

Elliott Laboratories www.elliottlabs.com 684 West Maude Avenue Sunnyvale, CA 94085-3518

408-245-7800 Phone 408-245-3499 Fax

Electromagnetic Emissions Test Report

Application for Grant of Equipment Authorization Class II Permissive Change pursuant to Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15, Subpart E on the Summit Data Communications, Inc. Transmitter Model: SDC-CF10AG

> UPN: 6616A-SDCCF10AG FCC ID: TWG-SDCCF10AG

GRANTEE: Summit Data Communications, Inc. 526 South Market Suite 407 Akron, OH 44311

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: May 20, 2008

FINAL TEST DATE:

April 30, May 2, May 5 and May 6, 2008

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

File: R71756 Rev 1 Page 1 of 24

REVISION HISTORY

Rev #	Date	Comments	Modified By
1	July 18, 2008	First Release	

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
UNII / LELAN DEVICES GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	9
EQUIPMENT UNDER TEST (EUT) DETAILS	10
GENERAL ANTENNA SYSTEM ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION	10 10 10 10 10 11 11
TEST SITE	12
GENERAL INFORMATION RADIATED EMISSIONS CONSIDERATIONS	12 12
MEASUREMENT INSTRUMENTATION	13
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER FILTERS/ATTENUATORS ANTENNAS. ANTENNA MAST AND EQUIPMENT TURNTABLE. INSTRUMENT CALIBRATION.	
TEST PROCEDURES	14
EUT AND CABLE PLACEMENT RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT BANDWIDTH MEASUREMENTS SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS FCC 15.407 (A) OUTPUT POWER LIMITS OUTPUT POWER AND SPURIOUS LIMITS –LE-LAN DEVICES	21
OUTPUT POWER AND SPURIOUS LIMITS –UNII DEVICES SAMPLE CALCULATIONS - CONDUCTED EMISSIONS SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	24

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	.1
EXHIBIT 2: Test Measurement Data	.2
EXHIBIT 3: Photographs of Test Configurations	.3
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	.5
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	

SCOPE

An electromagnetic emissions test has been performed on the Summit Data Communications model SDC-CF10AG pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Summit Data Communications model SDC-CF10AG and therefore apply only to the tested sample. The sample was selected and prepared by Ron Seide of Summit Data Communications, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Summit Data Communications model SDC-CF10AG complied with the requirements of the following regulations:

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.25 – 5.35 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)		
15.407(a) (2)		26dB Bandwidth	21.0 MHz	N/A – limits output power if < 20MHz	N/A		
15.407(a) (2)	A9.2(2)	Output Power	15.6 dBm (0.0363W)	24.0 dBm	Complies		
15.407(a) (2))		Power Spectral Density	2.9 dBm/MHz	11 dBm/MHz	Complies		
	A9.2(2) / A9.5 (2)	Power Spectral Density	2.9 dBm/mnz	11 dBm / MHz ¹	Complies		
	A9.5 (2)	Peak Spectral Density	2.9 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies		
Operation in	Operation in the 5.47 – 5.725 GHz Band						
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)		
15.407(a) (2)		26dB Bandwidth	21.3 MHz	N/A – limits output power if < 20MHz	N/A		
15.407(a) (2)	A9.2(2)	Output Power	12.5 dBm (0.0178W)	24 dBm / 250mW (eirp < 30dBm)	Complies		
15.407(a) (2))		Power Spectral Density	-0.1 dBm/MHz	11 dBm/MHz	Complies		
	A9.2(2) / A9.5 (2)	Power Spectral Density	-0.1 uDiii/ivii1Z	11 dBm / MHz ²	Complies		
N/A	A9.4	Non-operation in 5600 – 5650 MHz sub band	Device is a client device, and would not initiate transmission in DFS bands		Complies		

 $^{^1}$ Reduced from 11dBm because highest value exceeded the average value by more than 3dB 2 Reduced from 11dBm because highest value exceeded the average value by more than 3dB

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
	A9.5a	Modulation	Digital Modulation is used	Digital modulation is required	Complies
	RSP 100	99% bandwidth	17.3 MHz for 5250- 5350 MHz 17.4 MHz for 5470- 5725 MHz	Information only	
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	No emissions below 1 GHz were detected	Refer to Standard	Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	53.6dBµV/m @ 10602.1MHz	Refer to Standard	Complies (- 0.4 dB)
15.407(a)(6	-	Peak Excursion Ratio	11.6 dB	< 13dB	Complies
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom and center channels	N/A
15			Measurements on three channels in each band	in each band	Complies
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is better than 20ppm		Complies
15.407 (h1)	A9.4	Transmit Power Control	TPC is not required as the device operates at below 500mW eirp	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies
15.407 (h2)	A9.4	Dynamic frequency Selection (device without radar detection)	Refer to separate test report, reference R71976	Channel move time < 10s Channel closing transmission time < 260ms	Complies
	A9.7	User Manual information	Refer to Exhibit 6 for details		Complies

General requirements for all UNII bands

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	The radio module uses a unique connector type		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	45.9dBµV/m @ 17545.4MHz	Refer to standard	Complies (- 8.1 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	-	Refer to standard	N/A – Note 1
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

Note 1 – Not included in this permissive change. Original data showed no change in AC conducted emissions based on frequency of transmission.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions Radiated Emissions Radiated Emissions	0.15 to 30 0.015 to 30 30 to 1000 1000 to 40000	$ \pm 2.4 \pm 3.0 \pm 3.6 \pm 6.0 $

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Summit Data Communications model SDC-CF10AG is an 802.11a/g compliant wireless LAN radio module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed on a tabletop during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC +/- 5% with typical power consumption of 400 mA (1320mW) while in transmit mode, 180 mA (594mW) while in receive mode and 10 mA (33 mW) while in standby mode.

The sample was received on April 30, 2008 and tested on April 30, May 2, May 5 and May 6, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Summit Data	SDC-CF10AG	802.11 a/g	Various	TWG-
Communications,		Compact Flash		SDCCF10AG
Inc.		Adapter with		
		Antenna		
		Connectors		

ANTENNA SYSTEM

There were three antennas included in the testing: Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz Volex, p/n VLX-51004-A, Omni, 2.3dBi @ 2.4GHz, 1.9dBi @ 5GHz Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

Note: The Volex Omni was used in the 2.4GHz band and the Larson Omni was used in the 5GHz bands. The Laird pcb antenna was also tested for both 2.4GHz and 5GHz.

ENCLOSURE

The EUT enclosure is primarily constructed of Stainless steel. It measures approximately 4.3 cm wide by 5.5 cm deep by 0.5 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	iPAQ	Handheld	-	-
		Computer		

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
FOIL	Connected 10	Description	Shielded or Unshielded	Length(m)	
iPAQ Power	AC Mains	2wire	Unshielded	1.5	
Flash Module	iPAQ Module Port	-	-	-	

EUT OPERATION

During emissions testing the EUT was configured to transmit at the Low, Middle, and High Channel.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on April 30, May 2, May 5 and May 6, 2008 at the Elliott Laboratories Open Area Test Site #1 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

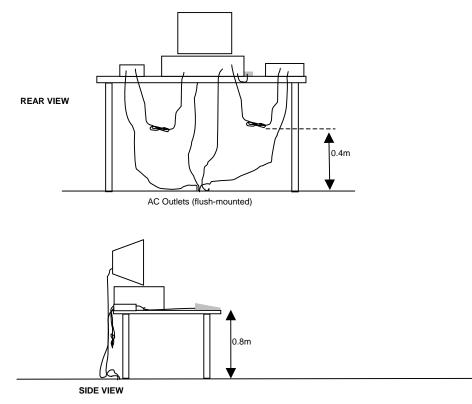
INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

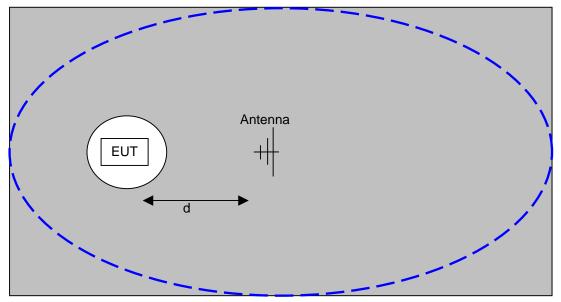
TEST PROCEDURES

EUT AND CABLE PLACEMENT

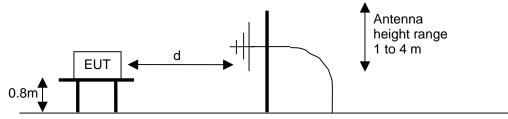
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

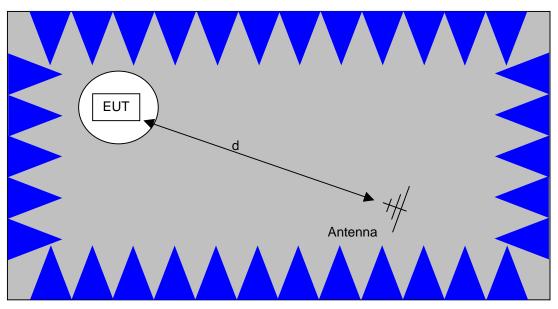

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

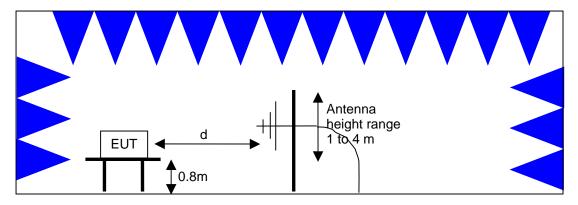

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

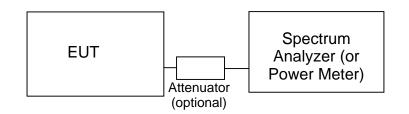

Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER AND SPURIOUS LIMITS -LE-LAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	$\frac{250 \text{ mW} (24 \text{ dBm})^{\text{I}}}{1 \text{W} (30 \text{dBm}) \text{ eirp}}$	11 dBm/MHz
5470 - 5725	$250 \text{ mW} (24 \text{ dBm})^2$ 1W (30dBm) eirp	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density, determined by dividing the output power by 10log(99% bandwidth), by more than 3dB.

Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER AND SPURIOUS LIMITS –UNII DEVICES

The table below shows the limits for output power and output power density defined by FCC Part 15 Subpart E. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	50mW (17 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5470 - 5725	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

The peak excursion envelope is limited to 13dB.

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

¹ If EIRP exceeds 500mW the device must employ TPC

² If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radio Spurious Emissions, 30 Engineer: Suhaila Khushzad	0-Apr-08		
Manufacturer	Description	Model #	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Hewlett Packard	Spectrum Analyzer 30 Hz -40 GHz	8564E (84125C)	Rental 20-Jul-08
Radio Spurious Emissions, 02	2-May-08		
Engineer: Suhaila Khushzad			Association October
Manufacturer	Description	<u>Model #</u>	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Hewlett Packard	Spectrum Analyzer 30 Hz -40 GHz	8564E (84125C)	Rental 20-Jul-08
Radio Spurious Emissions, 0	5-May-08		
Radio Spurious Emissions, 0 Engineer: Suhaila Khushzad	5-May-08		
	5-May-08 Description	Model #	Asset # Cal Due
Engineer: Suhaila Khushzad	-	<u>Model #</u> 3115	Asset # Cal Due 487 24-May-08
Engineer: Suhaila Khushzad Manufacturer	Description		
Engineer: Suhaila Khushzad Manufacturer EMCO	<u>Description</u> Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard	Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 30 Hz -40 GHz	3115 8449B	487 24-May-08 870 08-Nov-08
Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard Hewlett Packard	Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 30 Hz -40 GHz	3115 8449B	487 24-May-08 870 08-Nov-08
Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard Hewlett Packard Radio Spurious Emissions, 00	Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 30 Hz -40 GHz	3115 8449B	487 24-May-08 870 08-Nov-08
Engineer: Suhaila Khushzad Manufacturer EMCO Hewlett Packard Hewlett Packard Radio Spurious Emissions, 00 Engineer: Suhaila Khushzad	Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 30 Hz -40 GHz S-May-08	3115 8449B 8564E (84125C)	487 24-May-08 870 08-Nov-08 Rental 20-Jul-08
Engineer: Suhaila Khushzad <u>Manufacturer</u> EMCO Hewlett Packard <u>Hewlett Packard</u> Radio Spurious Emissions, 00 Engineer: Suhaila Khushzad <u>Manufacturer</u>	Description Antenna, Horn, 1-18 GHz Microwave Preamplifier, 1-26.5GHz Spectrum Analyzer 30 Hz -40 GHz 5-May-08 Description	3115 8449B 8564E (84125C) Model #	487 24-May-08 870 08-Nov-08 Rental 20-Jul-08 Asset # Cal Due

EXHIBIT 2: Test Measurement Data

55 Pages

A division of AZAS	EMC Test Da
Client: Summit Data Communications	Job Number: J71524
Model: SDC-CF00AG(DFS Bands)	T-Log Number: T71529
Contact: Ron Seide	Account Manager: Dean Eriksen
missions Standard(s): FCC	Class: -
mmunity Standard(s): -	Environment: -
EMC Test I	Jata
For The	
Summit Data Comr	nunications
Model	
SDC-CF00AG(DFS B	3ands)
Date of Last Test: 5/6	/2008

Ellio	tt.	E	MC Test Data
Client:	Summit Data Communications	Job Number:	J71524
Model:	SDC-CF00AG(DFS Bands)	T-Log Number:	T71529
		Account Manger:	Dean Eriksen
Contact:	Ron Seide		
Emissions Standard(s):	FCC	Class:	-
Immunity Standard(s):	-	Environment:	-

EUT INFORMATION

The following information was collected during the test session(s). The client agreed to provide the following information after the test session(s).

General Description

The EUT is an 802.11a/g compliant wireless LAN radio module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed on a tabletop during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC +/- 5% With typical power consumption of 400 mA (1320mW) while in transmit mode, 180 mA (594mW) while in receive mode and 10 mA (33 mW) while in standby mode.

Equipment Under Test

		Equipment ender ree	~	
Manufacturer	Model	Description	Serial Number	FCC ID
Summit Data	SDC-CF10AG	802.11 a/g Compact Flash	Various	TWG-SDCCF10AG

EUT Antenna (Intentional Radiators Only)

There were three antennas included in the testing:

Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz Volex, p/n VLX-51004-A, Omni, 2.3dBi @ 2.4GHz, 1.9dBi @ 5GHz Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

Note: The Volex Omni was used in the 2.4GHz band and the Larson Omni was used in the 5GHz bands. The Laird pcb antenna was also tested for both 2.4GHz and 5GHz.

The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

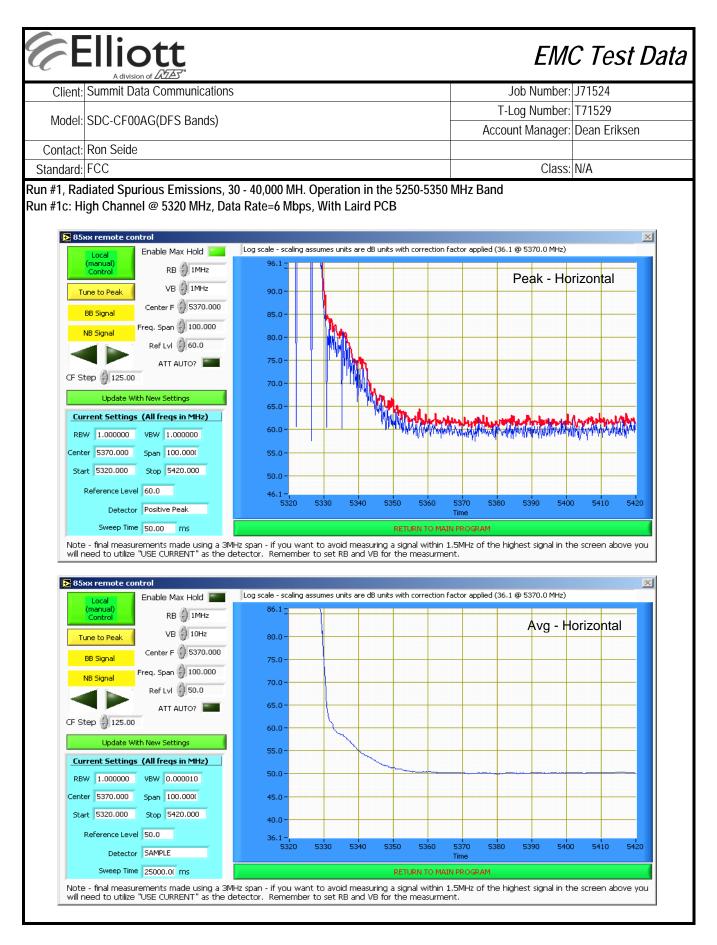
EUT Enclosure

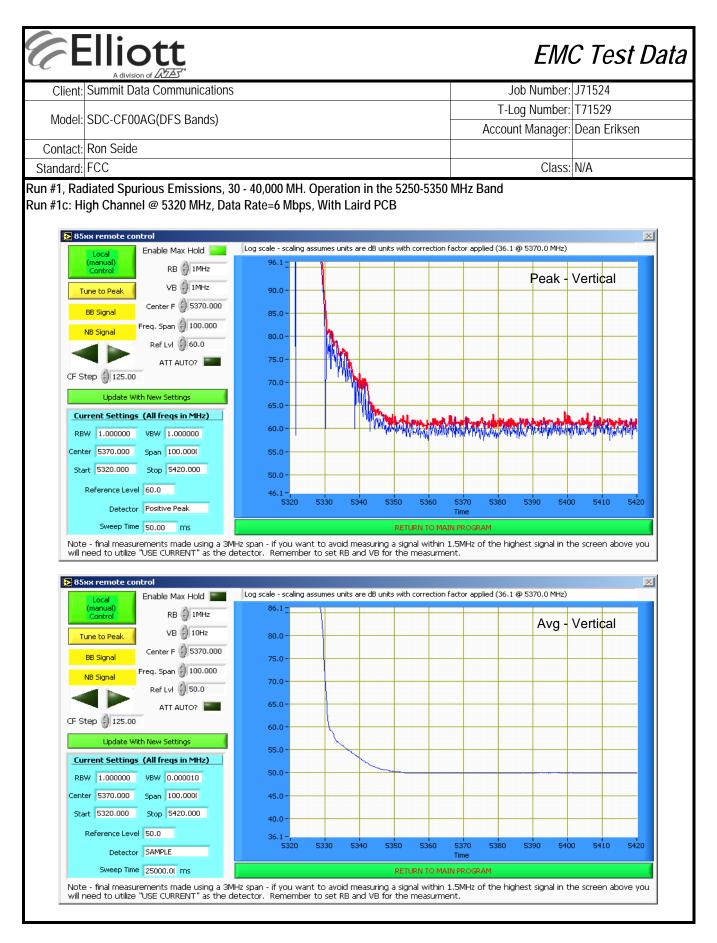
The EUT enclosure is primarily constructed of Stainless steel. It measures approximately 4.3 cm wide by 5.5 cm deep by 0.5 cm high.

Modification History

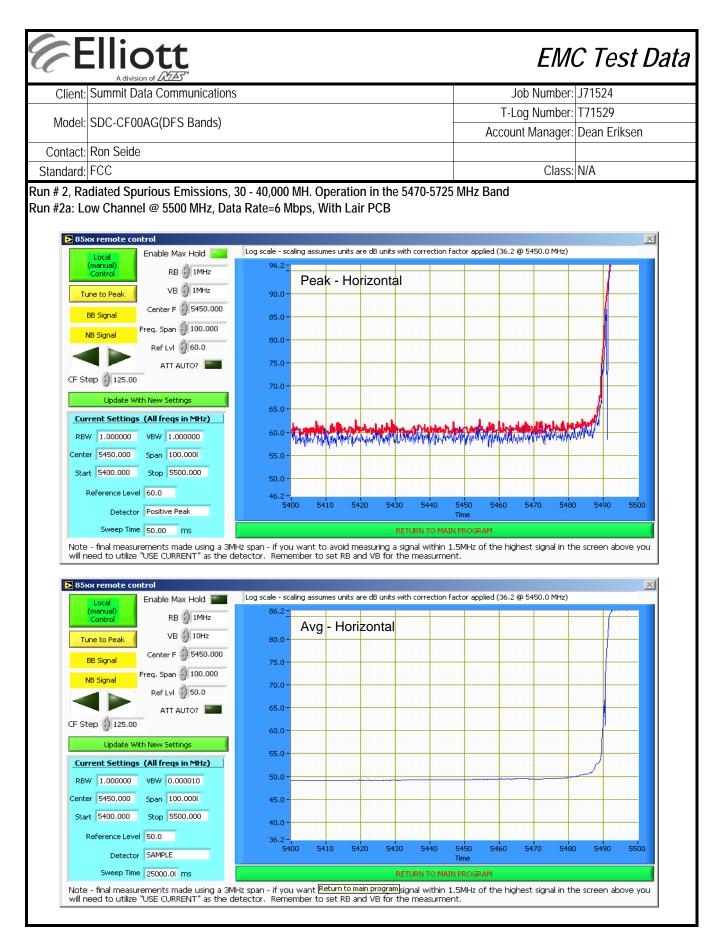
	····· ································									
Mod. #	Test	Date	Modification							
1	-	-	None							

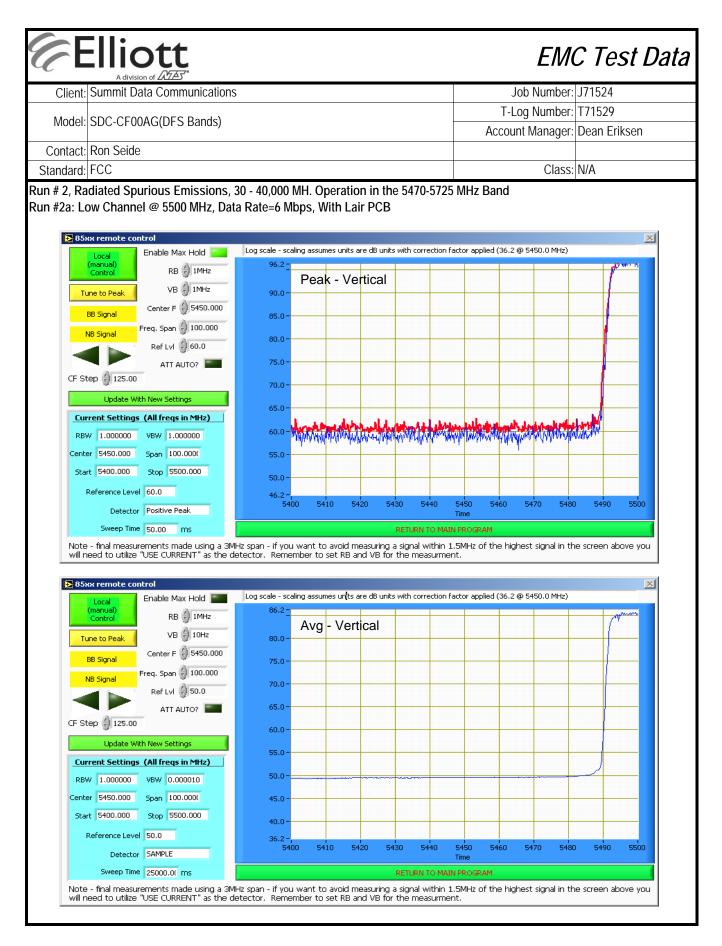
Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

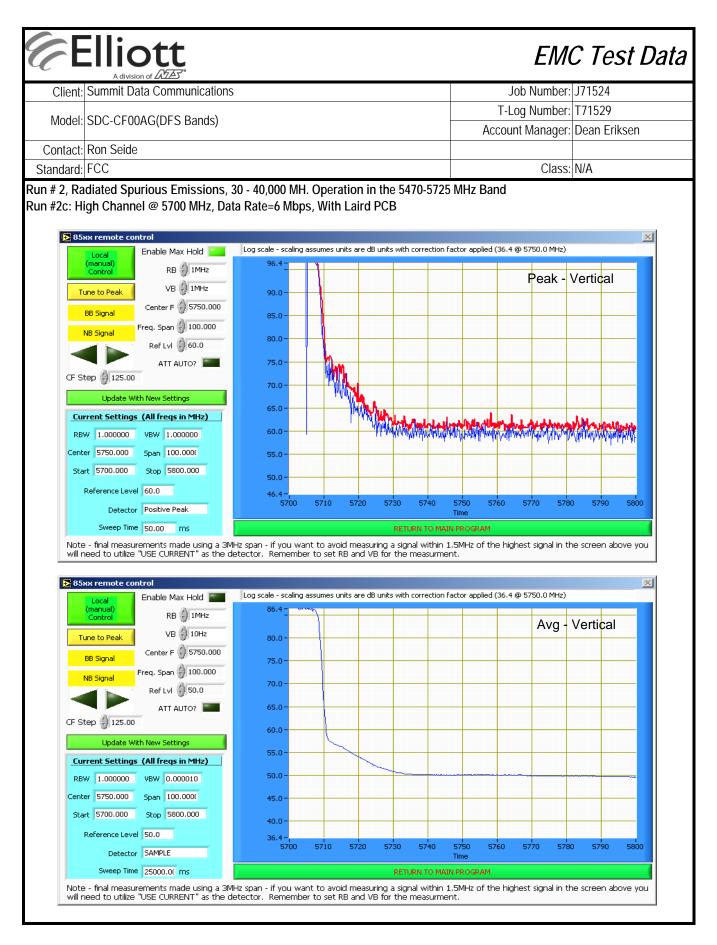

		Γ		//C Test Da
	Summit Data Communicati		Job Number:	
Model:	SDC-CF00AG(DFS Bands))	T-Log Number:	
Contact	Ron Seide		Account Manger:	
missions Standard(s):			Class:	
mmunity Standard(s):			Environment:	-
	The following inforn	st Configuration	n the test session(s).	
		ocal Support Equipme		50010
Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	iPAQ	Handheld Computer	-	-
Marcalant		mote Support Equipme		
Manufacturer	Model	Description	Serial Number	FCC ID
Port	Connected To	Description	Cable(s) Shielded or Unshielde	
iPAQ Power	AC Mains	2wire	Unshielded	1.5
Flash Module	iPAQ Module Port	-	-	-
ıring emissions testing	-	eration During Emissio transmit at the Low, Middle, a		

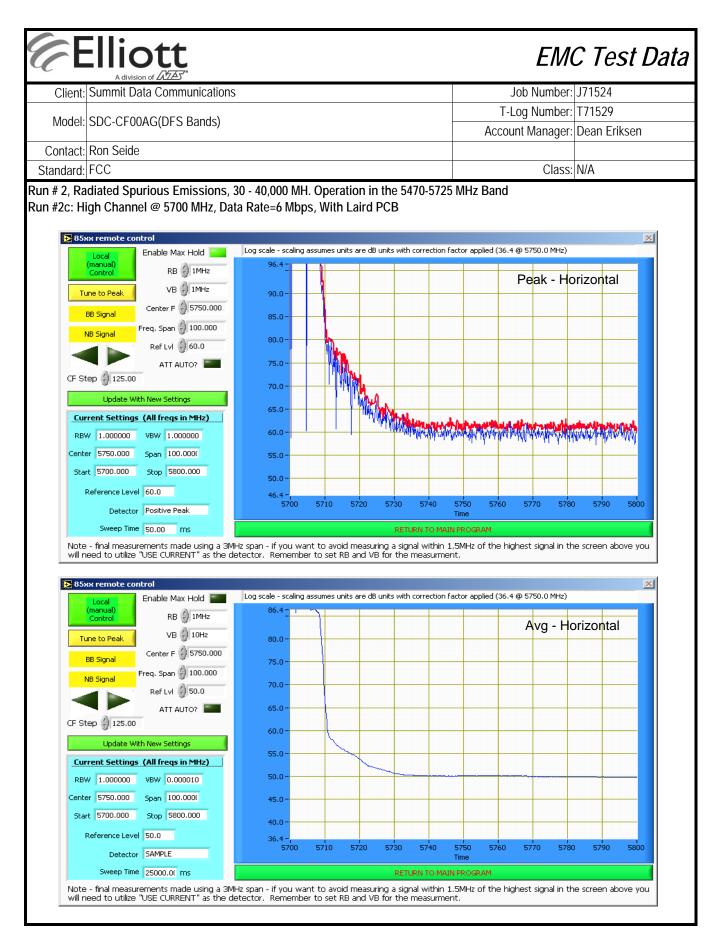

	Ellic	Stt				EM	C Test Data
Client:	Summit Dat	a Communica	ations			Job Number:	J71524
Model		AG(DFS Band				T-Log Number:	T71529
			15)			Account Manager:	Dean Eriksen
	Ron Seide						
Standard:	FCC					Class:	N/A
	RSS 2	10 and	FCC 1	5.407 (L	JNII) Radiated	Spurious Emi	issions
Test Spe	cific Detai Objective:	The objective	e of this test listed above	session is to e.	perform final qualification	testing of the EUT with r	respect to the
		4/30/2008 8: Suhaila Khu			Config. Used: Config Change:		
	est Location:		-		EUT Voltage:		
	F <mark>est Confi</mark> Id all local su		ent were loo	ated on the t	urntable for radiated spurio	ous emissions testina.	
					located 3 meters from the		
Ambient	Condition	S:	Т	emperature:	21 °C		
			P	el. Humidity:	F0.0/		
				ei. numuny.	50 %		
Summary	of Result	ts	I.	ei. Humiuity.	50 %		
Summary Run #	y of Resul	t s Channel	Power Setting	Measured Power	50 % Test Performed	Limit	Result / Margin
			Power	Measured	Test Performed Radiated Emissions, 1 - 40 GHz	Limit FCC 15.209 / 15 E	Result / Margin 46.7dBµV/m @ 17707.4MHz (-7.3dE
Run #	Mode 802.11a	Channel 5250-5350 Low 5250-5350 Center	Power Setting	Measured	Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz		46.7dBµV/m @ 17707.4MHz (-7.3dE 47.8dBµV/m @ 17851.0MHz (-6.2dE
	Mode 802.11a Chain A 802.11a Chain A 802.11a Chain A	Channel 5250-5350 Low 5250-5350 Center 5250-5350 High	Power Setting 100%	Measured	Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	46.7dBµV/m @ 17707.4MHz (-7.3dE 47.8dBµV/m @ 17851.0MHz (-6.2dE 49.1dBµV/m @ 10638.7MHz (-4.9dE
Run #	Mode 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A	Channel 5250-5350 Low 5250-5350 Center 5250-5350 High 5250-5350 High	Power Setting 100% 100%	Measured	Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Restricted Band Edge at 5350 MHz	FCC 15.209 / 15 E FCC 15.209 / 15 E	46.7dBµV/m @ 17707.4MHz (-7.3dE 47.8dBµV/m @ 17851.0MHz (-6.2dE 49.1dBµV/m @ 10638.7MHz (-4.9dE 51.6dBµV/m @ 5350.0MHz (-2.4dB
Run #	Mode 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A	Channel 5250-5350 Low 5250-5350 Center 5250-5350 High 5250-5350 High 5470-5725 Low	Power Setting 100% 100%	Measured	Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Rastricted Band Edge at 5350 MHz Restricted Band Edge at 5460 & 5470 MHz	FCC 15.209 / 15 E FCC 15.209 / 15 E FCC 15.209 / 15 E	46.7dBµV/m @ 17707.4MHz (-7.3dE 47.8dBµV/m @ 17851.0MHz (-6.2dE 49.1dBµV/m @ 10638.7MHz (-4.9dE 51.6dBµV/m @ 5350.0MHz (-2.4dB 49.7dBµV/m @ 5457.1MHz (-4.3dB
Run #	Mode 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A	Channel 5250-5350 Low 5250-5350 Center 5250-5350 High 5250-5350 High 5470-5725 Low 5470-5725 Low	Power Setting 100% 100% 100%	Measured	Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Restricted Band Edge at 5350 MHz Restricted Band Edge at 5460 & 5470 MHz Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E FCC 15.209 / 15 E FCC 15.209 / 15 E 15.209	46.7dBµV/m @ 17707.4MHz (-7.3df 47.8dBµV/m @ 17851.0MHz (-6.2df 49.1dBµV/m @ 10638.7MHz (-4.9df 51.6dBµV/m @ 5350.0MHz (-2.4dB 49.7dBµV/m @ 5457.1MHz (-4.3dB 45.1dBµV/m @ 11000.3MHz (-8.9df
Run #	Mode 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A	Channel 5250-5350 Low 5250-5350 Center 5250-5350 High 5250-5350 High 5470-5725 Low 5470-5725 Low 5470-5725 Center	Power Setting 100% 100% 100% 100%	Measured	Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Restricted Band Edge at 5350 MHz Restricted Band Edge at 5460 & 5470 MHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E FCC 15.209 / 15 E FCC 15.209 / 15 E 15.209 15.209	46.7dBµV/m @ 17707.4MHz (-7.3dE 47.8dBµV/m @ 17851.0MHz (-6.2dE 49.1dBµV/m @ 10638.7MHz (-4.9dE 51.6dBµV/m @ 5350.0MHz (-2.4dB 49.7dBµV/m @ 5457.1MHz (-4.3dB 45.1dBµV/m @ 11000.3MHz (-8.9dE 42.1dBµV/m @
Run #	Mode 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A 802.11a Chain A	Channel 5250-5350 Low 5250-5350 Center 5250-5350 High 5250-5350 High 5470-5725 Low 5470-5725 Low 5470-5725	Power Setting 100% 100% 100% 100% 100%	Measured	Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz Restricted Band Edge at 5350 MHz Restricted Band Edge at 5460 & 5470 MHz Radiated Emissions, 1 - 40 GHz Radiated Emissions,	FCC 15.209 / 15 E FCC 15.209 / 15 E FCC 15.209 / 15 E 15.209 15.209 FCC 15.209 / 15 E	46.7dBµV/m @ 17707.4MHz (-7.3df 47.8dBµV/m @ 17851.0MHz (-6.2df 49.1dBµV/m @ 10638.7MHz (-4.9df 51.6dBµV/m @ 5350.0MHz (-2.4dB 49.7dBµV/m @ 5457.1MHz (-4.3dB 45.1dBµV/m @ 11000.3MHz (-8.9df 42.1dBµV/m @

Client	A division of Summit Data	Communic	ations					Job Number:	J71524
							T	-Log Number:	
Model	SDC-CF00A	G(DFS Ban	ds)					0	Dean Eriksen
	Ron Seide								
Standard	FCC							Class:	N/A
Modificat	ions Made	During T	esting						
	tions were ma	•	•	sting					
Deviation	is From Th	e Standa	rd						
	ns were made			of the standa	rd.				
Note :	All final meas								
Note :	Preliminary t	esting show	ed no emissi	ons below 1	GHz related t	o the transm	nitter.		
	ow Channel o			•					
Fundamen	tal Signal Fie			/ 15.247	Detector	Azimuth	Height	Comments	
Fundamen	tal Signal Fie	ld Strength			Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments Data Rate=	6 Mbps
Fundamen Frequency	tal Signal Fie	Id Strength Pol	15.209	/ 15.247					
Fundamen Frequency MHz 5275.330 5275.330	al Signal Fie Level dBµV/m 102.7 111.2	Id Strength Pol v/h H H	15.209 Limit 54.0 74.0	/ 15.247 Margin 48.7 37.2	Pk/QP/Avg AVG PK	degrees 144 144	meters 2.0 2.0	Data Rate= RB = 1MHz, RB = VB = 1	VB = 10Hz IMHz
Fundamen Frequency MHz 5275.330 5275.250	tal Signal Fie Level dBμV/m 102.7 111.2 97.3	Id Strength Pol V/h H H V	15.209 Limit 54.0 74.0 54.0	/ 15.247 Margin 48.7 37.2 43.3	Pk/QP/Avg AVG PK AVG	degrees 144 144 71	meters 2.0 2.0 1.0	Data Rate= RB = 1MHz, RB = VB = 1 RB = 1MHz,	VB = 10Hz IMHz VB = 10Hz
Fundamen Frequency MHz 5275.330 5275.330	al Signal Fie Level dBµV/m 102.7 111.2	Id Strength Pol v/h H H	15.209 Limit 54.0 74.0	/ 15.247 Margin 48.7 37.2	Pk/QP/Avg AVG PK	degrees 144 144	meters 2.0 2.0	Data Rate= RB = 1MHz, RB = VB = 1	VB = 10Hz IMHz VB = 10Hz
Fundamen Frequency MHz 5275.330 5275.250 5275.250	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5	Id Strength Pol v/h H H V V	15.209 Limit 54.0 74.0 54.0	/ 15.247 Margin 48.7 37.2 43.3	Pk/QP/Avg AVG PK AVG	degrees 144 144 71	meters 2.0 2.0 1.0	Data Rate= RB = 1MHz, RB = VB = 1 RB = 1MHz,	VB = 10Hz IMHz VB = 10Hz
Fundamen Frequency MHz 5275.330 5275.250 5275.250	tal Signal Fie Level dBμV/m 102.7 111.2 97.3	Id Strength Pol v/h H H V V	15.209 Limit 54.0 74.0 54.0 74.0	/ 15.247 Margin 48.7 37.2 43.3	Pk/QP/Avg AVG PK AVG	degrees 144 144 71	meters 2.0 2.0 1.0	Data Rate= RB = 1MHz, RB = VB = 1 RB = 1MHz,	VB = 10Hz IMHz VB = 10Hz
Fundamen Frequency MHz 5275.330 5275.250 5275.250 5275.250 Spurious F Frequency MHz	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 tadiated Emis Level dBμV/m	Id Strength Pol V/h H V V V ssions: Pol V/h	15.209 Limit 54.0 74.0 54.0 74.0 74.0 15.209 Limit	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg	degrees 144 144 71 71 71 Azimuth degrees	meters 2.0 2.0 1.0 1.0 Height meters	Data Rate= RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 RB = VB = 1	VB = 10Hz MHz VB = 10Hz MHz
Fundamen Frequency MHz 5275.330 5275.250 5275.250 5275.250 Spurious F Frequency MHz 17707.370	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 tadiated Emis Level dBμV/m 46.7	Id Strength Pol V/h H V V V Ssions: Pol V/h H	15.209 Limit 54.0 74.0 54.0 74.0 74.0 15.209 Limit 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG	degrees 144 144 71 71 71 Azimuth degrees 34	meters 2.0 2.0 1.0 1.0 Height meters 1.0	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Fundamen Frequency MHz 5275.330 5275.25	tal Signal Fie Level dBµV/m 102.7 111.2 97.3 105.5 adiated Emis Level dBµV/m 46.7 45.9	Id Strength Pol V/h H H V V Ssions: Pol V/h H H	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG	degrees 144 144 71 71 Azimuth degrees 34 211	meters 2.0 2.0 1.0 1.0 Height meters 1.0 1.10	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Frequency MHz 5275.330 5275.25	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 adiated Emis Level dBμV/m 46.7 45.9 45.3	Id Strength Pol V/h H V V Ssions: Pol V/h H H V	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0 54.0 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1 -8.7	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG AVG	degrees 144 144 71 71 71 Azimuth degrees 34 211 132	meters 2.0 2.0 1.0 1.0 Height meters 1.0 1.4	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Fundamen Frequency MHz 5275.330 5275.250 5275.250 5275.250 Spurious R Frequency MHz 17707.370 10561.500 10561.500	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 cadiated Emis Level dBμV/m 46.7 45.9 45.3 62.5	Id Strength Pol V/h H V V Ssions: Pol V/h H H V H H	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0 54.0 74.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1 -8.7 -11.5	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG AVG PK	degrees 144 144 71 71 71 Azimuth degrees 34 211 132 211	meters 2.0 2.0 1.0 1.0 Height meters 1.0 1.4 1.0 1.4	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Fundamen Frequency MHz 5275.330 5275.250 5275.250 5275.250 Spurious F Frequency MHz 17707.370 10561.500 17467.560 10561.500 15849.170	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 adiated Emis Level dBμV/m 46.7 45.9 45.3 62.5 40.2	Id Strength Pol v/h H V V Ssions: Pol v/h H V V V H V V V H V/h H V H V H V V	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0 54.0 74.0 54.0 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1 -8.7 -11.5 -13.8	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG AVG PK AVG	degrees 144 144 71 71 71 Azimuth degrees 34 211 132 211 132 211 119	meters 2.0 2.0 1.0 1.0 Height meters 1.0 1.4 1.0 1.4	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Fundamen Frequency MHz 5275.330 5275.250 5275.250 5275.250 Spurious F Frequency MHz 17707.370 10561.500 17467.560 15849.170 15846.670	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 tadiated Emis Level dBμV/m 46.7 45.9 45.3 62.5 40.2 39.6	Id Strength Pol V/h H V V V Ssions: Pol V/h H H V H V H V H	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1 -8.7 -11.5 -13.8 -14.4	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG	degrees 144 144 71 71 Azimuth degrees 34 211 132 211 119 33	meters 2.0 2.0 1.0 1.0 1.0 1.0 Height meters 1.0 1.4 1.0 1.4 1.0	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Fundamen Frequency MHz 5275.330 5275.250 10561.500 10561.500 10561.500 15849.170 15846.670 10551.670	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 cadiated Emis Level dBμV/m 46.7 45.9 45.3 62.5 40.2 39.6 39.2	Id Strength Pol V/h H V V V Ssions: Pol V/h H H V H V H V H V V	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1 -7.3 -8.1 -8.7 -11.5 -13.8 -14.4 -14.8	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG	degrees 144 144 71 71 Azimuth degrees 34 211 132 211 132 211 33 40	meters 2.0 2.0 1.0 1.0 Height meters 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Eundamen Frequency MHz 5275.330 5275.250 10561.500 10561.500 15849.170 15846.670 10551.670 15846.670 10551.670	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 Cadiated Emis Level dBμV/m 46.7 45.9 45.3 62.5 40.2 39.6 39.2 58.2	Id Strength Pol v/h H V V ssions: Pol v/h H V Ssions: Pol v/h H V H V H V H V H V H V H V H V H V H V H	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1 -8.7 -11.5 -13.8 -14.4 -14.8 -15.8	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG	degrees 144 144 71 71 71 Azimuth degrees 34 211 132 211 132 211 33 40 34	meters 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.0	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Fundamen Frequency MHz 5275.330 5275.250 5275.250 5275.250 Spurious F Frequency MHz 17707.370 10561.500 15849.170 15849.170 15846.670 17707.370 17467.560	al Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 adiated Emis Level dBμV/m 46.7 45.9 45.3 62.5 40.2 39.6 39.2 58.2 56.6	Id Strength Pol V/h H V Ssions: Pol V/h H V Ssions: Pol V/h H V H V H V H V H V H V H V H V	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1 -7.3 -8.1 -8.7 -11.5 -13.8 -14.4 -14.8 -15.8 -17.4	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	degrees 144 144 71 71 71 Azimuth degrees 34 211 132 211 132 211 119 33 40 34 34 132	meters 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.10 1.0 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.00 1.00 1.00 1.00 1.00	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz
Fundamen Frequency MHz 5275.330 5275.250 5275.250 Spurious F Frequency	tal Signal Fie Level dBμV/m 102.7 111.2 97.3 105.5 Cadiated Emis Level dBμV/m 46.7 45.9 45.3 62.5 40.2 39.6 39.2 58.2	Id Strength Pol v/h H V V ssions: Pol v/h H V Ssions: Pol v/h H V H V H V H V H V H V H V H V H V H V H	15.209 Limit 54.0 74.0 54.0 74.0 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	/ 15.247 Margin 48.7 37.2 43.3 31.5 / 15.247 Margin -7.3 -8.1 -8.7 -11.5 -13.8 -14.4 -14.8 -15.8	Pk/QP/Avg AVG PK AVG PK Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG	degrees 144 144 71 71 71 Azimuth degrees 34 211 132 211 132 211 33 40 34	meters 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.4 1.0 1.0	Data Rate=(RB = 1MHz, RB = VB = 1 RB = 1MHz, RB = VB = 1 Comments	VB = 10Hz MHz VB = 10Hz MHz


Client:	Summit Data	Communic	ations					Job Number: J71524
N. A. S. J. S. L.			T	-Log Number: T71529				
wodel:	SDC-CF00A	G(DES Band	Acco	ount Manager: Dean Erikser				
Contact:	Ron Seide							
Standard:	FCC							Class: N/A
n #1b: Ce ndament	enter Channo al Signal Fie	el @ 5300 N	IHz, Data Ra	ate=6 Mbps,	eration in the With Laird P	СВ		
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=6 Mbps
5301.250 5301.250	96.1 104.2	V V	54.0 74.0	42.1 30.2	AVG PK	63 63	1.3 1.3	RB = 1MHz, VB = 10Hz $RB = VB = 1MHz$
5301.250 5305.000	104.2	H	54.0	48.8	AVG	163	2.0	RB = 1MHz, $VB = 10Hz$
5305.000	110.1	H	74.0	36.1	PK	163	2.0	RB = VB = 1MHz
	adiated Emis		45.000					
requency MHz	Level	Pol		/ 15.247	Detector Pk/QP/Avg	Azimuth	Height	Comments
101F1Z 7851.040	dBµV/m 47.8	v/h V	Limit 54.0	Margin -6.2	AVG	degrees 62	meters 1.0	Data Rate=6 Mbps
0598.920	47.0	H	54.0	-0.2	AVG	210	1.0	
7790.650	47.0	H	54.0	-7.0	AVG	0	1.0	
0601.500	47.0	V	54.0	-7.0	AVG	215	2.2	
0601.500	63.5	V	74.0	-10.5	PK	215	2.2	
)598.920	63.0	Н	74.0	-11.0	PK	210	1.4	
5868.750	39.9	H	54.0	-14.1	AVG	99	1.0	
5913.080	39.6	V V	54.0	-14.4	AVG	241	1.0	
7851.040 7790.650	59.6 58.6	H	74.0 74.0	-14.4 -15.4	PK PK	62 0	1.0 1.0	
5868.750	51.1	H	74.0	-22.9	PK	99	1.0	
5913.080	50.6	V	74.0	-23.4	PK	241	1.0	
ote 1:					5.209 was us Hz (~68dBuV	5		le a restricted band that fail


un #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band un #1c: High Channel @ 5320 MHz, Data Rate=6 Mbps, With Laird PCB undamental Signal Field Strength requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin PK/OP/Avg degrees meters Data Rate=6 Mbps 321.250 100.7 H - - PK 185 2.1 RB = VB = 1MHz VB = 1MHz 3221.250 100.7.9 H - - PK 81 1.0 RB = VB = 1MHz 325.080 97.4 V - - PK 81 1.0 RB = VB = 1MHz 335.080 105.2 V - - PK 81 1.0 RB = VB = 1MHz 355.000 51.6 H 54.0 -2.4 AVG 185 2.1 355.000 5352.230 63.1 V 74.0 -7.4 PK 185 2.1 355.000 5352.230 63.1 V 74.0 -10.9 PK	Client:	A division Summit Data		ations					Job Number:	J71524	
Account Manager Dean Enksen Account Manager Dean Enksen Standard, FCC Class. un #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band un un #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band un un #1: High Channel @ 5320 MHz, Data Rate=6 Mbps, With Laird PCB azimuth undamental Signal Field Strength requency Level Pol 15:209 / 15:247 Delector Azimuth Height Comments 321:250 100.7 H - - AVG 185 2.1 RB = 1MHz, VB = 10Hz 321:250 107.9 H - - PK 185 2.1 RB = 1MHz, VB = 10Hz 325:080 70.4 V - - PK 81 1.0 RB = 1MHz, VB = 10Hz 325:080 105.2 V - - PK 81 1.0 RB = 1MHz S0 335:000 51.6 H 52.09 / 15:247 Delector Azimuth Height	Madal			40)	T·	Log Number:	T71529				
Standard: FCC Class N/A Standard: FCC Class N/A un #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band un #1: High Channel @ 5320 MHz, Data Rate=6 Mbps, With Laird PCB Junct colspan="2">Junct colspan="2">MHz Object colspan="2">Object colspan="2">Class N/A Index of the point of the point colspan="2">Standard: PK/QP/Avg Agences meters Data Rate=6 Mbps MHz Objector Azimuth Height Comments MHz Objector Azimuth Height Comments State Radiated Field Strength Tequency Level Pol D5.209 / 15.247 Detector Azimuth Height Comments MHz Bab VB = 1MHz Sto MHz Band Edge Signal Radiated Field Strength Tequency Level Pol D5.209 / 15.247 Detector Azimuth Height Comments	woder:	SDC-CFUUA	G(DE2 Band	JS)	Ассо	unt Manager:	Dean Eriksen				
un #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band un #1c: High Channel @ 5320 MHz, Data Rate=6 Mbps, With Laird PCB undamental Signal Field Strength requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dB _H V/m v/h Limit Margin PK/OP/Avg degrees meters Data Rate=6 Mbps 5321.250 100.7 H AVG 185 2.1 RB = 1MHz, VB = 10Hz 5325.080 97.4 V PK 81 1.0 RB = 1MHz, VB = 10Hz 5325.080 105.2 V PK 81 1.0 RB = 1MHz, VB = 10Hz 5325.080 105.2 V PK 81 1.0 RB = 1MHz, VB = 10Hz 5325.080 105.2 V PK 81 1.0 RB = 1MHz, VB = 10Hz 5325.080 105.2 V PK 81 1.0 RB = 1MHz, VB = 10Hz 5325.080 105.2 V PK 81 1.0 RB = 1MHz 5350.000 51.6 H 54.0 -2.4 AVG 185 2.1 5350.000 50.2 V 54.0 -7.4 PK 185 2.1 5352.230 63.1 V 74.0 -10.9 PK 81 1.0 5352.230 63.1 V 74.0 -10.9 PK 81 1.0 5352.230 63.1 V 74.0 -5.5 AVG 335 1.0 5354.490 -5.57 AVG 0 1.0 5354.490 -5.57 AVG 0 1.0 5444.490 48.3 V 54.0 -5.57 AVG 0 1.0 5444.490 48.3 V 54.0 -5.57 AVG 0 1.0 5444.490 48.3 V 54.0 -5.77 AVG 0 1.0 5444.490 48.3 V 54.0 -5.77 AVG 0 1.0 5444.490 48.3 V 54.0 -5.77 AVG 0 1.0 5444.490 48.3 V 54.0 -1.3.1 PK 114 1.4 5444.490 48.3 V 54.0 -1.3.4 AVG 114 1.4 5444.490 48.3 V 54.0 -1.3.4 AVG 114 1.4 5444.490 40.3 V 54.0 -1.3.4 AVG 114 1.4 5444.490 40.3 V 54.0 -1.3.4 AVG 67 1.0 5495.000 40.2 H 54.0 -1.3.6 AVG 67 1.0 5497.330 40.4 V 54.0 -1.3.6 AVG 67 1.0 5497.330 40.4 V 54.0 -1.3.6 AVG 67 1.0 5497.330 53.8 V 74.0 -20.2 PK 67 1.0 5497.330 53.8 V 74.0 -20.2 PK 67 1.0 5497.330 53.8 V 74.0 -20.2 PK 67 1.0 5495.000 51.9 H 74.0 -20.2 PK 67 1.0 540.1 Reference Restricted bands, the limit of 15.209 was used. Any emission outside a restricted ba	Contact:	Ron Seide									
un #1c: High Channel @ 5320 MHz, Data Rate=6 Mbps, With Laird PCB undamental Signal Field Strength requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters Data Rate=6 Mbps 3321.250 100.7 H AVG 185 2.1 RB = 1MHz, VB = 10Hz 3325.080 7.4 V PK 185 2.1 RB = VB = 1MHz 3325.080 105.2 V PK 81 1.0 RB = VB = 1MHz 3325.080 105.2 V PK 81 1.0 RB = VB = 1MHz 3350.000 51.6 H 54.0 -2.4 AVG 185 2.1 S350.000 51.6 H 54.0 -2.4 AVG 185 2.1 S350.000 50.2 V 54.0 -3.8 AVG 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK PK 81 1.0 Pwrious Radiated Emissions: requency Level Pol 15.209 / 15 PK PK 81 1.0 Pwrious Radiated Emissions: Pwrious Radiated Emissions Pwrious Radiated Field Strength PW/D Pi/WP PK 81 1.0 Pwrious Radiated PK PK 81 1.0 Pwrious Radiated Emissions Pwrious Radiated PK PK 81 1.0 Pwrious Radiated PK PK 81 1.0 Pwrious Radiated Field Pi PK 81	Standard:	FCC							Class:	N/A	
MHz dB ₁ V/m v/h Limit Margin Pk/OP/Avg degrees meters Data Rate=6 Mbps 321.250 100.7 H - - AVG 185 2.1 RB = 1MHz, VB = 10Hz 321.250 107.9 H - - PK 185 2.1 RB = 1MHz, VB = 10Hz 325.080 97.4 V - - AVG 81 1.0 RB = VB = 1MHz, VB = 10Hz 325.080 105.2 V - - PK 81 1.0 RB = VB = 1MHz S0 MHz Bad Edge Signal Radiated Field Strength - PK 81 1.0 RB = VB = 1MHz s0 MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters Data Rate=6 Mbps 350.000 51.6 H 54.0 -2.4 AVG 185 2.1 352.230 63.1 V 74.0 -10.9 PK 81 1.0 various Radiated Emissions:	ın #1c: Hi Indament	gh Channel al Signal Fie	@ 5320 MH	z, Data Rate	=6 Mbps, W	/ith Laird PC	B				
5321.250 100.7 H - - AVG 185 2.1 RB = 1MHz, VB = 10Hz 5321.250 107.9 H - - PK 185 2.1 RB = VB = 10Hz 5325.080 97.4 V - - AVG 81 1.0 RB = 1MHz, VB = 10Hz 5325.080 105.2 V - - PK 81 1.0 RB = VB = 1MHz 5325.080 105.2 V - - PK 81 1.0 RB = VB = 10Hz 5350.000 51.6 H 54.0 -2.4 AVG 185 2.1 5350.000 50.2 V 54.0 -3.8 AVG 81 1.0 purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0638.670 49	requency		_					0			
5321.250 107.9 H - - PK 185 2.1 RB = VB = 1MHz 5325.080 97.4 V - - AVG 81 1.0 RB = 1MHz, VB = 10Hz 5325.080 105.2 V - - PK 81 1.0 RB = VB = 1MHz 350 MHz Edge Signal Radiated Field Strength - - PK 81 1.0 RB = VB = 1MHz 350 MHz dBµV/m Vh Limit Margin Pk/OP/Avg degrees meters Data Rate=6 Mbps 5350.000 51.6 H 54.0 -2.4 AVG 185 2.1 5352.490 66.6 H 74.0 -10.9 PK 81 1.0 5352.230 63.1 V 74.0 -10.9 PK 81 1.0 purious Radiated Emissions: - - AVG 221 1.4 - 7935.970 48.5 H 54.0 -5.7<					<u>u</u>	5	<u>u</u>				
3325.080 97.4 V - - AVG 81 1.0 RB = 1MHz, VB = 10Hz 3325.080 105.2 V - - PK 81 1.0 RB = 1MHz, VB = 10Hz 3325.080 105.2 V - - PK 81 1.0 RB = 1MHz, VB = 10Hz 3350.000 15.209 / 15.247 Detector Azimuth Height Comments MHZ dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters Data Rate=6 Mbps 3352.490 66.6 H 74.0 -7.4 PK 185 2.1 3352.230 63.1 V 74.0 -10.9 PK 81 1.0 si352.230 63.1 V 74.0 -10.9 PK 81 1.0 si352.230 63.1 V 74.0 -5.5 AVG 81 1.0 si362.230 63.1 V 74.0 -5.7 AVG 221 1.4 </td <td></td>											
3325.080 105.2 V - - PK 81 1.0 RB = VB = 1MHz 350 MHz Band Edge Signal Radiated Field Strength MHz Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters Data Rate=6 Mbps 3550.000 51.6 H 54.0 -2.4 AVG 185 2.1 3550.000 50.2 V 54.0 -3.8 AVG 81 1.0 s352.230 63.1 V 74.0 -10.9 PK 81 1.0 purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 0638.670 49.1 H 54.0 -5.5 AVG 0 1.0 0641.830 45.9 V											
350 MHz Band Edge Signal Radiated Field Strength requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbps 5350.000 51.6 H 54.0 -2.4 AVG 185 2.1 5350.000 50.2 V 54.0 -7.4 PK 185 2.1 5352.490 66.6 H 74.0 -7.4 PK 185 2.1 5352.230 63.1 V 74.0 -10.9 PK 81 1.0 purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/OP/Avg degrees meters 0638.670 48.5 H 54.0 -5.5 AVG 0 1.0 <				-	-						
requency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters Data Rate=6 Mbps 350.000 51.6 H 54.0 -2.4 AVG 185 2.1 352.490 66.6 H 74.0 -7.4 PK 185 2.1 352.200 50.2 V 54.0 -3.8 AVG 81 1.0 storious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters of38.670 49.1 H 54.0 -5.5 AVG 221 1.4 7935.970 48.5 H 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG	520.000	100.2	v	-	_		01	1.0		1111112	
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbps 5350.000 51.6 H 54.0 -2.4 AVG 185 2.1 5352.490 66.6 H 74.0 -7.4 PK 185 2.1 5350.000 50.2 V 54.0 -3.8 AVG 81 1.0 5352.230 63.1 V 74.0 -10.9 PK 81 1.0 purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0638.670 49.1 H 54.0 -5.5 AVG 335 1.0 7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 60.9 V 74.0 -13.1 PK		and Edge S	<u>v</u>						•		
5350.000 51.6 H 54.0 -2.4 AVG 185 2.1 5352.490 66.6 H 74.0 -7.4 PK 185 2.1 5350.000 50.2 V 54.0 -3.8 AVG 81 1.0 5352.230 63.1 V 74.0 -10.9 PK 81 1.0 purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 0 0638.670 49.1 H 54.0 -5.5 AVG 335 1.0 7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0641.830 60.9 V 74.0 -13.6 AVG 67 1								5			
3352.490 66.6 H 74.0 -7.4 PK 185 2.1 3350.000 50.2 V 54.0 -3.8 AVG 81 1.0 3352.230 63.1 V 74.0 -10.9 PK 81 1.0 purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0638.670 49.1 H 54.0 -4.9 AVG 221 1.4 7935.970 48.5 H 54.0 -5.5 AVG 0 1.0 0641.830 45.9 V 54.0 -5.7 AVG 0 1.0 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.6 AVG 67 1.0 5995.000					0	J	U U		Data Rate=	6 Mbps	
3350.000 50.2 V 54.0 -3.8 AVG 81 1.0 3352.230 63.1 V 74.0 -10.9 PK 81 1.0 burious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 0638.670 49.1 H 54.0 -4.9 AVG 221 1.4 7935.970 48.5 H 54.0 -5.5 AVG 0 1.0 0641.830 45.9 V 54.0 -5.7 AVG 0 1.0 0641.830 60.9 V 74.0 -8.1 AVG 114 1.4 5997.330 40.4 V 54.0 -13.6 AVG 67 1.0 5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 </td <td></td>											
3352.230 63.1 V 74.0 -10.9 PK 81 1.0 purious Radiated Emissions: requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 0638.670 49.1 H 54.0 -4.9 AVG 221 1.4 7935.970 48.5 H 54.0 -5.5 AVG 335 1.0 7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0643.8670 65.0 H 74.0 -9.0 PK 221 1.4 06441.830 60.9 V 74.0 -13.1 PK 114 1.4 5997.330 40.4 V 54.0 -13.8 AVG 129 1.0 7935.9											
Durious Radiated Emissions: Product Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0638.670 49.1 H 54.0 -4.9 AVG 221 1.4 1.4 7935.970 48.5 H 54.0 -5.5 AVG 335 1.0 1.0 7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0638.670 65.0 H 74.0 -9.0 PK 221 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.6 AVG 67 1.0 1.0 1.0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 <											
requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0638.670 49.1 H 54.0 -4.9 AVG 221 1.4 7935.970 48.5 H 54.0 -5.5 AVG 335 1.0 7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0643.670 65.0 H 74.0 -9.0 PK 221 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 5997.330 40.4 V 54.0 -13.6 AVG 67 1.0 7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V <td>352.230</td> <td>63.1</td> <td>V</td> <td>/4.0</td> <td>-10.9</td> <td>PK</td> <td>81</td> <td>1.0</td> <td></td> <td></td>	352.230	63.1	V	/4.0	-10.9	PK	81	1.0			
requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 0638.670 49.1 H 54.0 -4.9 AVG 221 1.4 7935.970 48.5 H 54.0 -5.5 AVG 335 1.0 7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0643.830 60.9 V 74.0 -9.0 PK 221 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 5997.330 40.4 V 54.0 -13.6 AVG 67 1.0 5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H <td>purious Ra</td> <td>adiated Emi</td> <td>ssions:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	purious Ra	adiated Emi	ssions:								
0638.670 49.1 H 54.0 -4.9 AVG 221 1.4 7935.970 48.5 H 54.0 -5.5 AVG 335 1.0 7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0638.670 65.0 H 74.0 -9.0 PK 221 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.6 AVG 67 1.0 5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H 74.0 -14.0 PK 0 1.0 7935.970 60.0 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0				15.20	9/15E	Detector	Azimuth	Height	Comments		
7935.970 48.5 H 54.0 -5.5 AVG 335 1.0 7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0638.670 65.0 H 74.0 -9.0 PK 221 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.6 AVG 67 1.0 5997.330 40.4 V 54.0 -13.6 AVG 129 1.0 5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V 74.0 -20.2 PK 67 1.0 5997.000 51.9 H 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0	MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7844.490 48.3 V 54.0 -5.7 AVG 0 1.0 0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0638.670 65.0 H 74.0 -9.0 PK 221 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.6 AVG 67 1.0 5997.330 40.4 V 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -20.2 PK 129 1.0 <td 15.209="" any<="" bands,="" colspaysission="" limit="" of="" restricted="" sin="" td="" the="" used.="" was=""><td>0638.670</td><td>49.1</td><td>Н</td><td></td><td>-4.9</td><td></td><td>221</td><td>1.4</td><td></td><td></td></td>	<td>0638.670</td> <td>49.1</td> <td>Н</td> <td></td> <td>-4.9</td> <td></td> <td>221</td> <td>1.4</td> <td></td> <td></td>	0638.670	49.1	Н		-4.9		221	1.4		
0641.830 45.9 V 54.0 -8.1 AVG 114 1.4 0638.670 65.0 H 74.0 -9.0 PK 221 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 5997.330 40.4 V 54.0 -13.6 AVG 67 1.0 5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -22.1 PK 129 1.0							335	1.0			
0638.670 65.0 H 74.0 -9.0 PK 221 1.4 0641.830 60.9 V 74.0 -13.1 PK 114 1.4 5997.330 40.4 V 54.0 -13.6 AVG 67 1.0 5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -22.1 PK 129 1.0											
0641.830 60.9 V 74.0 -13.1 PK 114 1.4 5997.330 40.4 V 54.0 -13.6 AVG 67 1.0 5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V 74.0 -14.0 PK 0 1.0 5997.330 53.8 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -20.2 PK 129 1.0 5995.000 51.9 H 74.0 -20.2 PK 129 1.0 5995.000 51.9 H 74.0 -22.1 PK 129 1.0 sto 1:											
5997.330 40.4 V 54.0 -13.6 AVG 67 1.0 5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V 74.0 -14.0 PK 0 1.0 5997.330 53.8 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -20.2 PK 129 1.0 For all emissions in restricted bands, the limit of 15.209 was used. Any emission outside a restricted band that failed									 		
5995.000 40.2 H 54.0 -13.8 AVG 129 1.0 7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V 74.0 -14.0 PK 0 1.0 5997.330 53.8 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -22.1 PK 129 1.0			-								
7935.970 60.0 H 74.0 -14.0 PK 335 1.0 7844.490 60.0 V 74.0 -14.0 PK 0 1.0 5997.330 53.8 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -22.1 PK 129 1.0 sto 1:											
7844.490 60.0 V 74.0 -14.0 PK 0 1.0 5997.330 53.8 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -22.1 PK 129 1.0 sto 1:											
5997.330 53.8 V 74.0 -20.2 PK 67 1.0 5995.000 51.9 H 74.0 -22.1 PK 129 1.0 For all emissions in restricted bands, the limit of 15.209 was used. Any emission outside a restricted band that failed									+		
5995.000 51.9 H 74.0 -22.1 PK 129 1.0 For all emissions in restricted bands, the limit of 15.209 was used. Any emission outside a restricted band that failed									+		
For all emissions in restricted bands, the limit of 15.209 was used. Any emission outside a restricted band that failed											
	000.6440	51.7	Н	/4.0	-22.1	۲K	129	1.0			
		For all emiss	sions in restri	icted bands	the limit of 1	5.209 was us	ed. Anv emi	ssion outsid	le a restricted	band that failed t	
	ote 1:										
				eu ayamsi in		1112 (~000DUV	//// @JIII/ 160	unement.			


Contact: R Standard: F Run # 2, Rad Run #2a: Lov Da Test Test Test Frequency MHz 5497.170 5501.170 5501.170 5501.170 5501.170 5501.170 Frequency MHz	Ron Seide icCC iated Spuri v Channel of ate of Test: t Engineer: t Location: I Signal Fie Level dBµV/m 95.0 103.1 90.1 98.2	@ 5500 MHz 5/5/2008 0:0 Suhaila Khus OATS # 1	ons, 30 - 40 , Data Rate 0 shzad		Ci Con	e 5470-5725 onfig. Used: fig Change: UT Voltage: Azimuth	Acco MHz Band 1 None 120V/60Hz	Class:	Dean Erikser
Contact: R Standard: F Run # 2, Rad Run #2a: Lov Da Test Test Test Frequency MHz 5497.170 5501.170 5501.170 5501.170 5501.170 5501.170 Frequency MHz	Ron Seide icCC iated Spuri v Channel of ate of Test: t Engineer: t Location: I Signal Fie Level dBµV/m 95.0 103.1 90.1 98.2	ous Emissio @ 5500 MHz 5/5/2008 0:0 Suhaila Khus OATS # 1 Id Strength Pol V/h H H H V	ons, 30 - 40 , Data Rate 0 shzad 15.209	=6 Mbps, W / 15.247	ith Lair PCB Ci Con E Detector	onfig. Used: fig Change: UT Voltage:	MHz Band 1 None 120V/60Hz	Class:	
Standard: F Run # 2, Rad Da Run #2a: Lov Da Test Test Test Frequency MHz 5497.170 5501.170 5501.170 5501.170 5350-5460 MI Frequency MHz	iated Spuri v Channel of ate of Test: t Engineer: tt Location: I Signal Fie Level dBµV/m 95.0 103.1 90.1 98.2	 5500 MHz 5/5/2008 0:0 Suhaila Khu: OATS # 1 Id Strength Pol V/h H V 	, Data Rate 0 shzad 15.209	=6 Mbps, W / 15.247	ith Lair PCB Ci Con E Detector	onfig. Used: fig Change: UT Voltage:	MHz Band 1 None 120V/60Hz	Class:	
Standard: F Run # 2, Rad Da Run #2a: Lov Da Test Test Test Frequency MHz 5497.170 5501.170 5501.170 5501.170 5350-5460 MI Frequency MHz	iated Spuri v Channel of ate of Test: t Engineer: tt Location: I Signal Fie Level dBµV/m 95.0 103.1 90.1 98.2	 5500 MHz 5/5/2008 0:0 Suhaila Khu: OATS # 1 Id Strength Pol V/h H V 	, Data Rate 0 shzad 15.209	=6 Mbps, W / 15.247	ith Lair PCB Ci Con E Detector	onfig. Used: fig Change: UT Voltage:	1 None 120V/60Hz		N/A
Run # 2, Rad Run #2a: Lov Da Test Tes Fundamental Frequency MHz 5497.170 5501.170 5501.170 5501.170 5501.170 5501.170 5501.170 MHz	iated Spuri v Channel of ate of Test: t Engineer: t Location: I Signal Fie Level dBµV/m 95.0 103.1 90.1 98.2	 5500 MHz 5/5/2008 0:0 Suhaila Khu: OATS # 1 Id Strength Pol V/h H V 	, Data Rate 0 shzad 15.209	=6 Mbps, W / 15.247	ith Lair PCB Ci Con E Detector	onfig. Used: fig Change: UT Voltage:	1 None 120V/60Hz		
Run #2a: Lov Da Test Tes undamental Frequency MHz 5497.170 5501.170 5501.170 5501.170 5501.170 5501.170 MHz	v Channel of ate of Test: t Engineer: tt Location: I Signal Fie Level dBµV/m 95.0 103.1 90.1 98.2	 5500 MHz 5/5/2008 0:0 Suhaila Khu: OATS # 1 Id Strength Pol V/h H V 	, Data Rate 0 shzad 15.209	=6 Mbps, W / 15.247	ith Lair PCB Ci Con E Detector	onfig. Used: fig Change: UT Voltage:	1 None 120V/60Hz		
Da Test Tes Fundamental Frequency MHz 5497.170 5501.170 5501.170 5501.170 5501.170 5501.170 MHz	ate of Test: t Engineer: t Location: I Signal Fie Level dBµV/m 95.0 103.1 90.1 98.2	5/5/2008 0:0 Suhaila Khus OATS # 1 Id Strength Pol V/h H H H	0 shzad 15.209	/ 15.247	Con E Detector	fig Change: UT Voltage:	None 120V/60Hz		
Test Tes Fundamental Frequency MHz 5497.170 5501.170 5501.170 5501.170 5501.170 Frequency MHz	t Engineer: tt Location: I Signal Fie Level dBµV/m 95.0 103.1 90.1 98.2	Suhaila Khus OATS # 1 Id Strength Pol V/h H H V	shzad 15.209		Con E Detector	fig Change: UT Voltage:	None 120V/60Hz		
Tes Fundamental Frequency MHz 5497.170 5501.170 5501.170 5501.170 5501.170 Frequency MHz	t Location: I Signal Fie Level dBμV/m 95.0 103.1 90.1 98.2	OATS # 1 Id Strength Pol V/h H H V	15.209		E Detector	UT Voltage:	120V/60Hz		
Frequency MHz 5497.170 5497.170 5501.170 5501.170 5501.170 5501.170 Frequency MHz	Signal Fie Level dBμV/m 95.0 103.1 90.1 98.2	Id Strength Pol V/h H H V			Detector				
Frequency MHz 5497.170 5497.170 5501.170 5501.170 5350-5460 MI Frequency MHz	Level dBµV/m 95.0 103.1 90.1 98.2	Pol v/h H H V				Azimuth			
MHz 5497.170 5501.170 5501.170 5501.170 5350-5460 MI Frequency MHz	dBμV/m 95.0 103.1 90.1 98.2	v/h H H V				AZIMUTH	1 4 4 1 4 4	0	
5497.170 5497.170 5501.170 5501.170 5501.170 5350-5460 MI Frequency MHz	95.0 103.1 90.1 98.2	H H V	LIII)I(-	iviargin			Height	Comments	4 Mbra
5497.170 5501.170 5501.170 5350-5460 MI Frequency MHz	103.1 90.1 98.2	H V	-			degrees	meters	Data Rate= RB = 1MHz	
5501.170 5501.170 5350-5460 MI Frequency MHz	90.1 98.2	V		-	AVG PK	183 183	2.2 2.2	RB = IIMHZ, RB = VB = 1	
5501.170 5350-5460 MI Frequency MHz	98.2		-	-	AVG	96	1.0	RB = VB = RB = 1MHz,	
5 350-5460 MI Frequency MHz		V	-		PK	90	1.0	RB = VB = 1	
Frequency MHz	Hz Restrict	v		l		70	1.0		
Frequency MHz		ed Band Ed	ae Sianal R	adiated Fiel	d Strenath				
MHz	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
5457.070	49.7	V	54.0	-4.3	AVG	96	1.0		
5459.460	62.6	V	74.0	-11.4	PK	96	1.0		
5458.050	49.5	Н	54.0	-4.5	AVG	183	2.2		
5458.080	62.2	Н	74.0	-11.8	PK	183	2.2		
5460 - 5470 N					· · · ·			-	
Frequency	Level	Pol		δE	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
5468.020	49.7	V	68.3	-18.6	AVG	96	1.0		
5469.600	62.7	V	88.3	-25.6	PK	96	1.0	-	
5467.120	49.7 62.5	H	68.3	-18.6 25.9	AVG	184	2.2		
5467.770	62.5	Н	88.3	-25.8	РК	184	2.2		
Spurious Rad	diated Emic	sions							
Frequency	Level	Pol	15 200	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
11000.330	45.1	Н	54.0	-8.9	AVG	194	1.4		
11000.420	43.3	V	54.0	-10.7	AVG	360	1.5		
16499.920	41.3	V	54.0	-12.7	AVG	219	1.0	1	
16504.080	41.2	H	54.0	-12.8	AVG	105	1.0	1	
11000.330	57.4	Н	74.0	-16.6	PK	194	1.4		
11000.420	55.2	V	74.0	-18.8	PK	360	1.5		
16504.080	54.0	Н	74.0	-20.0	PK	105	1.0		
16499.920	52.3	V	74.0	-21.7	PK	219	1.0		



Client:	A division o Summit Data	Communic	ations					Job Number:	J71524
Marial			1-3				T-	Log Number:	T71529
wodel:	SDC-CF00A	G(DE2 Band	IS)			-	Ассо	unt Manager:	Dean Eriksen
Contact:	Ron Seide								
Standard:	FCC							Class:	N/A
undament	enter Channe al Signal Fiel			ate=6 Mbps,	With Laird P	CB	Height	Comments	
Frequency MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mhns
5605.000	υ <u>β</u> μν/π 97.7	H	-	iviaryin -	AVG	172	2.2	RB = 1MHz	
5605.000	105.4	H	-	-	PK	172	2.2	RB = VB =	
5604.920	90.0	V	-	-	AVG	93	1.0	RB = 1MHz	
5604.920	98.2	V	-	-	PK	93	1.0	RB = VB = 2	•
	adiated Emis		15 00		Detector	A mine the	المارية الم	Comment	
	Level	Pol		9 / 15E Margin	Detector	Azimuth	Height	Comments	4 Mbro
MHz 1200.000	dBµV/m 42.1	v/h V	Limit 54.0	Margin -11.9	Pk/QP/Avg AVG	degrees 310	meters 1.5	Data Rate=	o iviups
5825.000	42.1	V V	54.0 54.0	-11.9 -12.1	AVG	73	2.5		
6779.420	41.9	H	54.0	-12.1	AVG	0	1.0		
1200.420	41.3	H	54.0	-12.7	AVG	360	1.5		
6779.420	53.6	H	74.0	-20.4	PK	0	1.0		
1200.000	53.4	V	74.0	-20.6	PK	310	1.5		
6825.000	53.0	V	74.0	-21.0	PK	73	2.5		
1200.420	52.5	Н	74.0	-21.5	PK	360	1.5		
ote 1:	For emission 27dBm/MHz			e limit of 15.2	209 was used.	For all othe	r emissions	, the average	e limit was set

Model: Contact: Standard:	Summe Dute	a Communica	ations					Job Number: J71524
Contact:			4c)				T	-Log Number: T71529
	SDC-CI UUA	G(DI 3 Dalic	13)				Acco	ount Manager: Dean Eriksen
Standard:	Ron Seide							
	FCC							Class: N/A
un #2c: Hig undamenta	gh Channel al Signal Fie	@ 5700 MH	z, Data Rate	e=6 Mbps, W	peration in th /ith Laird PC	B		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=6 Mbps
5694.580	94.3	V	-	-	AVG	90	1.0	RB = 1MHz, VB = 10Hz
5694.580	102.6	V	-	-	PK	90 157	1.0	RB = VB = 1MHz
5695.330 5695.330	96.4 104.4	H H	-	-	AVG PK	157 157	2.2	RB = 1MHz, VB = 10Hz RB = VB = 1MHz
			d Stropath	<u> </u>	ΓN	107	۷.۷	
Frequency	and Edge R Level	Pol		5 E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=6 Mbps
5725.020	51.9	H	54.0	-2.1	AVG	157	2.2	
5725.020 5725.000	66.3	H	74.0	-7.7	PK	157	2.2	
5725.000	51.7	V	54.0	-2.3	AVG	90	1.0	
5725.960	65.3	V	74.0	-8.7	PK	90	1.0	
purious Ra requency MHz	adiated Emis Level dBµV/m	ssions: Pol v/h	15.20 Limit	9 / 15E Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments Data Rate=6 Mbps
11400.330	44.2	V	54.0	-9.8	AVG	325	1.3	
11395.750	43.5	Н	54.0	-10.5	AVG	205	1.6	
17083.500	43.5	V	54.0	-10.5	AVG	55	1.0	
17096.170	42.8	Н	54.0	-11.2	AVG	58	1.0	
1400.330	55.4	V	74.0	-18.6	PK	325	1.3	
	55.2	Н	74.0	-18.8	PK	205	1.6	
11395.750	55.2	V H	74.0 74.0	-18.8 -19.7	PK	55	1.0 1.0	
	54.3				PK	58		

Elliott EMC Test Data Client: Summit Data Communications Job Number: J71524 T-Log Number: T71529 Model: SDC-CF00AG(DFS Bands) Account Manager: Dean Eriksen Contact: Ron Seide Standard: FCC Class: N/A **RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions** Test Specific Details The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. Date of Test: 4/30/2008& 05/02/08 Config. Used: 1 Test Engineer: Suhaila Khushzad Config Change: None Test Location: OATS # 1& 2 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: Temperature: 21 °C Rel. Humidity: 50 % Summary of Results Power Measured Run # Mode Channel Test Performed Limit Result / Margin Power Setting 46.3dBuV/m @ 802.11a 5250-5350 Radiated Emissions, FCC 15.209 / 15 E 100% 1 - 40 GHz 17766.7MHz (-7.7dB) Chain A Low 53.6dBµV/m @ 802.11a 5250-5350 Radiated Emissions, FCC 15.209 / 15 E 100% 1 - 40 GHz 10602.1MHz (-0.4dB) Chain A Center 1 Radiated Emissions, 52.4dBµV/m @ 5250-5350 802.11a 100% FCC 15.209 / 15 E Chain A High 1 - 40 GHz 10639.8MHz (-1.6dB) 5250-5350 Restricted Band Edge at 53.5dBµV/m @ 802.11a 100% 15.209 High 5350 MHz 5350.0MHz (-0.5dB) Chain A 5470-5725 Restricted Band Edge at 50.3dBµV/m @ 802.11a 100% 15.209 Chain A 5460 & 5470 MHz 5458.0MHz (-3.7dB) Low 802.11a 5470-5725 Radiated Emissions, 43.4dBµV/m @ 100% FCC 15.209 / 15 E

2

Chain A

802.11a

Chain A

802.11a

Chain A

802.11a

Chain A

Low 5470-5725

Center

5470-5725

High 5470-5725

Hiah

100%

100%

100%

1 - 40 GHz

Radiated Emissions,

1 - 40 GHz

Radiated Emissions,

1 - 40 GHz

Band Edge at 5725

MHz

FCC 15.209 / 15 E

FCC 15.209 / 15 E

15.209

11000.2MHz (-10.6dB)

48.4dBµV/m @

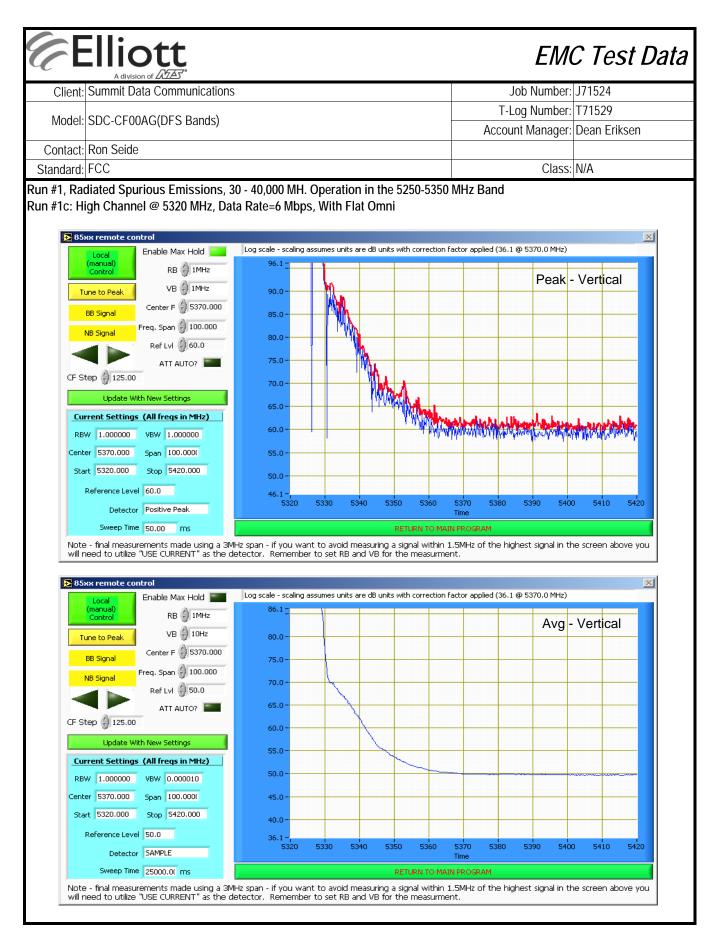
11200.6MHz (-5.6dB)

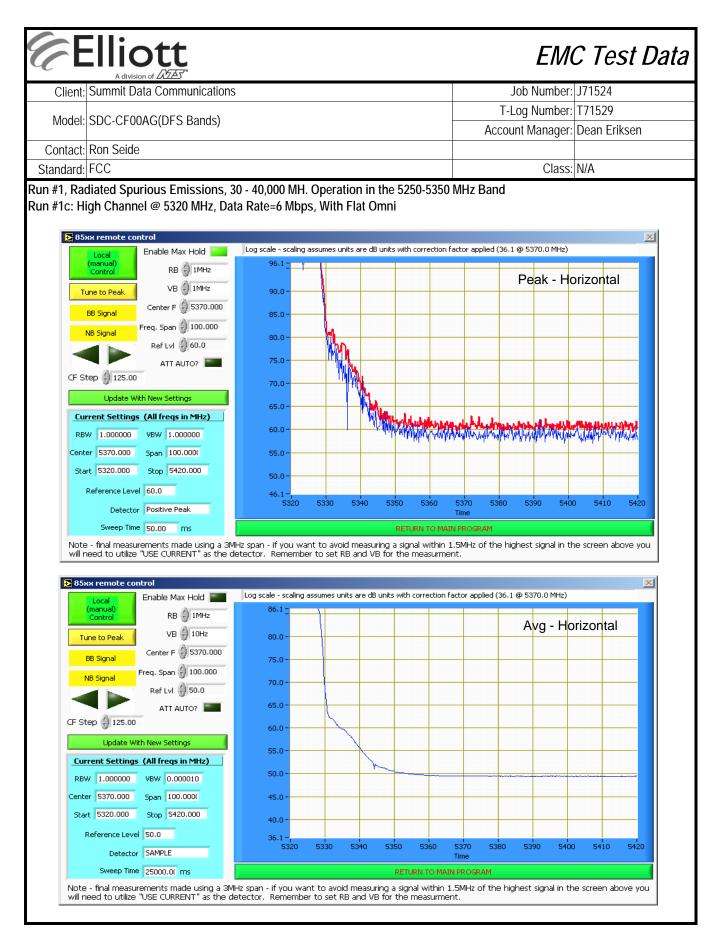
44.2dBµV/m @

11400.3MHz (-9.8dB)

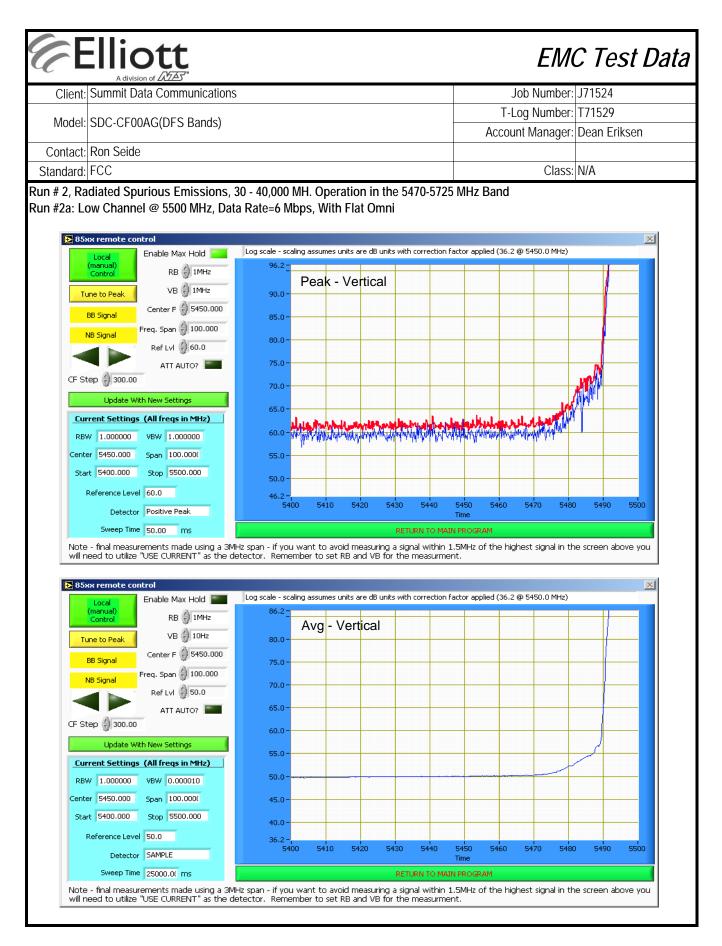
51.5dBµV/m @

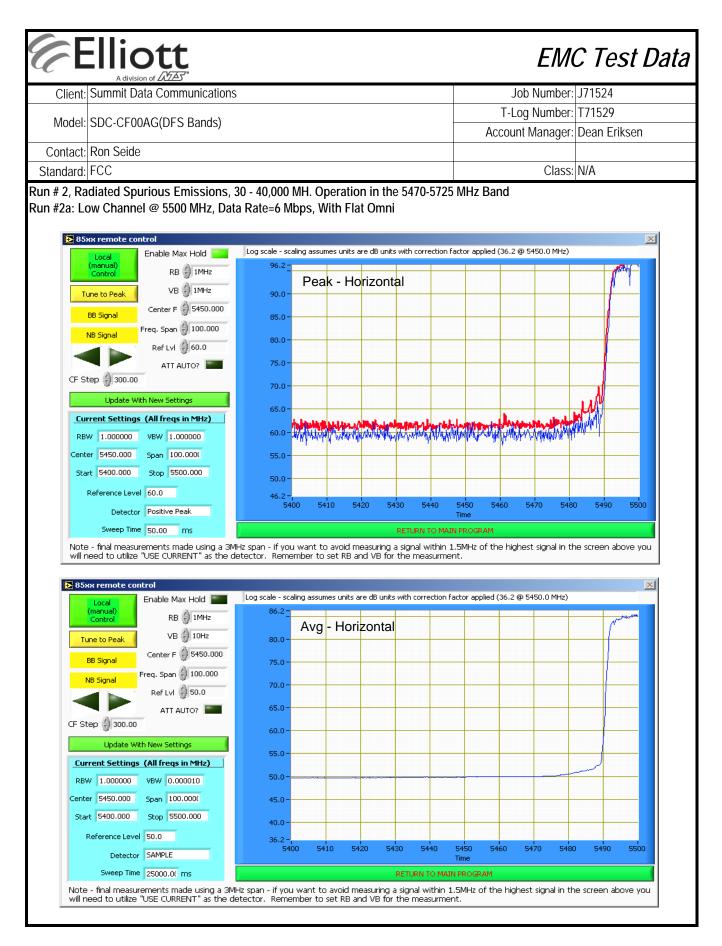
5725.0MHz (-16.8dB)

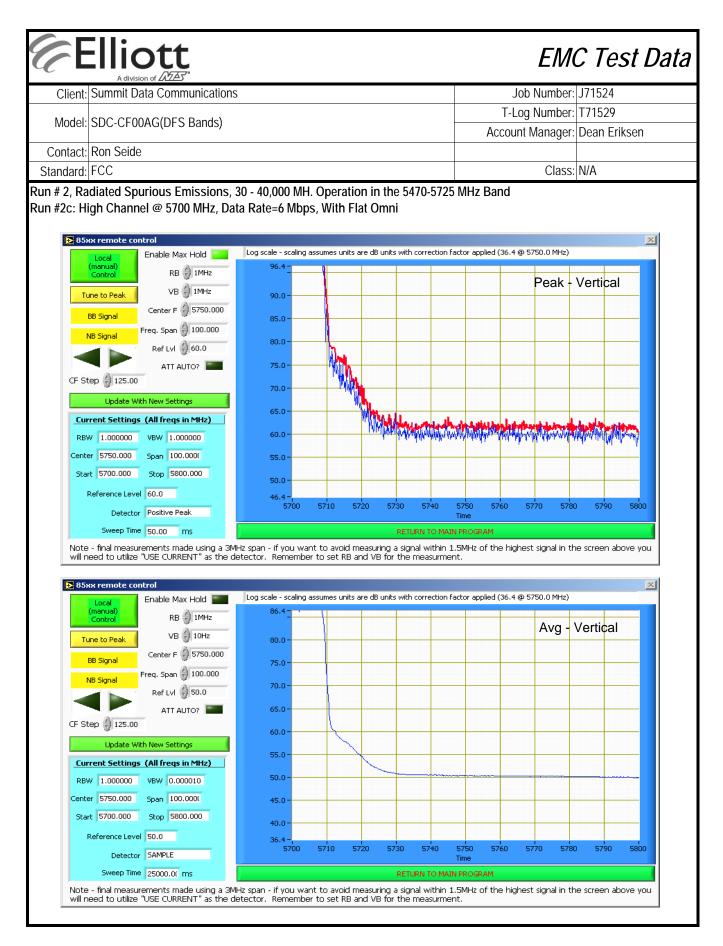

Volume modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Note: All final measurements shall be perform at 6 Mbps data rate. Note: Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbps
Model: SDC-CF00AG(DFS Bands) Account Manager: Dean Contact: Ron Seide Standard: FCC Class: N/A Modifications Made During Testing Class: No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Note : All final measurements shall be perform at 6 Mbps data rate. Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 MHz dBµV/m v/h Limit Margin
Contact: Ron Seide Class: N/A Standard: FCC Class: N/A Modifications Made During Testing Class: N/A Modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Note : All final measurements shall be perform at 6 Mbps data rate. Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbps
Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Note : All final measurements shall be perform at 6 Mbps data rate. Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 MHz dBµV/m v/h Limit
Modifications Made During Testing No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Note : All final measurements shall be perform at 6 Mbps data rate. Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 MHz dBµV/m v/h Limit
No modifications were made to the EUT during testing Deviations From The Standard No deviations were made from the requirements of the standard. Note : All final measurements shall be perform at 6 Mbps data rate. Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h
No deviations were made from the requirements of the standard. Note : All final measurements shall be perform at 6 Mbps data rate. Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
No deviations were made from the requirements of the standard. Note : All final measurements shall be perform at 6 Mbps data rate. Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth MHz dBµV/m v/h Limit
Note : All final measurements shall be perform at 6 Mbps data rate. Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
Note : Preliminary testing showed no emissions below 1 GHz related to the transmitter. Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5250-5350 MHz Band Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
Run #1a: Low Channel @ 5280 MHz, Data Rate=6 Mbps, With Flat Omni Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
Fundamental Signal Field Strength Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
5275.250 103.2 V AVG 134 1.1 RB = 1MHz, VB =
5275.250 111.5 V PK 134 1.1 RB = VB = 1MHz
5284.920 92.9 H - AVG 143 1.0 RB = 1MHz, VB = 5284.920 100.8 H - PK 143 1.0 RB = VB = 1MHz
5284.920 100.8 H PK 143 1.0 RB = VB = 1MHz
Spurious Radiated Emissions:
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters Data Rate=6 Mbp
17766.710 46.3 H 54.0 -7.7 AVG 0 1.0
17532.270 46.1 V 54.0 -7.9 AVG 0 1.0
10563.750 43.7 V 54.0 -10.3 AVG 15 1.0
10563.750 63.1 V 74.0 -10.9 PK 15 1.0
15844.800 39.4 H 54.0 -14.6 AVG 184 1.0
15844.80039.4H54.0-14.6AVG1841.015852.17039.2V54.0-14.8AVG1961.0
15844.800 39.4 H 54.0 -14.6 AVG 184 1.0 15852.170 39.2 V 54.0 -14.8 AVG 196 1.0 17766.710 57.7 H 74.0 -16.3 PK 0 1.0
15844.800 39.4 H 54.0 -14.6 AVG 184 1.0 15852.170 39.2 V 54.0 -14.8 AVG 196 1.0 17766.710 57.7 H 74.0 -16.3 PK 0 1.0 17532.270 57.4 V 74.0 -16.6 PK 0 1.0
15844.800 39.4 H 54.0 -14.6 AVG 184 1.0 15852.170 39.2 V 54.0 -14.8 AVG 196 1.0 17766.710 57.7 H 74.0 -16.3 PK 0 1.0 17532.270 57.4 V 74.0 -16.6 PK 0 1.0 10563.420 55.7 H 74.0 -18.3 PK 72 2.0
15844.800 39.4 H 54.0 -14.6 AVG 184 1.0 15852.170 39.2 V 54.0 -14.8 AVG 196 1.0 17766.710 57.7 H 74.0 -16.3 PK 0 1.0 17532.270 57.4 V 74.0 -16.6 PK 0 1.0

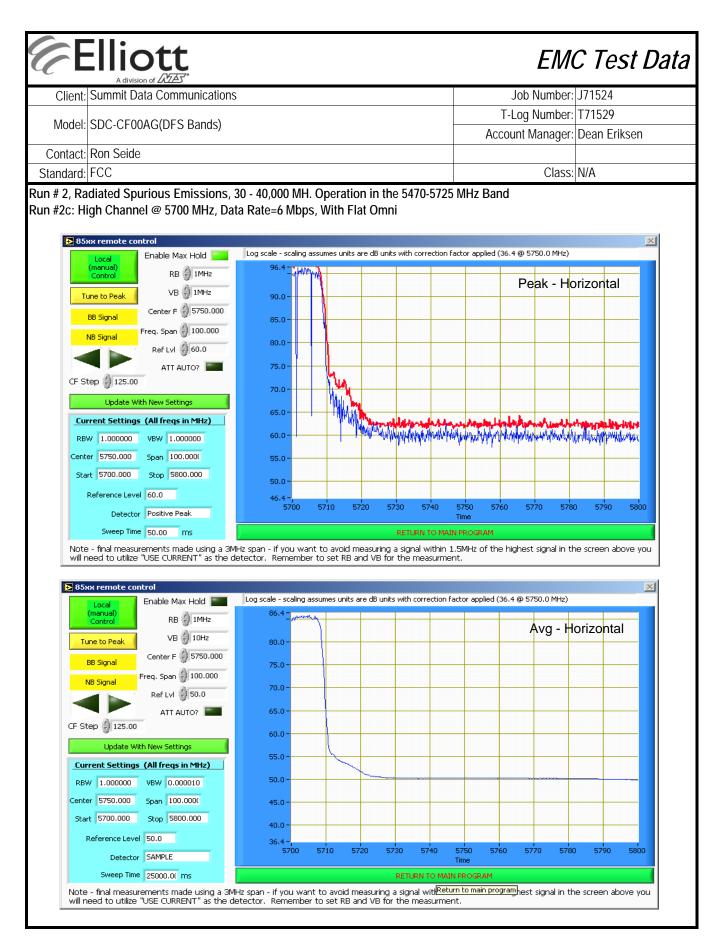

Elliott

EMC Test Data


Client:	Summit Data	Communica	ations					Job Number:	J71524
								Log Number:	
Model:	SDC-CF00A	G(DFS Band	ds)			-		0	Dean Eriksen
Contact	Ron Seide						7,000	ant manager.	Dour Enkson
								Class:	NI/A
Standard:	FUU							CIASS.	IV/A
un #1b: Ce		el @ 5300 N	IHz, Data Ra		eration in the With Laird P		MHz Band	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=6	6 Mbps
5301.420	91.3	Н	-	-	AVG	169	1.0	RB = 1MHz,	VB = 10Hz
5301.420	99.2	Н	-	-	PK	169	1.0	RB = VB = 1	
5298.920	103.9	V	-	-	AVG	93	1.1	RB = 1MHz,	
5298.920	112.1	V	-	-	PK	93	1.1	RB = VB = 1	MHz
purious Ra	adiated Emis	sions:							
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=6	6 Mbps
0602.080	53.6	V	54.0	-0.4	AVG	32	1.3		
0602.080	70.1	V	74.0	-3.9	PK	32	1.3		
0601.920	49.8	Н	54.0	-4.2	AVG	163	1.4		
7863.740	47.5	V	54.0	-6.5	AVG	147	1.0		
7846.260	47.4	Н	54.0	-6.6	AVG	0	0.0		
0601.920	65.5	Н	74.0	-8.5	PK	163	1.4		
5916.750	39.3	V	54.0	-14.7	AVG	182	0.0		
5919.840	39.0	Н	54.0	-15.0	AVG	221	1.0		
7863.740	58.9	V	74.0	-15.1	PK	147	1.0		
7846.260	58.4	Н	74.0	-15.6	PK	0	0.0		
5919.840	50.4	H	74.0	-23.6	PK	221	1.0		
5916.750	50.2	V	74.0	-23.8	PK	182	0.0		
	27dBm/MHz							, me average	limit was set to -


Contact: Standard: un #1, Ra		G(DFS Ban	ds)						J71524
Standard: Run #1, Ra	FCC							Log Number:	T71529 Dean Eriksen
Standard: Run #1, Ra	FCC						ALLU	uni manayer.	Deall Elikseli
Run #1, Ra								Class:	N/A
	igh Channel al Signal Fiel	@ 5320 MH Id Strength	lz, Data Rate	=6 Mbps, V	eration in the /ith Flat Omn	i 			
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	
5322.750	103.4	V	-	-	AVG	129	1.1	RB = 1MHz	
5322.750	111.6	V	-	-	PK	129	1.1	RB = VB = 1	
5323.080 5323.080	93.1 101.3	<u>H</u> H	-	-	AVG PK	136 136	<u>1.1</u> 1.1	RB = 1MHz, RB = VB = 1	
JJZJ.UQA	101.3	П	-	-	۲Ň	130	1.1	KD = AR =	IVINZ
350 MHz E	and Edge Si	anal Radia [.]	ted Field Str	enath					
requency	Level	Pol	15.209		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
5350.000	53.5	V	54.0	-0.5	AVG	129	1.1		
5352.780	70.9	V	74.0	-3.1	PK	129	1.1		
5350.000	50.2								
5351.940		Н	54.0	-3.8	AVG	136	1.1		
	64.4	H	54.0 74.0	-3.8 -9.6	AVG PK	136 136			
purious R	adiated Emis Level	H ssions: Pol	74.0	-9.6 / 15.247	PK Detector	136 Azimuth	1.1 1.1 Height	Comments	6 Mbps
purious R requency MHz	adiated Emis Level dBµV/m	H ssions: Pol v/h	74.0 15.209 Limit	-9.6 / 15.247 Margin	PK Detector Pk/QP/Avg	136 Azimuth degrees	1.1 1.1 Height meters	Comments Data Rate=	6 Mbps
purious R requency MHz 0639.830	adiated Emis Level dBµV/m 52.4	H ssions: Pol	74.0 15.209 / Limit 54.0	-9.6 / 15.247	PK Detector Pk/QP/Avg AVG	136 Azimuth degrees 231	1.1 1.1 Height		6 Mbps
purious R Frequency	adiated Emis Level dBµV/m	H ssions: Pol v/h V	74.0 15.209 Limit	-9.6 / 15.247 Margin -1.6	PK Detector Pk/QP/Avg	136 Azimuth degrees	1.1 1.1 Height meters 2.0		6 Mbps
purious R requency MHz 0639.830 7845.800 7865.290	adiated Emis Level dBµV/m 52.4 47.8	H ssions: Pol V/h V H	74.0 15.209 Limit 54.0 54.0	-9.6 / 15.247 Margin -1.6 -6.2	PK Detector Pk/QP/Avg AVG AVG	136 Azimuth degrees 231 97	1.1 1.1 Height meters 2.0 1.0		6 Mbps
purious R requency MHz 0639.830 7845.800 7865.290 0639.830	adiated Emis Level dBµV/m 52.4 47.8 47.4	H ssions: Pol V/h V H V	74.0 15.209 Limit 54.0 54.0 54.0	-9.6 / 15.247 Margin -1.6 -6.2 -6.6	PK Detector Pk/QP/Avg AVG AVG AVG	136 Azimuth degrees 231 97 35	1.1 1.1 Height meters 2.0 1.0 1.0		6 Mbps
purious R requency MHz 0639.830 7845.800 7865.290 0639.830 0643.580	adiated Emis Level dBµV/m 52.4 47.8 47.4 66.8	H ssions: Pol V/h V H V V V	74.0 15.209 Limit 54.0 54.0 54.0 74.0	-9.6 / 15.247 Margin -1.6 -6.2 -6.6 -7.2	PK Detector Pk/QP/Avg AVG AVG AVG PK	136 Azimuth degrees 231 97 35 231	1.1 1.1 Height meters 2.0 1.0 1.0 2.0		6 Mbps
purious R requency MHz 0639.830 7845.800 7865.290 0639.830 0643.580 0643.580	adiated Emis Level dBµV/m 52.4 47.8 47.4 66.8 45.0	H ssions: Pol v/h V H V V H V H	74.0 15.209 Limit 54.0 54.0 54.0 74.0 54.0	-9.6 / 15.247 Margin -1.6 -6.2 -6.6 -7.2 -9.0	PK Detector Pk/QP/Avg AVG AVG AVG PK AVG	136 Azimuth degrees 231 97 35 231 355	1.1 1.1 Height meters 2.0 1.0 1.0 2.0 1.2		6 Mbps
purious R requency MHz 0639.830 7845.800 7865.290 0639.830 0643.580 0643.580 5978.500	adiated Emis Level dBµV/m 52.4 47.8 47.4 66.8 45.0 60.0 39.9 39.8	H ssions: Pol V/h V H V V H H V H H	74.0 15.209 Limit 54.0 54.0 54.0 74.0 54.0 74.0 54.0 54.0 54.0 54.0 54.0	-9.6 / 15.247 Margin -1.6 -6.2 -6.6 -7.2 -9.0 -14.0 -14.1 -14.2	PK Detector Pk/QP/Avg AVG AVG AVG PK AVG AVG AVG AVG	136 Azimuth degrees 231 97 35 231 355 355	1.1 1.1 Height meters 2.0 1.0 1.0 2.0 1.2 1.2		6 Mbps
purious R requency MHz 0639.830 7845.800 7865.290 0639.830 0643.580 0643.580 0643.580 5978.500 5981.080 7845.800	adiated Emis Level dBµV/m 52.4 47.8 47.4 66.8 45.0 60.0 39.9 39.8 59.6	H ssions: Pol V/h V H V V H H V H H H	74.0 15.209 J Limit 54.0 54.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	-9.6 / 15.247 Margin -1.6 -6.2 -6.6 -7.2 -9.0 -14.0 -14.1	PK Detector Pk/QP/Avg AVG AVG AVG PK AVG AVG AVG AVG PK	136 Azimuth degrees 231 97 35 231 355 355 53 256 97	1.1 1.1 Height meters 2.0 1.0 1.0 2.0 1.2 1.2 1.2 1.0		6 Mbps
purious R requency MHz 0639.830 7845.800 7865.290 0639.830 0643.580 0643.580 0643.580 5978.500 5981.080 7845.800 7865.290	adiated Emis Level dBµV/m 52.4 47.8 47.4 66.8 45.0 60.0 39.9 39.8 59.6 58.6	H ssions: Pol V/h V H V H H V H H V V	74.0 15.209 Limit 54.0 54.0 54.0 74.0 54.0 74.0 54.0 54.0 54.0 54.0 54.0	-9.6 / 15.247 Margin -1.6 -6.2 -6.6 -7.2 -9.0 -14.0 -14.1 -14.2 -14.4 -15.4	PK Detector Pk/QP/Avg AVG AVG PK AVG PK AVG AVG AVG AVG PK PK PK	136 Azimuth degrees 231 97 35 231 355 355 53 256 97 35	1.1 1.1 Height meters 2.0 1.0 1.0 2.0 1.2 1.2 1.2 1.0 1.0		6 Mbps
purious R requency MHz 0639.830 7845.800 7865.290 0639.830 0643.580 0643.580 0643.580 5978.500 5981.080 7845.800	adiated Emis Level dBµV/m 52.4 47.8 47.4 66.8 45.0 60.0 39.9 39.8 59.6	H ssions: Pol V/h V H V V H H V H H H	74.0 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	-9.6 / 15.247 Margin -1.6 -6.2 -6.6 -7.2 -9.0 -14.0 -14.1 -14.2 -14.4	PK Detector Pk/QP/Avg AVG AVG AVG PK AVG AVG AVG AVG PK	136 Azimuth degrees 231 97 35 231 355 355 53 256 97	1.1 1.1 Height meters 2.0 1.0 1.0 2.0 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0		6 Mbps


	Summit Data	Communic	ations					Job Number:	J71524
	000.05004						Т	-Log Number:	T71529
Model:	SDC-CF00A	G(DFS Band	ds)						Dean Eriksen
Contact:	Ron Seide							5	
Standard:								Class:	N/A
		ous Emissi	ons 30 - 40	000 MH .01	peration in th	o 5470-5725	MHz Band		
				•	/ith Flat Omni		MITZ Duric	•	
			-, 2 a.a	• . po/					
undament	al Signal Fie	ld Strength							
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
5505.330	98.3	V	-	-	AVG	210	1.0	RB = 1MHz	
5505.330	106.7	V	-	-	PK	210	1.0	RB = VB = 1	
5506.000	90.5	Н	-	-	AVG	130	1.9	RB = 1MHz	
5506.000	98.8	Н	-	-	PK	130	1.9	RB = VB = 1	IMHz
				a dia ta di Et					
	MHz Restricte					A'	11.1.1.1.1	0	
-requency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	/ Mhaa
MHz 5457.980	dBµV/m 50.3	v/h V	Limit 54.0	Margin -3.7	Pk/QP/Avg AVG	degrees 210	meters 1.0	Data Rate=	o wops
5457.980	62.8	V V	54.0 74.0	-3.7 -11.2	PK	210	1.0		
5457.150	50.1	 H	54.0	-11.2	AVG	130	1.0		
5458.190	62.7	 H	74.0	-3.7	PK	130	1.9		
3430.170	02.7	11	74.0	-11.5	ΪK	130	1.7		
460 - 5470	MHz Band E	dge Radiat	ed Field Str	enath					
Frequency	Level	Pol		5 E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
5467.020	50.0	H	68.3	-18.3	AVG	130	1.9		
5467.880	62.8	Н	88.3	-25.5	PK	130	1.9		
5467.590	50.4	V	68.3	-17.9	AVG	210	1.0		
5469.890	62.8	V	88.3	-25.5	PK	210	1.0		
	adiated Emis					-			
requency	Level	Pol		9/15E	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
MHz	43.4	H	54.0	-10.6	AVG	210	2.0		
1000.170	42.7	<u>V</u>	54.0	-11.3	AVG	77	2.2		
1000.170 1001.170		Н	54.0	-13.9	AVG	132	1.0		
1000.170 1001.170 6475.420	40.1	\ /	54.0	-14.1	AVG	286	1.0		
1000.170 1001.170 6475.420 6522.500	40.1 39.9	V			PK	210	2.0		
1000.170 1001.170 6475.420 6522.500 1000.170	40.1 39.9 55.7	Н	74.0	-18.3	עס				
1000.170 1001.170 6475.420 6522.500 1000.170 1001.170	40.1 39.9 55.7 54.5	H V	74.0 74.0	-19.5	PK PK	77			
MHz 11000.170 11001.170 16475.420 16522.500 11000.170 11001.170 16475.420 16522.500	40.1 39.9 55.7	Н	74.0		РК РК РК	132 286	<u> </u>		



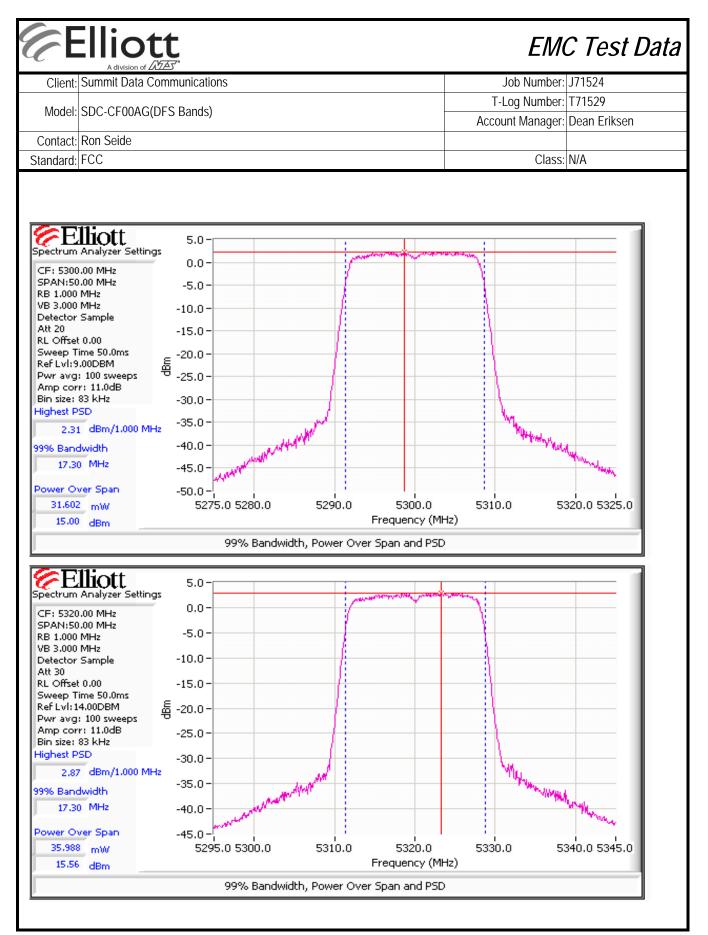
Client:	A division of Summit Data		ations					Job Number:	J71524
Madal			46)				Ţ	Log Number:	T71529
wouer.	SDC-CF00A	G(DF3 Dali	12)				Acco	unt Manager:	Dean Erikser
Contact:	Ron Seide								
Standard:	FCC							Class:	N/A
un #2b: Co undament	enter Chann al Signal Fie	el @ 5600 M Id Strength	1Hz, Data Ra	ite=6 Mbps,	eration in the With Flat On	nni			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	4 Mbpc
MHz 5600.670	dBµV/m 100.4	v/h V	Limit -	Margin	Pk/QP/Avg AVG	degrees 69	meters 1.0	Data Rate= RB = 1MHz	
5600.670	100.4	V V	-	-	PK	69	1.0	RB = VB =	
5597.000	88.8	H	-	-	AVG	126	1.9	RB = 1MHz	
5597.000	96.6	H	-	-	PK	126	1.9	RB = VB = 2	
	adiated Emis		15.00		Datastas	A _!	11.2.4.1	0	
Frequency MHz	Level	Pol v/h		9/15E Margin	Detector Pk/QP/Avg	Azimuth	Height	Comments	(Mhno
11200.580	dBµV/m 48.4	V/II V	Limit 54.0	Margin -5.6	AVG	degrees 19	meters 1.6	Data Rate=	o iviups
16782.750	40.4	V	54.0	-12.7	AVG	355	1.0		
16781.160	41.2	H	54.0	-12.8	AVG	0	0.0		
11200.580	60.7	V	74.0	-13.3	PK	19	1.6		
11201.830	39.5	Н	54.0	-14.5	AVG	109	1.0		
16781.160	53.2	Н	74.0	-20.8	PK	0	0.0		
16782.750	52.8	V	74.0	-21.2	PK	355	1.0		
11201.830	51.3	Н	74.0	-22.7	PK	109	1.0		
Note 1:			ed bands, the		09 was used.	For all othe		, the average	e limit was set

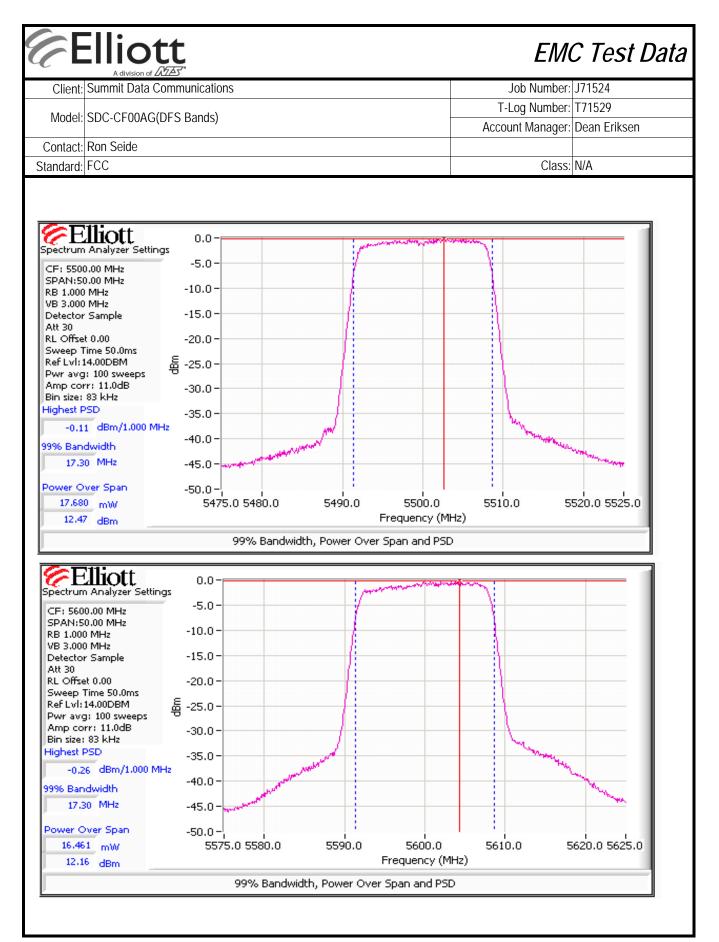
Contact: Ro Standard: FC Run # 2, Radia Run #2c: High Fundamental Frequency	on Seide CC ated Spurio Channel o Signal Fiel	@ 5700 MH:	ons, 30 - 40,		peration in the		Ассо	Class:	Dean Eriksen
Contact: Ro Standard: FC Run # 2, Radia Run #2c: High undamental Frequency	on Seide CC ated Spurio Channel o Signal Fiel	ous Emissio @ 5700 MH;	ons, 30 - 40,					Class:	
Standard: FC Run # 2, Radia Run #2c: High undamental Frequency	CC ated Spurio Channel o Signal Fiel	@ 5700 MH					MHz Band		N/A
eun # 2, Radia eun #2c: High undamental requency	ated Spurio n Channel o Signal Fiel	@ 5700 MH					MHz Band		N/A
tun #2c: High undamental Frequency	n Channel (Signal Fiel	@ 5700 MH					MHz Band		
		u suengui				I			
MH7	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	
5695.330	97.2	V	-	-	AVG	82	1.0	RB = 1MHz	
5695.330	105.4	V	-	-	PK	82	1.0	RB = VB = 1	
5695.420 5695.420	89.4	H	-	-	AVG	129	2.0	RB = 1MHz RB = VB = 1	
0070.420	97.4	Н	-	-	РК	129	2.0	KD = VB =	IVITIZ
725 MHz Bar	nd Edge Ra	diated Fiel	d Strenath						
Frequency	Level	Pol		δE	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
5725.000	51.5	V	68.3	-16.8	AVG	82	1.0		
5726.150	63.9	V	88.3	-24.4	PK	82	1.0		
5725.000	50.6	Н	68.3	-17.7	AVG	129	2.0		
5726.520	63.7	Н	88.3	-24.6	PK	129	2.0		
purious Rad	liatod Emis	cions							
Frequency	Level	Pol	15,209	9/15E	Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Data Rate=	6 Mbps
11400.330	44.2	V	54.0	-9.8	AVG	352	1.0		
1400.170	43.7	Н	54.0	-10.3	AVG	260	1.6		
17075.830	42.9	V	54.0	-11.1	AVG	110	1.0		
17082.420	42.6	Н	54.0	-11.4	AVG	4	1.0		
11400.170	56.0	Н	74.0	-18.0	PK	260	1.6		
11400.330	55.8	V	74.0	-18.2	PK	352	1.0		
17075.830	54.1	V	74.0	-19.9	PK	110	1.0		
7082.420	54.0	Н	74.0	-20.0	PK	4	1.0		

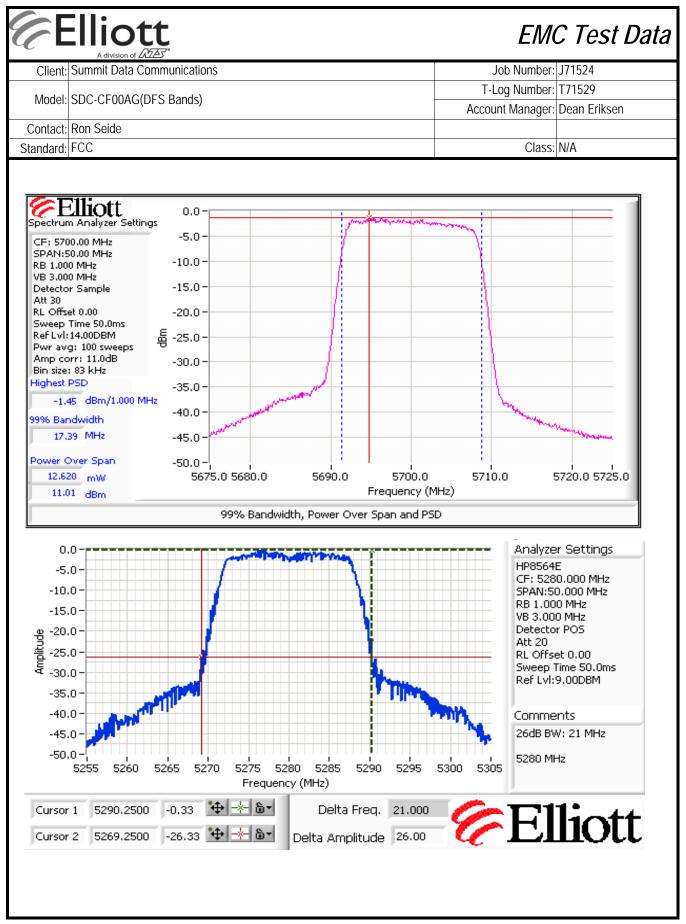
	t: Summit Dat	a Communica	itions			Job Number:	
Mode	I: SDC-CF00A	AG(DFS Band	s)			T-Log Number: Account Manager:	
Contact	t: Ron Seide						
Standard	I: FCC					Class	N/A
	RSS 2	10 and	FCC 1	5.407 (U	NII) Radiated	Spurious Emi	issions
Test Spe	ecific Detai	ls					
	Objective:	The objective specification			perform final qualification	n testing of the EUT with i	respect to the
		5/6/2008 8:1			Config. Used:		
	est Engineer: Fest Location:		shzad		Config Change: EUT Voltage:		
^	Teet Confi						
Jeneral	Test Confi	guiation					
The EUT a	nd all local su	pport equipm	ent were loo	cated on the tu	urntable for radiated spur	ious emissions testing.	
						Ĵ	
					urntable for radiated spur ocated 3 meters from the	Ĵ	
For radiate		esting the mea	asurement a	antenna was l Temperature:	ocated 3 meters from the 20 °C	Ĵ	
For radiate	d emissions te	esting the mea	asurement a	antenna was l	ocated 3 meters from the	Ĵ	
For radiate	d emissions te	esting the mea S:	asurement a	antenna was l Temperature:	ocated 3 meters from the 20 °C	Ĵ	
For radiate	d emissions to Condition y of Result Mode	esting the mea s: ts Channel	asurement a	antenna was l Temperature:	ocated 3 meters from the 20 °C 50 % Test Performed	Ĵ	Result / Margin
For radiate Ambient Summar	d emissions to Condition y of Result	esting the means:	asurement a F F Power	antenna was I Temperature: Rel. Humidity: Measured	ocated 3 meters from the 20 °C 50 %	EUT.	Result / Margin 44.6dBµV/m @ 17415.6MHz (-9.4dE
For radiate Ambient Summar Run #	d emissions to Condition y of Result Mode 802.11a	esting the means in the second s:	asurement a F Power Setting	antenna was I Temperature: Rel. Humidity: Measured	ocated 3 meters from the 20 °C 50 % Test Performed Radiated Emissions,	EUT.	44.6dBµV/m @
For radiate Ambient Summar Run # 1 2	d emissions to Condition y of Result Mode 802.11a Chain A 802.11a Chain A	esting the means S: Channel 5250-5350 Center 5470-5725 Center	Power Setting 100%	antenna was I Temperature: Rel. Humidity: Measured	ocated 3 meters from the 20 °C 50 % Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions,	EUT. Limit FCC 15.209 / 15 E	44.6dBµV/m @ 17415.6MHz (-9.4dE 44.4dBµV/m @
For radiate Ambient Summar Run # 1 2 Modifica	d emissions te Condition y of Result Mode 802.11a Chain A 802.11a	esting the means s: Channel 5250-5350 Center 5470-5725 Center e During Te	Power Setting 100%	antenna was I Temperature: Rel. Humidity: Measured Power	ocated 3 meters from the 20 °C 50 % Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions,	EUT. Limit FCC 15.209 / 15 E	44.6dBµV/m @ 17415.6MHz (-9.4dE 44.4dBµV/m @
For radiate Ambient Summar Run # 1 2 Modifica No modifica	d emissions to Condition y of Result Mode 802.11a Chain A 802.11a Chain A tions Made ations were m	esting the mean s: Channel 5250-5350 Center 5470-5725 Center e During Ten bade to the EL	Power Setting 100% 100% Eesting JT during te	antenna was I Temperature: Rel. Humidity: Measured Power	ocated 3 meters from the 20 °C 50 % Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions,	EUT. Limit FCC 15.209 / 15 E	44.6dBµV/m @ 17415.6MHz (-9.4dE 44.4dBµV/m @
For radiate Ambient Summar Run # 1 2 Modifica No modifica	d emissions to Condition y of Result Mode 802.11a Chain A 802.11a Chain A tions Made ations were m	esting the means s: Channel 5250-5350 Center 5470-5725 Center e During Tenade to the EL cade to the EL	Power Setting 100% 100% Setting 100%	antenna was I Temperature: Rel. Humidity: Measured Power	ocated 3 meters from the 20 °C 50 % Test Performed Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz	EUT. Limit FCC 15.209 / 15 E	44.6dBµV/m @ 17415.6MHz (-9.4dE 44.4dBµV/m @

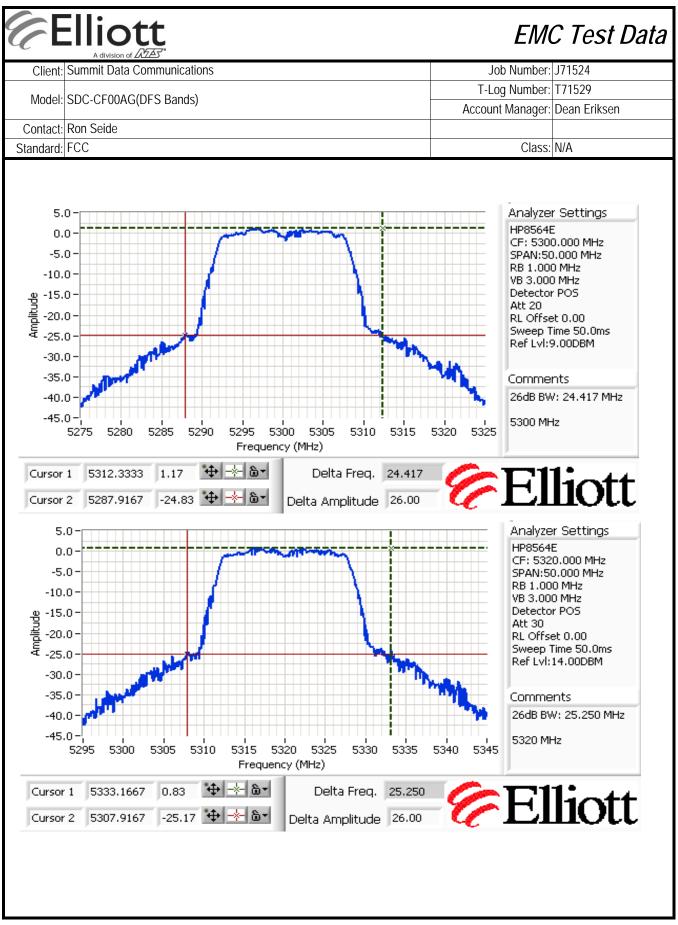
	A division of								C Test Dat
Client:	Summit Data	Communica	alions					Job Number:	
Model:	SDC-CF00A	G(DFS Band	ls)			F		Log Number:	
		•	•				Acco	unt Manager:	Dean Eriksen
	Ron Seide								
Standard:								Class:	N/A
un #1a: C	diated Spuri enter Chann adiated Emis	el @ 5300 N		•	eration in the d PCB	e 5250-5350	MHz Band		
requency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7415.590	44.6	V	54.0	-9.4	AVG	57	1.0		
7084.940	43.4	Н	54.0	-10.6	AVG	2	1.0		
5927.080	39.3	Н	54.0	-14.7	AVG	103	1.0		
5914.590	38.8	V	54.0	-15.2	AVG	0	1.0		
0620.080	38.5	Н	54.0	-15.5	AVG	162	1.6		
0613.580	38.4	V	54.0	-15.6	AVG	285	1.0		
7415.590	56.2	V	74.0	-17.8	PK	57	1.0		
7084.940	55.1	Н	74.0	-18.9	PK	2	1.0		
5914.590	51.3	V	74.0	-22.7	PK	0	1.0		
5927.080	50.6	Н	74.0	-23.4	PK	103	1.0		
0620.080 0613.580	50.5 49.8	H V	74.0 74.0	-23.5 -24.2	PK PK	162 285	1.6 1.0		
ote 1:	27dBm/MHz	(~68dBuV/n	ı).				remissions		e limit was set to -
le I:	<u>27dBm/MHz</u>	<u>(~68dBuV/n</u>	ı <u>).</u>						a limit was set to -

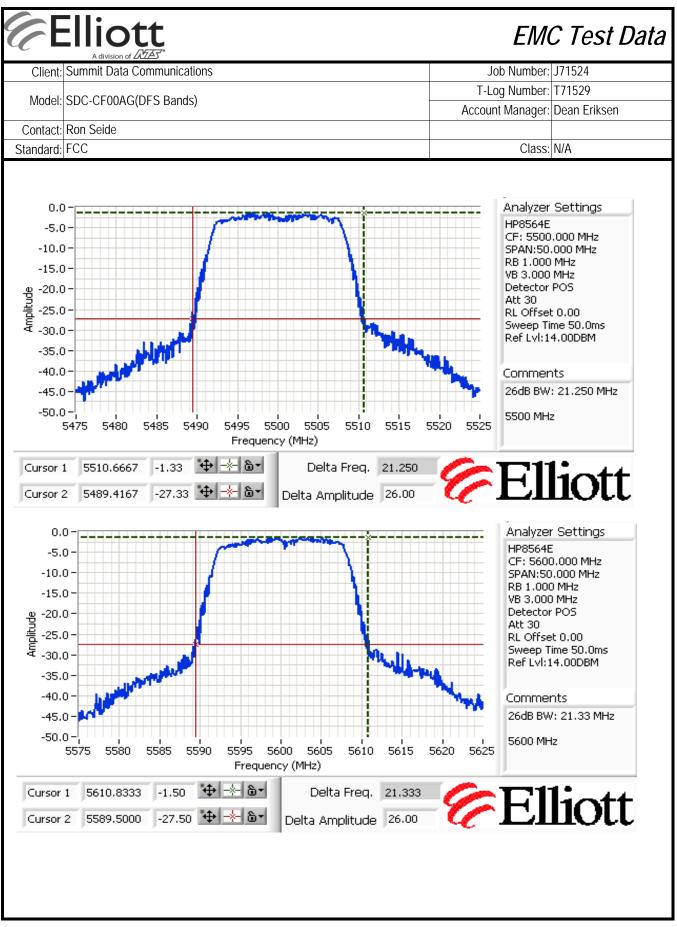
Client	A division of Summit Data	f ZAZAS	ations					Job Number:	J71524
								Log Number:	
Model:	SDC-CF00A	G(DFS Band	ls)			-		•	Dean Eriksen
Contact:	Ron Seide							0	
Standard:	FCC							Class:	N/A
ın # 2, Ra	adiated Spuri	ous Emissi	ons, 30 - 40,	000 MH. Op	eration in the	e 5470-5725	MHz Band		
	Center Chann Radiated Emis		/Hz, Rx Moc	le with Laire	d PCB				
equency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
316.870		Н	54.0	-9.6	AVG	205	1.0		
335.390	44.2	V	54.0	-9.8	AVG	0	1.0		
521.720	41.2	H	54.0	-12.8	AVG	64	1.0		
493.580 020.250	41.0	V H	54.0	-13.0	AVG	209 55	1.0		
020.250	38.2 37.9	H V	54.0 54.0	-15.8 -16.1	AVG AVG	55 186	1.0 1.0		
335.390	56.5	V	74.0	-17.5	PK	0	1.0		
316.870	55.9	H	74.0	-18.1	PK	205	1.0		
493.580	53.1	V	74.0	-20.9	PK	209	1.0		
521.720	52.4	Н	74.0	-21.6	РК	64	1.0		
020.250		Н	74.0	-24.7	PK	55	1.0		
001.080	49.2	V	74.0	-24.8	PK	186	1.0		
ote 1:	27dBm/MHz								e limit was set to -

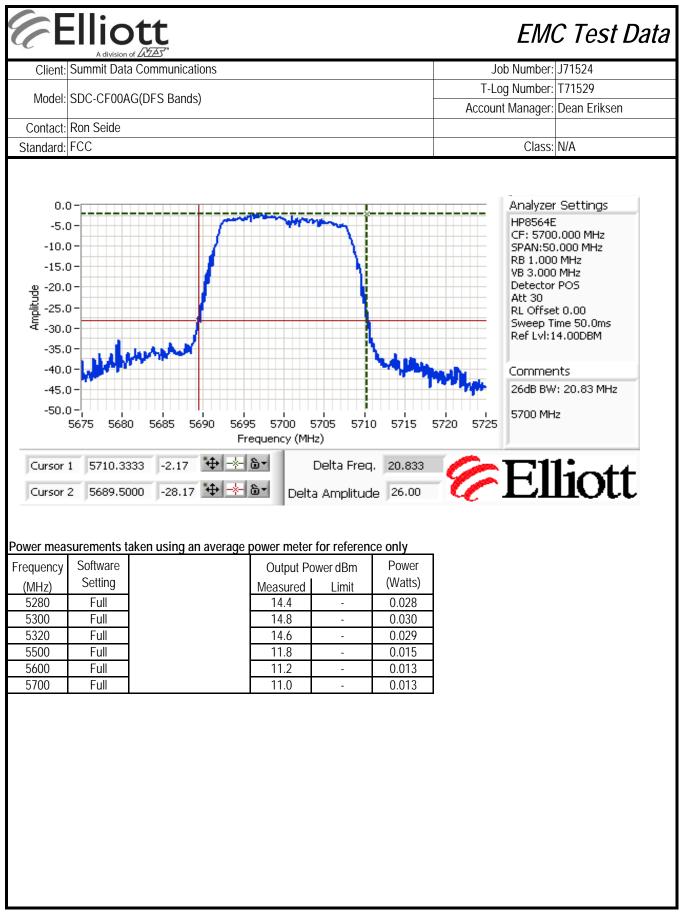

	t: Summit Dat	a Communica	itions			Job Number	
Mode	I: SDC-CF00A	AG(DFS Band	T-Log Number: T71529 Account Manager: Dean Eriksen				
	t: Ron Seide						
Standard	I: FCC					Class	: N/A
	RSS 2	10 and	FCC 1	5.407 (U	INII) Radiated	Spurious Em	issions
Test Spe	ecific Detai	ls					
	Objective:	The objective specification			perform final qualification	n testing of the EUT with	respect to the
		5/6/2008 8:1			Config. Used:		
	est Engineer: Fest Location:	Suhaila Khus SVOATS #1	shzad		Config Change: EUT Voltage:		
Gonoral	Test Confi	auration			-		
		•					
The EUT a	nd all local su	ipport equipm	ent were loc	cated on the t	urntable for radiated spur	ious emissions testing.	
For radiate	d emissions t	esting the mea	asurement a	antenna was l	located 3 meters from the	EUT.	
Ambiant	Condition	S:	T	Femperature:	20 °C		
RINDIGIII			R	Rel. Humidity:	50 %		
AIIIDIEIII							
	y of Resul	ts					
	y of Result	t s Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
Summar	Mode 802.11a	Channel 5250-5350	Power Setting 100%	Measured Power	Radiated Emissions,	Limit FCC 15.209 / 15 E	44.7dBµV/m @
Summar	Mode 802.11a Chain A 802.11a	Channel 5250-5350 Center 5470-5725	Setting		Radiated Emissions, 1 - 40 GHz Radiated Emissions,		44.7dBµV/m @ 17418.9MHz (-9.3dB 45.9dBµV/m @
Summar Run # 1 2	Mode 802.11a Chain A 802.11a Chain A	Channel 5250-5350 Center 5470-5725 Center	Setting 100% 100%		Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	44.7dBµV/m @ 17418.9MHz (-9.3dB
Summar Run # 1 2 Modifica	Mode 802.11a Chain A 802.11a Chain A	Channel 5250-5350 Center 5470-5725 Center	Setting 100% 100% esting	Power	Radiated Emissions, 1 - 40 GHz Radiated Emissions,	FCC 15.209 / 15 E	44.7dBµV/m @ 17418.9MHz (-9.3dE 45.9dBµV/m @
Summar Run # 1 2 Modifica No modifica	Mode 802.11a Chain A 802.11a Chain A tions Made ations were m	Channel 5250-5350 Center 5470-5725 Center e During Tenade to the EL	Setting 100% 100% esting JT during te:	Power	Radiated Emissions, 1 - 40 GHz Radiated Emissions,	FCC 15.209 / 15 E	44.7dBµV/m @ 17418.9MHz (-9.3dE 45.9dBµV/m @
Summar Run # 1 2 Modifica No modifica	Mode 802.11a Chain A 802.11a Chain A tions Made ations were m ns From TI	Channel 5250-5350 Center 5470-5725 Center	Setting 100% 100% esting JT during test	Power	Radiated Emissions, 1 - 40 GHz Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	44.7dBµV/m @ 17418.9MHz (-9.3dE 45.9dBµV/m @


Client: Summit Data	Communications					Job Number: J71524	
	C(DEC Danda)				T-Log Number: T71529		
Model: SDC-CF00A	G(DFS Banus)			-	Account Manager: Dean Eriksen		
ontact: Ron Seide							
ndard: FCC						Class: N/A	
1a: Center Chanr		Rx Mode with Flat	Omni				
uency Level	Pol	15.209 / 15E	Detector	Azimuth	Height	Comments	
Hz dBµV/m		imit Margin	Pk/QP/Avg	degrees	meters		
8.860 44.7		4.0 -9.3	AVG	0	1.0	ļ	
2.280 44.1		4.0 -9.9	AVG	0	1.0		
.500 39.3		4.0 -14.7	AVG	118	1.0		
.410 39.1 .080 38.6	-	4.0 -14.9 4.0 -15.4	AVG AVG	189 98	1.0 1.0	+	
9.000 38.5	-	4.0 -15.4 4.0 -15.5	AVG	98 97	1.0	+	
3.860 55.5		4.0 -18.5	PK	0	1.0		
2.280 55.2		4.0 -18.8	PK	0	1.0		
9.500 50.9		4.0 -23.1	PK	118	1.0		
3.080 50.4	V 74	4.0 -23.6	PK	98	1.0		
4.410 50.4	V 74	4.0 -23.6	PK	189	1.0		
9.000 50.1	H 74	4.0 -23.9	PK	97	1.0		
1: 27dBm/MHz	(~68dBuV/m).						


		of LATAS							C Test Dat
Client:	Summit Data	Communica	ations					Job Number:	
Model:	SDC-CF00A	G(DES Band	ts)			-		Log Number:	
		o(b) o band					Ассо	unt Manager:	Dean Eriksen
	Ron Seide								
Standard:	FCC							Class:	N/A
n #1a: C	diated Spuri center Chann adiated Emis	el @ 5500 N			eration in th Omni	e 5470-5725	MHz Band		
equency	Level	Pol	15.209	9/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
545.410	45.9	Н	54.0	-8.1	AVG	12	2.3		
424.360	44.5	V	54.0	-9.5	AVG	204	1.0		
470.330	41.2	Н	54.0	-12.8	AVG	64	1.0		
516.840	41.2	V	54.0	-12.8	AVG	173	1.0		
001.920	38.1	V	54.0	-15.9	AVG	360	1.0		
993.330	37.9	Н	54.0	-16.1	AVG	350	1.0		
545.410	57.6	Н	74.0	-16.4	PK	12	2.3		
424.360	55.5	V	74.0	-18.5	PK	204	1.0		
470.330	52.5	H V	74.0	-21.5	PK	64	1.0		
516.840	52.4	V V	74.0	-21.6	PK PK	173	1.0		
001.920	50.4 49.1	H	74.0 74.0	-23.6 -24.9	PK PK	360 350	1.0 1.0		


Client: Summit D Model: SDC-CF0	ata Communications	Client: Summit Data Communications					
Model: SDC-CF0				Job Number:			
	0AG(DFS Bands)			Log Number:			
Cantaat Dan Caid	· · ·		Accou	unt Manager:	Dean Eriks		
Contact: Ron Seide Standard: FCC	1			Class:	NI/A		
Stanuaru. II CC				01033.	N/A		
Pov st Specific Deta	wer, PSD, Peak Excursion,	ort Measuren Bandwidth and	nents d Spuriou	us Emiss			
Objectiv	e: The objective of this test session is to specification listed above.	perform final qualification	on testing of th	ne EUT with r	espect to th		
Test Enginee	st: 5/5/2008 18:46 er: Rafael Varelas n: Chamber #2	Config. Used Config Change EUT Voltage					
hen measuring the c alyzer or power met	figuration onducted emissions from the EUT's anter er via a suitable attenuator to prevent over ttenuators and cables used.						
hen measuring the c nalyzer or power met low for the external a mbient Conditio	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. INS: Temperature: Rel. Humidity:						
hen measuring the c alyzer or power met ow for the external a mbient Conditio ummary of Resu	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. ons: Temperature: Rel. Humidity:	erloading the measuren 23.2 °C 35 %	nent system. <i>i</i>	All measurem	ients are co		
nen measuring the c alyzer or power met ow for the external a mbient Conditio ummary of Resu Run #	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. Ins: Temperature: Rel. Humidity: Ilts Test Performed	23.2 °C 35 % Limit	Pass / Fail	All measurem	ents are co		
hen measuring the c alyzer or power met ow for the external a mbient Conditio ummary of Resu	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. ons: Temperature: Rel. Humidity:	erloading the measuren 23.2 °C 35 %	nent system. <i>i</i>	All measurem Result / 15.6dBm	ients are co		
hen measuring the c alyzer or power met ow for the external a mbient Conditio ummary of Resu Run # 1	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. Ins: Temperature: Rel. Humidity: Ilts Test Performed Power, 5250 - 5350MHz	erloading the measuren 23.2 °C 35 % Limit 15.407(a) (1), (2)	Pass / Fail Pass	All measurem Result / 15.6dBm 12.5dBm	Margin 2 26mW		
hen measuring the c alyzer or power met ow for the external a mbient Conditio ummary of Resu Run # 1 1 1 1 1	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. ons: Temperature: Rel. Humidity: Ilts Test Performed Power, 5250 - 5350MHz PSD, 5250 - 5350MHz PSD, 5470 - 5725MHz	Limit 23.2 °C 35 % Limit 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2)	Pass / Fail Pass Pass	All measurem Result / 15.6dBm 12.5dBm 2.9 dB -0.1 dE	ents are co <u>/ Margin</u> n / 26mW n / 18mW m/MHz Bm/MHz		
hen measuring the c alyzer or power met ow for the external a mbient Conditio ummary of Resu Run # 1 1 1 1 1 1 1 1	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. Ins: Temperature: Rel. Humidity: Ilts Power, 5250 - 5350MHz PSD, 5250 - 5350MHz PSD, 5470 - 5725MHz 26dB Bandwidth	Limit 23.2 °C 35 % Limit 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407	Pass / Fail Pass Pass Pass Pass Pass	All measurem Result / 15.6dBm 12.5dBm 2.9 dB -0.1 dE 25.3	<u>Aments are co</u> <u>Aments are co</u>		
nalyzer or power met low for the external a mbient Condition ummary of Resu Run # 1 1 1 1 1 1 1 1 1 1 1	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. Ins: Temperature: Rel. Humidity: Ilts Test Performed Power, 5250 - 5350MHz Power, 5470 - 5725MHz PSD, 5250 - 5350MHz PSD, 5470 - 5725MHz 26dB Bandwidth 99% Bandwidth	Limit 23.2 °C 35 % Limit 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407 RSS 210	Pass / Fail Pass Pass Pass Pass - -	All measurem Result / 15.6dBm 12.5dBm 2.9 dB -0.1 dE 25.3 17.4	Margin A / 26mW A / 18mW M/MHz MHz MHz MHz MHz		
then measuring the c nalyzer or power met low for the external a mbient Conditio ummary of Resu Run # 1 1 1 1 1 1 1	onducted emissions from the EUT's anterer via a suitable attenuator to prevent over ttenuators and cables used. Ins: Temperature: Rel. Humidity: Ilts Power, 5250 - 5350MHz PSD, 5250 - 5350MHz PSD, 5470 - 5725MHz PSD, 5470 - 5725MHz 26dB Bandwidth	Limit 23.2 °C 35 % Limit 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407(a) (1), (2) 15.407	Pass / Fail Pass Pass Pass Pass Pass	All measurem Result / 15.6dBm 12.5dBm 2.9 dB -0.1 dE 25.3 17.4	Aments are co Margin A / 26mW A / 18mW m/MHz Bm/MHz MHz MHz MHz 6dB		

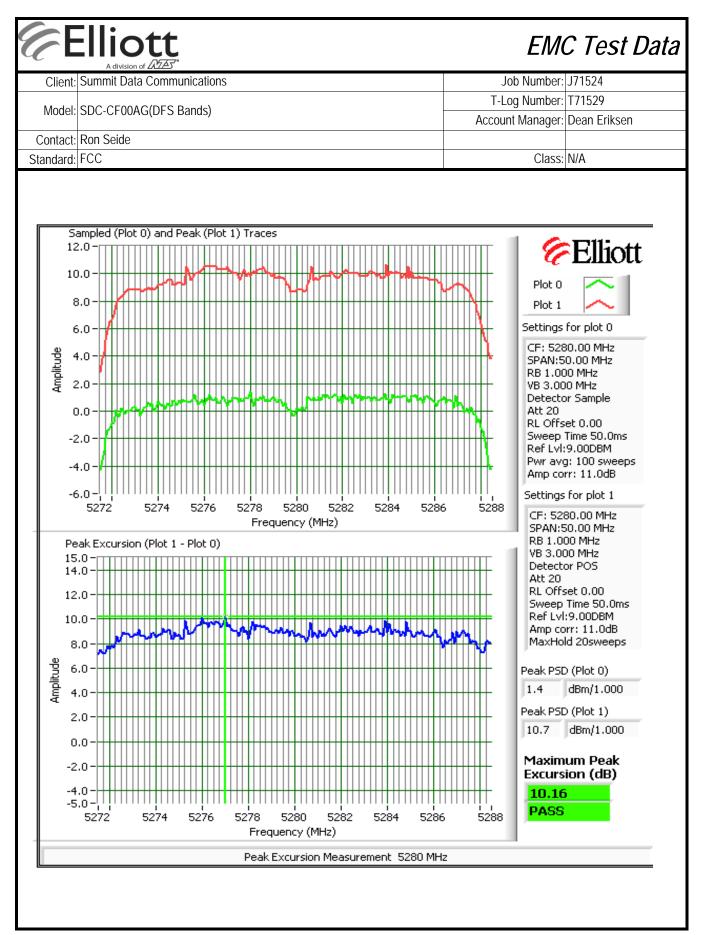

0		of ATAS						Lab. No	171504	
Client:	Summit Data	a Communica	ations				Job Number: J71524			
Model:	SDC-CF00A	G(DFS Band	ds)		T-Log Number: T71529					
			,		Account Manager: Dean Eriksen					
	Ron Seide									
Standard:	FCC							Class:	N/A	
un #1: Ba	ndwidth, Ou	tput Power a	and Power	spectral Den	2	a Gain (dBi):	5.1	l		
roquonev	Software	Band	width	Output D	ower ¹ dBm	Power		PSD ² dBm/MI	17	
	Setting				-	(Watts)				Resu
(MHz) 5280	Full	26dB 21.0	<u>99%</u> ⁴ 17.2	Measured 14.1	Limit 24.0	0.026	1.4	FCC Limit 11.0	RSS Limit [®] 11.0	Pass
5300	Full	21.0	17.2	14.1	24.0	0.020	2.3	11.0	11.0	Pass
5320	Full	25.3	17.3	15.6	24.0	0.032	2.9	11.0	11.0	Pass
5500	Full	21.3	17.3	12.5	24.0	0.018	-0.1	11.0	11.0	Pass
5600	Full	21.3	17.3	12.2	24.0	0.017	-0.3	11.0	11.0	Pass
5700	Full	20.8	17.4	11.0	24.0	0.013	-1.5	11.0	11.0	Pass
	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula	, VB=3 MHz, sing the same the limit for . The limits a ated from the	e analyzer : the 5150 - tre also corr measured	settings used 5250 MHz ba rected for insta power divideo	averaging or for output po nd accounts ances where d by the meas	wer. for the anter the highest	na gain as ti measured va	ne maximum Ilue of the PS	eirp allowed is D exceeds the dB by the amo	s e averaç
Note 3:	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce	e analyzer : the 5150 - rre also corre measured eeds the ave	tector, power settings used 5250 MHz ba rected for insta	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e avera
Note 2: Note 3: Note 4:	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0	e analyzer s the 5150 - ire also corr measured eds the ave d in accord	tector, power settings used 5250 MHz ba rected for insta power dividec erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4:	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0	e analyzer s the 5150 - rre also corre measured beds the ave d in accord	tector, power settings used 5250 MHz ba rected for insta power dividec erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi Licott Analyzer Sett 0.00 MHz	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0	e analyzer : the 5150 - ire also corrie measured eds the ave in accord	tector, power settings used 5250 MHz ba rected for insta power dividec erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi Hisott Analyzer Sett	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0	e analyzer s the 5150 - rre also corre measured eds the ave d in accord	tector, power settings used 5250 MHz ba rected for insta power dividec erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000 Detector	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi Iliott Analyzer Sett	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0	e analyzer : the 5150 - ire also corrie measured eds the ave d in accord	tector, power settings used 5250 MHz ba rected for insta power dividec erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi 111000 MHz Analyzer Sett 0.00 MHz MHz Sample	, VB=3 MHz, sing the same 0 the limit for . The limits a ated from the d value exce dth measure 5.0	e analyzer s the 5150 - tre also corre measured edds the ave d in accord	tector, power settings used 5250 MHz ba rected for insta power dividec erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1,000 VB 3,000 Detector Att 20 RL Offsel Sweep T	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi 99% Bandwi 100 MHz Analyzer Sett 0.00 MHz MHz Sample 0.00 ime 50.0ms	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0 ings 0.0 -10.0 -15.0 -20.0	e analyzer : the 5150 - tre also corrections and the source ends the average of the average din accord	tector, power settings used 5250 MHz ba rected for insta power divideo erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000 Detector Att 20 RL Offsel Sweep T Ref Lvl:9	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi 99% Bandwi 100 MHz Analyzer Sett 0.00 MHz MHz Sample 0.00 ime 50.0ms	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0 ings 0.0 -10.0 -15.0 -20.0 慶 -25.0	e analyzer s the 5150 - tre also corri- e measured eeds the ave d in accord	tector, power settings used 5250 MHz ba rected for insta power divideo erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000 Detector Att 20 RL Offsel Sweep T Ref LvI:9 Pwr avg Amp cor	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi Iliott Analyzer Sett 0.00 MHz MHz Sample 0.00 ime 50.0ms .00DBM : 100 sweeps r: 11.0dB	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0 ings 0.0 -10.0 -15.0 -20.0	e analyzer s the 5150 - tre also corri- e measured eeds the ave d in accord	tector, power settings used 5250 MHz ba rected for insta power divideo erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000 Detector Att 20 RL Offsel Sweep T Ref Lvl:9 Pwr avg	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi Iliott Analyzer Sett 0.00 MHz MHz Sample 0.000 MHz MHz Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample	, VB=3 MHz, sing the same the limit for . The limits a ated from the d value exce dth measure 5.0 ings 0.0 -10.0 -15.0 -20.0 慶 -25.0	e analyzer : the 5150 - ire also corre- re	tector, power settings used 5250 MHz ba rected for insta power divideo erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS v more than 3	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000 Detector Att 20 RL Offsel Sweep T Ref Lvl:9 Pwr avg Amp cor Bin size: Highest P	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi 99% Bandwi Iliott Analyzer Sett 0.00 MHz MHz Sample 0.000 MHz MHz Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample 0.000 Sample	, VB=3 MHz, sing the same the limit for The limits a ated from the <u>d value exce</u> dth measure 5.0 ings 0.0 -10.0 -15.0 -20.0 優 -25.0 -30.0 -35.0	e analyzer since the 5150 - ire also correct and the 5150 - ire also correct and the source of the source of the avect o	tector, power settings used 5250 MHz ba rected for insta power divideo erage by more ance with RSS	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS more than 3 3xRB	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000 Detector Att 20 RL Offsel Sweep T Ref Lvl:9 Pwr avg Amp cor Bin size: Highest P	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi Iliott Analyzer Sett 0.00 MHz MHz Sample 0.00 ime 50.0ms 0.00DBM 100 sweeps r: 11.0dB 33 kHz SD 4 dBm/1.000	, VB=3 MHz, sing the same the limit for The limits a ated from the <u>d value exce</u> dth measure 5.0 ings 0.0 -10.0 -15.0 -20.0 優 -25.0 -30.0 -35.0	e analyzer since the 5150 - ire also correct and the 5150 - ire also correct and the source of the source of the avect o	tector, power settings used 5250 MHz ba rected for insta power divideo erage by more ance with RSS	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS more than 3 3xRB	eirp allowed is D exceeds the dB by the amo	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000 Detector Att 20 RL Offsel Sweep T Ref Lvl:9 Pwr avg Amp cor Bin size: Highest P 1.44 9996 Band	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi Iliott Analyzer Sett 0.00 MHz MHz Sample 0.00 ime 50.0ms 0.00DBM 100 sweeps r: 11.0dB 33 kHz SD 4 dBm/1.000	, VB=3 MHz, sing the same the limit for . The limits a ated from the <u>d value exce</u> dth measure 5.0 ings 0.0 -10.0 -15.0 -20.0 優 -25.0 -30.0 -35.0 MHz -40.0 -45.0	e analyzer s the 5150 - tre also corrie measured eeds the ave d in accord	tector, power settings used 5250 MHz ba rected for insta power divideo erage by more	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS more than 3 3xRB	eirp allowed is D exceeds the	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1.000 VB 3.000 Detector Att 20 RL Offsel Sweep T Ref Lvl:9 Pwr avg Amp cor Bin size: Highest P 1.44 99% Band 17.2	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi ILICOL Analyzer Sett 0.00 MHz 0.00 MHz MHz Sample 0.00 MHz MHz Sample 0.00 ime 50.0ms 0.00DBM : 100 sweeps r: 11.0dB 83 kHz SD 4 dBm/1.000 dwidth 2 MHz	, VB=3 MHz, sing the same 0 the limit for . The limits a ated from the d value exce dth measure 	e analyzer si the 5150 - ire also come measured eeds the average of the stress of the stress of the average of the average of the average of the stress of	tector, power settings used 5250 MHz ba rected for insta power divideo erage by more ance with RSS	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS more than 3 3xRB	eirp allowed is D exceeds the dB by the amo	s e averaç
Note 2: Note 3: Note 4: Spectrum CF: 5280 SPAN:50 RB 1,000 VB 3,000 Detector Att 20 RL Offsel Sweep T Ref Lvl:9 Pwr avg Amp cor Bin size: Highest P 1,44 99% Band 17,22 Power O	RBW=1MHz over 50 MHz Measured us For RSS-210 10dBm/MHz PSD (calcula the measure 99% Bandwi ILICOL Analyzer Sett 0.00 MHz 0.00 MHz MHz Sample 0.00 MHz MHz Sample 0.00 ime 50.0ms 0.00DBM : 100 sweeps r: 11.0dB 83 kHz SD 4 dBm/1.000 dwidth 2 MHz	, VB=3 MHz, sing the same 0 the limit for . The limits a ated from the d value exce dth measure 5.0 -10.0 -15.0 -15.0 -25.0 -35.0 MHz -40.0 -55.0	e analyzer si the 5150 - ire also come measured eeds the average of the stress of the stress of the average of the average of the average of the stress of	tector, power settings used 5250 MHz ba power divided erage by more ance with RSS	averaging or for output po nd accounts ances where d by the mease than 3dB.	wer. for the anter the highest sured 99% b	nna gain as tl measured va andwidth) by	ne maximum Ilue of the PS more than 3 BxRB	eirp allowed is D exceeds the dB by the amo	s e averaç punt tha

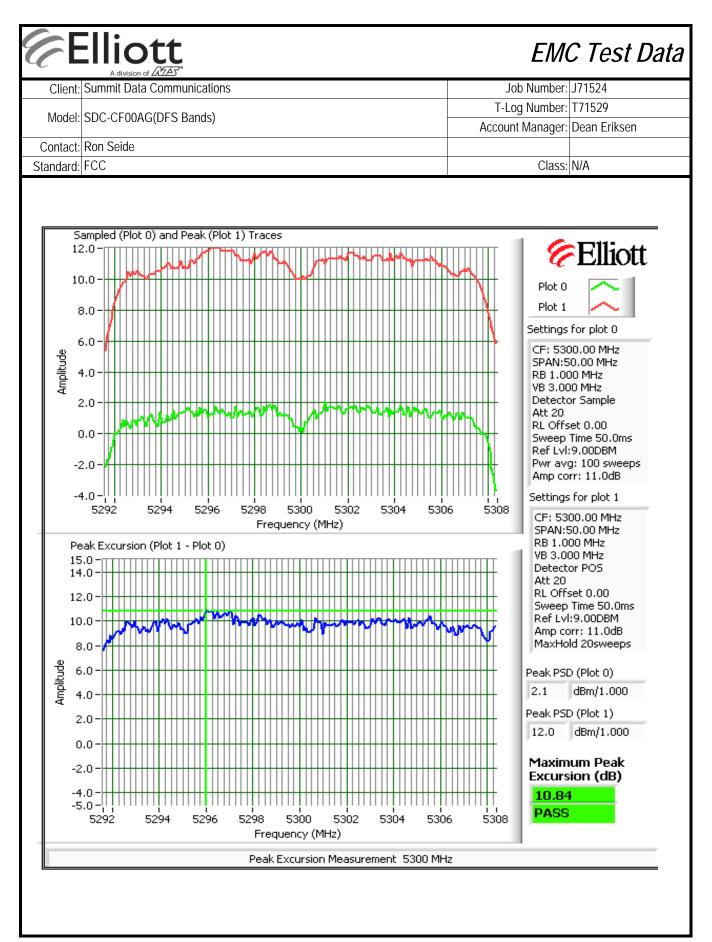


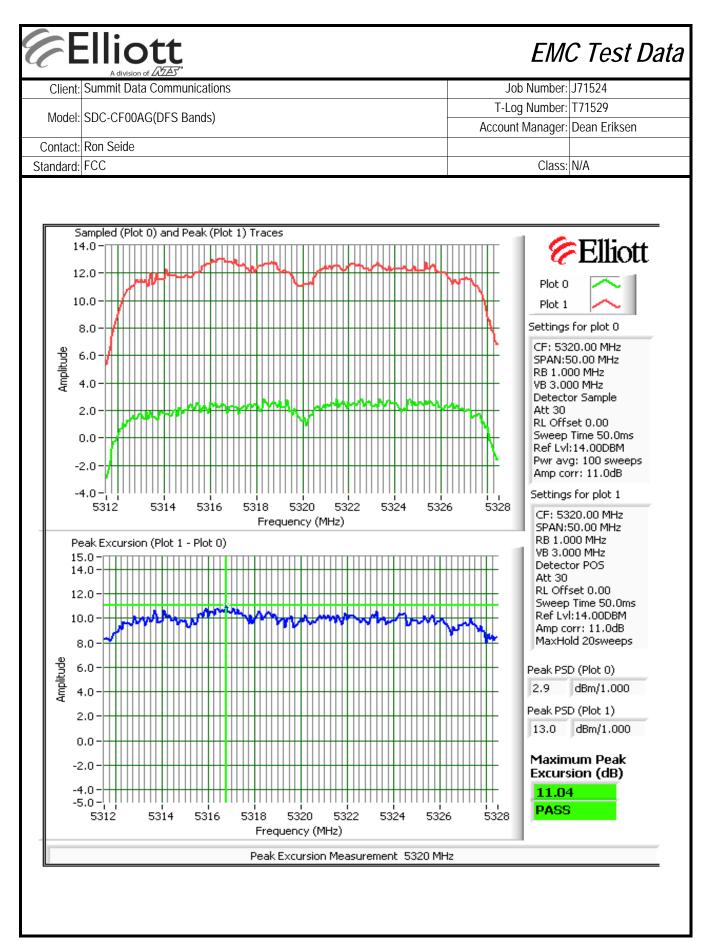
Elliott

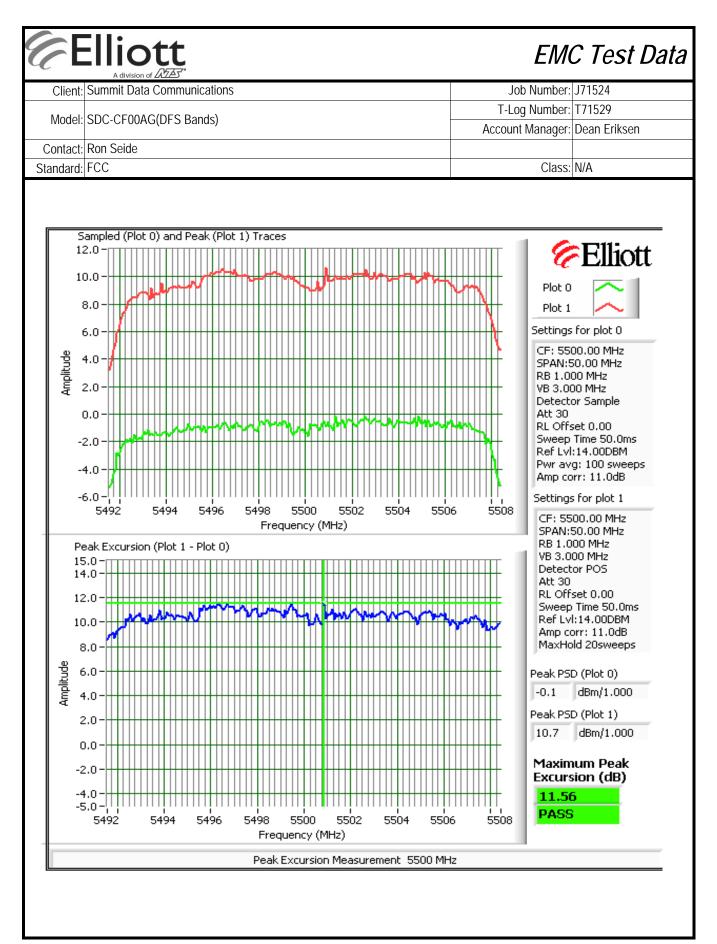
EMC Test Data

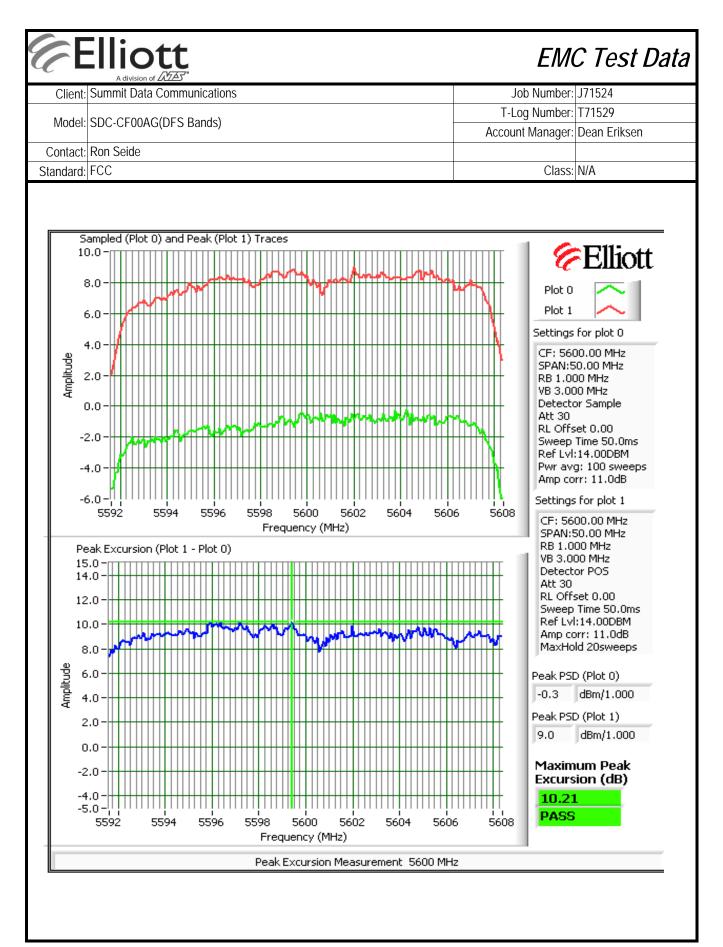
	A division of AZAS		
Client:	Summit Data Communications	Job Number:	J71524
Madal	SDC-CF00AG(DFS Bands)	T-Log Number:	T71529
wouer.	SDC-CF00AG(DFS Dalius)	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	FCC	Class:	N/A

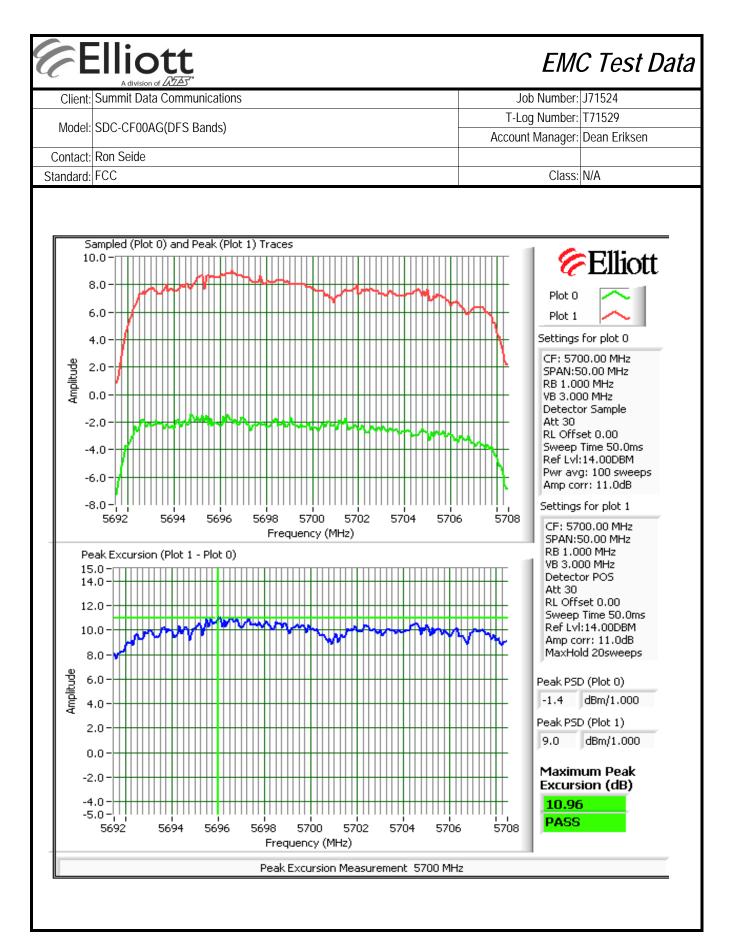

Run #2: Peak Excursion Measurement

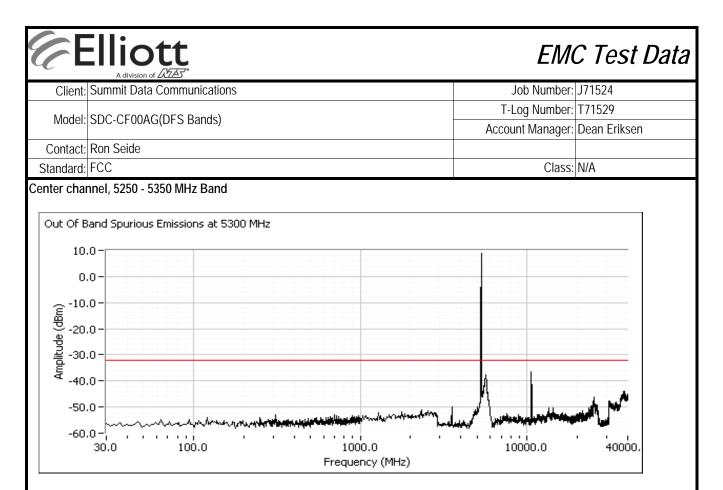

Device meets the requirement for the peak excursion

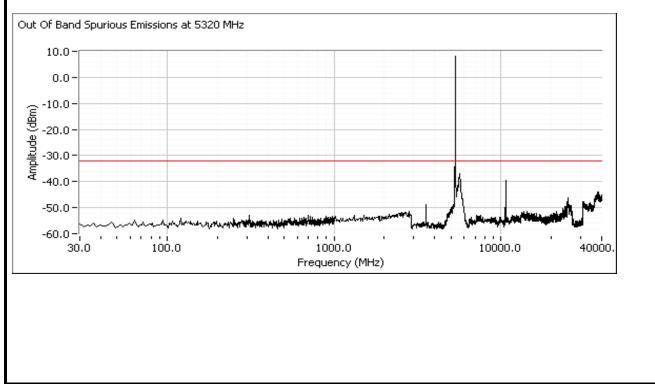

Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	Peak Excursion(dB)		Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180		13.0	5280	10.2	13.0	5500	11.6	13.0
5200		13.0	5300	10.8	13.0	5600	10.2	13.0
5240		13.0	5320	11.0	13.0	5700	11.0	13.0

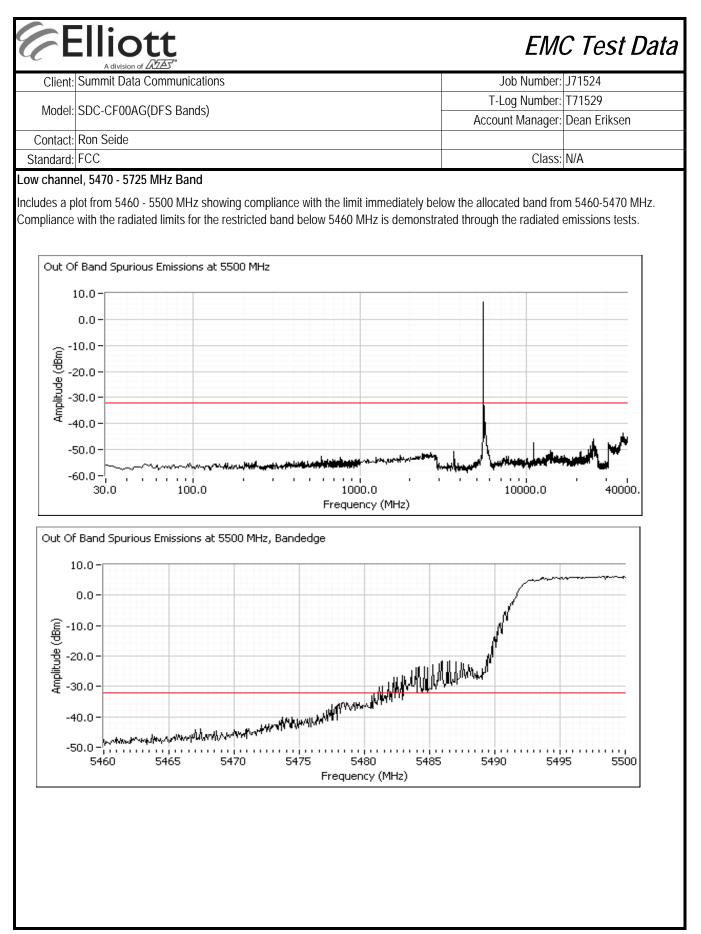

Plots Showing Peak Excursion

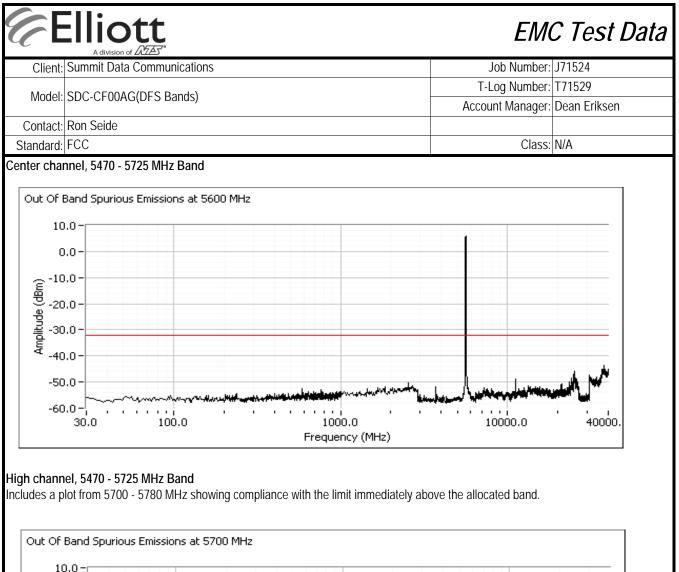

Trace A: RBW = VBW = 3MHz, Peak hold Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power

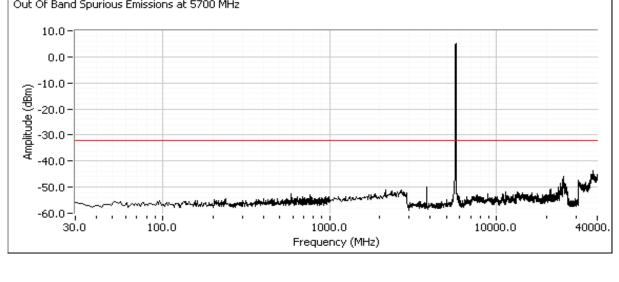







Client: Summit Data Communications Job Number: J7 Model: SDC-CF00AG(DFS Bands) T-Log Number: T7 Contact: Ron Seide account Manager: De tandard: FCC Class: N/ n#3: Out Of Band Spurious Emissions - Antenna Conducted Maximum Antenna Gain: 5.1 dBi Spurious Limit: -27.0 dBm/MHz eirp -32.1 dBm/MHz Average Limit (RB=1MHz, VB=10Hz) -12.1 dBm/MHz The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to the standard is an eirp limit. The limit for antenna port conducted measurements is adjusted to the standard is an eirp limit. The limit for antenna port conducted measurements is adjusted to the standard is an eirp limit.	1529 an Eriksen
Model: SDC-CF00AG(DFS Bands) Account Manager: De contact: Ron Seide Image: Ron Seide Ron Seide Image: Ron Seide Ron Seide <td< td=""><td>an Eriksen</td></td<>	an Eriksen
ontact: Ron Seide Image: Contact: Ron Seide Image: Contact: Ron Seide Indard: FCC Class: N/ #3: Out Of Band Spurious Emissions - Antenna Conducted Maximum Antenna Gain: 5.1 dBi Spurious Limit: -27.0 dBm/MHz eirp -32.1 dBm/MHz Average Limit (RB=1MHz, VB=10Hz) -12.1 dBm/MHz Limit Used On Plots Note 1: -32.1 dBm/MHz Peak Limit (RB=VB=1MHz)	
ndard: FCC Class: N/ #3: Out Of Band Spurious Emissions - Antenna Conducted Maximum Antenna Gain: 5.1 dBi Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots Note 1: -32.1 dBm/MHz Average Limit (RB=1MHz, VB=10Hz) -12.1 dBm/MHz Peak Limit (RB=VB=1MHz) The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to	1
 #3: Out Of Band Spurious Emissions - Antenna Conducted Maximum Antenna Gain: 5.1 dBi Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots ^{Note 1}: -32.1 dBm/MHz Average Limit (RB=1MHz, VB=10Hz) The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to 	
Maximum Antenna Gain: 5.1 dBi Spurious Limit: -27.0 dBm/MHz eirp Limit Used On Plots -32.1 dBm/MHz Average Limit (RB=1MHz, VB=10Hz) -12.1 dBm/MHz Peak Limit (RB=VB=1MHz)	
Limit Used On Plots Note 1: -32.1 dBm/MHz Average Limit (RB=1MHz, VB=10Hz) -12.1 dBm/MHz Peak Limit (RB=VB=1MHz) The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to	
-12.1 dBm/MHz Peak Limit (RB=VB=1MHz) The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to	
-12.1 dBm/MHz Peak Limit (RB=VB=1MHz) The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to	
	take into
consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength meas	
1: more than 50MHz from the bands and that are close to the limit are made to determine compliance as the	e antenna g
known at these frequencies.	
 All spurious signals below 1GHz are measured during digital device radiated emissions test. Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209. 	
ut Of Band Spurious Emissions at 5280 MHz	
10.0-	
0.0-	
~ -10.0 -	
40.0 - 40.0 -	
Billion -20.0 - -30.0 - - -40.0 - - -50.0 - -	
40.0 - 4	40000.




High channel, 5250 - 5350 MHz Band

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

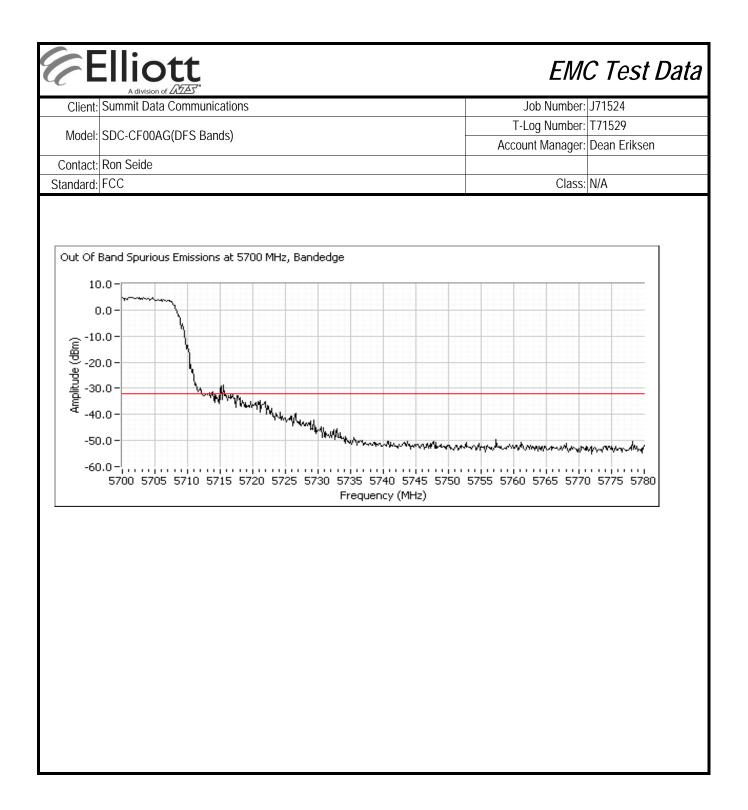


EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Summit Data Communications, Inc. Model SDC-CF10AGConstruction

EXHIBIT 6: Operator's Manual for Summit Data Communications, Inc. Model SDC-CF10AG

EXHIBIT 7: Block Diagram of Summit Data Communications, Inc. Model SDC-CF10AG

EXHIBIT 8: Schematic Diagrams for Summit Data Communications, Inc. Model SDC-CF10AG

EXHIBIT 9: Theory of Operation for Summit Data Communications, Inc. Model SDC-CF10AG

EXHIBIT 10: RF Exposure Information