ANNEX C: DIPOLE CERTIFICATE Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 ETC (Auden) Certificate No: D1900V2-5d054-Sep08 | lient ETC (Auden) | | Cortifi | cate No: D1900V2-5d054-Sep08 | |---------------------------------------|-----------------------------------|--|------------------------------| | CALIBRATION C | ERTIFICATE | | | | Object | D1900V2 - SN: 5 | d054 | | | Calibration procedure(s) | QA CAL-05.v7
Calibration proce | dure for dipole validation ki | S | | Calibration date: | September 23, 20 | 008 | | | Condition of the calibrated item | In Tolerance | | 苏格里为 人。2007年 | | Calibration Equipment used (M&7 | TE critical for calibration) | y facility: environment temperature (2 | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate | | | Power meter EPM-442A | GB37480704 | 04-Oct-07 (No. 217-00736) | Oct-08
Oct-08 | | Power sensor HP 8481A | US37292783 | 04-Oct-07 (No. 217-00736) | Jul-09 | | Reference 20 dB Attenuator | SN: 5086 (20g) | 01-Jul-08 (No. 217-00864) | Jul-09 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Jul-08 (No. 217-00867) | Apr-09 | | Reference Probe ES3DV2
DAE4 | SN: 3025
SN: 601 | 28-Apr-08 (No. ES3-3025_Apr08)
14-Mar-08 (No. DAE4-601_Mar08) | | | JAE4 | 1014.001 | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-07) | | | RF generator R&S SMT-06 | 100005 | 4-Aug-99 (in house check Oct-07) | In house check: Oct-09 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-07) | In house check: Oct-08 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | lbL | | Approved by: | Katja Pokovic | Technical Manager | IC-Kg | | | | | Issued: September 25, 2008 | | This calibration certificate shall no | ot be reproduced except in | full without written approval of the lat | poratory. | Certificate No: D1900V2-5d054_Sep08 Page 1 of 9 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates # Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D1900V2-5d054 Sep08 Page 2 of 9 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.0 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 1.47 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | <u> </u> | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.4 mW / g | | SAR normalized | normalized to 1W | 41.6 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 41.0 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.41 mW / g | | SAR normalized | normalized to 1W | 21.6 mW/g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 21.6 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d054_Sep08 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|-----------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.6 mho/m ± 6 % | | Body TSL temperature during test | (22.0 ± 0.2) °C | 1.000 | _ | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.3 mW / g | | SAR normalized | normalized to 1W | 41.2 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 39.5 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.32 mW/g | | SAR normalized | normalized to 1W | 21.3 mW/g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 20.8 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d054_Sep08 ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" Report No.: 09-11-MAS-097-02 Page 51 of 70 FCC ID: TVUA495H ### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.9 Ω + 4.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.7 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.9 Ω + 6.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.199 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | March 19, 2004 | | #### **DASY5 Validation Report for Head TSL** Date/Time: 23.09.2008 15:38:20 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d054 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### **DASY5** Configuration: Probe: ES3DV2 - SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 28.04.2008 Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87 # Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.3 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.41 mW/gMaximum value of SAR (measured) = 12.5 mW/g 0 dB = 12.5 mW/g # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date/Time: 15.09.2008 14:34:09 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d054 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.6$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### DASY5 Configuration: Probe: ES3DV2 - SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 28.04.2008 Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87 # Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.1 V/m; Power Drift = 0.017 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.32 mW/g Maximum value of SAR (measured) = 12.4 mW/g 0 dB = 12.4 mW/g Certificate No: D1900V2-5d054_Sep08 Page 8 of 9 # Impedance Measurement Plot for Body TSL Report No.: 09-11-MAS-097-02 FCC ID: TVUA495H # **ANNEX D: PROBE CERTIFICATE** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ETC (Auden) Certificate No: EX3-3555_Sep09 Accreditation No.: SCS 108 | Object | EX3DV4 - SN:35 | 555 | | |---|--|---|--| | Calibration procedure(s) | | QA CAL-14.v3, QA CAL-23.v3 and edure for dosimetric E-field probes | | | | Cambration proc | Saure for accompanie E ficial product | | | Calibration date: | September 22, 2 | 2009 | | | Condition of the calibrated item | In Tolerance | | | | | | tional standards, which realize the physical unit
probability are given on the following pages and | | | All calibrations have been conduc | cted in the closed laborate | ory facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | | | | | | GB41293874 | 1-Apr-09 (No. 217-01030) | Apr-10 | | Power sensor E4412A | MY41495277 | 1-Apr-09 (No. 217-01030) | Apr-10 | | Power sensor E4412A
Power sensor E4412A | MY41495277
MY41498087 | 1-Apr-09 (No. 217-01030)
1-Apr-09 (No. 217-01030) | Apr-10
Apr-10 | | Power sensor E4412A
Power sensor E4412A
Reference 3 dB Attenuator | MY41495277
MY41498087
SN: S5054 (3c) | 1-Apr-09 (No. 217-01030)
1-Apr-09 (No. 217-01030)
31-Mar-09 (No. 217-01026) | Apr-10
Apr-10
Mar-10 | | Power sensor E4412A
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator | MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b) | 1-Apr-09 (No. 217-01030)
1-Apr-09 (No. 217-01030)
31-Mar-09 (No. 217-01026)
31-Mar-09 (No. 217-01028) | Apr-10
Apr-10
Mar-10
Mar-10 | | Power sensor E4412A
Power sensor E4412A
Reference 3 dB Attenuator
Reference 20 dB Attenuator
Reference 30 dB Attenuator | MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b) | 1-Apr-09 (No. 217-01030)
1-Apr-09 (No. 217-01030)
31-Mar-09 (No. 217-01026)
31-Mar-09 (No. 217-01028)
31-Mar-09 (No. 217-01027) | Apr-10
Apr-10
Mar-10
Mar-10
Mar-10 | | Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 | MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b) | 1-Apr-09 (No. 217-01030)
1-Apr-09 (No. 217-01030)
31-Mar-09 (No. 217-01026)
31-Mar-09 (No. 217-01028) | Apr-10
Apr-10
Mar-10
Mar-10 | | Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards | MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013
SN: 660 | 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) | Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check | | Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards | MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013
SN: 660 | 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) | Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 | | Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards RF generator HP 8648C | MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013
SN: 660 | 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) | Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check | | Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Recondary Standards RF generator HP 8648C | MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013
SN: 660 | 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) | Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 | | Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 | MY41495277
MY41498087
SN: S5054 (3c)
SN: S5086 (20b)
SN: S5129 (30b)
SN: 3013
SN: 660
ID#
US3642U01700
US37390585 | 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) | Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 | Certificate No: EX3-3555_Sep09 Page 1 of 9 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z DCP diode compression point Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3555_Sep09 Page 2 of 9 EX3DV4 SN:3555 September 22, 2009 # Probe EX3DV4 SN:3555 Manufactured: July 13, 2004 Last calibrated: Recalibrated: September 19, 2008 September 22, 2009 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3555_Sep09 Page 3 of 9 Report No.: 09-11-MAS-097-02 FCC ID: TVUA495H EX3DV4 SN:3555 September 22, 2009 # DASY - Parameters of Probe: EX3DV4 SN:3555 | NormX | 0.41 ± 10.1% | $\mu V/(V/m)^2$ | DCP X | 92 mV | |-------|---------------------|-----------------------|-------|---------------| | NormY | 0.39 ± 10.1% | μV/(V/m) ² | DCP Y | 103 mV | | NormZ | 0.41 ± 10.1% | μV/(V/m) ² | DCP Z | 91 mV | Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. # **Boundary Effect** TSL 900 MHz Typical SAR gradient: 5 % per mm | Sensor Center to Phantom Surface Distance | | | 3.0 mm | |---|------------------------------|-----|--------| | SAR _{be} [%] | Without Correction Algorithm | 9.8 | 5.8 | | SAR _{be} [%] | With Correction Algorithm | 0.8 | 0.5 | #### TSL 1750 MHz Typical SAR gradient: 10 % per mm | Sensor Center to Phantom Surface Distance | | | 3.0 mm | |---|------------------------------|------|--------| | SAR _{be} [%] | Without Correction Algorithm | 11.5 | 7.0 | | SAR _{be} [%] | With Correction Algorithm | 0.9 | 0.6 | #### Sensor Offset Probe Tip to Sensor Center 1.0 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3555_Sep09 Page 4 of 9 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required. EX3DV4 SN:3555 September 22, 2009 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3555_Sep09 Page 5 of 9 EX3DV4 SN:3555 # September 22, 2009 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3555_Sep09 Page 6 of 9 EX3DV4 SN:3555 September 22, 2009 # Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3555_Sep09 Page 7 of 9 #### EX3DV4 SN:3555 ### September 22, 2009 # **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^c | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|----------------|----------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.43 | 0.77 | 8.03 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Head | 40.1 ± 5% | 1.37 ± 5% | 0.57 | 0.68 | 7.21 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Head | 40.0 ± 5% | $1.40 \pm 5\%$ | 0.44 | 0.74 | 6.80 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | $39.2 \pm 5\%$ | $1.80 \pm 5\%$ | 0.27 | 0.98 | 6.34 ± 11.0% (k=2) | | | | | | | | | | | 900 | ± 50 / ± 100 | Body | $55.0 \pm 5\%$ | 1.05 ± 5% | 0.63 | 0.72 | 7.95 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Body | 53.4 ± 5% | 1.49 ± 5% | 0.79 | 0.61 | 6.91 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Body | $53.3 \pm 5\%$ | 1.52 ± 5% | 0.53 | 0.71 | 6.82 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.30 | 0.99 | 6.46 ± 11.0% (k=2) | | 5200 | ± 50 / ± 100 | Body | 49.0 ± 5% | $5.30 \pm 5\%$ | 0.55 | 1.95 | 4.02 ± 13.1% (k=2) | | 5300 | ± 50 / ± 100 | Body | 48.5 ± 5% | $5.42 \pm 5\%$ | 0.55 | 1.95 | 3.76 ± 13.1% (k=2) | | 5600 | ± 50 / ± 100 | Body | 48.5 ± 5% | 5.77 ± 5% | 0.60 | 1.95 | 3.28 ± 13.1% (k=2) | | 5800 | ± 50 / ± 100 | Body | 48.2 ± 5% | $6.00 \pm 5\%$ | 0.55 | 1.95 | 3.79 ± 13.1% (k=2) | ^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: EX3-3555_Sep09 Page 8 of 9 EX3DV4 SN:3555 September 22, 2009 # **Deviation from Isotropy in HSL** Error (ϕ , ϑ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-3555_Sep09 Page 9 of 9 Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### **IMPORTANT NOTICE** #### **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out . **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures:** Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. ### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### **Important Note:** To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. | Schmid | & | Partner | Engineering | | |--------|---|---------|-------------|--| | | | | | | TN_BR040315AC DAE4.doc 23.10.2008 Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 S С S Client ETC (Auden) Certificate No: DAE4-629_Sep09 CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BJ - SN: 629 Object Calibration procedure(s) QA CAL-06.v20 Calibration procedure for the data acquisition electronics (DAE) September 21, 2009 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 30-Sep-08 (No: 7670) Sep-09 Secondary Standards Check Date (in house) Scheduled Check SE UMS 006 AB 1004 05-Jun-09 (in house check) Calibrator Box V1.1 In house check: Jun-10 Name Function Calibrated by: Dominique Steffen Technician Approved by: Fin Bomholt R&D Director Issued: September 21, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-629_Sep09 Page 1 of 5 # Calibration Laboratory of Schmid & Partner Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 ### Glossary DAE data acquisition electronics Connector angle information used in information used in DASY system to align probe sensor X to the robot coordinate system. #### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-629_Sep09 Page 2 of 5 #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV $6.1\mu V$, Low Range: 1LSB = 61nV, full range = -1......+3r DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Υ | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.442 ± 0.1% (k=2) | 404.312 ± 0.1% (k=2) | 404.187 ± 0.1% (k=2) | | Low Range | 3.98790 ± 0.7% (k=2) | 3.97349 ± 0.7% (k=2) | 3.97149 ± 0.7% (k=2) | # **Connector Angle** | | | *** | _ | |-------------------------|--------------------|---------------|---| | Connector Angle to be u | sed in DASY system | 153.0 ° ± 1 ° | | Certificate No: DAE4-629_Sep09 Report No.: 09-11-MAS-097-02 FCC ID: TVUA495H # **Appendix** 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |----------------|------|--------------|-----------------|-----------| | Channel X + I | nput | 199998.8 | -8.16 | -0.00 | | Channel X + I | nput | 19998.02 | -2.28 | -0.01 | | Channel X - Ir | put | -19998.11 | 1.69 | -0.01 | | Channel Y + I | nput | 200001.2 | -1.96 | -0.00 | | Channel Y + I | nput | 19996.36 | -2.74 | -0.01 | | Channel Y - Ir | put | -20000.28 | -0.88 | 0.00 | | Channel Z + I | nput | 199990.9 | -2.51 | -0.00 | | Channel Z + I | nput | 19998.09 | -1.91 | -0.01 | | Channel Z - Ir | put | -19998.95 | -0.00 | -0.00 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2000.2 | 0.03 | 0.00 | | Channel X | + Input | 198.34 | -1.56 | -0.78 | | Channel X | - Input | -201.09 | -1.29 | 0.64 | | Channel Y | + Input | 1999.6 | -0.44 | -0.02 | | Channel Y | + Input | 198.86 | -1.04 | -0.52 | | Channel Y | - Input | -201.99 | -1.89 | 0.94 | | Channel Z | + Input | 2000.0 | 0.04 | 0.00 | | Channel Z | + Input | 198.05 | -1.75 | -0.88 | | Channel Z | - Input | -202.46 | -2.56 | 1.28 | ### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -0.02 | -1.49 | | | - 200 | 2.47 | 1.01 | | Channel Y | 200 | 3.16 | 2.51 | | | - 200 | -3.68 | -4.14 | | Channel Z | 200 | 1.19 | 1.10 | | | - 200 | -2.31 | -2.58 | # 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 0.83 | 0.23 | | Channel Y | 200 | 2.27 | - | 3.15 | | Channel Z | 200 | 1.27 | -0.73 | - | Certificate No: DAE4-629_Sep09 Page 4 of 5 Report No.: 09-11-MAS-097-02 FCC ID: TVUA495H #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16024 | 16196 | | Channel Y | 15979 | 16961 | | Channel Z | 16267 | 16189 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.27 | -0.50 | 1.22 | 0.36 | | Channel Y | -1.50 | -3.01 | -0.62 | 0.41 | | Channel Z | -0.94 | -1.72 | -0.02 | 0.32 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance | | Zeroing (MOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 0.2000 | 200.3 | | Channel Y | 0.2000 | 202.0 | | Channel Z | 0.2000 | 203.0 | 8. Low Battery Alarm Voltage (verified during pre test) | Typical values | Alarm Level (VDC) | | | |----------------|-------------------|--|--| | Supply (+ Vcc) | +7.9 | | | | Supply (- Vcc) | -7.6 | | | 9. Power Consumption (verified during pre test) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.0 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 |