 V 88.3 -35.7 PK 35 1.0 RB 1 MHz; VB: 10 Hz; 5812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz; 5812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz; 5812.950 52.3 H 88.3	<i>purious R</i> requency	Padiated Emi Level	i <i>ssions:</i> Pol					Ŭ	Comments	
1202.260 44.5 H 54.0 -9.5 AVG 32 1.5 RB 1 MHz; VB: 10 Hz 1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 10 Hz 6778.500 41.9 H 68.3 -26.4 AVG 145 1.0 RB 1 MHz; VB: 10 Hz 6778.500 41.8 V 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 6778.500 52.6 V 88.3 -35.7 PK 35 1.0 RB 1 MHz; VB: 10 Hz 6785.920 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz cell 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was 27dBm/MHz (~68dBuV/m). A Margin Pk/QP/Avg degrees meters MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1402.790<	<i>purious R</i> requency MHz	<i>Padiated Emi</i> Level dBμV/m	<i>ssions:</i> Pol v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		/B [.] 10 Hz
1204.290 61.1 H 74.0 -12.9 PK 32 1.5 RB 1 MHz; VB: 1 MHz 6778.500 41.9 H 68.3 -26.4 AVG 145 1.0 RB 1 MHz; VB: 10 Hz 6778.500 41.8 V 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 6778.500 52.6 V 88.3 -35.7 PK 35 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz cell For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was 27dBm/MHz (-68dBuV/m). Imit Margin Pk/QP/Avg degrees meters MHz dBµV/m	<i>purious R</i> requency MHz 1201.290	Padiated Emi Level dBμV/m 47.5	<i>ssions:</i> Pol v/h V	Limit 54.0	Margin -6.5	Pk/QP/Avg AVG	degrees 103	meters 1.4	RB 1 MHz; \	
6778.500 41.9 H 68.3 -26.4 AVG 145 1.0 RB 1 MHz; VB: 10 Hz 6778.500 41.8 V 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 6785.920 52.6 V 88.3 -35.7 PK 35 1.0 RB 1 MHz; VB: 10 Hz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz c812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz c91 15.209 / 15E Detector Azimuth Height	<i>purious R</i> requency MHz 1201.290 1199.960	Cadiated Emi Level dBμV/m 47.5 65.2	issions: Pol v/h V V	Limit 54.0 74.0	Margin -6.5 -8.8	Pk/QP/Avg AVG PK	degrees 103 103	meters 1.4 1.4	RB 1 MHz; RB 1 MHz;	VB: 1 MHz
6778.500 41.8 V 68.3 -26.5 AVG 35 1.0 RB 1 MHz; VB: 10 Hz 6785.920 52.6 V 88.3 -35.7 PK 35 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz 611 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was 27dBm/MHz (~68dBuV/m). Azimuth Height Comments mrious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz <td>purious R requency MHz 1201.290 1199.960 1202.260</td> <td>Padiated Emi Level dBμV/m 47.5 65.2 44.5</td> <td>issions: Pol v/h V V V H</td> <td>Limit 54.0 74.0 54.0</td> <td>Margin -6.5 -8.8 -9.5</td> <td>Pk/QP/Avg AVG PK AVG</td> <td>degrees 103 103 32</td> <td>meters 1.4 1.4 1.5</td> <td>RB 1 MHz; \ RB 1 MHz; \ RB 1 MHz; \</td> <td>VB: 1 MHz VB: 10 Hz</td>	purious R requency MHz 1201.290 1199.960 1202.260	Padiated Emi Level dBμV/m 47.5 65.2 44.5	issions: Pol v/h V V V H	Limit 54.0 74.0 54.0	Margin -6.5 -8.8 -9.5	Pk/QP/Avg AVG PK AVG	degrees 103 103 32	meters 1.4 1.4 1.5	RB 1 MHz; \ RB 1 MHz; \ RB 1 MHz; \	VB: 1 MHz VB: 10 Hz
6785.920 52.6 V 88.3 -35.7 PK 35 1.0 RB 1 MHz; VB: 1 MHz 6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz ote 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was 27dBm/MHz (~68dBuV/m). un #3c: High Channel purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1403.500 39.1 V 54.0 -14.9 AVG 121 1.0 RB 1 MHz; VB: 10 Hz 1402.790 38.9 H 54.0 -15.1 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 1397.140 50.6 H 74.0 -23.4 PK 360 1.0 RB 1 MHz; VB: 1 MHz 1407.560 50.3 V 74.0 -23.7 PK 121	purious R requency MHz 1201.290 1199.960 1202.260 1204.290	Padiated Emi Level dBμV/m 47.5 65.2 44.5 61.1	ssions: Pol v/h V V H H	Limit 54.0 74.0 54.0 74.0	Margin -6.5 -8.8 -9.5 -12.9	Pk/QP/Avg AVG PK AVG PK	degrees 103 103 32 32	meters 1.4 1.4 1.5 1.5	RB 1 MHz; ^V RB 1 MHz; ^V RB 1 MHz; ^V RB 1 MHz; ^V	VB: 1 MHz VB: 10 Hz VB: 1 MHz
6812.950 52.3 H 88.3 -36.0 PK 145 1.0 RB 1 MHz; VB: 1 MHz bt 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was 27dBm/MHz (~68dBuV/m). un #3c: High Channel purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 1403.500 39.1 V 54.0 -14.9 AVG 121 1.0 RB 1 MHz; VB: 10 Hz 1402.790 38.9 H 54.0 -15.1 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 1397.140 50.6 H 74.0 -23.7 PK 360 1.0 RB 1 MHz; VB: 1 MHz 1407.560 50.3 V 74.0 -23.7 PK 121 1.0 RB 1 MHz; VB: 1 MHz 7079.210 43.9 V 68.3 -24.4 AVG 294	Durious R requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9	ssions: Pol V/h V V H H H H	Limit 54.0 74.0 54.0 74.0 68.3	Margin -6.5 -8.8 -9.5 -12.9 -26.4	Pk/QP/Avg AVG PK AVG PK AVG	degrees 103 103 32 32 145	meters 1.4 1.4 1.5 1.5 1.0	RB 1 MHz; ^V RB 1 MHz; ^V RB 1 MHz; ^V RB 1 MHz; ^V RB 1 MHz; ^V	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was 27dBm/MHz (~68dBuV/m). un #3c: High Channel purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1403.500 39.1 V 54.0 -14.9 AVG 121 1.0 RB 1 MHz; VB: 10 Hz 1402.790 38.9 H 54.0 -15.1 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 1397.140 50.6 H 74.0 -23.4 PK 360 1.0 RB 1 MHz; VB: 10 Hz 1407.560 50.3 V 74.0 -23.7 PK 121 1.0 RB 1 MHz; VB: 10 Hz 1407.560 50.3 V 68.3 -24.4 AVG 294 2.5 RB 1 MHz; VB: 10 Hz 7081.770 43.8 H 68.3 -24.5 AVG 334	Durious R requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500 6778.500	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8	ssions: Pol V/h V V H H H H V	Limit 54.0 74.0 54.0 74.0 68.3 68.3	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5	Pk/QP/Avg AVG PK AVG PK AVG AVG	degrees 103 103 32 32 145 35	meters 1.4 1.4 1.5 1.5 1.0 1.0	RB 1 MHz; ^v RB 1 MHz; ^v	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz
27dBm/MHz (~68dBuV/m). an #3c: High Channel purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1403.500 39.1 V 54.0 -14.9 AVG 121 1.0 RB 1 MHz; VB: 10 Hz 1402.790 38.9 H 54.0 -15.1 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 1397.140 50.6 H 74.0 -23.4 PK 360 1.0 RB 1 MHz; VB: 10 Hz 1407.560 50.3 V 74.0 -23.7 PK 121 1.0 RB 1 MHz; VB: 1 MHz 7079.210 43.9 V 68.3 -24.4 AVG 294 2.5 RB 1 MHz; VB: 10 Hz 7081.770 43.8 H 68.3 -24.5 AVG 334 1.0 RB 1 MHz; VB: 10 Hz	Durious R requency MHz 1201.290 1199.960 1202.260 1204.290 5778.500 5778.500 5785.920	Padiated Emil Level dBμV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6	ssions: Pol V/h V V H H H H V V V	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7	Pk/QP/Avg AVG PK AVG PK AVG AVG PK	degrees 103 103 32 32 145 35 35	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0	RB 1 MHz; ^V RB 1 MHz; ^V	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 1 MHz
Autious Radiated Emissions: equency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 403.500 39.1 V 54.0 -14.9 AVG 121 1.0 RB 1 MHz; VB: 10 Hz 402.790 38.9 H 54.0 -15.1 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 397.140 50.6 H 74.0 -23.4 PK 360 1.0 RB 1 MHz; VB: 1 MHz 407.560 50.3 V 74.0 -23.7 PK 121 1.0 RB 1 MHz; VB: 1 MHz 7079.210 43.9 V 68.3 -24.4 AVG 294 2.5 RB 1 MHz; VB: 10 Hz 7081.770 43.8 H 68.3 -24.5 AVG 334 1.0 RB 1 MHz; VB: 10 Hz 7084.770 55.6 V 88.3 -32.7 PK 294 <t< td=""><td>equency MHz 201.290 199.960 202.260 204.290 5778.500 5778.500 5785.920 5812.950</td><td>Padiated Emil Level dBμV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3</td><td>ssions: Pol V/h V V H H H H V V V H</td><td>Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3</td><td>Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0</td><td>Pk/QP/Avg AVG PK AVG PK AVG AVG PK PK</td><td>degrees 103 103 32 32 145 35 35 145</td><td>meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 1.0</td><td>RB 1 MHz; ^V RB 1 MHz; ^V</td><td>VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz</td></t<>	equency MHz 201.290 199.960 202.260 204.290 5778.500 5778.500 5785.920 5812.950	Padiated Emil Level dBμV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3	ssions: Pol V/h V V H H H H V V V H	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0	Pk/QP/Avg AVG PK AVG PK AVG AVG PK PK	degrees 103 103 32 32 145 35 35 145	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; ^V RB 1 MHz; ^V	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz
Durious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1403.500 39.1 V 54.0 -14.9 AVG 121 1.0 RB 1 MHz; VB: 10 Hz 1402.790 38.9 H 54.0 -15.1 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 1397.140 50.6 H 74.0 -23.4 PK 360 1.0 RB 1 MHz; VB: 1 MHz 1407.560 50.3 V 74.0 -23.7 PK 121 1.0 RB 1 MHz; VB: 1 MHz 7079.210 43.9 V 68.3 -24.4 AVG 294 2.5 RB 1 MHz; VB: 10 Hz 7081.770 43.8 H 68.3 -24.5 AVG 334 1.0 RB 1 MHz; VB: 10 Hz 7084.770 55.6 V 88.3 -32.7 PK 294	Durious R requency MHz 1201.290 1199.960 1202.260 1204.290 5778.500 5778.500 5778.500 5785.920 5812.950	Padiated Emil Level dBμV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emission	ssions: Pol V/h V V H H H V V V H ns in restricted	Limit 54.0 74.0 54.0 68.3 68.3 88.3 88.3 88.3 ed bands, the	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0	Pk/QP/Avg AVG PK AVG PK AVG AVG PK PK	degrees 103 103 32 32 145 35 35 145	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; ^V RB 1 MHz; ^V	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz
requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters meters 1403.500 39.1 V 54.0 -14.9 AVG 121 1.0 RB 1 MHz; VB: 10 Hz 1402.790 38.9 H 54.0 -15.1 AVG 360 1.0 RB 1 MHz; VB: 10 Hz 1397.140 50.6 H 74.0 -23.4 PK 360 1.0 RB 1 MHz; VB: 1 MHz 1407.560 50.3 V 74.0 -23.7 PK 121 1.0 RB 1 MHz; VB: 1 MHz 7079.210 43.9 V 68.3 -24.4 AVG 294 2.5 RB 1 MHz; VB: 10 Hz 7081.770 43.8 H 68.3 -24.5 AVG 334 1.0 RB 1 MHz; VB: 10 Hz 7084.770 55.6 V 88.3 -32.7 PK 294 2.5 RB 1 MHz; VB:	burious R requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500 6778.500 6785.920 6812.950 bte 1:	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz	ssions: Pol V/h V V H H H V V H ns in restricted (~68dBuV/r	Limit 54.0 74.0 54.0 68.3 68.3 88.3 88.3 88.3 ed bands, the	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0	Pk/QP/Avg AVG PK AVG PK AVG AVG PK PK	degrees 103 103 32 32 145 35 35 145	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; ^V RB 1 MHz; ^V	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz
MHzdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters1403.50039.1V54.0-14.9AVG1211.0RB 1 MHz; VB: 10 Hz1402.79038.9H54.0-15.1AVG3601.0RB 1 MHz; VB: 10 Hz1397.14050.6H74.0-23.4PK3601.0RB 1 MHz; VB: 1 MHz1407.56050.3V74.0-23.7PK1211.0RB 1 MHz; VB: 1 MHz1407.56050.3V74.0-23.7PK1211.0RB 1 MHz; VB: 1 MHz7079.21043.9V68.3-24.4AVG2942.5RB 1 MHz; VB: 10 Hz7081.77043.8H68.3-24.5AVG3341.0RB 1 MHz; VB: 10 Hz7084.77055.6V88.3-32.7PK2942.5RB 1 MHz; VB: 1 MHz	purious R requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500 6778.500 6785.920 6812.950 ote 1: un #3c: F	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz	ssions: Pol V/h V V H H V V V H ns in restricted (~68dBuV/r	Limit 54.0 74.0 54.0 68.3 68.3 88.3 88.3 88.3 ed bands, the	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0	Pk/QP/Avg AVG PK AVG PK AVG AVG PK PK	degrees 103 103 32 32 145 35 35 145	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; ^V RB 1 MHz; ^V	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz
1403.50039.1V54.0-14.9AVG1211.0RB 1 MHz; VB: 10 Hz1402.79038.9H54.0-15.1AVG3601.0RB 1 MHz; VB: 10 Hz1397.14050.6H74.0-23.4PK3601.0RB 1 MHz; VB: 1 MHz1407.56050.3V74.0-23.7PK1211.0RB 1 MHz; VB: 1 MHz7079.21043.9V68.3-24.4AVG2942.5RB 1 MHz; VB: 10 Hz7081.77043.8H68.3-24.5AVG3341.0RB 1 MHz; VB: 10 Hz7084.77055.6V88.3-32.7PK2942.5RB 1 MHz; VB: 1 MHz	purious R requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500 6778.500 6778.500 6785.920 6812.950 ote 1: un #3c: H purious R	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz Ligh Channel 2adiated Emi	ssions: Pol V/h V V H H V V V H ns in restricted (~68dBuV/r I ssions:	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3 88.3 ed bands, the n).	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2	Pk/QP/Avg AVG PK AVG PK AVG PK PK 09 was used.	degrees 103 103 32 32 145 35 35 145 For all othe	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions	RB 1 MHz; V RB 1 MHz; V the average	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz
1402.79038.9H54.0-15.1AVG3601.0RB 1 MHz; VB: 10 Hz1397.14050.6H74.0-23.4PK3601.0RB 1 MHz; VB: 1 MHz1407.56050.3V74.0-23.7PK1211.0RB 1 MHz; VB: 1 MHz7079.21043.9V68.3-24.4AVG2942.5RB 1 MHz; VB: 10 Hz7081.77043.8H68.3-24.5AVG3341.0RB 1 MHz; VB: 10 Hz7084.77055.6V88.3-32.7PK2942.5RB 1 MHz; VB: 1 MHz	Durious R requency MHz 1201.290 1199.960 1202.260 1204.290 5778.500 5778.500 5785.920 5812.950 ote 1: un #3c: H purious R requency	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz 2igh Channel 2adiated Emi Level	ssions: Pol V/h V H H H V K V I Sions: Pol	Limit 54.0 74.0 68.3 68.3 88.3 88.3 ed bands, the n).	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2	Pk/QP/Avg AVG PK AVG PK AVG PK PK 09 was used.	degrees 103 103 32 32 145 35 35 145 For all othe Azimuth	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height	RB 1 MHz; V RB 1 MHz; V the average	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz
1397.140 50.6 H 74.0 -23.4 PK 360 1.0 RB 1 MHz; VB: 1 MHz 1407.560 50.3 V 74.0 -23.7 PK 121 1.0 RB 1 MHz; VB: 1 MHz 7079.210 43.9 V 68.3 -24.4 AVG 294 2.5 RB 1 MHz; VB: 10 Hz 7081.770 43.8 H 68.3 -24.5 AVG 334 1.0 RB 1 MHz; VB: 10 Hz 7084.770 55.6 V 88.3 -32.7 PK 294 2.5 RB 1 MHz; VB: 10 Hz	Durious R requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500 6778.500 6785.920 6812.950 ote 1: un #3c: H purious R requency MHz	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz 2igh Channel 2adiated Emi Level dBµV/m	ssions: Pol V/h V H H H V H Sin restricter (~68dBuV/r Ssions: Pol V/h	Limit 54.0 74.0 68.3 68.3 88.3 88.3 ed bands, the n). 15.209 Limit	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2	Pk/QP/Avg AVG PK AVG PK AVG PK PK 09 was used.	degrees 103 103 32 32 145 35 35 145 For all othe Azimuth degrees	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height meters	RB 1 MHz; ^N RB 1 MHz; ^N the average	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz Imit was set
I407.560 50.3 V 74.0 -23.7 PK 121 1.0 RB 1 MHz; VB: 1 MHz 7079.210 43.9 V 68.3 -24.4 AVG 294 2.5 RB 1 MHz; VB: 10 Hz 7081.770 43.8 H 68.3 -24.5 AVG 334 1.0 RB 1 MHz; VB: 10 Hz 7084.770 55.6 V 88.3 -32.7 PK 294 2.5 RB 1 MHz; VB: 1 MHz	Aurious R requency MHz 1201.290 1199.960 1202.260 1204.290 5778.500 5778.500 5785.920 5812.950 5812.950 ote 1: un #3c: F purious R requency MHz 1403.500	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz 2adiated Emi Level dBµV/m 39.1	ssions: Pol V/h V H H V H Sin restricter (~68dBuV/r I Ssions: Pol V/h	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3 88.3 ed bands, the n). 15.209 Limit 54.0	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2 0 / 15E Margin -14.9	Pk/QP/Avg AVG PK AVG PK AVG AVG PK 09 was used.	degrees 103 103 32 32 145 35 35 145 For all othe Azimuth degrees 121	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height meters 1.0	RB 1 MHz; ^N RB 1 MHz; ^N the average Comments RB 1 MHz; ^N	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz Imit was set
Y079.210 43.9 V 68.3 -24.4 AVG 294 2.5 RB 1 MHz; VB: 10 Hz Y081.770 43.8 H 68.3 -24.5 AVG 334 1.0 RB 1 MHz; VB: 10 Hz Y084.770 55.6 V 88.3 -32.7 PK 294 2.5 RB 1 MHz; VB: 1 MHz	Purious R equency MHz 201.290 199.960 202.260 204.290 5778.500 5785.920 5812.950 5812.950 5812.950 5812.950 MHz 9000000000000000000000000000000000000	adiated Emi. Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emission 27dBm/MHz adiated Emi Level dBµV/m 39.1 38.9	ssions: Pol V/h V V H H V V H ns in restricter (~68dBuV/r I ssions: Pol V/h V H	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3 ed bands, the n). 15.209 Limit 54.0 54.0	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2 0 / 15E Margin -14.9 -15.1	Pk/QP/Avg AVG PK AVG PK AVG AVG PK 09 was used.	degrees 103 103 32 32 145 35 35 145 For all othe Azimuth degrees 121 360	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height meters 1.0 1.0 1.0	RB 1 MHz; V RB 1 MHz; V the average Comments RB 1 MHz; V RB 1 MHz; V	VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz e limit was set VB: 10 Hz VB: 10 Hz
7081.770 43.8 H 68.3 -24.5 AVG 334 1.0 RB 1 MHz; VB: 10 Hz 7084.770 55.6 V 88.3 -32.7 PK 294 2.5 RB 1 MHz; VB: 1 MHz	Purious R requency MHz 201.290 199.960 202.260 204.290 5778.500 5785.920 5812.950 6812.950 692.790 1403.500 1397.140	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz 2igh Channel 2adiated Emi Level dBµV/m 39.1 38.9 50.6	issions: Pol V/h V H H V V H Sin restricter (~68dBuV/r Sins: Pol v/h V H	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3 88.3 ed bands, the n). 15.209 Limit 54.0 54.0 74.0	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2 0 / 15E Margin -14.9 -15.1 -23.4	Pk/QP/Avg AVG PK AVG PK AVG PK PK 09 was used. 09 was used. Detector Pk/QP/Avg AVG AVG PK	degrees 103 103 32 32 145 35 35 145 For all othe Azimuth degrees 121 360 360	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; ^N RB 1 MHz; ^N the average RB 1 MHz; ^N RB 1 MHz; ^N RB 1 MHz; ^N RB 1 MHz; ^N	VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz Imit was set VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz
7084.770 55.6 V 88.3 -32.7 PK 294 2.5 RB 1 MHz; VB: 1 MHz	aurious R requency MHz 1201.290 1199.960 1202.260 1204.290 5778.500 5778.500 5778.5920 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5812.950 5914.00 1403.500 1403.500 1407.560	adiated Emi. Level dBμV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emission 27dBm/MHz bigh Channel adiated Emi. Level dBμV/m 39.1 38.9 50.6 50.3	ssions: Pol V/h V H H H V N V H Sin restricter c.(~68dBuV/r I ssions: Pol V/h V H V	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3 ed bands, the n). 15.200 Limit 54.0 54.0 74.0 74.0 74.0	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2 0 / 15E Margin -14.9 -15.1 -23.4 -23.7	Pk/QP/Avg AVG PK AVG PK AVG PK PK 09 was used.	degrees 103 103 32 32 145 35 35 145 For all othe Azimuth degrees 121 360 360 121	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; V RB 1 MHz; V the average RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V RB 1 MHz; V	VB: 1 MHz VB: 10 Hz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz Himit was set VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz
	burious K requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500 6778.500 6785.920 6785.920 6812.950 ote 1: burious K requency MHz 1403.500 1402.790 1397.140 1407.560 7079.210	2adiated Emi Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz 2 digh Channel 2adiated Emi Level dBµV/m 39.1 38.9 50.6 50.3 43.9	ssions: Pol V/h V H H H V H Sin restricter (~68dBuV/r I Ssions: Pol V/h V H Sisions: Pol V/h V H V	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3 88.3 ed bands, the n). 15.209 Limit 54.0 74.0 74.0 74.0 68.3	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2 0 / 15E Margin -14.9 -15.1 -23.4 -23.7 -24.4	Pk/QP/Avg AVG PK AVG PK AVG AVG PK 09 was used.	degrees 103 103 32 32 145 35 35 145 For all othe Azimuth degrees 121 360 360 121 294	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height meters 1.0 1.0 1.0 1.0 1.0 2.5	RB 1 MHz; V RB 1 MHz; V the average RB 1 MHz; V RB 1 MHz; V	VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz Imit was set VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz
7107.470 55.4 H 88.3 -32.9 PK 334 1.0 RR1MHz VR 1.MHz	ourious K requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500 6778.500 6778.500 6785.920 6812.950 ote 1: ote 1: purious K requency MHz 1403.500 1402.790 1397.140 1407.560 7079.210 7081.770	Padiated Emil Level dBμV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz Padiated Emil Level dBμV/m 39.1 38.9 50.6 50.3 43.9 43.8	ssions: Pol V/h V H H H V H Sin restricter (~68dBuV/r I Ssions: Pol V/h V H Solors: Pol V/h V H V H V H V H V H V H H V H	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3 88.3 ed bands, the n). 15.209 Limit 54.0 54.0 74.0 74.0 68.3 68.3	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2 0 / 15E Margin -14.9 -15.1 -23.4 -23.7 -24.4 -24.5	Pk/QP/Avg AVG PK AVG PK AVG PK PK 09 was used. 09 was used. 00 was use	degrees 103 103 32 32 145 35 145 For all othe Azimuth degrees 121 360 360 121 294 334	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; ^N RB 1 MHz; ^N the average RB 1 MHz; ^N RB 1 MHz; ^N	VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz e limit was set VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 10 Hz
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the average limit was	Durious K requency MHz 1201.290 1199.960 1202.260 1204.290 6778.500 6778.500 6778.500 6785.920 6812.950 bate 1: un #3c: F purious K requency MHz 1403.500 1402.790 1397.140 1407.560 7079.210 7084.770	Padiated Emil Level dBµV/m 47.5 65.2 44.5 61.1 41.9 41.8 52.6 52.3 For emissior 27dBm/MHz Padiated Emil Level dBµV/m 39.1 38.9 50.6 50.3 43.8 55.6	Sissions: Pol V/h V H H V V H K V H V V H Sin restricter (~68dBuV/r I Sissions: Pol V/h V H V V H V H V H V H V H V V H V V H V V V H V V	Limit 54.0 74.0 54.0 74.0 68.3 68.3 88.3 88.3 ed bands, the n). 15.209 Limit 54.0 54.0 74.0 74.0 74.0 68.3 68.3 88.3	Margin -6.5 -8.8 -9.5 -12.9 -26.4 -26.5 -35.7 -36.0 limit of 15.2 0 / 15E Margin -14.9 -15.1 -23.4 -23.7 -24.4 -24.5 -32.7	Pk/QP/Avg AVG PK AVG PK AVG AVG PK 09 was used. 09 was used. 00 was us	degrees 103 103 32 32 145 35 35 145 For all othe Azimuth degrees 121 360 360 121 294 334 294	meters 1.4 1.4 1.5 1.5 1.0 1.0 1.0 1.0 r emissions Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	RB 1 MHz; ^V RB 1 MHz; ^V the average RB 1 MHz; ^V RB 1 MHz; ^V	VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 1 MHz VB: 1 MHz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz VB: 10 Hz

Client: Summit Data Communications

EMC Test Data

	An ZAZZO company		
Client:	Summit Data Communications	Job Number:	J74548
Madal	802.11abg Compact Flash Card	T-Log Number:	T74642
would.	ouz. Haby Cumpact Flash Caru	Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski		
Standard:	FCC 15.E/RSS 210	Class:	N/A

Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature:	10-15 °C
	Rel. Humidity:	39-50 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1 (802.11a), 5300MHz	RE, 1000 - 18000 MHz, Maximized	RSS-GEN	Pass	39.7dBµV/m (96.6µV/m) @
Larson Antenna, MAIN	Emissions	KSS-GEN	Pass	15898.6MHz (-14.3dB)
2 (802.11a), 5300MHz	RE, 1000 - 18000 MHz, Maximized	RSS-GEN	Pass	39.7dBµV/m (96.6µV/m) @
PCB Antenna, MAIN	Emissions	K33-GEN	Pass	15898.5MHz (-14.3dB)
3 (802.11a), 5600MHz	RE, 1000 - 18000 MHz, Maximized	RSS-GEN	Pass	40.9dBµV/m (110.9µV/m) @
Larson Antenna, MAIN	Emissions	K33-GEN	Pass	16798.5MHz (-13.1dB)
4 (802.11a), 5600MHz	RE, 1000 - 18000 MHz, Maximized	RSS-GEN	Pass	40.9dBµV/m (110.9µV/m) @
PCB Antenna, MAIN	Emissions	R33-GEN	Pass	16798.5MHz (-13.1dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client: Summit Data Communications								Job Number:	J74548
Marial	000 11 - 1 - 0						T-	Log Number:	T74642
Model:	802.11abg C	compact Flas	sh Card				Ассо	unt Manager:	Christine Krebill
Contact: Jerry Pohmurski									
Standard:	FCC 15.E/R	SS 210						Class:	N/A
un #1: Ma	aximized rea	dings, 1000	- 18000 MH	z (802.11a a	t 5300MHz w	ith 5.0dBi A	ntenna (La	rson), MAIN)	
		2///2000			0	C I	1		
Date of Test: 3/4/2009Config. Used:Test Engineer: Mehran BirganiConfig Change:									
	est Location:	•				Unit Voltage			
		500415#1			11031	Unit Voltage	1200/00112		
requency	Level	Pol	FCC (Class B	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5300.080	38.4	V	54.0	-15.6	AVG	371	1.0		
5300.170	37.8	H	54.0	-16.2	AVG	5	1.0		
0599.740 0600.800	38.1 38.1	H V	54.0 54.0	-15.9 -15.9	AVG AVG	55 20	1.0 1.0		
5898.610	38.1 39.7	V	54.0 54.0	-15.9 -14.3	AVG	20	1.0		
	46.0	H	74.0	-28.0	PK	5	1.0		
5300.130						371	1.0		
	45.6	V	74.0	-28.4	PK	3/1	1.0		
5300.130 5300.350 10600.330	45.6 49.4	V H	74.0 74.0	-28.4 -24.6	PK PK	55	1.0		
5300.350 10600.330			74.0 74.0						
5300.350 0600.330 0600.980 5899.800	49.4 49.9 50.6	H V V	74.0 74.0 74.0	-24.6 -24.1 -23.4	PK PK PK	55 20 28	1.0 1.0 1.0	FCC states ti	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1:	49.4 49.9 50.6 Above 1 GH: any emissior	H V V z, the FCC s n above 1 GF	74.0 74.0 74.0 pecifies the l Iz, can not e	-24.6 -24.1 -23.4 limit as an avexceed the a	PK PK PK	55 20 28 urement. In a y more than 2	1.0 1.0 1.0 addition, the 20 dB.		hat the peak reading
5300.350 10600.330 10600.980 15899.800 15899.800	49.4 49.9 50.6 Above 1 GH: any emissior	H V Z, the FCC s a above 1 GF dings, 1000	74.0 74.0 74.0 pecifies the l Iz, can not e	-24.6 -24.1 -23.4 limit as an avexceed the a	PK PK Verage measu verage limit b t 5300MHz w	55 20 28 urement. In a y more than 2	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC		hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: dun #2: Ma	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer:	H V Z, the FCC s a above 1 GH dings, 1000 3/4/2009 Mehran Birg	74.0 74.0 74.0 pecifies the l -tz, can not e - 18000 MH ani	-24.6 -24.1 -23.4 limit as an avexceed the a	PK PK Verage measu Verage limit b t 5300MHz w C Cor	55 20 28 Irement. In a y more than 2 ith 5.1dBi A onfig. Used: ifig Change:	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None	:B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: un #2: Ma	49.4 49.9 50.6 Above 1 GH: any emission aximized read	H V Z, the FCC s a above 1 GH dings, 1000 3/4/2009 Mehran Birg	74.0 74.0 74.0 pecifies the l -tz, can not e - 18000 MH ani	-24.6 -24.1 -23.4 limit as an avexceed the a	PK PK Verage measu Verage limit b t 5300MHz w C Cor	55 20 28 urement. In a y more than 2 rith 5.1dBi A onfig. Used:	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None	:B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: ote 1:	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location:	H V V z, the FCC s <u>above 1 GF</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH ani	-24.6 -24.1 -23.4 imit as an av exceed the ar z (802.11a a	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host	55 20 28 urement. In a y more than 2 ith 5.1dBi A onfig. Used: nfig Change: Unit Voltage	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz	B), MAIN)	hat the peak reading
5300.350 10600.330 10600.980 15899.800 lote 1: lote 1:	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer:	H V Z, the FCC s a above 1 GH dings, 1000 3/4/2009 Mehran Birg	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH ani	-24.6 -24.1 -23.4 limit as an avexceed the a	PK PK Verage measu Verage limit b t 5300MHz w C Cor	55 20 28 Irement. In a y more than 2 ith 5.1dBi A onfig. Used: ifig Change:	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None	:B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: un #2: Ma Te Te Te Tequency MHz	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.4	H V V z, the FCC s <u>a above 1 GH</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V	74.0 74.0 74.0 pecifies the l Iz, can not e - 18000 MH ani	-24.6 -24.1 -23.4 limit as an av exceed the ar z (802.11a a	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host Detector Pk/QP/Avg AVG	55 20 28 Irement. In a y more than 2 with 5.1dBi A onfig. Used: afig Change: Unit Voltage Azimuth	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height	B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: un #2: Ma Te Te Te Te Te Te Te Te Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.4 37.8	H V V z, the FCC s <u>n above 1 GH</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH ani FCC (Limit 54.0 54.0	-24.6 -24.1 -23.4 imit as an avexceed the ar exceed the ar z (802.11a a class B Margin -15.6 -16.2	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host Detector Pk/QP/Avg AVG AVG	55 20 28 urement. In a y more than 2 with 5.1dBi A onfig. Used: ifig Change: Unit Voltage Azimuth degrees 171 305	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.0 1.0	B), MAIN)	hat the peak reading
5300.350 10600.330 10600.980 15899.800 15899.800 10te 1: 2un #2: Ma Te Te Te Te Te 5300.120 5300.120 10599.760	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.4 37.8 38.1	H V V z, the FCC s <u>n above 1 GH</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 <u>Pol</u> V/H V H H	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH ani FCC 0 Limit 54.0 54.0 54.0 54.0	-24.6 -24.1 -23.4 imit as an avexceed the area z (802.11a a Class B Margin -15.6 -16.2 -15.9	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG	55 20 28 urement. In <i>a</i> y more than 2 with 5.1dBi A onfig. Used: ifig Change: Unit Voltage Azimuth degrees 171 305 246	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: un #2: Ma Te Te Te Te 5300.120 5300.120 0599.760 0600.780	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.4 37.8 38.1 38.1	H V V z, the FCC s <u>above 1 GF</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH ani FCC 0 Limit 54.0 54.0 54.0 54.0 54.0	-24.6 -24.1 -23.4 imit as an avexceed the ar z (802.11a a Class B Margin -15.6 -16.2 -15.9 -15.9	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG	55 20 28 Jacement. In a y more than 2 with 5.1dBi A onfig. Used: onfig Change: Unit Voltage Azimuth degrees 171 305 246 220	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.0 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: un #2: Ma Te Te Te Te 0599.760 0600.780 5898.500	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.4 37.8 38.1 38.7	H V V z, the FCC s <u>n above 1 GF</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V V K	74.0 74.0 74.0 pecifies the l dz, can not e - 18000 MH ani FCC (Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-24.6 -24.1 -23.4 iimit as an avexceed the ar z (802.11a a Margin -15.6 -16.2 -15.9 -15.9 -15.9 -14.3	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG	55 20 28 Jrement. In a <u>y more than 2</u> with 5.1dBi A onfig. Used: afig Change: Unit Voltage Azimuth degrees 171 305 246 220 331	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.0 1.0 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: ote 1: un #2: Ma Te Te Te Te 0500.120 5300.120 50	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: Date of Test: est Engineer: est Location: Level dBµV/m 38.4 37.8 38.1 38.1 39.7 46.0	H V V z, the FCC s <u>n above 1 GF</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V H H H V H	74.0 74.0 74.0 pecifies the l - 18000 MH ani FCC 0 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0	-24.6 -24.1 -23.4 imit as an avexceed the area area area area area area area ar	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG PK	55 20 28 rement. In a y more than 2 rith 5.1dBi A onfig. Used: ifig Change: Unit Voltage Azimuth degrees 171 305 246 220 331 305	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: ote 1: un #2: Ma Te Te Te Te 300.120 5300.120 5300.120 5300.120 5300.160 0599.760 0600.780 5898.500 5300.030 5300.370	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.4 37.8 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1 38.1	H V V z, the FCC s <u>n above 1 GH</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V H H V V H V V	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH ani FCC (Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0	-24.6 -24.1 -23.4 imit as an avexceed the area z (802.11a a c (802.11a a c (802.11a a) z (802.11a a) -15.6 -16.2 -15.9 -15.9 -15.9 -15.9 -15.9 -15.9 -15.9 -15.9 -28.0 -28.4	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK	55 20 28 arement. In a y more than 2 with 5.1dBi A onfig. Used: nfig Change: Unit Voltage Azimuth degrees 171 305 246 220 331 305 171	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5300.350 0600.330 0600.980 5899.800 ote 1: un #2: Ma Te Te Te Te Te Te Te Te To Te 5300.120 5300.120	49.4 49.9 50.6 Above 1 GH: any emission aximized read Date of Test: Date of Test: est Engineer: est Location: Level dBµV/m 38.4 37.8 38.1 38.1 39.7 46.0	H V V z, the FCC s <u>n above 1 GF</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V H H H V H	74.0 74.0 74.0 pecifies the l - 18000 MH ani FCC 0 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0	-24.6 -24.1 -23.4 imit as an avexceed the area area area area area area area ar	PK PK PK verage measu verage limit b t 5300MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG PK	55 20 28 rement. In a y more than 2 rith 5.1dBi A onfig. Used: ifig Change: Unit Voltage Azimuth degrees 171 305 246 220 331 305	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading

Client: Summit Data Communications								Job Number:	J74548
Madal	000 11 - 1 - 0						T-	Log Number:	T74642
Model:	802.11abg C	compact Flas	sh Card				Ассо	unt Manager:	Christine Krebill
Contact: Jerry Pohmurski									
Standard:	FCC 15.E/R	SS 210						Class:	N/A
un #3: Ma	aximized rea	dings, 1000	- 18000 MH	z (802.11a a	t 5600MHz w	vith 5.0dBi A	ntenna (La	rson), MAIN)	
		2///2000			0	Concentration of	1		
Date of Test: 3/4/2009Config. Used:Test Engineer: Mehran BirganiConfig Change:									
	est Location:	•				Unit Voltage			
		0101110 #1			11050	onit voltage	120 1/00112		
requency	Level	Pol	FCC (Class B	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5600.140	38.7	V	54.0	-15.3	AVG	53	1.0		
5600.180	35.1	H	54.0	-18.9	AVG	3	1.0		
1201.070 1201.160	38.9 38.8	H V	54.0 54.0	-15.1 -15.2	AVG AVG	17 33	1.0 1.0		
6798.540	40.9	V	54.0 54.0	-13.2 -13.1	AVG	300	1.0		
5600.220	47.0	V	74.0	-27.0	PK	53	1.0		
		11	74.0	-28.8	PK	3	1.0		
	45.2	Н	74.0	-20.0					
5600.610	45.2 50.1	H V	74.0	-23.9	PK	33	1.0		
5600.610 11199.010 11201.480	50.1 52.2	V H	74.0 74.0	-23.9 -21.8	PK PK	33 17	1.0 1.0		
5600.610 1199.010 1201.480 6798.910	50.1 52.2 53.0	V H V	74.0 74.0 74.0	-23.9 -21.8 -21.0	PK PK PK	33 17 300	1.0 1.0 1.0	FCC states t	hat the peak readin
5600.610 11199.010 11201.480 16798.910	50.1 52.2 53.0 Above 1 GH: any emissior	V H V z, the FCC s n above 1 GF	74.0 74.0 74.0 pecifies the l Iz, can not e	-23.9 -21.8 -21.0 limit as an avexceed the a	PK PK PK	33 17 300 urement. In a y more than b	1.0 1.0 1.0 addition, the 20 dB.		hat the peak reading
5600.610 11199.010 11201.480 16798.910 lote 1:	50.1 52.2 53.0 Above 1 GH: any emissior	V H V z, the FCC s n above 1 Gł dings, 1000	74.0 74.0 74.0 pecifies the l Iz, can not e	-23.9 -21.8 -21.0 limit as an avexceed the a	PK PK Verage measu verage limit b t 5600MHz w	33 17 300 urement. In a y more than b	1.0 1.0 addition, the 20 dB. ntenna (PC		hat the peak readin
5600.610 (1199.010 (1201.480 (6798.910 (6798.910 (6798.910 (6798.910 (6798.910) (6798.910) (6798.910) (6798.910) (79	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer:	V H V z, the FCC s n above 1 GH dings, 1000 3/4/2009 Mehran Birg	74.0 74.0 74.0 pecifies the l - <u>tz, can not e</u> - 18000 MH	-23.9 -21.8 -21.0 limit as an avexceed the a	PK PK Verage measu Verage limit b t 5600MHz w C Cor	33 17 300 urement. In a y more than 3 with 5.1dBi A onfig. Used: nfig Change:	1.0 1.0 addition, the 20 dB. ntenna (PC 1 None	:B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 6798.910 ote 1: cun #4: Ma I Te	50.1 52.2 53.0 Above 1 GH: any emission aximized read	V H V z, the FCC s n above 1 GH dings, 1000 3/4/2009 Mehran Birg	74.0 74.0 74.0 pecifies the l - <u>tz, can not e</u> - 18000 MH	-23.9 -21.8 -21.0 limit as an avexceed the a	PK PK Verage measu Verage limit b t 5600MHz w C Cor	33 17 300 urement. In a y more than : vith 5.1dBi A onfig. Used:	1.0 1.0 addition, the 20 dB. ntenna (PC 1 None	:B), MAIN)	hat the peak reading
5600.610 (1199.010 (1201.480 (6798.910 (6798.910 (6798.910 (6798.910 (76) (76) (76) (76) (76) (76) (76) (76)	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer:	V H V z, the FCC s n above 1 GH dings, 1000 3/4/2009 Mehran Birg	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH	-23.9 -21.8 -21.0 limit as an avexceed the a	PK PK Verage measu Verage limit b t 5600MHz w C Cor	33 17 300 urement. In a y more than 3 with 5.1dBi A onfig. Used: nfig Change:	1.0 1.0 addition, the 20 dB. ntenna (PC 1 None	:B), MAIN)	hat the peak reading
5600.610 (1199.010 (1201.480 (6798.910 (6798.910 (6798.910 (6798.910 (76) (76) (76) (76) (76) (76) (76) (76)	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location:	V H V z, the FCC s <u>above 1 G</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH	-23.9 -21.8 -21.0 iimit as an av exceed the ar z (802.11a a	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host	33 17 300 urement. In a y more than i vith 5.1dBi A onfig. Used: nfig Change: Unit Voltage	1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz	B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 6798.910 ote 1: ote 1: un #4: Ma Te Te Te Te Te MHz 5600.150	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Engineer: est Location: Level dBµV/m 38.7	V H V z, the FCC s <u>n above 1 GH</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V	74.0 74.0 74.0 pecifies the l tz, can not e - 18000 MH: ani FCC C Limit 54.0	-23.9 -21.8 -21.0 limit as an avexceed the a exceed the a z (802.11a a Class B Margin -15.3	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host Detector Pk/QP/Avg AVG	33 17 300 urement. In a y more than 3 with 5.1dBi A onfig. Used: nfig Change: Unit Voltage Azimuth degrees 83	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.1	B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 16798.9100 16798.9100 16798.9100 16798.9100 16798.9100 16798.910	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.7 35.1	V H V z, the FCC s <u>above 1 GH</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH: ani FCC (Limit 54.0 54.0	-23.9 -21.8 -21.0 iimit as an av exceed the ar z (802.11a a z (802.11a a Class B Margin -15.3 -18.9	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host Detector Pk/QP/Avg AVG AVG	33 17 300 urement. In a y more than 2 with 5.1dBi A onfig. Used: nfig Change: Unit Voltage Azimuth degrees 83 303	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.1 1.0	B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 16798.910 16798.910 1600 1: Run #4: Ma Te Te Te Te Te 5600.150 5600.150 11201.070	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.7 35.1 38.9	V H V z, the FCC s <u>n above 1 GF</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 <u>Pol</u> V/H V H H	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH ani FCC 0 Limit 54.0 54.0 54.0 54.0	-23.9 -21.8 -21.0 iimit as an avexceed the ar exceed the ar z (802.11a a class B Margin -15.3 -18.9 -15.1	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG	33 17 300 urement. In a y more than 2 vith 5.1dBi A onfig. Used: nfig Change: Unit Voltage Azimuth degrees 83 303 178	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.1 1.0 1.0	B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 6798.910 ote 1: ote 1: un #4: Ma Te Te Te Te Te 5600.150 5600.150 1201.070 1201.170	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.7 35.1 38.9 38.8	V H V z, the FCC s <u>n above 1 GF</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH ani FCC 0 Limit 54.0 54.0 54.0 54.0 54.0	-23.9 -21.8 -21.0 iimit as an avexceed the ar z (802.11a a Class B Margin -15.3 -18.9 -15.1 -15.2	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG	33 17 300 urement. In a y more than 2 with 5.1dBi A onfig. Used: nfig Change: Unit Voltage Azimuth degrees 83 303 178 12	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.1 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 6798.910 ote 1: ote 1: un #4: Ma Te Te Te Te 000.150 1201.070 1201.170 6798.500	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.7 35.1 38.9 38.8 40.9	V H V z, the FCC s <u>n above 1 Gł</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V K	74.0 74.0 74.0 pecifies the l dz, can not e - 18000 MH ani FCC 0 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-23.9 -21.8 -21.0 iimit as an avexceed the ar z (802.11a a Class B Margin -15.3 -18.9 -15.1 -15.2 -13.1	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG	33 17 300 urement. In a y more than i with 5.1dBi A onfig. Used: nfig Change: Unit Voltage Azimuth degrees 83 303 178 12 169	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.1 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 6798.910 ote 1: ote 1: un #4: Ma Te Te Te Te 0 0 0 0 0 0 0 0 0 0 0 0 0	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBμV/m 38.7 35.1 38.9 38.8 40.9 47.0	V H V z, the FCC s <u>n above 1 GH</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H H V V H V V	74.0 74.0 74.0 pecifies the l - 18000 MH: ani FCC 0 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-23.9 -21.8 -21.0 imit as an avexceed the area area area area area area area ar	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG PK	33 17 300 urement. In a y more than 2 with 5.1dBi A onfig. Used: fig Change: Unit Voltage Azimuth degrees 83 303 178 12 169 83	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.1 1.0 1.0 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 6798.910 ote 1: ote 1: un #4: Ma Te Te Te Te Te Te 000.150 1201.070 1201.170 1201.170 1201.170 1201.170 1201.170 1201.170 1201.170 1201.170 1201.170 1201.170 1201.170 1201.0	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.7 35.1 38.9 38.8 40.9	V H V z, the FCC s <u>n above 1 Gł</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V K	74.0 74.0 74.0 pecifies the l dz, can not e - 18000 MH ani FCC 0 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0	-23.9 -21.8 -21.0 imit as an avexceed the area z (802.11a area Class B Margin -15.3 -18.9 -15.1 -15.2 -13.1 -27.0 -28.8	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG	33 17 300 urement. In a y more than i with 5.1dBi A onfig. Used: nfig Change: Unit Voltage Azimuth degrees 83 303 178 12 169	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.1 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading
5600.610 1199.010 1201.480 6798.910 ote 1: ote 1: un #4: Ma Te Te Te Te Te MHz 5600.150 5600.150	50.1 52.2 53.0 Above 1 GH: any emission aximized read Date of Test: est Engineer: est Location: Level dBµV/m 38.7 35.1 38.9 38.8 40.9 47.0 45.2	V H V z, the FCC s <u>n above 1 GF</u> dings, 1000 3/4/2009 Mehran Birg SVOATS #1 Pol V/H V H H H V V H V H V H	74.0 74.0 74.0 pecifies the l Hz, can not e - 18000 MH: ani FCC C Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 74.0 74.0	-23.9 -21.8 -21.0 imit as an avexceed the area area area area area area area ar	PK PK PK verage measu verage limit b t 5600MHz w C Cor Host Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG PK PK	33 17 300 urement. In a y more than 2 with 5.1dBi A onfig. Used: ifig Change: Unit Voltage Azimuth degrees 83 303 178 12 169 83 303	1.0 1.0 1.0 addition, the 20 dB. ntenna (PC 1 None 120V/60Hz Height meters 1.1 1.0 1.0 1.0 1.0 1.0 1.0	B), MAIN)	hat the peak reading

6EI	liott
	An DCIAS company

EMC Test Data

An DCLP	5 company		
Client:	Summit Data Communications	Job Number:	J74548
Model:	802.11abg Compact Flash Card	T-Log Number:	T74642
		Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski		
Emissions Standard(s):	FCC 15.247/RSS 210	Class:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Summit Data Communications

Model

802.11abg Compact Flash Card

Date of Last Test: 3/12/2009

EMC Test Data

or a second company		
Client: Summit Data Communications	Job Number:	J74548
Model: 802.11abg Compact Flash Card	T-Log Number:	T74642
	Account Manger:	Christine Krebill
Contact: Jerry Pohmurski		
Emissions Standard(s): FCC 15.247/RSS 210	Class:	-
Immunity Standard(s):	Environment:	-

EUT INFORMATION

The following information was collected during the test session(s). The client agreed to provide the following information after the test session(s).

General Description

The EUT is a 802.11ag compliant wireless LAN radio Module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC = /-5%. It's typical power consumption is 400mA (1320mW) while in transmit mode, 180mA (594mW) while in receive mode and 10mA (33mW) while in standby mode.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Summit Data	MCF10AG	802.11AG Mini Compact		TWG-SDCMCF10AG
Communications Inc.		Flash Module with		
		antenna connectors		

EUT Antenna (Intentional Radiators Only)

The antenna connects to the EUT via a standard u.f1 antenna connector, thereby meeting the requirements of FCC 15.203. There were two antennas included in the testing:

Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

Modification History

	··· ··· j					
Mod. #	Test	Date	Modification			
1			No modifications were made to the EUT during testing.			
2						
3						

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

EMC Test Data

Client: Summit Data Communications Job Number: J74548					
J74548					
T74642					
Christine Krebill					
-					
-					
(

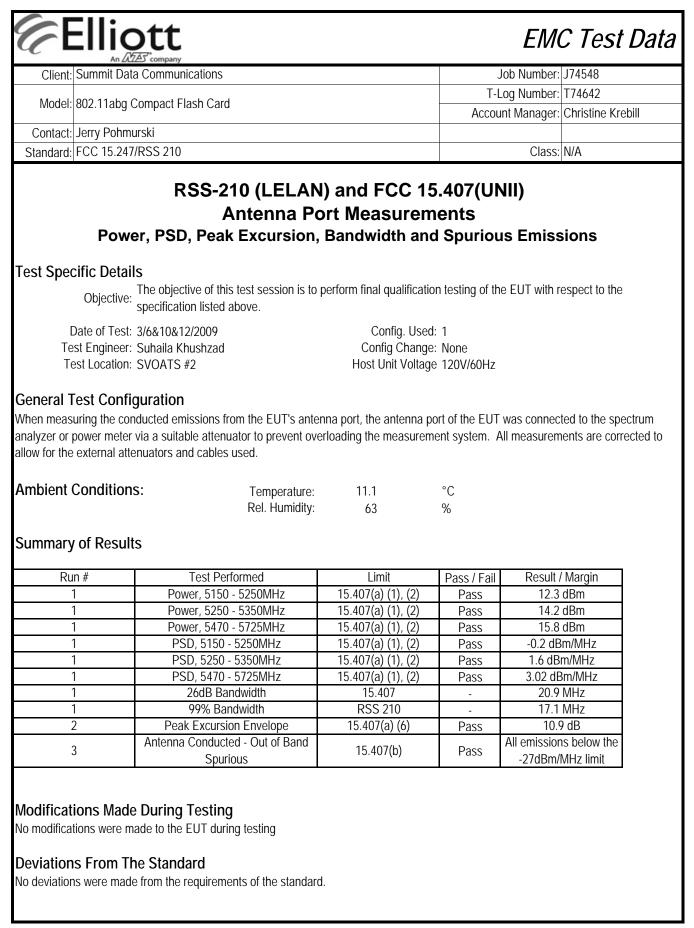
Test Configuration #1

The following information was collected during the test session(s).

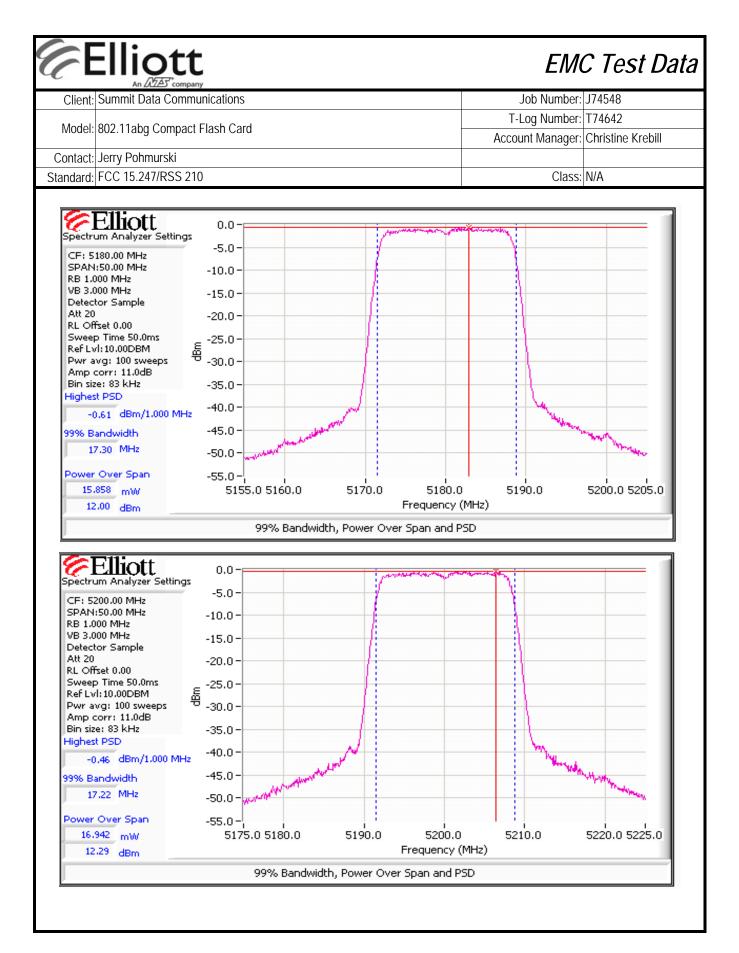
Local Support Equipment

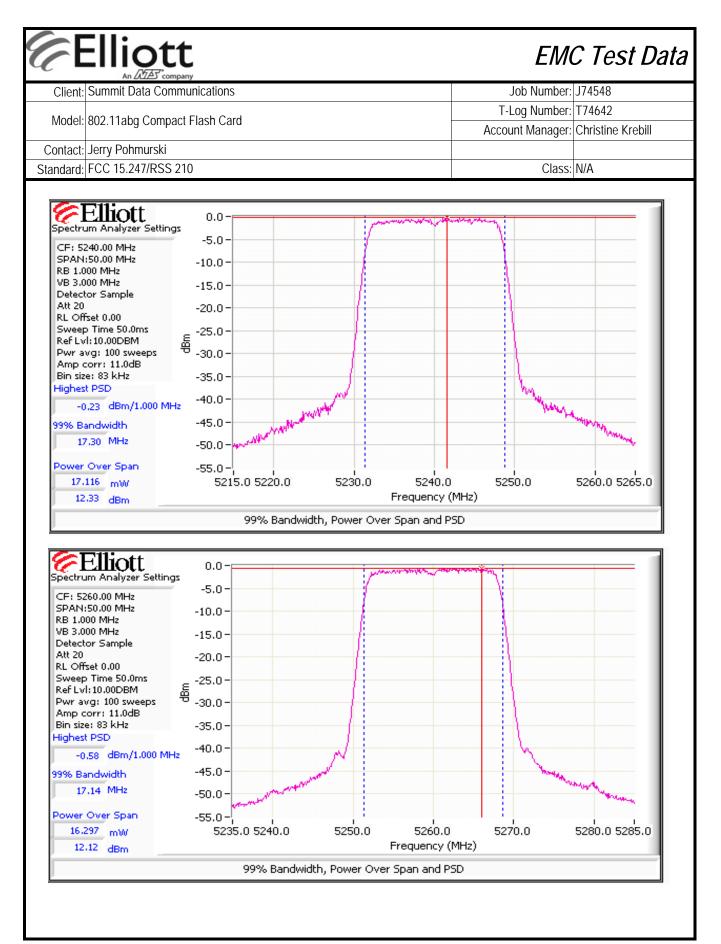
Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	iPAQ	Handheld Computer	-	-

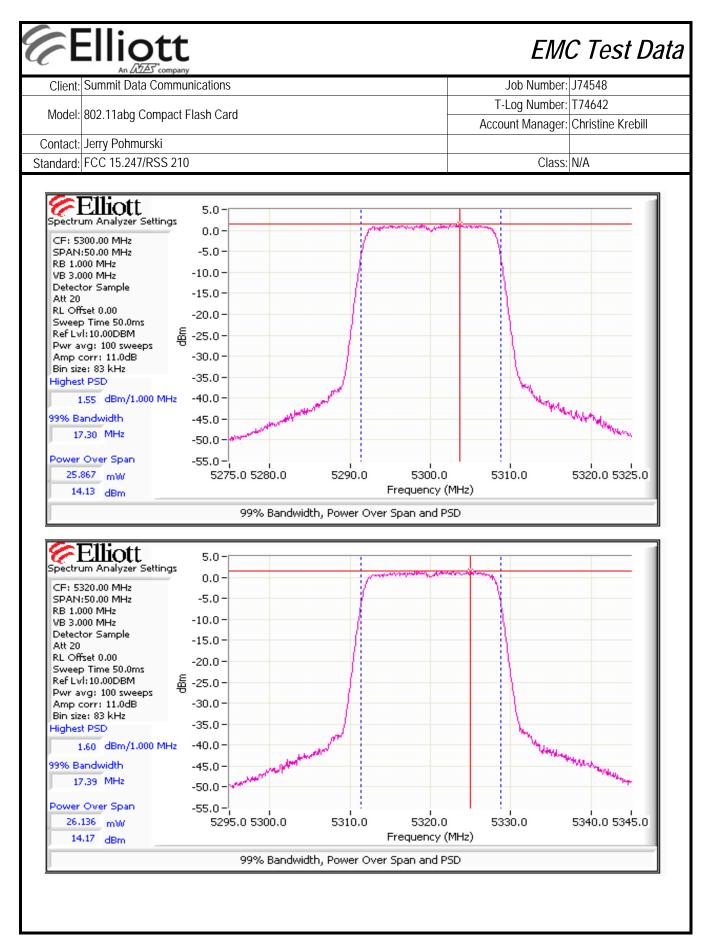
Remote Support Equipment

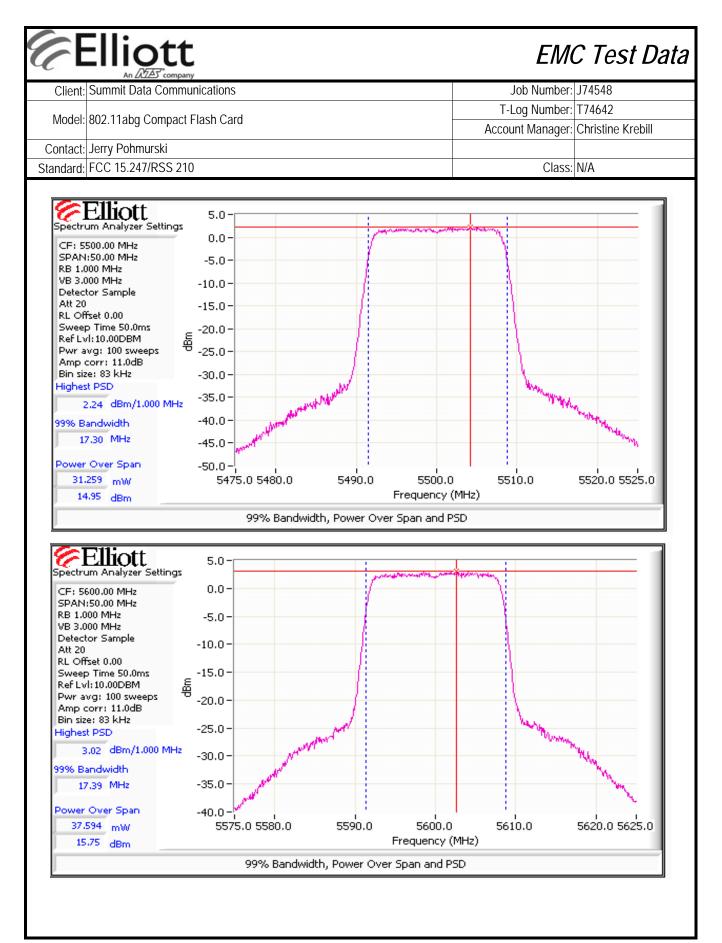

Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-

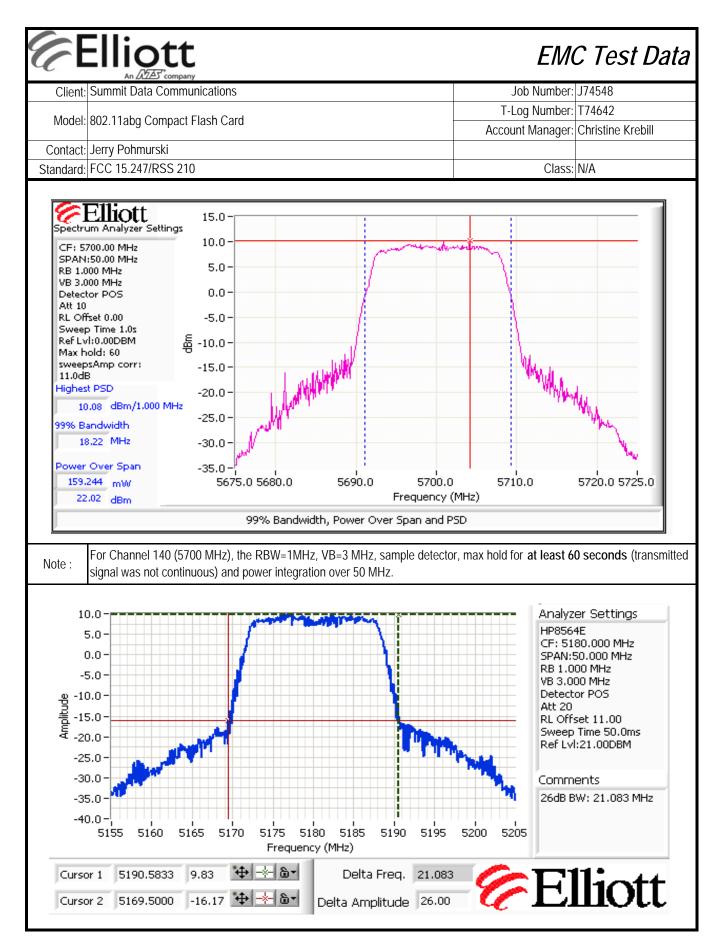
Cabling and Ports

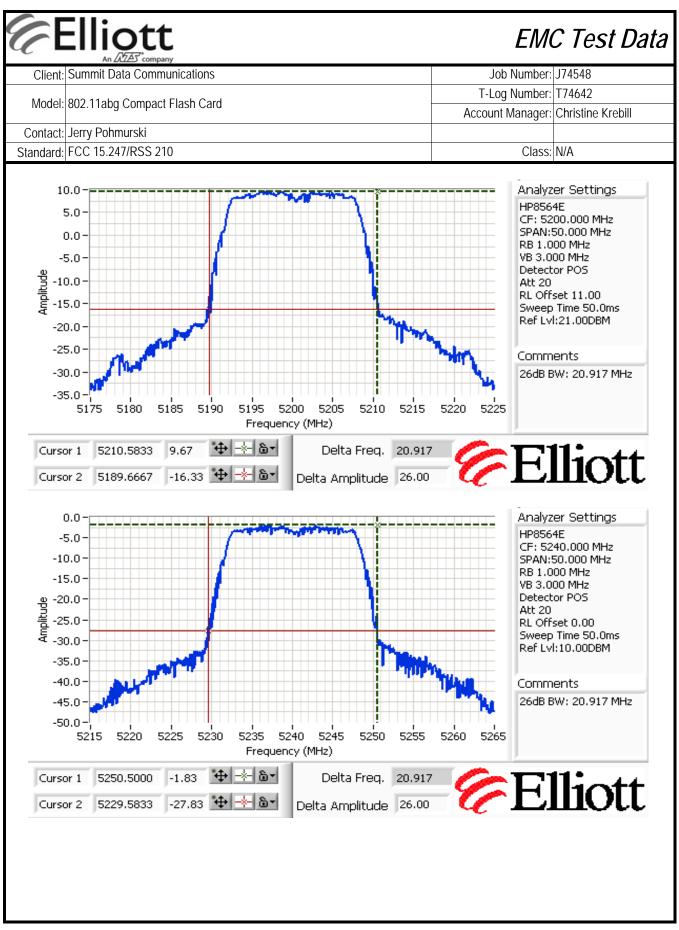

Port	Connected To	Cable(s)				
		Description	Shielded or Unshielded	Length(m)		
iPAQ Power	AC Mains	2wire	Unshielded	1.5		
Flash Module	iPAQ Module Port	-	-	-		

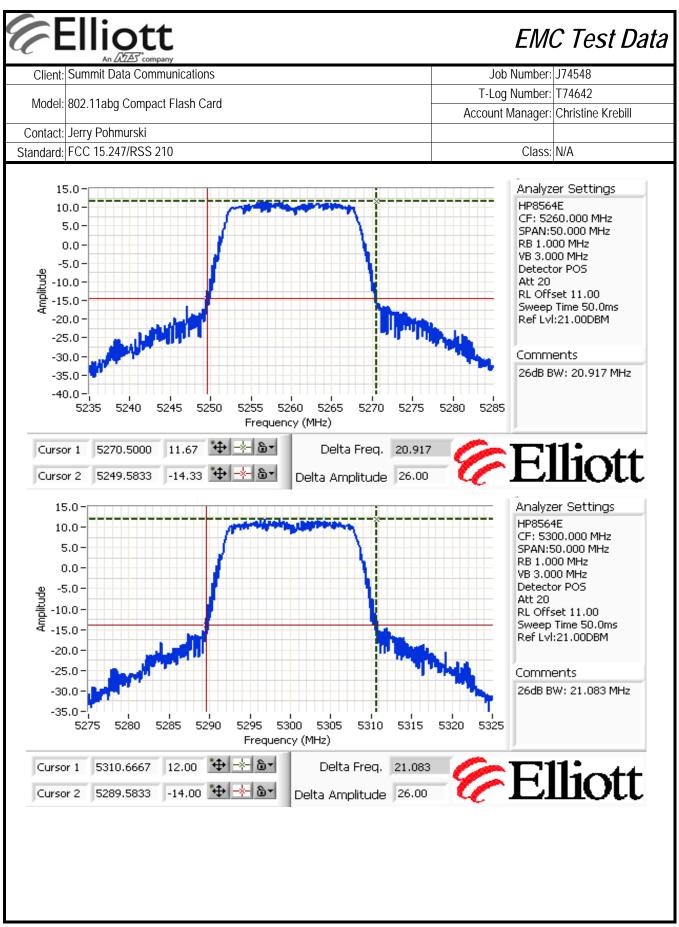

EUT Operation During Emissions Tests

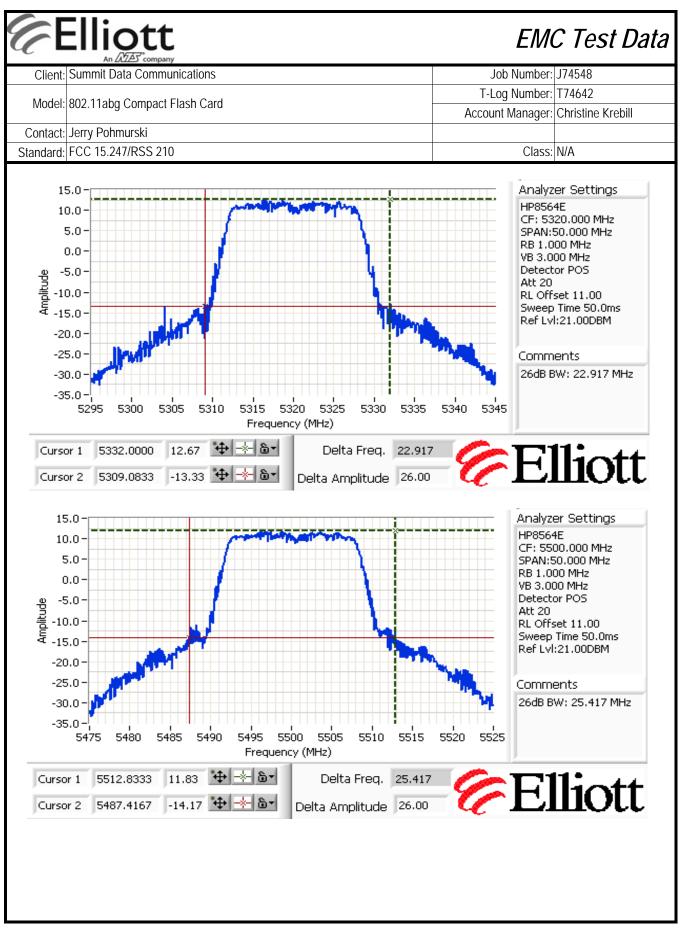

During emissions testing the EUT was configured to transmit at the Low, Middle, and High Channel. Testing performed at 6Mbs for 802.11a mode.

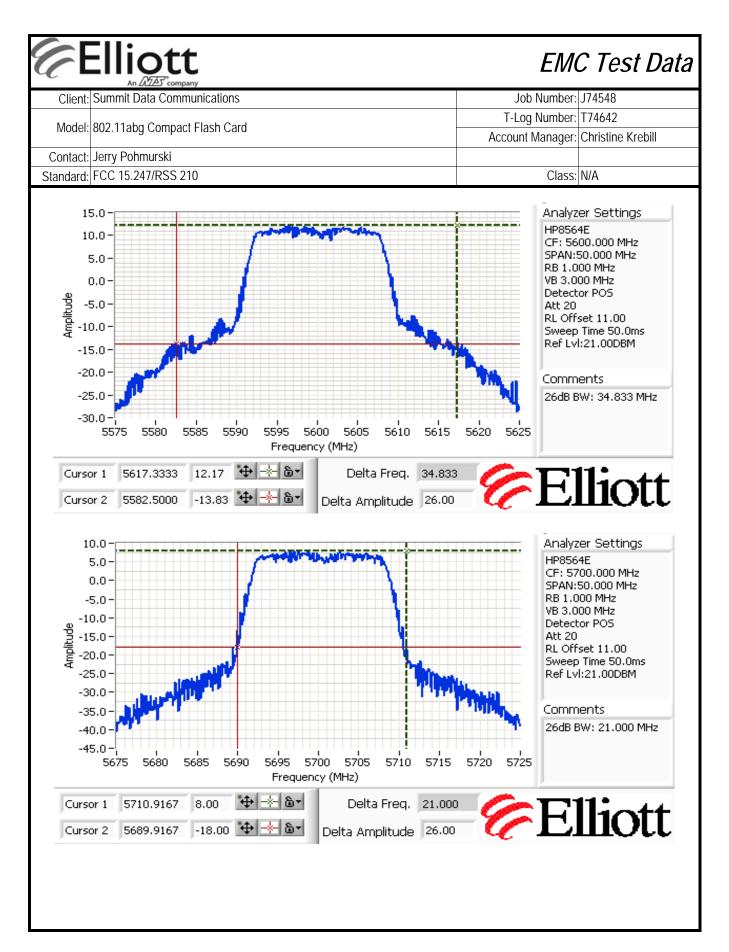



Client:	Summit Data Communications					Job Number: J74548				
Model:	802.11abg Compact Flash Card					T-Log Number: T74642 Account Manager: Christine Krebill		hill		
Contact:	Jerry Pohmurski									
	FCC 15.247/RSS 210				Class: N/A					
un #1: Bai	ndwidth, Out	put Power a	and Power	spectral Den	5	a Gain (dBi):	5.1			
roquopou	Softwara Dandwidth Oliver Dawar									
requency	Setting	Software Bandwidth		Output Power ¹ dBm Power Measured Limit (Watts)		PSD ² dBm/MHz Measured FCC Limit RSS Limit			Resul	
(MHz) 5180	100%	26dB 21.1	<u>99%</u> ⁴ 17.3	Measured 12.0	Limit 17.0	0.016	Measured -0.6	4.0	RSS Limit ^o 4.9	Pass
5200	100%	20.9	17.3	12.0	17.0	0.010	-0.0	4.0	4.9	Pass
5240	100%	21.0	17.2	12.3	17.0	0.017	-0.2	4.0	4.9	Pass
5260	100%	20.9	17.1	12.1	24.0	0.016	-0.6	11.0	11.0	Pass
5300	100%	21.1	17.3	14.1	24.0	0.026	1.6	11.0	11.0	Pass
5320	100%	22.9	17.4	14.2	24.0	0.026	1.6	11.0	11.0	Pass
5500	100%	24.4	17.3	15.0	24.0	0.031	2.2	11.0	11.0	Pass
5600 5700	100% 100%	34.8 21.0	17.4 18.2	15.8 22.0	24.0 24.0	0.038 0.159	3.0 10.1	11.0 11.0	11.0 11.0	Pass Pass
	•	ing the same	e analyzer s	us) and power settings used f	or output po	wer.		e maximum	•	S
Note 2: Note 3:	For RSS-210 10dBm/MHz.	The limits a	re also cori	ected for insta	inces where	the highest	measured val			e averaç
Note 3:	For RSS-210 10dBm/MHz. PSD (calcula the measured	The limits a ted from the d value exce	re also corr measured eds the ave	rected for insta power divided erage by more	nces where by the meas than 3dB.	the highest sured 99% b	measured val andwidth) by	more than 3		e averaç
Note 3:	For RSS-210 10dBm/MHz. PSD (calcula the measured	The limits a ted from the dvalue exce	re also corr measured eds the ave	ected for insta power divided	nces where by the meas than 3dB.	the highest sured 99% b	measured val andwidth) by	more than 3		e averaç







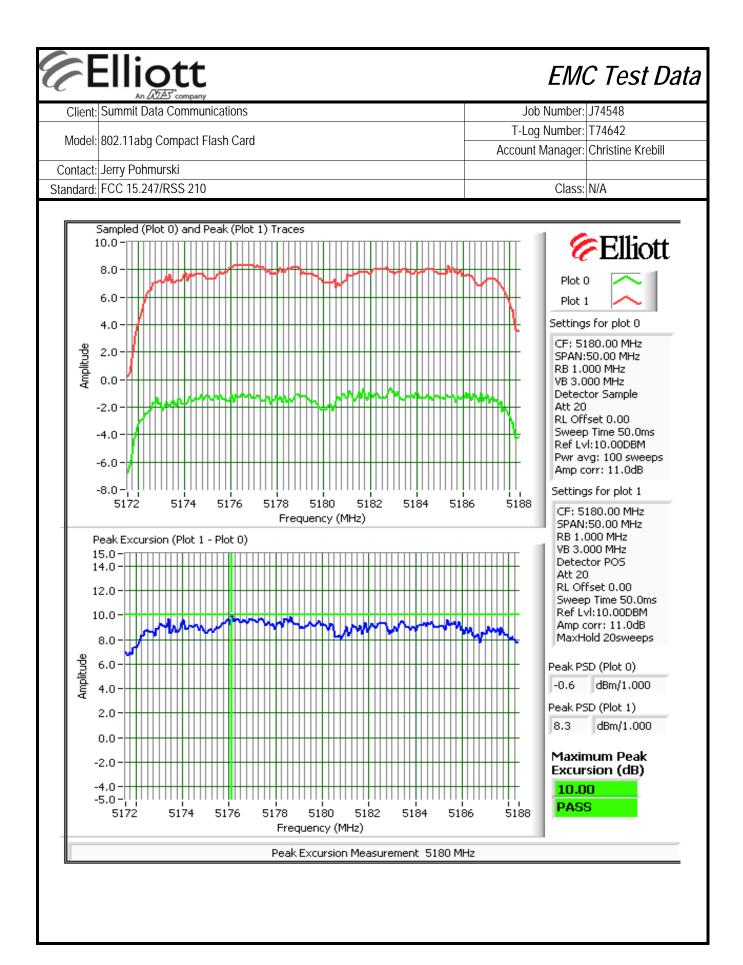


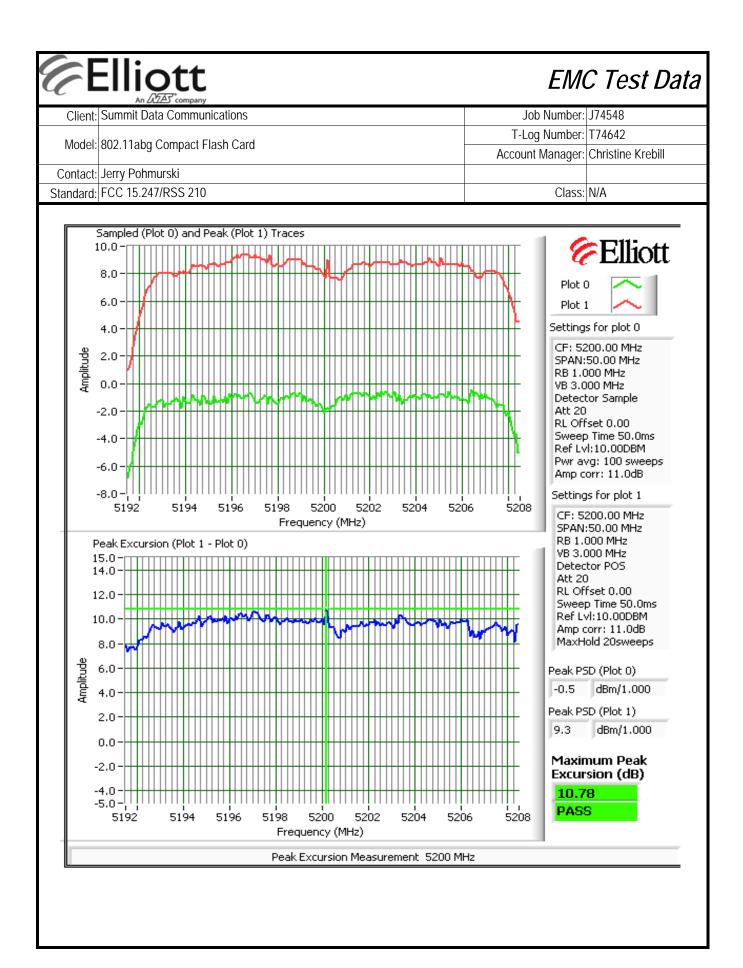
Elliott

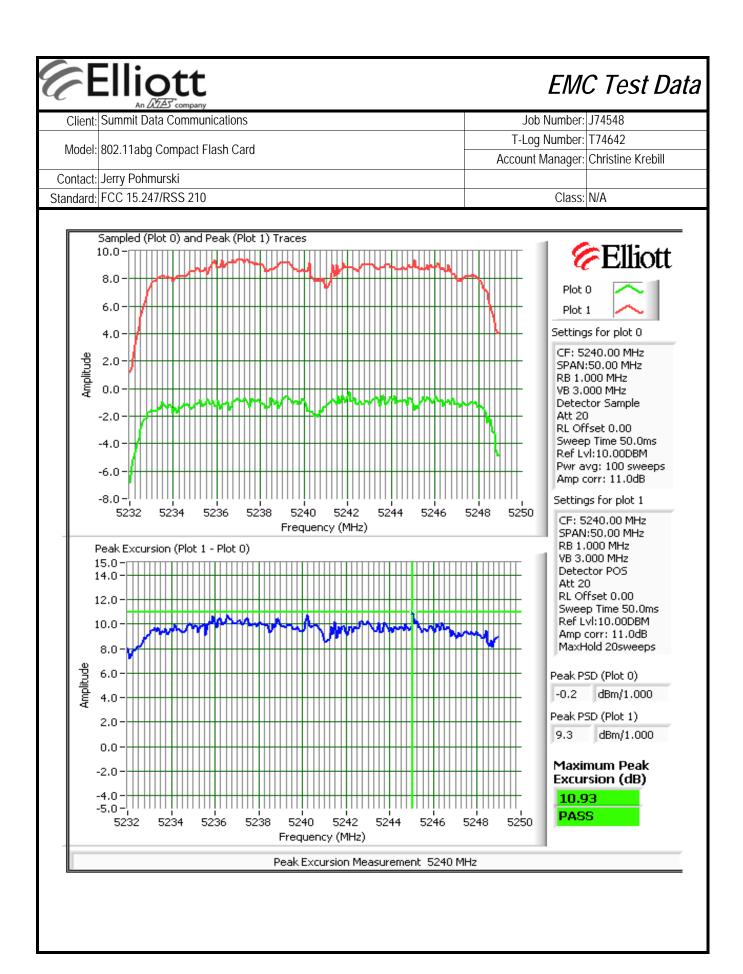
EMC Test Data

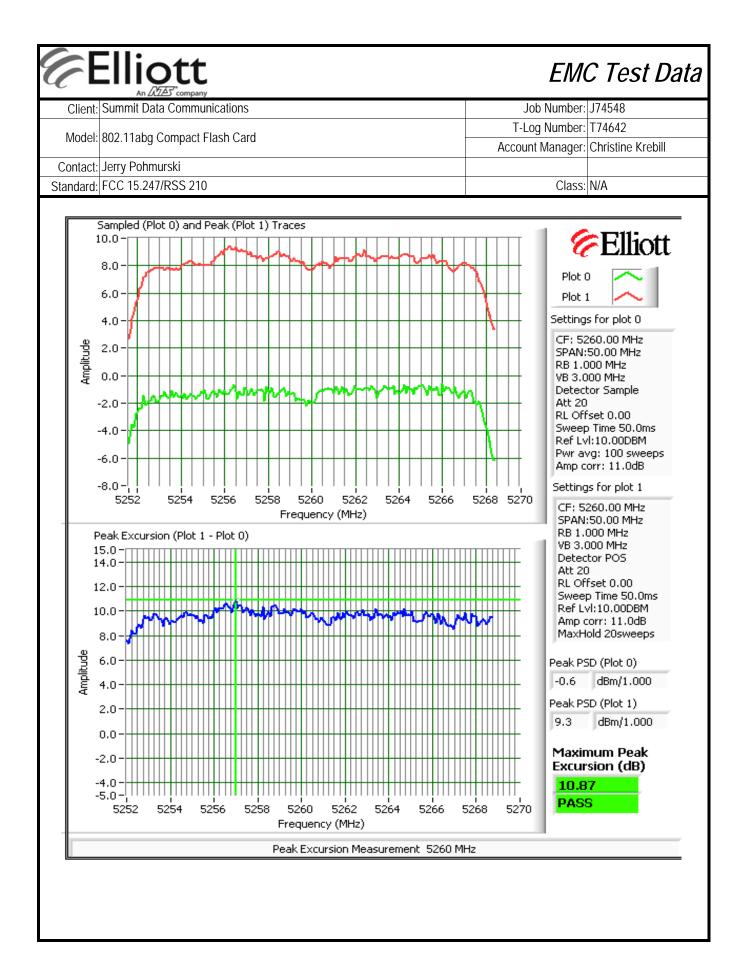
	An 1/2/2/5 company		
Client:	Summit Data Communications	Job Number:	J74548
Madalı	802.11abg Compact Flash Card	T-Log Number:	T74642
		Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski		
Standard:	FCC 15.247/RSS 210	Class:	N/A

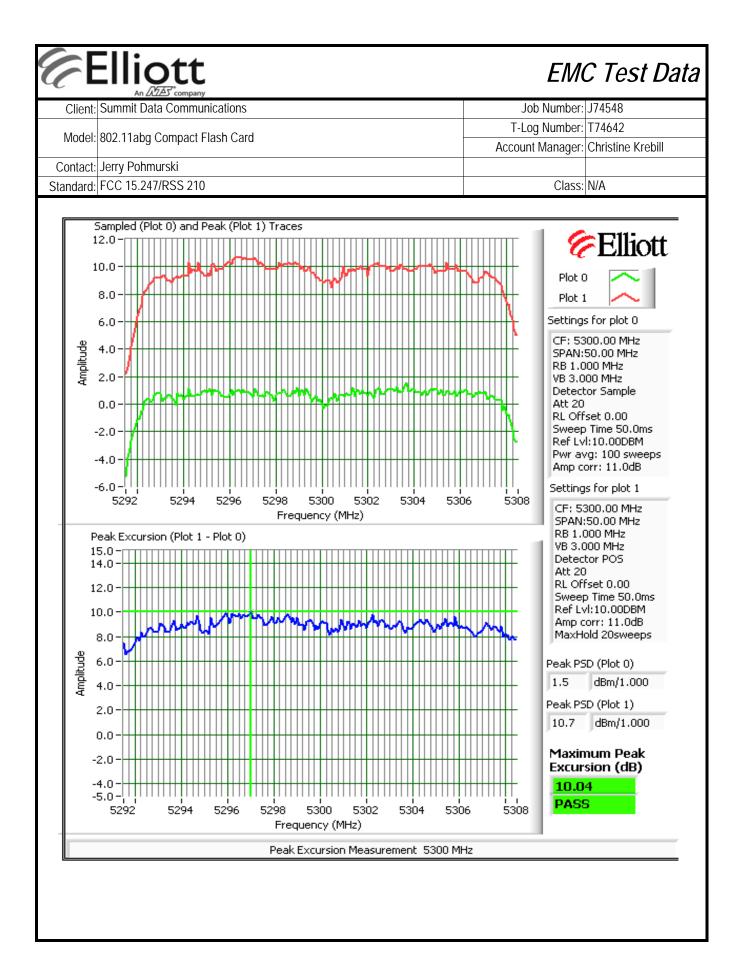
Run #2: Peak Excursion Measurement

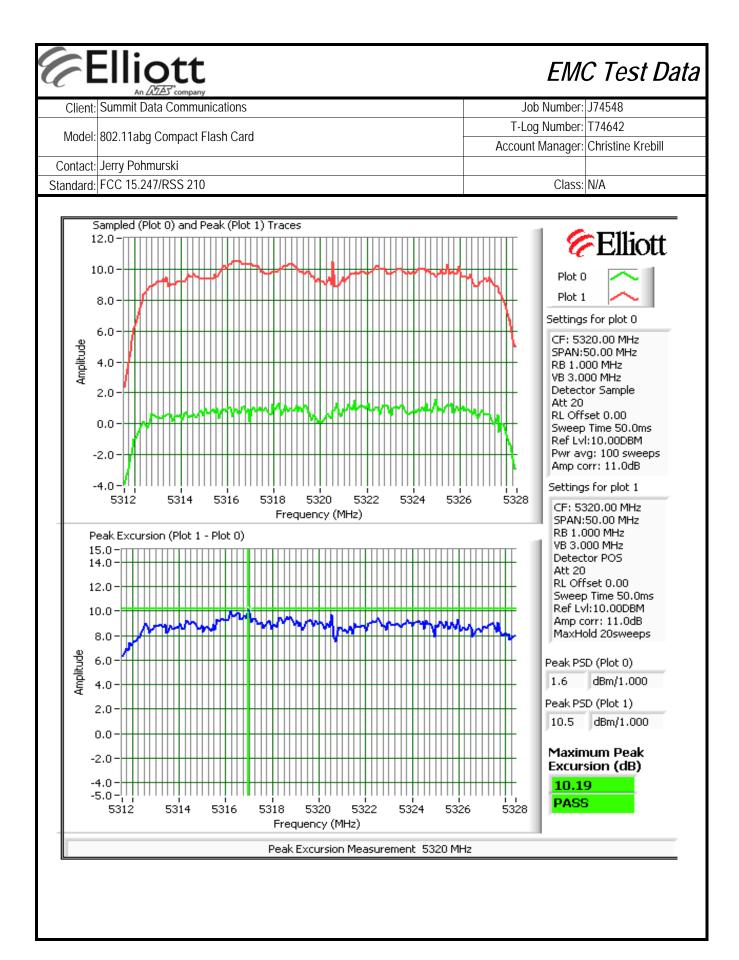

Device meets the requirement for the peak excursion

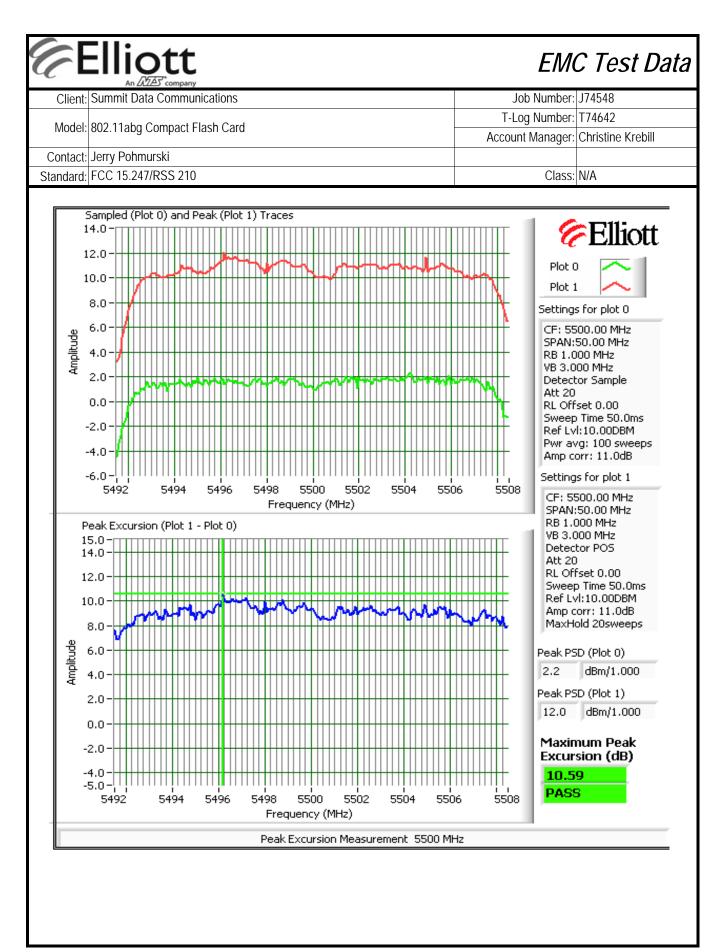

	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
	(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
ſ	5180	10.0	13.0	5260	10.9	13.0	5500	10.6	13.0
	5200	10.8	13.0	5300	10.0	13.0	5600	10.1	13.0
	5240	10.9	13.0	5320	10.2	13.0	5700	7.8	13.0

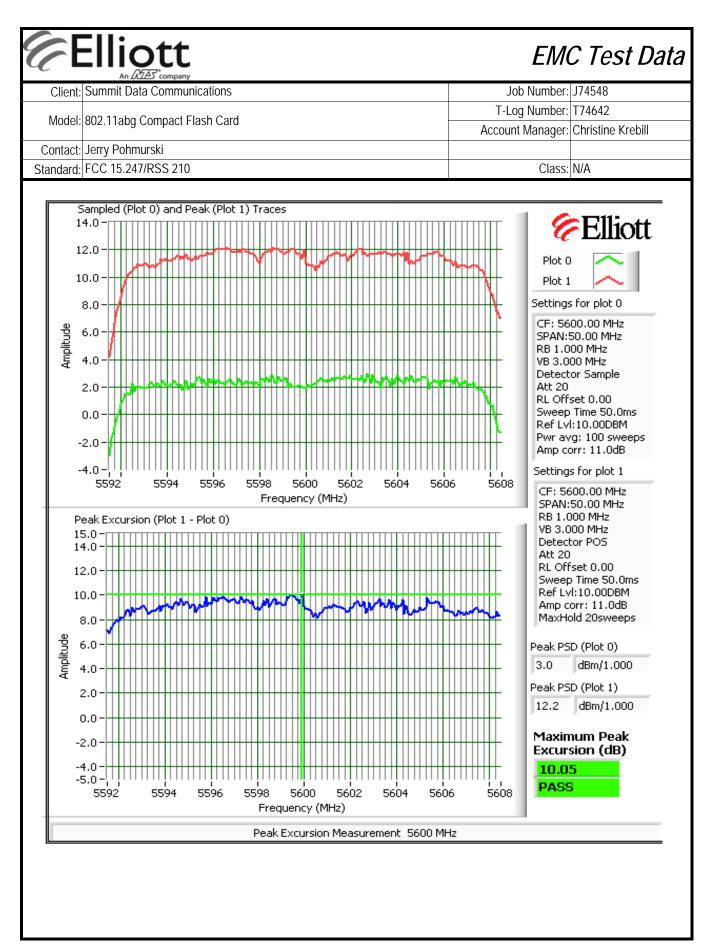

Plots Showing Peak Excursion

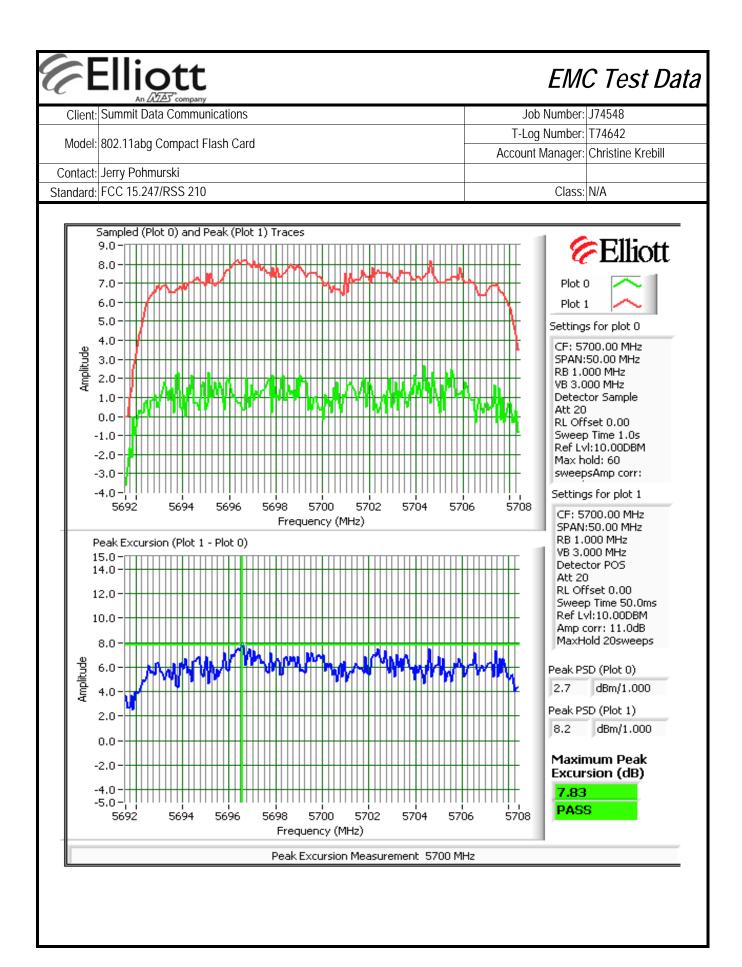

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

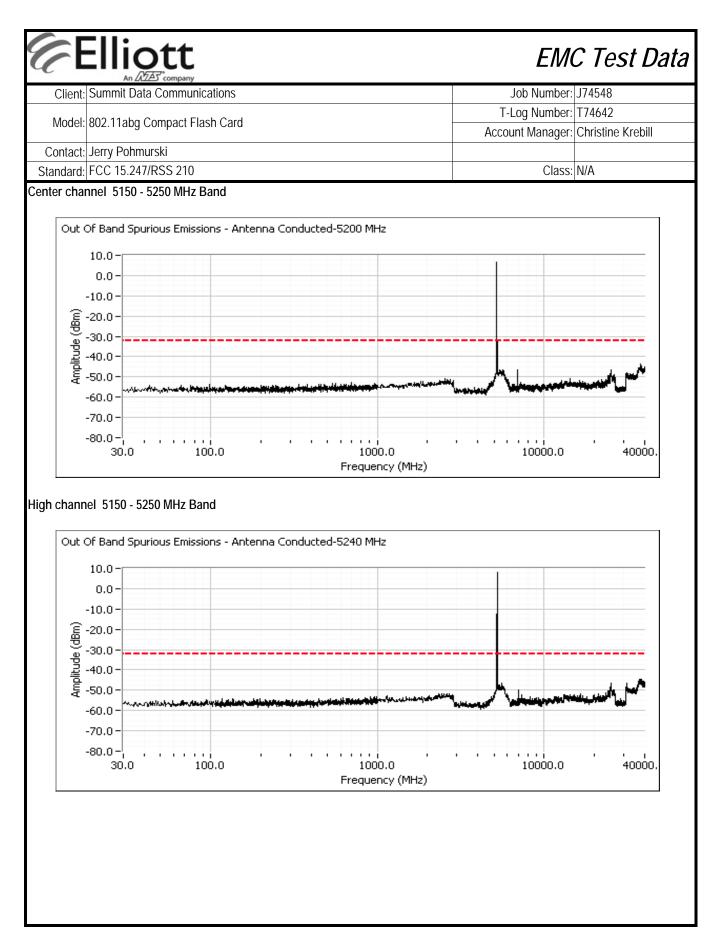

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power)

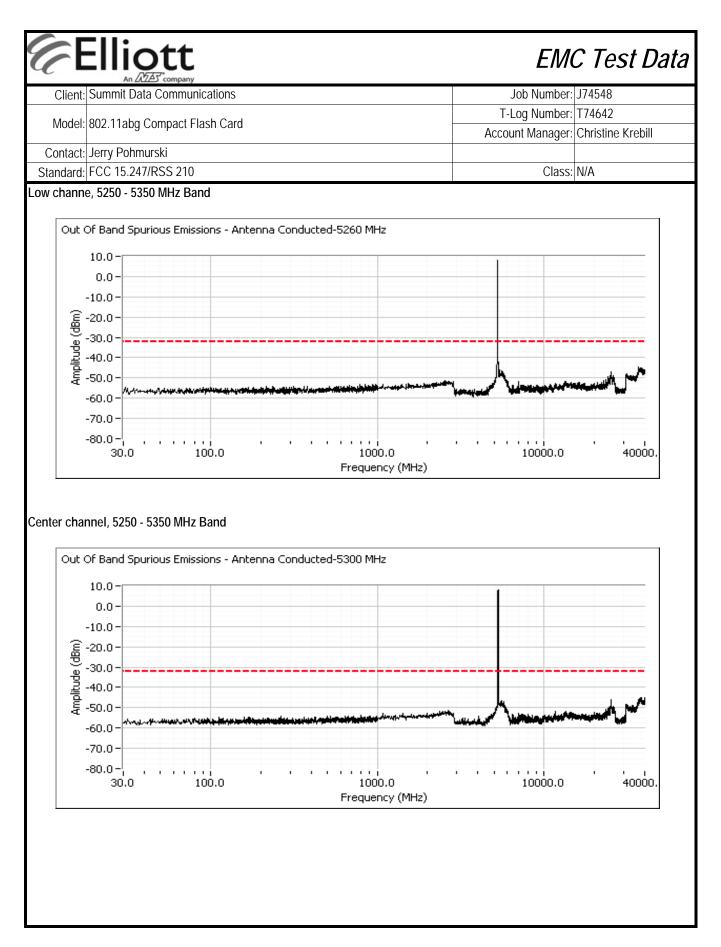


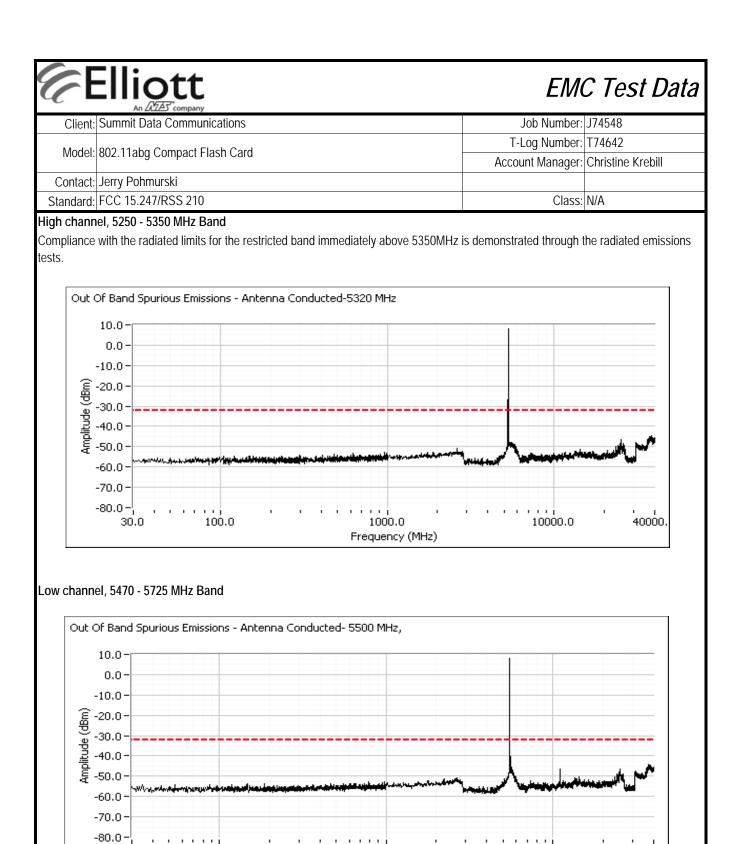






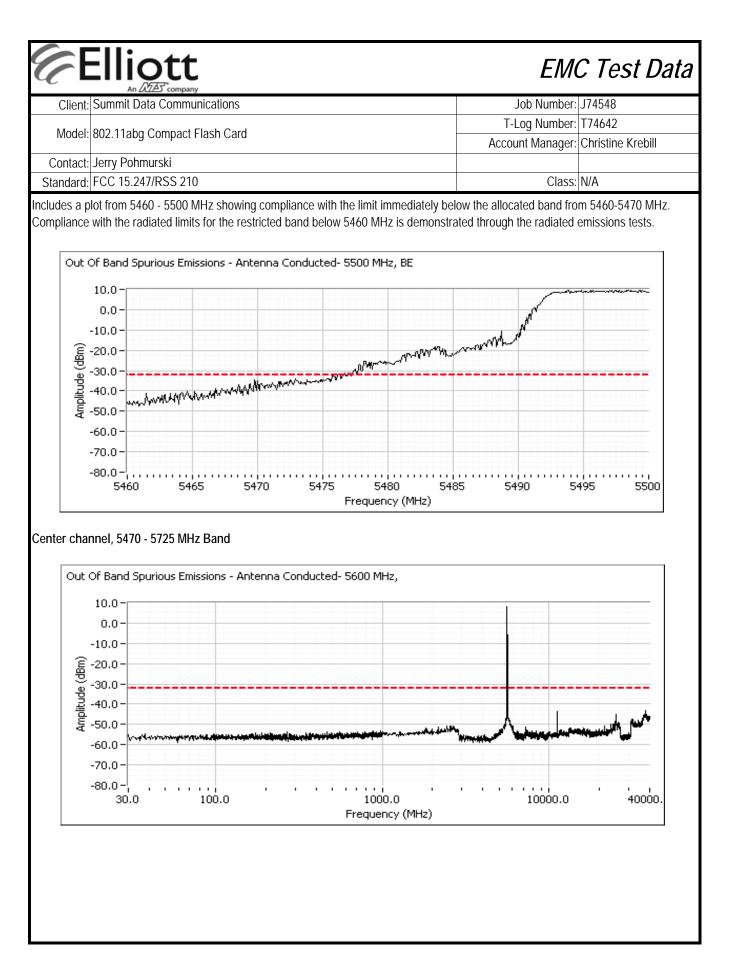






		t			EM	C Test Dat
	Summit Data Con	npuny			Job Number:	J74548
					T-Log Number:	T74642
Model:	802.11abg Comp	act Flash Card		-	Account Manager:	Christine Krebill
Contact:	Jerry Pohmurski					
Standard:	FCC 15.247/RSS	210			Class:	N/A
ın #3: Oı	Maxir	ous Emissions - Anter num Antenna Gain: Spurious Limit: Dn Plots ^{Note 1} :	5.1 dBi -27.0 dBm/MHz e	Average Lim	it (RB=1MHz, VB=10Hz) RB=VB=1MHz)	
ote 1: ote 2:	consideration the more than 50MHz known at these fro All spurious signa	maximum antenna gai from the bands and the equencies. Is below 1GHz are me	in (limit = -27dBm - an hat are close to the lim easured during digital of	tenna gain). F nit are made to device radiated		easurements for sign
		$I_{\rm Hz}$ of the 5725 or 59	275 Rand adda ara su	biect to a limit		
ote 3:	Signals within 10					
ote 4: ote 5: ow chann ompliance	If the device is for Signals that fall in el 5150 - 5250 MH	outdoor use then the the restricted bands of Plots Showing z Band	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss	applies in the the limit of 15 tions (RBW=V		he radiated emission
ote 4: ote 5: ow chann ompliance sts.	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l	outdoor use then the the restricted bands of Plots Showing z Band	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: ow chann ompliance sts.	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: ow chann ompliance sts.	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated I Of Band Spurious 10.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: ow chann ompliance sts.	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious 10.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
te 4: te 5: w chann mpliance sts.	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious 10.0 - 0.0 - -10.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: ow chann ompliance sts. Out	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious 10.0 - -10.0 - -20.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: ow chann ompliance sts. Out	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious 10.0 - -10.0 - -20.0 - -30.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: ow chann ompliance sts. Out	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious 10.0 - -10.0 - -20.0 - -30.0 - -40.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: ow chann ompliance sts. Out (wgp) apnilid	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious 10.0 - -10.0 - -20.0 - -30.0 - -30.0 - -50.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: w chann ompliance sts. Out (wgp) apnilidure	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious 10.0 - -10.0 - -20.0 - -30.0 - -30.0 - -50.0 - -60.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission
ote 4: ote 5: w chann ompliance sts. Out (wgp) apnilidure	If the device is for Signals that fall in el 5150 - 5250 MH with the radiated l Of Band Spurious 10.0 - -10.0 - -20.0 - -30.0 - -30.0 - -50.0 -	outdoor use then the the restricted bands of <u>Plots Showing</u> z Band imits for the restricted	-27dBm eirp limit also of 15.205 are subject to g Out-Of-Band Emiss band immediately belo	applies in the the limit of 15 ions (RBW=V tw 5150MHz is	5.209. / <mark>BW=1MHz)</mark>	he radiated emission

30.0


100.0

1000.0

Frequency (MHz)

40000.

10000.0

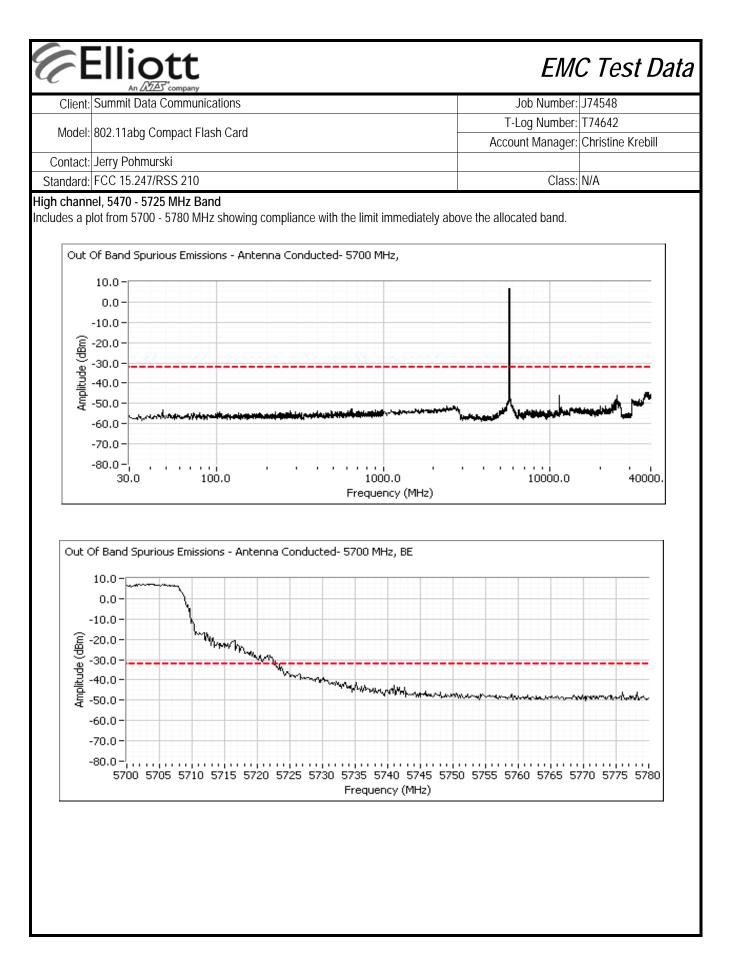


EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs

EXHIBIT 6: Operator's Manual

EXHIBIT 7: Block Diagram

EXHIBIT 8: Schematic Diagrams

EXHIBIT 9: Theory of Operation

EXHIBIT 10: RF Exposure Information