

FCC Test Report

Report No.: AGC00008180701TE05

FCC ID : TW5T5886G

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION : HD WiFi Camera

BRAND NAME : N/A

MODEL NAME T5886GAB, T5886GAA, T5886GAC, Y5886GAA, Y5886GAB,

Y5886GAC

CLIENT: Shenzhen Gospell Smarthome Electronic Co., Ltd.

DATE OF ISSUE : Jul. 19, 2018

STANDARD(S)

TEST PROCEDURE(S)

FCC Part 15.247

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 89

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	TO W	Jul. 19, 2018	Valid	Initial Release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

TABLE OF CONTENTS

1	1. VERIFICATION OF CONFORMITY	5
2	2. GENERAL INFORMATION	6
	2.4 PRODUCT DESCRIPTION	
	2.1. PRODUCT DESCRIPTION	6
	2.2. TABLE OF CARRIER FREQUENCYS	
	2.4. RELATED SUBMITTAL(S) / GRANT (S)	/
	2.6. SPECIAL ACCESSORIES	
	2.7. EQUIPMENT MODIFICATIONS	7
3	3. MEASUREMENT UNCERTAINTY	8
N.		, dil
oal'	4. DESCRIPTION OF TEST MODES	The Compliance
4	4. DESCRIPTION OF TEST MODES	9
	5. SYSTEM TEST CONFIGURATION	
5	5. SYSTEM TEST CONFIGURATION	10
	5.1. CONFIGURATION OF EUT SYSTEM	10
	5.2. EQUIPMENT USED IN EUT SYSTEM	
	5.3. SUMMARY OF TEST RESULTS	
6	6. TEST FACILITY	11
7	7. OUTPUT POWER	12
	7.1. MEASUREMENT PROCEDURE	
	7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
	7.3. LIMITS AND MEASUREMENT RESULT	
8	8. 6 DB BANDWIDTH	15
	8.1. MEASUREMENT PROCEDURE	
	8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	8.3. LIMITS AND MEASUREMENT RESULTS	16

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

9. CONDUCTED SPURIOUS EMISSION	24
9.1. MEASUREMENT PROCEDURE	24
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	24
9.3. MEASUREMENT EQUIPMENT USED	24
9.4. LIMITS AND MEASUREMENT RESULT	24
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	43
10.1 MEASUREMENT PROCEDURE	43
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	43
10.3 MEASUREMENT EQUIPMENT USED	43
10.4 LIMITS AND MEASUREMENT RESULT	43
11. RADIATED EMISSION	51
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SETUP	52
11.3. LIMITS AND MEASUREMENT RESULT	53
11.4. TEST RESULT	53
12. BAND EDGE EMISSION	59
12.1. MEASUREMENT PROCEDURE	The Total Completion S. T. T.
12.1. MEASUREMENT PROCEDURE	59
12.3. TEST RESULT	
13. FCC LINE CONDUCTED EMISSION TEST	76
13.1. LIMITS OF LINE CONDUCTED EMISSION TEST	76
13.2. BLOCK DIAGRAM OF TEST SETUP	76
13.3. PROCEDURE OF LINE CONDUCTED EMISSION TEST	77
13.4. TEST RESULT OF LINE CONDUCTED EMISSION TEST	78
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	80
ADDENDIV D. DUOTOCD ADUS OF FUT	® A Tonoi Co

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Report No.: AGC00008180701TE05 Page 5 of 89

1. VERIFICATION OF CONFORMITY

Applicant	Shenzhen Gospell Smarthome Electronic Co., Ltd.					
Address	F/12 F518 Idea Land Baoyuan Road Baoan Central Area Shenzhen City P.R China					
Manufacturer	Shenzhen Gospell Smarthome Electronic Co., Ltd.					
Address	East of 01st-04st Floor,Block A,No.1 Industrial park,Fenghuanggang,South of No.1 Baotian Road,Xixiang street,Bao'an District,Shenzhen City,Guangdong Province 518126,P.R.China					
Product Designation	HD WiFi Camera					
Brand Name	N/A					
Test Model	T5886GAB					
Series Model	T5886GAA, T5886GAC, Y5886GAA, Y5886GAB, Y5886GAC					
Declaration of Difference	All the same except for the model name					
Date of test	Jul. 11, 2018 to Jul. 19, 2018					
Deviation	None					
Condition of Test Sample	Normal					
Test Result	Pass					
Report Template	AGCRT-US-BGN/RF					

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Tested By	Now Zhang	E Franciscon Company
Entered Committee Committe	Max Zhang(Zhang Yi)	Jul. 19, 2018
Reviewed By	Bore xie	
© Martin of Global Company	Bart Xie(Xie Xiaobin)	Jul. 19, 2018
Approved By	Foresto ce	
Emmo © Francis	Forrest Lei(Lei Yonggang) Authorized Officer	Jul. 19, 2018

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 6 of 89

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "HD WiFi Camera". It is designed by way of utilizing the DSSS and OFDM technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.412 GHz~2.462GHz
Output Power(Average)	IEEE 802.11b:15.62dBm; IEEE 802.11g:12.54dBm; IEEE 802.11n(20):11.85dBm; IEEE 802.11n(40):9.78dBm
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)
Number of channels	11 m
Hardware Version	U5886GM05
Software Version	E_900.T5886GAB.009.342
Antenna Designation	Fixed antenna
Antenna Gain	1.0dBi
Power Supply	DC 5V by adapter

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
SE STATE COMPANY SE STATE OF S	20 100 °	2412 MHZ
SGC MAN	2	2417 MHZ
	3 1 1 1 1 1 1 1 1	2422 MHZ
a Colona Companio	604	2427 MHZ
CG Manuscriptor	5	2432 MHZ
2400~2483.5MHZ	1 6	2437 MHZ
The Third Company	7 Same and the second of the s	2442 MHZ
of Colonia Compilation of Colonia Colo	8	2447 MHZ
Sec 10	9	2452 MHZ
- iiil	10	2457 MHZ
The Charles of the Ch	2 11 6	2462 MHZ

Note: For 20MHZ bandwidth system use Channel 1 to Channel 11, For 40MHZ bandwidth system use Channel 3 to Channel 9

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 7 of 89

2.3. IEEE 802.11N MODULATION SCHEME

MCS Index	Nss	Nss Modulation	ion R	R NBPSC	NCBPS		NDBPS		Data rate(Mbps) 800nsGl	
ð					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	15	52	108	26	54	6.5	13.5
1 3	1 1 Juanos	QPSK	1/2	2	104	216	52	108	13.0	27.0
2	1 8	QPSK	3/4	2	104	216	78	162	19.5	40.5
3	Cl	16-QAM	1/2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0
5	雅 1 allon of	64-QAM	2/3	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0

Symbol	Explanation	
NSS	Number of spatial streams	
R	Code rate	
NBPSC	Number of coded bits per single carrier	
NCBPS	Number of coded bits per symbol	
NDBPS	Number of data bits per symbol	
GI A TANAMAN CONTRACTOR OF THE PARTY OF THE	Guard interval	

2.4. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: TW5T5886G** filing to comply with the FCC Part 15 requirements.

2.5. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.6. SPECIAL ACCESSORIES

Refer to section 5.2.

2.7. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC00008180701TE05 Page 8 of 89

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in measurement" (GUM) published by CISPR and ANSI.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.gatt.com.

Report No.: AGC00008180701TE05 Page 9 of 89

4. DESCRIPTION OF TEST MODES

NO.			TE	ST MODE DESCRIPTI	ON	
K 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	一位 测	© #	Jation of Globar ®	Low channel TX	LGC "	300
2	The state of Global Control	100°	10°C	Middle channel TX		極調
3	Vine			High channel TX	五天 接至 河町	© Manual Control Control Control
4	KE JIM	* 100°	® # Jajon of G	Normal operating	(S) All and a company of Global	10 M

Note:

Transmit by 802.11b with Date rate (1/2/5.5/11)

Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Transmit by 802.11n (40MHz) with Date rate (13.5/27/40.5/54/81/108/121.5/135)

Note:

- The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 10 of 89

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

	® #		
EUT	,6	AE	

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1 8	HD WiFi Camera	T5886GAB	TW5T5886G	EUT
2	Adapter	KT05W050100USU	DC5V/1A	AE
3	Adapter	HA-19050100UU	DC5V/1A	AE
4	Adapter	D31-05050100	DC5V/1A	AE

Note: All the adapters had been tested, the adapter KT05W050100USU was the worst case and only the data of the worst case record in this report.

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 11 of 89

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd				
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Bldg.12, Baoan Bldg Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen 518012				
NVLAP LAB CODE	600153-0				
Designation Number	CN5028				
FCC Test Firm Registration Number	682566				
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0				

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	M ESPI	101206	Jun. 12, 2018	Jun. 11, 2019
LISN	R&S	ESH2-Z5	100086	Aug.21, 2017	Aug.20, 2018

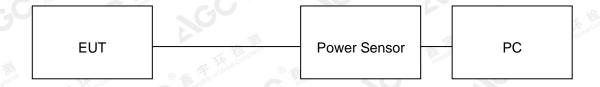
TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.08, 2017	Dec.07, 2018
Power sensor	Aglient	U2021XA	MY54110007	Sep.21, 2017	Sep.20, 2018
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2018	Jun. 11, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.20, 2017	Sep.19, 2018
preamplifier	ChengYi	EMC184045SE	980508	Sep.15, 2017	Sep.14, 2018
Active loop antenna (9K-30MHz)	A.H.	SAS-562B	N/A	Mar.01, 2018	Feb.28, 2019
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May.18, 2017	May.17, 2019
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun. 12, 2018	Jun. 11, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.28, 2017	Sep.27, 2018

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 12 of 89

7. OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For average power test:

- 1. Connect EUT RF output port to power sensor through an RF attenuator.
- 2. Connect the power sensor to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) AVERAGE POWER SETUP

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 13 of 89

7.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER	200	100°	Co
TEST MODE	802.11b with data rate 1		·mi	The filling

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	15.62	30	Pass
2.437	15.26	30	Pass
2.462	15.12	30	Pass

TEST ITEM	OUTPUT POWER	© Mesallor of Globa	(a) Mestation of Company	100
TEST MODE	802.11g with data rate 6	GO 76		

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	12.54	30	Pass
2.437	12.15	30	Pass
2.462	12.03	30	Pass

TEST ITEM	OUTPUT POWER	-till	THE
TEST MODE	802.11n 20 with data rate 6.5	The Sabar Compliance	® ### Colored Colored

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	11.85	30	Pass
2.437	11.74	30	Pass
2.462	11.37	30	Pass

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

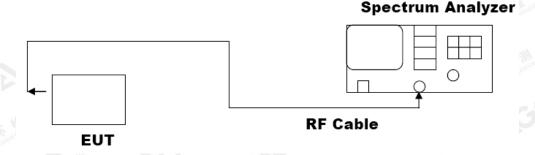
Report No.: AGC00008180701TE05 Page 14 of 89

TEST ITEM	OUTPUT POWER	© Francisco de Colora	® ## John of Global Com	(S) Allestation of C
TEST MODE	802.11n 40 with data rate 13.5	30 , 30		

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.422	9.78	30	Pass
2.437	9.52	30	Pass
2.452	9.44	30	Pass

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 15 of 89


8. 6 DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC00008180701TE05 Page 16 of 89

8.3. LIMITS AND MEASUREMENT RESULTS

TEST ITEM	6DB BANDWIDTH	(S) Altestation of Column	® Mestation of Goods	(® Allestation of A
TEST MODE	802.11b with data rate 11			

	LIMITS AND MEA	SUREMENT RESULT	
Applicable Limits	Applicable Limits		
Applicable Lillins	Test D	ata (MHz)	Criteria
	Low Channel	10.09	PASS
>500KHZ	Middle Channel	10.09	PASS
	High Channel	10.09	PASS

TEST ITEM	6DB BANDWIDTH	® Affectation of Co	EG Mesuron	NO.
TEST MODE	802.11g with data rate 54			THE STATE OF

LIMITS AND MEASUREMENT RESULT				
Annicola I imito	Applicable Limits			
Applicable Limits	Test Data (MHz)		Criteria	
NG C	Low Channel	16.34	PASS	
>500KHZ	Middle Channel	16.34	PASS	
© ## applion of Clobar Chr.	High Channel	16.35	PASS	

TEST ITEM	6DB BANDWIDTH	Colors Williams Colors	CO	NO.
TEST MODE	802.11n 20 with data rate 65			· 玉

	LIMITS AND MEAS	UREMENT RESULT		
Appliachle Limite	Applicable Limits			
Applicable Limits	Test Dat	ta (MHz)	Criteria	
	Low Channel	17.29	PASS	
>500KHZ	Middle Channel	17.29	PASS	
Separa Communication of Circumstance	High Channel	17.30	PASS	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Report No.: AGC00008180701TE05 Page 17 of 89

TEST ITEM	6DB BANDWIDTH	® Franklion of Clobal Com	® # Applor of Global Comme	© Milesulion of Go
TEST MODE	802.11n 40 with data rate 135	30 , 30		0

	LIMITS AND MEASUR	EMENT RESULT	
Applicable Limite		Applicable Limits	
Applicable Limits	Test Data ((MHz)	Criteria
CC **	Low Channel	35.79	PASS
>500KHZ	Middle Channel	35.68	PASS
	High Channel	35.70	PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

802.11b TEST RESULT TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11g TEST RESULT TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

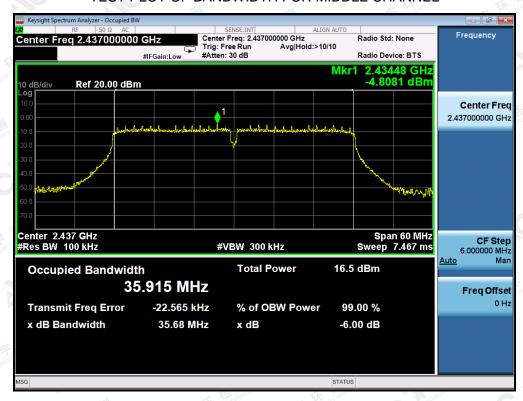
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

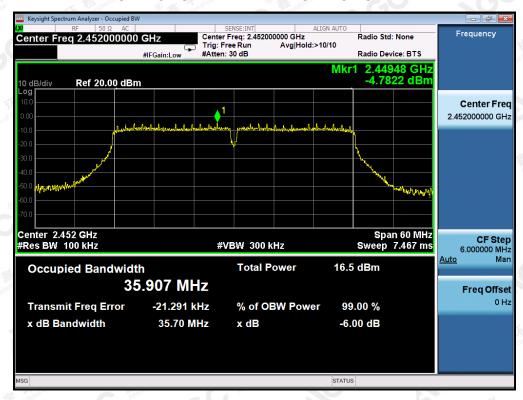
802.11n (20) TEST RESULT TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


802.11n (40) TEST RESULT
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 24 of 89

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

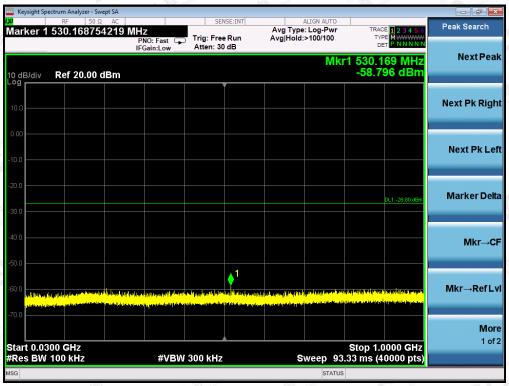
Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

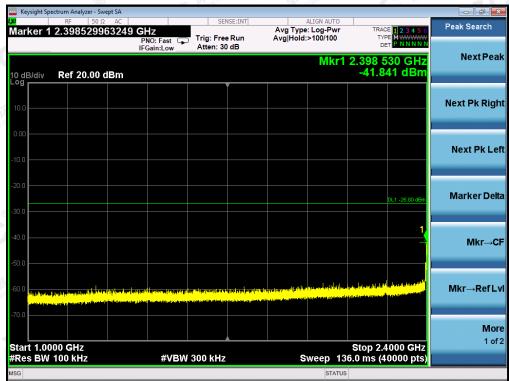
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2.

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.

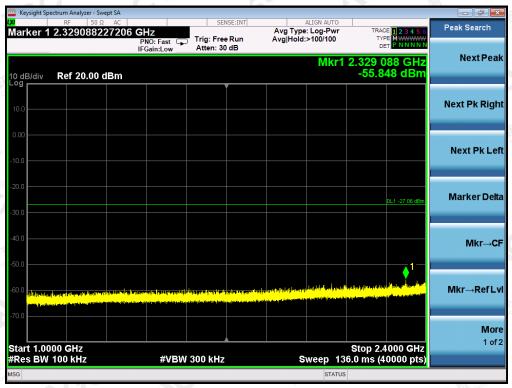

9.4. LIMITS AND MEASUREMENT RESULT


	ATT HID-	Compile 3/4 Co.		
LIMITS AND MEASUREMENT RESULT				
Amuliachia Limita	Measurement Result			
Applicable Limits	Test Data	Criteria		
In any 100 KHz Bandwidth Outside the	At least -30dBc than the limit	F Global Company		
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS		
intentional radiator is operating, the radio frequency	Channel			
power that is produce by the intentional radiator				
shall be at least 30 dB below that in 100KHz		Thomas Compliano		
bandwidth within the band that contains the highest		® Millestation of Glo		
level of the desired power.	At least -30dBc than the limit	PASS		
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS		
restricted bands, as defined in §15.205(a), must also		:III		
comply with the radiated emission limits specified		Compliance © Franco of		
in§15.209(a))	All Sand Come O Sand Sand	C Most		

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

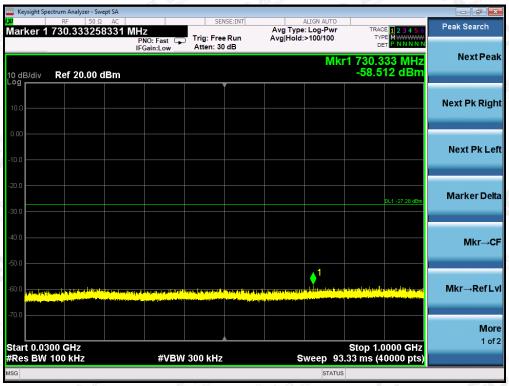
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11b FOR MODULATION IN LOW CHANNEL

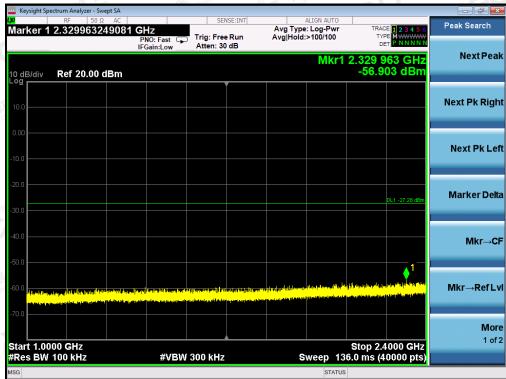
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.



TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN MIDDLE CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.



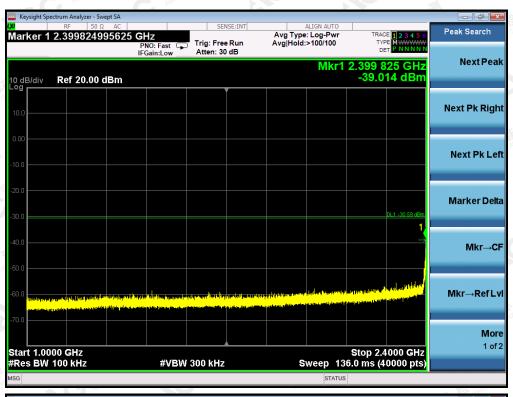


The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN HIGH CHANNEL

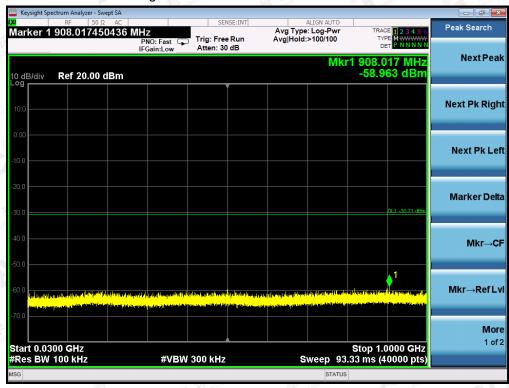


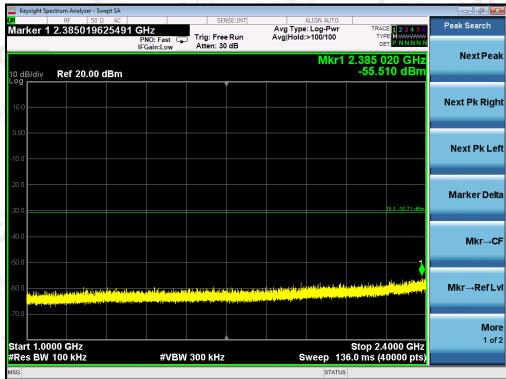
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.



TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11g FOR MODULATION IN LOW CHANNEL

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

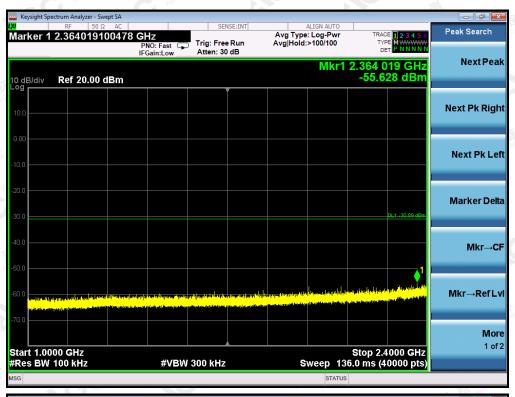




The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

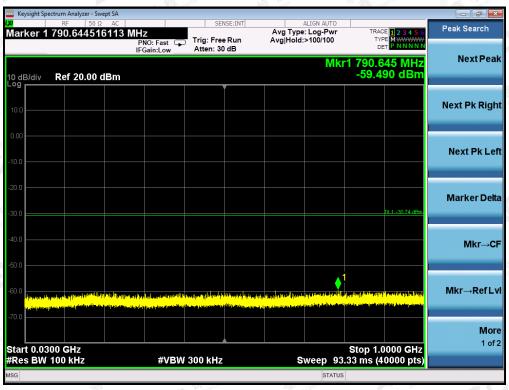
TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11g FOR MODULATION IN MIDDLE CHANNEL

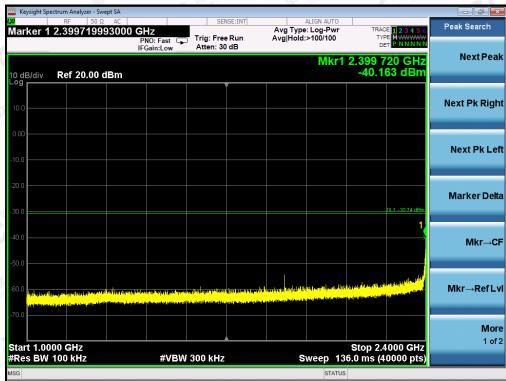
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.



TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11q FOR MODULATION IN HIGH CHANNEL

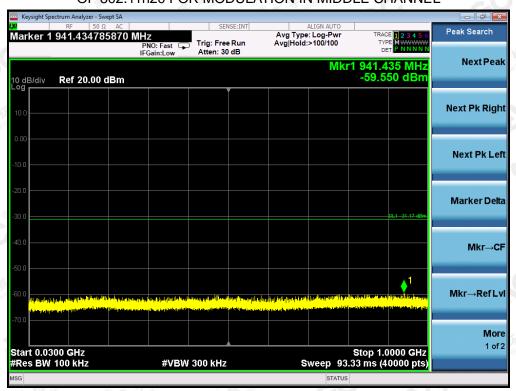
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.





The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

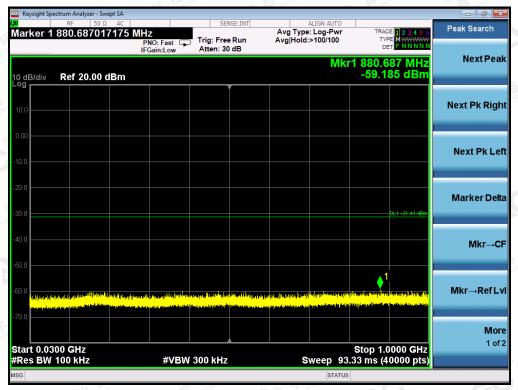
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n20 FOR MODULATION IN LOW CHANNEL

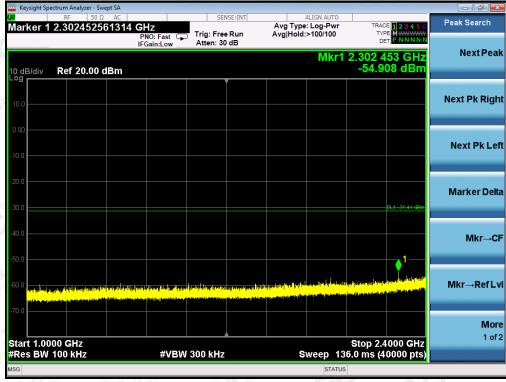


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN MIDDLE CHANNEL

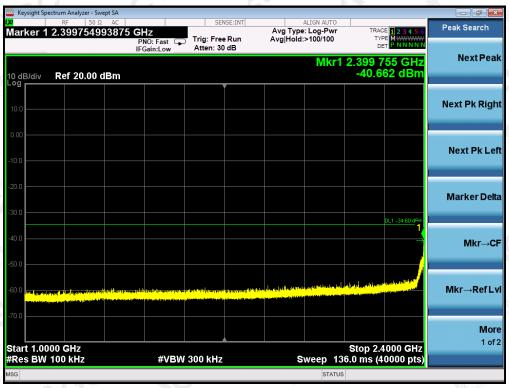
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.



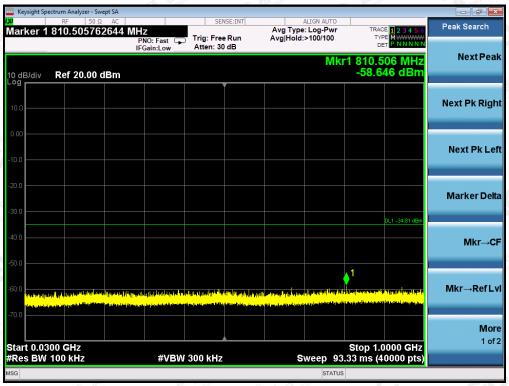


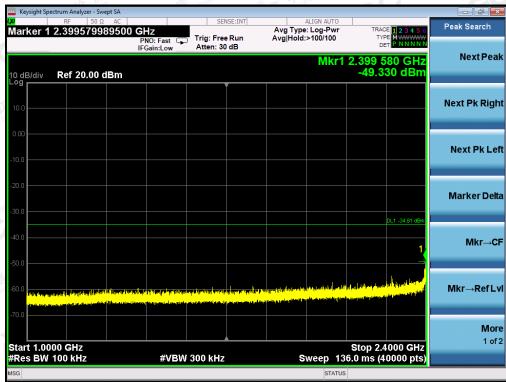
The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN HIGH CHANNEL

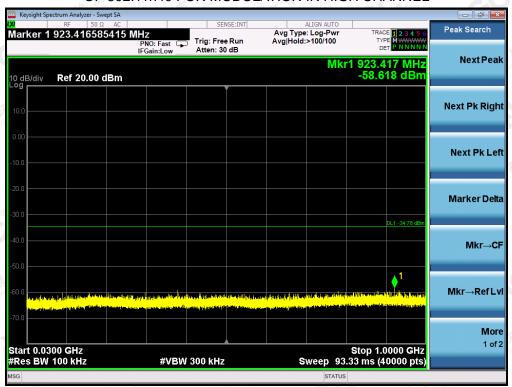


TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n40 FOR MODULATION IN LOW CHANNEL

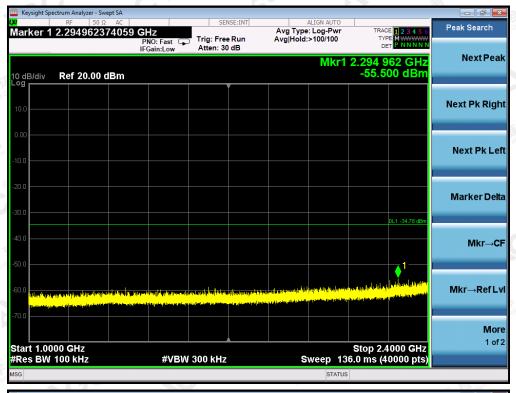




TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n40 FOR MODULATION IN MIDDLE CHANNEL



The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.



TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n40 FOR MODULATION IN HIGH CHANNEL

Page 43 of 89

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of AVGPSD-1 in the ANSI C63.10 (2013) item 11.10 was used in this testing.

10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 8.2.

10.3 MEASUREMENT EQUIPMENT USED

Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT

TEST ITEM	POWER SPECTRAL DENSITY	The landing	The School Compliance (8)
TEST MODE	802.11b with data rate 1	© Medition of Color	And the state of t

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-1.846	6 8	Pass
Middle Channel	-1.237	8	Pass
High Channel	-3.035	8	Pass

TEST ITEM	POWER SPECTRAL DENSITY		
TEST MODE	802.11g with data rate 6	The Fill of the Fi	® # The of Codes Company

Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-6.158	The state of the s	Pass
Middle Channel	-6.641	8	Pass
High Channel	-6.091	8	Pass

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC00008180701TE05 Page 44 of 89

TEST ITEM	POWER SPECTRAL DENSITY	The Comple	The second second	4
TEST MODE	802.11n 20 with data rate 6.5	(C) Allestation of Cas	© American di citati	attestation of

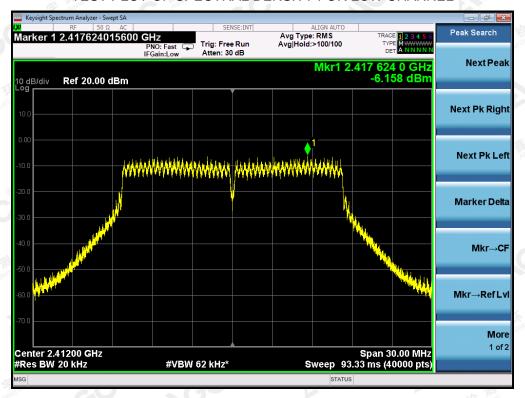
Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-6.472	® # # 8 CO	Pass
Middle Channel	-7.358	8	Pass
High Channel	-6.762	8 1	Pass

TEST ITEM	POWER SPECTRAL DENSITY		
TEST MODE	802.11n 40 with data rate 13.5	The Marco	F Today Completion

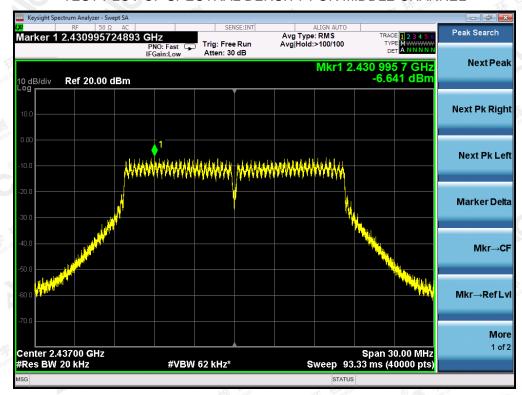
Channel No.	Power density (dBm/20kHz)	Limit (dBm/3kHz)	Result
Low Channel	-8.840	8 7 7 7	Pass
Middle Channel	-9.111	8	Pass
High Channel	-8.772	8	Pass

802.11b TEST RESULT TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

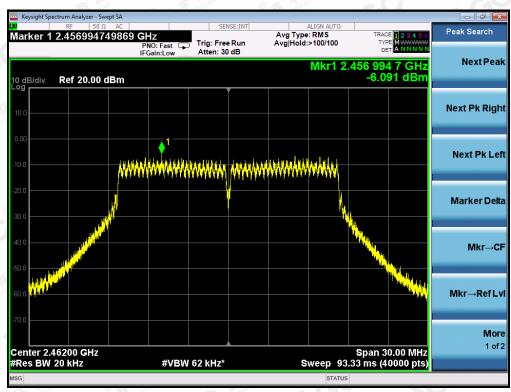
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

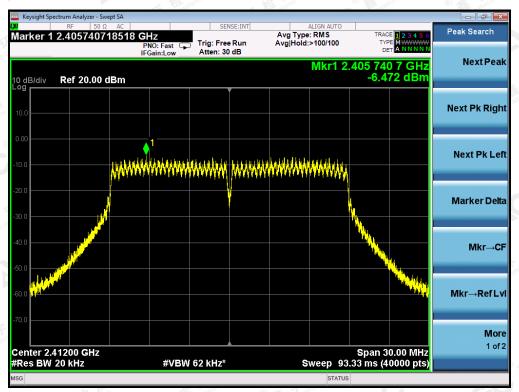
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



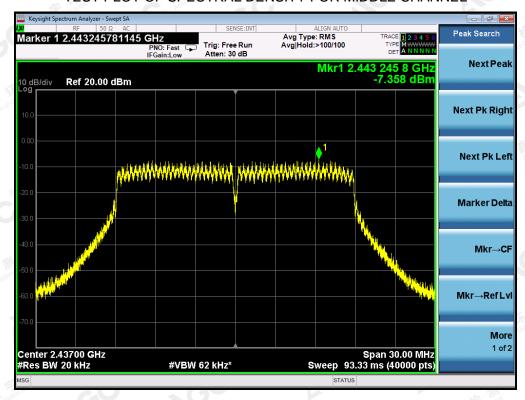
802.11g TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



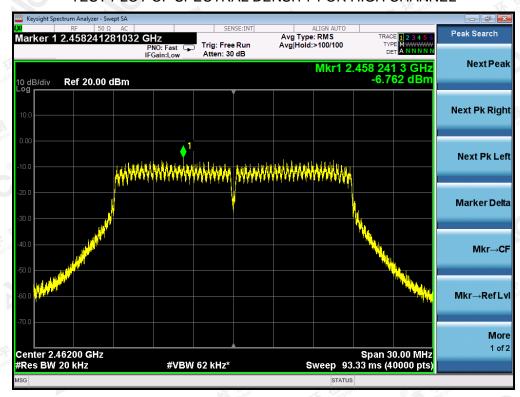
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



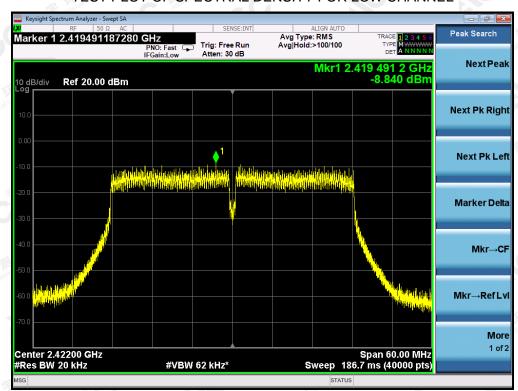
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



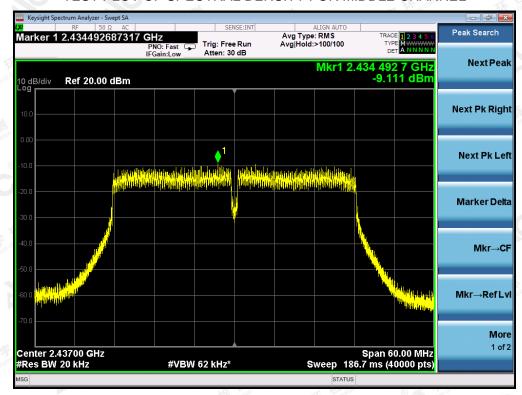
802.11n 20 TEST RESULT TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL



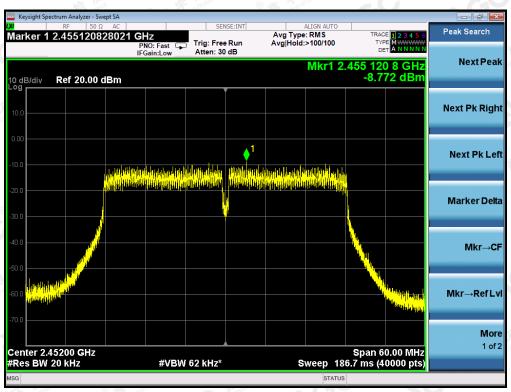
TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL



TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL



802.11n 40 TEST RESULT
TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL

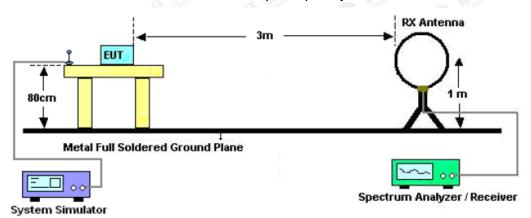


TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

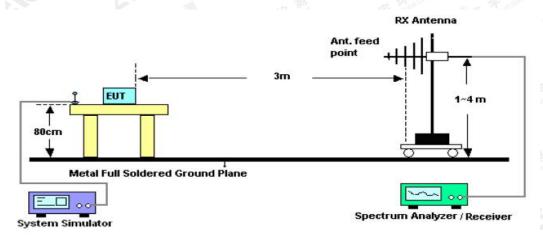
TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

Page 51 of 89

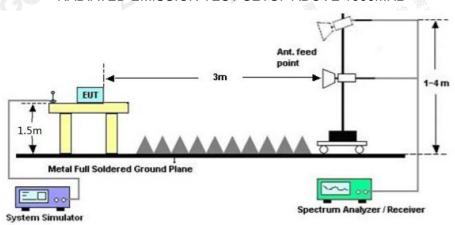
11. RADIATED EMISSION


11.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 53 of 89

11.3. LIMITS AND MEASUREMENT RESULT

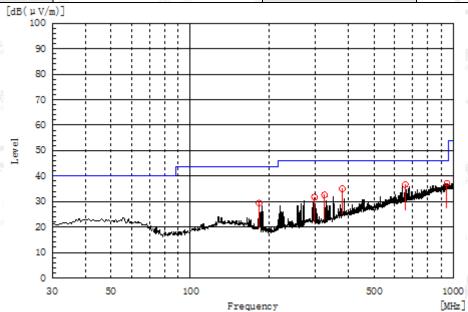
15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	The state of the s
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

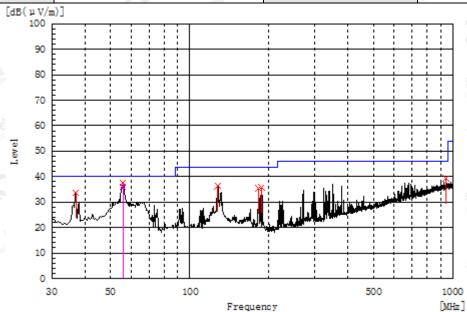
11.4. TEST RESULT


RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ

EUT	HD WiFi Camera	Model Name	T5886GAB
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal


Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
182.775	₹ EH	15.1	14.3	29.4	43.5	14.1	Pass	150.0	59.2
296.750	H	14.4	17.4	31.8	46.0	14.2	Pass	100.0	269.6
323.910	Н	14.7	17.9	32.6	46.0	13.4	Pass	100.0	111.7
378.230	H	15.0	20.0	35.0	46.0	11.0	Pass	100.0	296.0
657.590	® Honor Clabs	10.9	25.7	36.6	46.0	9.4	Pass	150.0	245.1
946.650	Н	6.6	30.6	37.2	46.0	8.8	Pass	150.0	69.4

RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

EUT	HD WiFi Camera	Model Name	T5886GAB
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
36.790	V	16.9	16.8	33.7	40.0	6.3	Pass	100.0	101.3
55.705	V.	21.0	16.6	37.6	40.0	2.4	Pass	100.0	69.3
127.970	V	20.1	16.1	36.2	43.5	7.3	Pass	100.0	261.3
182.775	V	21.1	14.3	35.4	43.5	8.1	Pass	100.0	24.4
188.110	V	21.9	13.9	35.8	43.5	7.7	Pass	100.0	14.3
943.740	© Ton of Globo	8.6	30.6	39.2	46.0	6.8	Pass	100.0	358.9

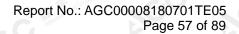
RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.

Page 56 of 89

RADIATED EMISSION ABOVE 1GHZ


EUT	HD WiFi Camera	Model Name	T5886GAB
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4824.051	42.38	3.72	46.1	74	-27.9	peak
4824.027	38.71	3.72	42.43	54	-11.57	AVG
7236.076	40.89	8.15	49.04	74	-24.96	peak
7236.021	35.83	8.15	43.98	54	-10.02	AVG
Artestation	(B) Westation of	Allestan				line
					1111	HE Mance
emark:		- 1	lin:	T.	Complian	* * Slopal Con
actor = Ante	enna Factor + Ca	able Loss –	Pre-amplifier.	® # Jon of Glon	(E) ### state	Jon o.

EUT	HD WiFi Camera	Model Name	T5886GAB
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2412MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4824.108	43.51	3.72	47.23	74	-26.77	peak
4824.063	37.69	3.72	41.41	54	-12.59	AVG
7236.021	41.73	8.15	49.88	74	-24.12	peak
7236.022	35.65	8.15	43.8	54	-10.2	AVG
3 177's	A Global ®	alion of Glo	A Silver	CO"		
Remark:	Form CC			litte:	45.	ince ini
actor = Ante	enna Factor + C	Cable Loss –	Pre-amplifier.	The Compliance	Thomas Compa	Allest
		-77111	the IT's	27		

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KeC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

1100		*UV . CO.	
EUT	HD WiFi Camera	Model Name	T5886GAB
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Horizontal

ter Reading (dBµV) 45.71	Factor (dB)	Emission Level (dBµV/m)	Limits (dBµV/m)	Margin	Value Type
` ' /		(dBµV/m)	(dBuV/m)	(4D)	value rype
45.71			(UDH V/III)	(dB)	\(\)
	3.75	49.46	74	-24.54	peak
40.86	3.75	44.61	54	-9.39	AVG
39.63	8.16	47.79	74	-26.21	peak
35.79	8.16	43.95	54	-10.05	AVG
J Hestallon	-G ALLES			100	15.
	-1	:711/	Tr	Compilare	*North
	39.63 35.79	39.63 8.16 35.79 8.16	39.63 8.16 47.79	39.63 8.16 47.79 74 35.79 8.16 43.95 54	39.63 8.16 47.79 74 -26.21 35.79 8.16 43.95 54 -10.05

EUT	HD WiFi Camera	Model Name	T5886GAB
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2437MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4874.103	46.68	3.75	50.43	74	-23.57	peak
4874.074	40.74	3.75	44.49	54	-9.51	AVG
7311.085	39.61	8.16	47.77	74	-26.23	peak
7311.118	34.32	8.16	42.48	54	-11.52	AVG
76				The Suppliance	The company	
emark:	.12	LINE.	161 Mance	F of Global	® Major of Glu	
actor = Ante	enna Factor + Ca	ble Loss – F	Pre-amplifier	testation	Miles	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 58 of 89

EUT HD WiFi Camera		Model Name	T5886GAB	
Temperature	25°C	Relative Humidity	55.4%	
Pressure	960hPa	Test Voltage	Normal Voltage	
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Horizontal	

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4924.056	45.44	3.81	49.25	74	-24.75	peak
4924.092	40.83	3.81	44.64	54	-9.36	AVG
7386.057	42.68	8.19	50.87	74	-23.13	peak
7386.027	36.71	8.19	44.9	54	-9.1	AVG
五秋	Company EX Comp		V. Con.,	statio	Alles	
® Tallon of Gill	® # High of Glov	® Station of				
Remark:	Allessa	-0 "			line	1997
actor = Ante	enna Factor + Ca	ble Loss – F	Pre-amplifier.	- 1	(allamos	EK Complian

EUT	HD WiFi Camera	Model Name	T5886GAB
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11b with date rate 1 2462MHZ	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4924.100	43.53	3.81	47.34	74	-26.66	peak
4924.093	38.91	3.81	42.72	54	-11.28	AVG
7386.041	36.42	8.19	44.61	74	-29.39	peak
7386.041	31.73	8.19	39.92	54	-14.08	AVG
	Ch Kilphance	The Complian	® # Jon of Glot	® ## ST	ion of	
0 4 3	of Global ®	alion of Gio	Allesit			
Remark:						
actor = Ante	enna Factor + C	able Loss -	Pre-amplifier.	200		412 - July
			•	267		The state of the s

RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been pre-tested. The 802.11b mode is the worst case and recorded in the report.