

TEST REPORT

Test Report No.: 1-3740-01-02/11-PP

Testing Laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 – 10
66117 Saarbrücken/Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom-ict.de
e-mail: info@ict.cetecom.de

Accredited Test Laboratory:

The test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 DAkkS registration number: D-PL-12076-01-01

Area of Testing: FCC part 15 D

Applicant

Gigaset Communications GmbH

Frankenstr. 2 46395 Bocholt Germany

Phone: + 49 2871 91 0 Fax: + 49 2871 91 62857 Contact: Mr. Uwe Alt

e-mail: <u>uwe.alt@gigaset.com</u> Phone: + 49 2871 91 2857

Manufacturer

Gigaset Communications GmbH

Frankenstr. 2

46395 Bocholt, Germany

Test Standard/s

Industry Canada 2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)

RSS-213, Issue 2

Test Item

Kind of test item:DECT Portable PartModel name:Gigaset MD40FCC ID:TVU-MD40IC:8023A-MD40

S/N serial number:

HW hardware status: S30851-Q2010-B101

SW software status: V11_001_20 Frequency [MHz]: 1920 -1930

Type of Modulation: Digital (Gaussian Frequency Shift Keying)

Number of channels: 5 RF Channels, 5x12 = 60 TDMA Duplex Channels

Antenna: 2 permanently attached x/4 PCB antenna

Power Supply: 115V AC
Temperature Range: -20 ℃ to 50 ℃

Test Report authorised:

Test performed:

2011-08-29 Wolf, Joachim

Senior Consultant

2011-08-29

Lenjoint, Marco Consultant

2011-08-29 Page 1 of 61

1 Table of contents

Table	of contents	2
Genei	al information	4
2.1	Notes	4
2.2	Application details	4
Toot 4	tondovd/or	,
rests	standard/s:	4
Toot [Environment	,
1621	invironment	4
Toet I	tom	5
162(1	CIII	
Sumn	pary of Measurement Results	6
Julilli	iary of weasurement nesures	
Test 9	Set-un	7
_		
_		
	•	
Detail	ed Test Results	10
Ω 1	Power Line Conducted Emissions	10
•		
_		
_		
8.9	Emission Bandwidth B	
8.10	Power Spectral Density	23
8.11	In-Band Unwanted Emissions, Conducted	26
8.12	Out-of-Band Emissions, Conducted	29
8.13	Carrier Frequency Stability	33
8.14	Frame Repetition Stability	
8.15		
	1	
	•	
Test e	equipment and ancillaries used for tests	53
0	bservations	54
	General 2.1 2.2 Test s Test E Test E Summ Test S 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Detail 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 Test e	Test standard/s: Test Environment Test Item Summary of Measurement Results Test Set-up 7.1 Frequency Measurements 7.2 Timing Measurements 7.3 Conducted Emission Test 7.4 Radiated Emission Test 7.5 Power Line Conducted Emissions Test 7.6 Monitoring Tests 7.7 Radiated Output Power Test Detailed Test Results 8.1 Power Line Conducted Emissions 8.2 Coordination with fixed microwave 8.3 Digital Modulation Techniques 8.4 Labeling Requirements 8.5 Antenna Requirements 8.6 Channel Frequencies 8.7 Automatic Discontinuation of Transmission 8.8 Peak Power Output 8.9 Emission Bandwidth B 8.10 Power Spectral Density 8.11 In-Band Unwanted Emissions, Conducted 8.12 Out-of-Band Emissions, Conducted 8.13 Carrier Frequency Stability 8.14 Frame Repetition Stability 8.15 Frame Period and Jitter 8.16 Monitoring Threshold, Least Interfered Channel 8.17 Threshold Monitoring Interval 8.19 Time and Spectrum Window Access Procedure 8.20 Acknowledgments and Transmission duration 8.21 Dual Access Criteria Check 8.22 Alternative monitoring interval 8.23 Spurious Emissions, Cndaited 8.22 Alternative monitoring interval 8.23 Spurious Emissions (Radiated) 8.23 Spurious Emissions (Radiated) 8.22 Alternative monitoring interval 8.23 Spurious Emissions (Radiated)

Annex A: Photographs of the Test Set-up	55
Annex B: External Photographs of the EUT	57
Annex C: Internal Photographs of the EUT	58
Annex D: Document History	60
Annex E: Further Information	61

2 General information

2.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

2.2 Application details

Date of receipt of order: 2011-07-22
Date of receipt of test item: 2011-08-08
Start of test: 2011-08-10
End of test: 2011-08-29
Person(s) present during the test: Mr. Voigt

3 Test standard/s:

Test Standard	Version	Test Standard Description
FCC Part 15, subpart D	2009-10	Isochronous UPCS Device 1920 – 1930 MHz
Industry Canada RSS-213, Issue 2	1999-04-24	2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)

4 Test Environment

Temperature: + 22 ℃ during room temperature tests

+ 50 °C during high temperature test - 20 °C during low temperature test

Relative humidity content: 45 %

Air pressure: not relevant for this kind of testing

Power supply: 115V AC

2011-08-29 Page 4 of 61

5 Test Item

Kind of test item	:	UPCS Portable station
Type identification	:	Gigaset MD40 (Portable Part)
S/N serial number	:	1
HW hardware status	:	S30851-Q2010-B101
SW software status	:	V11_001_20
Tested to Radio Standards Specification (RSS)	No.:	RSS-213 Issue 2
Open Area Test Site Industry Canada Number	:	IC 3462C-1
Frequency Band [MHz]	:	1920 – 1930
Frequency Range (or fixed frequency)	:	1921.536 – 1928.448 MHz
Type of Modulation	:	Digital (Gaussian Frequency Shift Keying)
Number of channels	:	5 RF Channels, 5x12 = 60 TDMA Duplex Channels
Antenna information	:	1 permanently attached antenna, no ext. connector
RF Power [W] (max)	:	Conducted: 20.1 dBm, 102.3 mW
		Rad. EIRP: 20.1 dBm, 102.3 mW
Occupied Bandwidth (99% BW)	:	1.36MHz
Emission Designator (TRC-43)	:	1M36F1E
Receiver Spurious (worst case)	:	-68.9 dBm
Transmitter Spurious (worst case)	:	-33.8 dBm
Power Supply	:	115 V AC
Temperature Range	:	-20°C to 50°C

FCC ID: TVU-MD40 IC: 8023A-MD40

ATTESTATION: I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned departmental standard(s), and that the radio equipment identified in this application has been subject to all applicable test conditions specified in the departmental standards and all of the requirements of the standards have been met.

Signature:

Date: 2011-08-29

Test engineer: Marco Lenjoint

2011-08-29 Page 5 of 61

Summary of Measurement Results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

CFR 47 Part 15 UPCS

Name of test	FCC CFR 47	IC RSS-213	Verdict
	Paragraph	Paragraph	
Coordination with fixed microwave	15.307(b)	N/A	Complies
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	RSS-GEN 5.2	Complies
Antenna requirements	15.317, 15.203	4.1(e)	Complies
Power Line Conducted Emission	15.107(a),	6.3	Complies
	15.207(a)	RSS_GEN 7.2.2	-
Emission Bandwidth	15.323(a)	6.4	Complies
In-band Emission	15.323(d)	6.7.2	Complies
Out-of-band Emissions	15.323(d)	6.7.1	Complies
Peak Transmit Power	15.319(c)(e),	6.5	Complies
	15.31(e)		
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered	15.323(c)(2);(5);	4.3.4(b)	Complies
channel	(9)		
Monitoring of intended transmit window and	15.323(c)(1)	4.3.4	Complies
maximum reaction time			
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4	Complies
Reaction time and monitoring interval	15.323(c)(1);(5);	4.3.4	Complies
	(7)		
Access criteria test interval	15.323(c)(4);(6)	4.3.4	N/A ¹
Access criteria functional test	15.323(c)(4);(6)	4.3.4	N/A ¹
Acknowledgments	15.323(c)(4)	4.3.4	Complies
Transmission duration	15.323(c)(3)	4.3.4	Complies
Dual access criteria	15.323(c)(10)	4.3.4	Complies N/A ²
Alternative monitoring interval	15.323(c)(10);(11)	4.3.4	N/A ²
Spurious Emissions (Antenna Conducted)	15.323(d)	6.7.1	Complies ³
Spurious Emissions (Radiated)	15.319(g),	4.3.3	Complies ⁴
	15.109(a),	RSS-GEN 7.2.3	
	15,209(a)		
Receiver Spurious Emissions 1 Only applicable for EUT that can initiate a communicate	N/A	6.8	Complies

2011-08-29 Page 6 of 61


¹Only applicable for EUT that can initiate a communication link
² The client declares that the tested equipment does not implement this provision
³ The tested equipment has integrated antennas only
⁴ Only requirement FCC 15.109 for unintentional radiators was tested radiated

7 Test Set-up

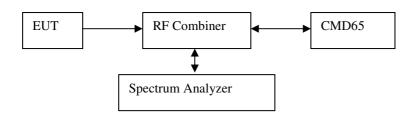
7.1 Frequency Measurements

Test Set-up 1:

This setup is used for measuring Carrier Frequency Stability at nominal and extreme temperatures.

For long term Frequency Stability, the EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to 01010101....

7.2 Timing Measurements


Test Set-up 2:

This setup is used for measuring Frame Repetition Stability, Frame Period and Jitter.

7.3 Conducted Emission Test

Test Set-up 3:

This setup is used for all conducted emission tests.

The EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

2011-08-29 Page 7 of 61

7.4 Radiated Emission Test

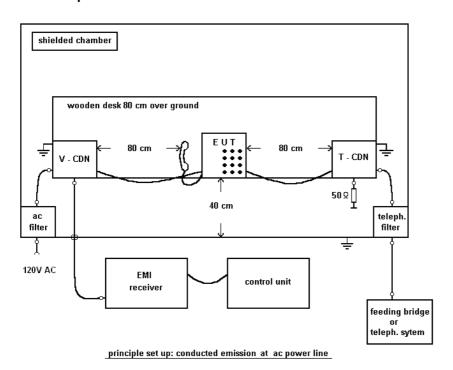
Test Set-up 4:

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 20 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1987 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

Antennas are conform with ANSI C63.2-1996 item 15.

9 kHz - 150 MHz: Quasi Peak measurement, 200 Hz Bandwidth, passive loop antenna.

150 kHz - 30 MHz: Quasi Peak measurement, 9 kHz Bandwidth, passive loop antenna.

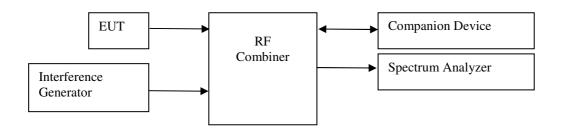

30 MHz - 200 MHz: Quasi Peak measurement, 120 KHz Bandwidth, bilog antenna

200MHz - 1GHz: Quasi Peak measurement, 120 KHz Bandwidth, bilog antenna

1GHz: Average, RBW 1MHz, VBW 10 MHz, waveguide horn

7.5 Power Line Conducted Emissions Test

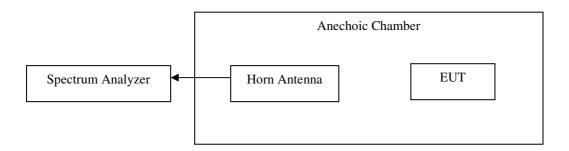
Test Set-up 5:



2011-08-29 Page 8 of 61

7.6 Monitoring Tests

Test Set-up 6:



This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generator to the EUT is measured with a power meter before the testing is started.

A clock signal is used to synchronize the Interference Generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the clock signal will come from the Companion Device.

7.7 Radiated Output Power Test

Test Set-up 7:

This setup is used for measuring the radiated output power in a fully anechoic chamber with a measurement distance of 1m.

2011-08-29 Page 9 of 61

8 Detailed Test Results

8.1 Power Line Conducted Emissions

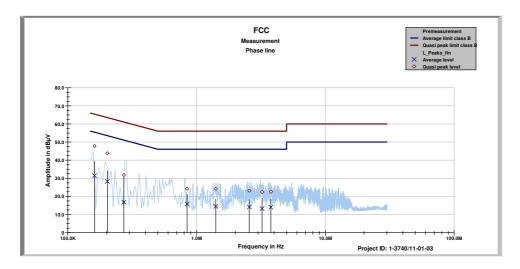
Measurement Procedure:

ANSI C63.4-2003 using $50\mu H/50$ ohms LISN.

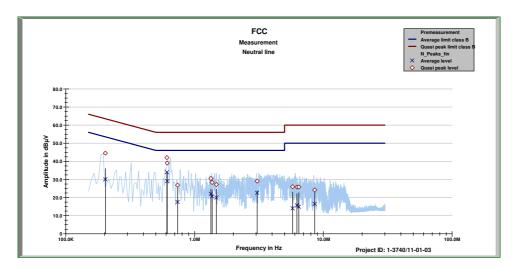
Test Result: Pass

Measurement Data: See attached graph, (Peak detector).

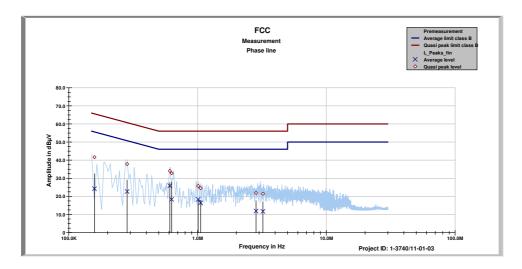
Highest measured value (L1 and N):

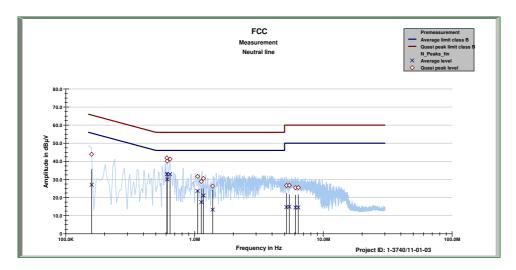

All values were below the Average Limit even when measured with the Peak Detector.

Frequency	Detector	Measured value	Limit	Margin
MHz	Peak/QP/AV	dΒμV	dΒμV	dB
1	QP	/	/	/
1	AV	/	/	/
1	QP	/	/	/
1	AV	/	/	/


Requirement: FCC 15.207 (a)

2011-08-29 Page 10 of 61


Idle mode, phase line


Idle mode, neutral line

2011-08-29 Page 11 of 61

TX mode, phase line

TX mode, neutral line

2011-08-29 Page 12 of 61

8.2 Coordination with fixed microwave

The affidavit from UTAM, Inc. is included in the documentation supplied by the applicant:			
⊠ Yes	□ No		

Requirement: FCC 15.307 (b):

Each application for certification of equipment operating under the provisions of this Subpart must be accompanied by an affidavit from UTAM, Inc. certifying that the applicant is a participating member of UTAM, Inc. In the event a grantee fails to fulfill the obligations attendant to participation in UTAM, Inc., the commission may invoke administrative sanctions as necessary to preclude continued marketing and installation of devices covered by the grant of certification, including but not limited to revoking certification.

8.3 Digital Modulation Techniques

The tested equipment is based on DECT technology, the only difference is that the channel allocation is modified to operate in the 1920-1930 MHz band.

The EUT use Multi Carrier / Time Division Multiple Access / Time division duplex and Digital GFSK modulation.

For further details see the operational description provided by the applicant.

Requirement: FCC 15.319(b)

All transmissions must use only digital modulation techniques.

8.4 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirement: FCC 15.19

The FCC identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is to small:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

2011-08-29 Page 13 of 61

8.5 Antenna Requirements		
Does the EUT have detachable antenna(s)?	⊠Yes	□ No
If detachable, is the antenna connector(s) non-standard?	⊠Yes	□No
The tested equipment has only integral antennas. The conducted tests temporary antenna connector.	were performed on	a sample with a

Requirements: FCC 15.203, 14.204. 15.317

8.6 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)
Upper Band Edge	1930.000
0 (Highest)	1928.448
1	1926.720
2	1924.992
3	1923.264
4 (Lowest)	1921.536
Lower Band Edge	1920.000

Requirement: FCC 15.303(d), (g)

Within 1920-1930 MHz band for isochronous devices.

2011-08-29 Page 14 of 61

8.7 Automatic Discontinuation of Transmission

Does the EUT transmit control	□Yes	⊠ No	
Type of EUT:		Respon	ding device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	С	Pass
2	EUT switched Off	С	Pass
3	Hook-On by companion device	N/A	N/A
4	Hook-On by EUT	N/A	N/A
5	Power removed from companion device	Α	Pass
6	Companion device switched Off	N/A	N/A

- A Connection breakdown, Cease of all transmissions
- B Connection breakdown, EUT transmits control and signaling information
- C Connection breakdown, companion device transmits control and signaling information

N/A – Not applicable (the EUT does not have an on/off switch and can not perform Hook-On)

Requirement: FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

2011-08-29 Page 15 of 61

8.8 Peak Power Output

Measurement Procedure:

ANSI C63.17, clause 6.1.2.

Test Results: Pass

Measurement Data:

Maximum Conducted Output Power

Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Radiated Output Power (dBm)	Maximum Antenna Gain (dBi)
4	1921.536	20.1	20.11	0.0
2	1924.992	20.1	20.1 ¹	0.0
0	1928.448	20.2	20.2 ¹	0.0

¹ calculated on basis of the antenna gain

For this test it was also checked that the input voltage variation of 85 and 115% of nominal value did not have any effect on the measured output power, neither radiated nor conducted.

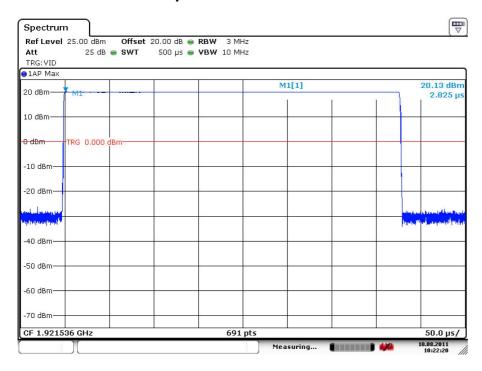
Limit:

Conducted: 100 μ W X SQRT(B) where B is the measured Emission Bandwidth in Hz

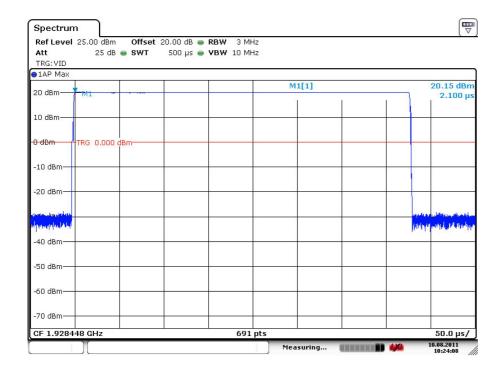
FCC 15.319(c)(e): 21.8 dBm (152 mW) RSS-213, Issue 2: 20.7 dBm (117 mW)

The antenna gain is below 3 dBi.

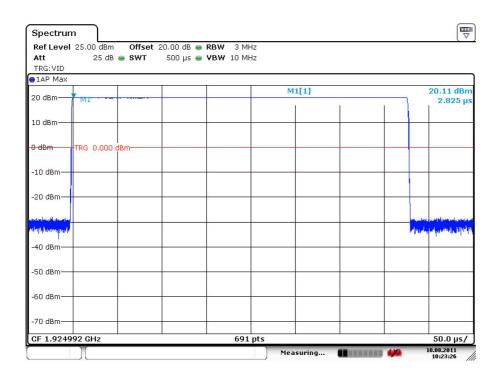
Requirements: FCC 15.319(f). RSS-213, Issue 2


Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.

The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.


2011-08-29 Page 16 of 61

Conducted Peak Output Power


Lower Channel

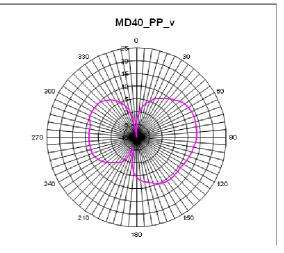
Upper Channel

2011-08-29 Page 17 of 61

Middle Channel

2011-08-29 Page 18 of 61


Radiated Peak Output Power


Antenna diagrams of MD40

	Ant0 V	Ant0 H
Radiated max	13,9 dBm	20,7 dBm
Conducted max	20,7 dBm	20,7 dBm
Antennagain	-6,8 dB	0 dB

Frequency: 1925 MHz

The antenna diagrams are relative to the maximum radiated power:

2011-08-29 Page 19 of 61

8.9 Emission Bandwidth B

Measurement Procedure:

ANSI C63.17, clause 6.1.3.

Test Results: Pass

Measurement Data:

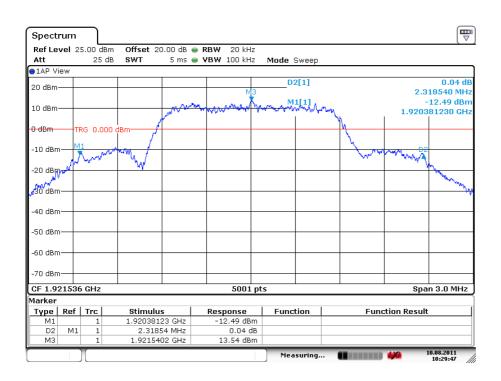
Channel No.	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	2319
0	1928.448	2316

Channel No.	Frequency (MHz)	20 dB Bandwidth B (kHz)
2	1924.992	1365

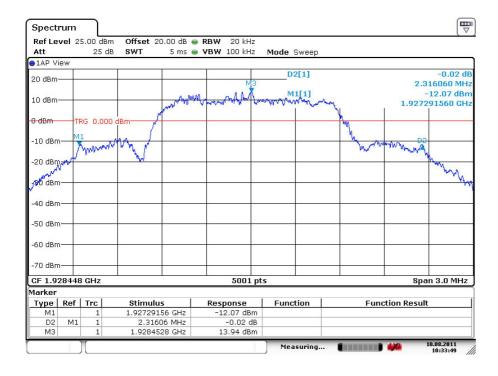
Channel No.	Frequency (MHz)	6 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency	12 dB Bandwidth B
	(MHz)	(kHz)
4	1921.536	N/A
0	1928.448	N/A

Requirement: FCC 15.323(a)

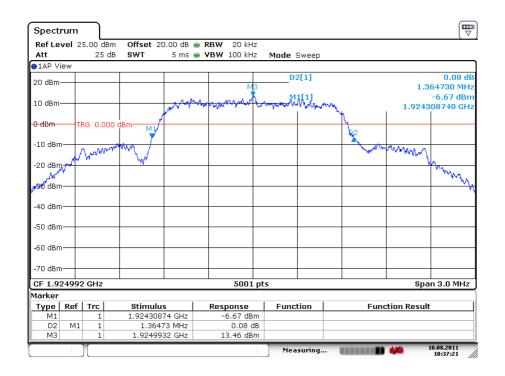
The 26 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.


Requirement: RSS-213 Issue 2, clause 6.4

The 20 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.


No requirement for 6 dB and 12 dB Bandwidth. These values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).

2011-08-29 Page 20 of 61


Emission Bandwidth B, Lower Channel

Emission Bandwidth B, Upper Channel

2011-08-29 Page 21 of 61

20 dB Bandwidth B, Middle Channel

2011-08-29 Page 22 of 61

8.10 Power Spectral Density

Measurement Procedure:

ANSI C63.17, clause 6.1.5.

Test Results: Pass

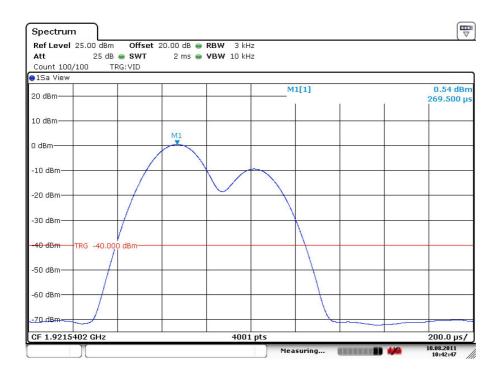
Measurement Data:

Channel No.	Frequency (MHz)	Power Spectral Density (mW/3kHz)
4	1921.541	1.13
0	1928.452	1.09

Averaged over 100 sweeps.

Requirement: FCC 15.319(d)

The Power Spectral Density shall be less than 3 mW (4.77 dBm) when averaged over at least 100 sweeps.


2011-08-29 Page 23 of 61

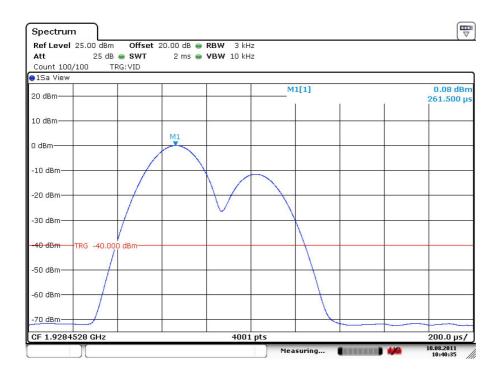
Power Spectral Density

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Averaged, 100 Sweeps

Pulse power [dBm]	0.54
Pulse power [mW]	1.13


2011-08-29 Page 24 of 61

Power Spectral Density

Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Averaged, 100 Sweeps

Pulse power [dBm]	0.08
Pulse power [mW]	1.09

2011-08-29 Page 25 of 61

8.11 In-Band Unwanted Emissions, Conducted

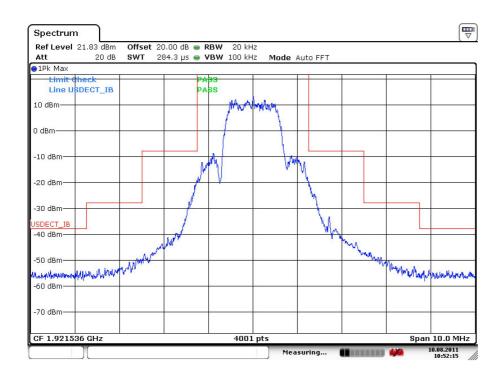
Measurement Procedure:

ANSI C63.17, clause 6.1.6.1.

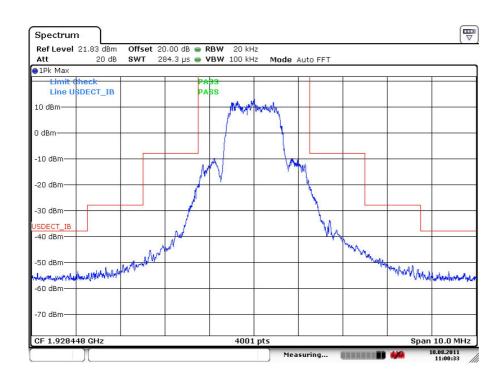
Test Results: Pass

Measurement Data:

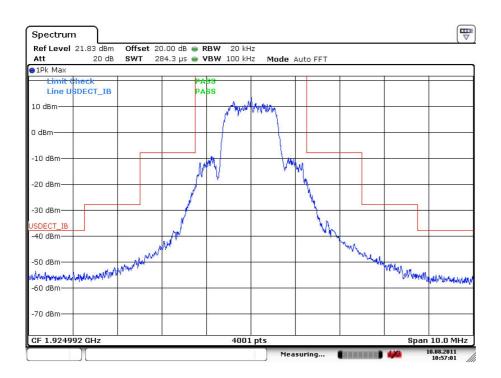
See plots.


Requirement: FCC 15.323(d)

 $B < f2 \le B$: less than or equal to 30 dB below max. permitted peak power level $2B < f2 \le 3B$: less than or equal to 50 dB below max. permitted peak power level $3B < f2 \le UPCS$ Band Edge: less than or equal to 60 dB below max. permitted peak power level


2011-08-29 Page 26 of 61

In-Band Unwanted Emissions, Conducted


Lower Channel

Upper Channel

2011-08-29 Page 27 of 61

Middle Channel

The BS spurious in-band transmission level is below the indicated limit.

2011-08-29 Page 28 of 61

8.12 Out-of-Band Emissions, Conducted

Measurement Procedure:

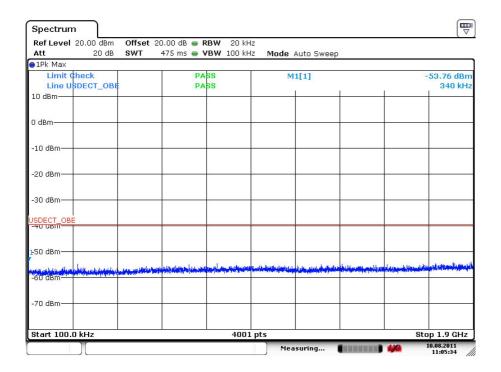
ANSI C63.17, clause 6.1.6.2.

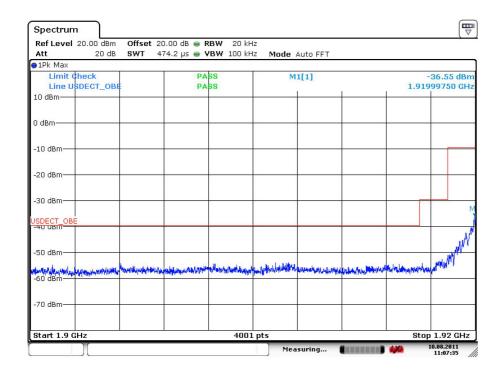
Test Results: Pass

Measurement Data:

See plots.

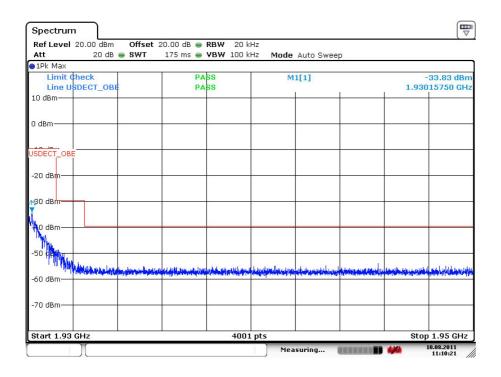
Requirement: FCC 15.323(d)

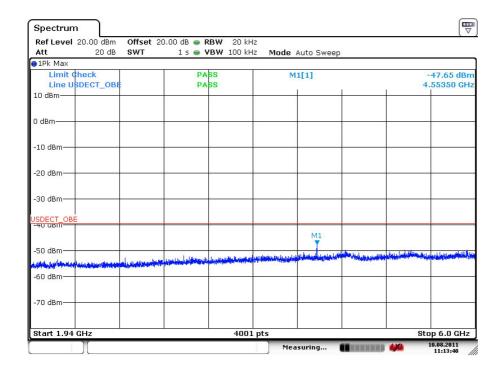

 $f \le 1.25$ MHz outside UPCS band: ≤ -9.5 dBm 1.25 MHz ≤ $f \le 2.5$ MHz outside UPCS band: ≤ -29.5 dBm $f \ge 2.5$ MHz outside UPCS band: ≤ -39.5 dBm


2011-08-29 Page 29 of 61

Out-of-Band Unwanted Emissions, Conducted

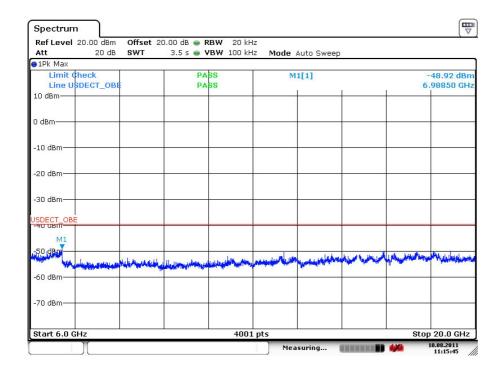
Upper and Lower Channel:





2011-08-29 Page 30 of 61

Out-of-Band Unwanted Emissions, Conducted



2011-08-29 Page 31 of 61

Out-of-Band Unwanted Emissions, Conducted

The BS spurious out-of-band transmission level is below the indicated limit.

2011-08-29 Page 32 of 61

8.13 Carrier Frequency Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.1.

Test Results: Pass

Measurement Data:

The Frequency Stability is measured with the CMD65. The CMD65 was logged by a computer programmed to get the new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over power Supply Voltage and over Temperature is measured also with the CMD65.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.988349	-1.31	4.50	1.21	±10

Deviation ppm = ((Max.Diff. – Mean.Diff.) / Mean Carrier Freq.) x 10⁶

Deviation (ppm) is calculated from 3000 readings with the CMD65.

Carrier Frequency Stability over Power Supply at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
115 V AC	1924.992	Ref.	Ref.	
98 V AC	1924.992	0.0	0.0	±10
132 V AC	1924.992	0.0	0.0	

Deviation ppm = $((Mean - Measured frequency) / Mean) \times 10^6$

Carrier Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
T = +20 ℃	1924.992	Ref.	Ref.	
T = -20 °C	1924.985	-7.0	3.6	±10
T = +50 °C	1924.989	-3.0	1.6	

Deviation ppm = $((Mean - Measured frequency) / Mean) \times 10^6$

2011-08-29 Page 33 of 61

8.14 Frame Repetition Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.2.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65. The Frame Repetition Stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation (ppm)	Frame Repetition
(MHz)	(Hz)		Stability (ppm)
1924.992	100.000000034	1.39	4.18

Limit:

Frame Repetition Stability	±10 ppm (TDMA)
----------------------------	----------------

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.2.

8.15 Frame Period and Jitter

Measurement Procedure:

ANSI C63.17, clause 6.2.3.

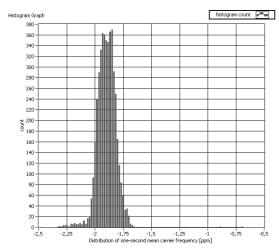
Test Results: Pass

Measurement Data:

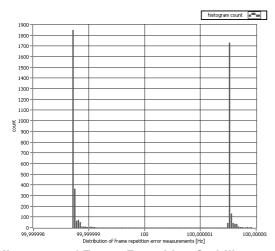
The Frame Repetition Stability is measured with the CMD65

Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation of
(MHz)	(ms)	(μs)	Jitter (μs)
1924.992	10.000	0.06	

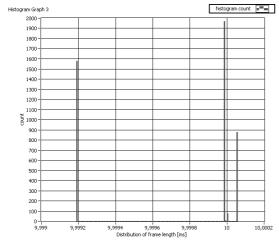
Max Jitter = (1/(Frame Period + Pk-Pk)/2) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz. $3xSt.Dev.Jitter 3x(1/(Frame Period + St.Dev)) - (1/St.Dev)) x <math>10^6$


Limit:

Frame Period	20 or 10 ms	
Max Jitter	25 μs	
3 times St.Dev. of Jitter	12.5 µs	


Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.3.

2011-08-29 Page 34 of 61



Histogram of Carrier Frequency Stability

Histogram of Frame Repetition Stability

Histogram of Frame Period and Jitter

2011-08-29 Page 35 of 61

8.16 Monitoring Threshold, Least Interfered Channel

Monitoring Threshold limits:

Lower Threshold:

$$T_L = 15 \log B - 184 + 30 - P_{EUT}$$
 (dBm)

Upper Threshold:

$$T_U = 15 \log B - 184 + 50 - P_{EUT} (dBm)$$

B is measured Emission Bandwidth in Hz

P_{EUT} is measured Transmitter Power in dBm

Calculated values:

Lower Threshold	-78.7 dBm
Upper Threshold	-58.7 dBm

The Lower Threshold is applicable for systems which have defined less than 40 duplex system access channels. The Upper Threshold is applicable for systems with more than 40 duplex systems access channels and that implements the Least Interfered Channel Procedure (LIC).

Measurement Procedure:

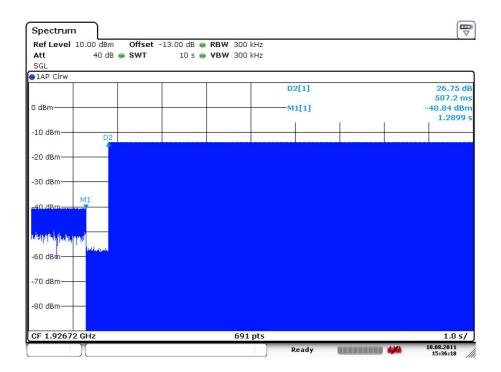
The Upper Threshold is found by the procedure defined in ANSI C63.17 clause 7.3.1 or 7.3.2.

Least Interfered Channel Procedure NOT used:		
Lower Threshold	N/A	
Least Interfered Channel Procedure used:		
Upper Threshold	-61.9 dBm	

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(b), (c)(2) and (c)(5)

ANSI C63.17 clause 7.3.3 ref.	Observation	Verdict
b) $f_1 T_L + 13 dB$, $f_2 T_L + 6 dB$	Transmission always on f_2	Pass
c) $f_1 T_L + 6 \text{ dB}, f_2 T_L + 13 \text{ dB}$	Transmission always on f_1	Pass
d) $f_1 T_L + 7 dB$, $f_2 T_L$	Transmission always on f_2	Pass
e) f ₁ T _L , f ₂ at T _L + 7 dB	Transmission always on f ₁	Pass

2011-08-29 Page 36 of 61



Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.4 ref.	Observation	Verdict
b) Shall not transmit on f_1	EUT transmits on f_2	Pass
d) Shall not transmit on f_2	EUT transmits on f ₁	Pass

Limits:

Lower Threshold + 6 dB margin	-72.7 dBm
Upper Threshold + 6 dB margin	-52.7 dBm

7.3.4 Selected Channel Confirmation, connection 507 ms after interferer removed

2011-08-29 Page 37 of 61

8.17 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. If the test is not carried out the manufacturer shall declare and provide evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if either the Simple Compliance Test or the More Detailed Test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance Test, at ±30% of B	No transmissions	Pass
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The More Detailed Test must be pass at both the -6dB and -12 dB points if the Simple Compliance Test fails.

Comment: The Simple Compliance Test was performed with the level $T_U + U_M + 10$ dB to check that the EUT did not transmit at all.

The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required. However the test was performed nonetheless and the test is passed.

Limits: FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

2011-08-29 Page 38 of 61

8.18 Reaction Time and Monitoring Interval

Measurement Procedure:

ANSI C63.17, clause 7.5

Test Results:

By administrative commands and out-of-operating region interference, the EUT is restricted to operate on a single carrier frequency.

Time-synchronized pulsed interference was then applied on the carrier at pulsed levels TU + UM to check that the EUT does not transmit. The level was raised 6 dB for part d) with 35 μ s pulses.

The pulses are synchronized with the EUT timeslots and applied cantered within all timeslots.

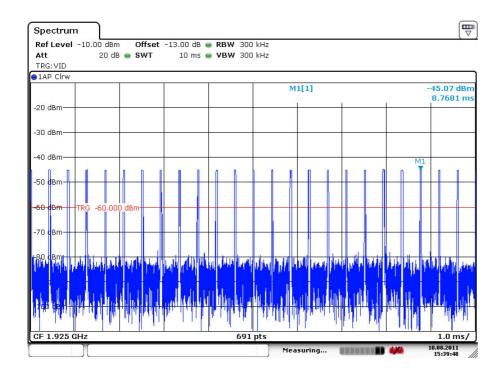
Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 μs and 50*SQRT(1.25/B)	Only for initiating device	Pass
d) > largest of 35 μs and 35*SQRT(1.25/B)	Only for initiating daylog	Pass
and with interference level raised 6 dB	Only for initiating device	Pass

Comment: Since B is larger than 1.25 MHz, the test was performed with pulse lengths of 50 μs and 35 μs.

Limits: FCC 15.323(c)(1), (5) and (7)


The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.

If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.


Comment: This test is only applicable for EUTs that can be an initiating device.

2011-08-29 Page 39 of 61

50 μs Pulses

35 µs Pulses

2011-08-29 Page 40 of 61

8.19 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict	
b) Check that the EUT transmits on the interference free time slot	N/A	N/A	
b) The EUT must terminate or pause in its repetitive transmission of the control and signaling channel on the open channel to repeat the access criteria not less frequently than every 30 s	N/A	N/A	

If FCC 15.323(c)(6) option Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to interference free time slot when interference is introduced on the time slot in use	N/A	N/A

If FCC 15.323(c)(6) option Random Waiting Interval is implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

Comment: The tested EUT does not transmit unacknowledged control and signaling information.

Limits:

FCC 15.323(c)(4):

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

FCC 15.323(c)(6):

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

2011-08-29 Page 41 of 61

8.20 Acknowledgments and Transmission duration

Measurement Procedure:

Acknowledgments: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgments** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgments** is performed by cutting-off the signal from the companion device by a RF switch the time until the EUT stops transmitting.

The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

Acknowledgments

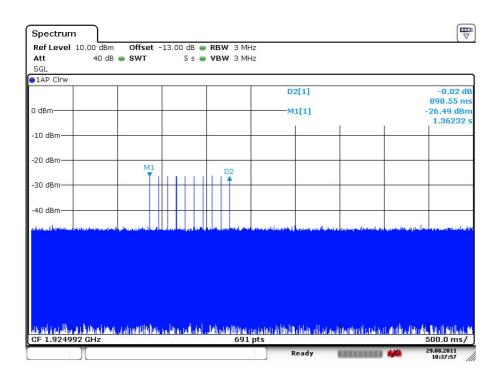
Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgments	0.9s	Pass
c) Transmission time after loss of acknowledgments	Approx. 6s	Pass

Transmission Duration

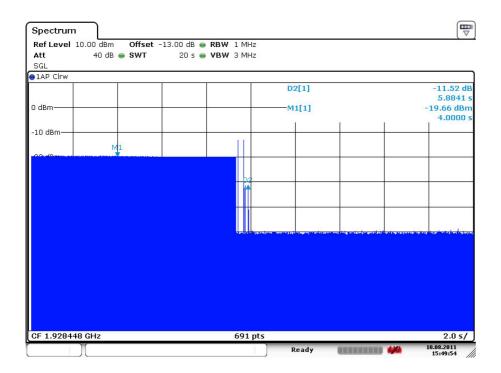
Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict		
b) Transmission duration on same time and	Approx 10	Pass		
frequency window	Approx. 1s	Pass		

Comment: /

Limits: FCC 15.323(c)(3) and (4)


Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease.


Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

2011-08-29 Page 42 of 61

8.2.1a) Initial Transmission Time without Acknowledgments

8.2.1c) Transmission Time after Loss of Acknowledgments

2011-08-29 Page 43 of 61

8.21 Dual Access Criteria Check

Measurement Procedure:

EUTs that do not implement the Upper Threshold: ANSI C62.17, clause 8.3.1

EUTs that implement the Upper Threshold: ANSI C62.17, clause 8.3.2

This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

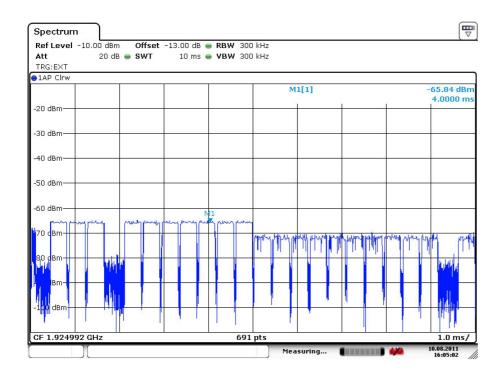
Test Results:

EUTs that do NOT implement the Upper Threshold:

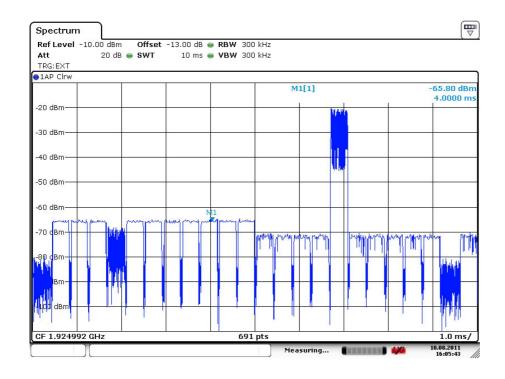
Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict	
b) EUT is restricted to a single carrier f_1 for TDMA			
systems. The test is pass if the EUT can set up	N/A	N/A	
a communication link.			
c) d) No transmission on interference-free receive	N/A	N/A	
time/spectrum window. All transmit slots blocked	IN/A		
e) f) No transmission on interference-free transmit	N/A	N/A	
time/spectrum window. All transmit slots blocked	IN/A	IN/A	

EUTs that implement the Upper Threshold:

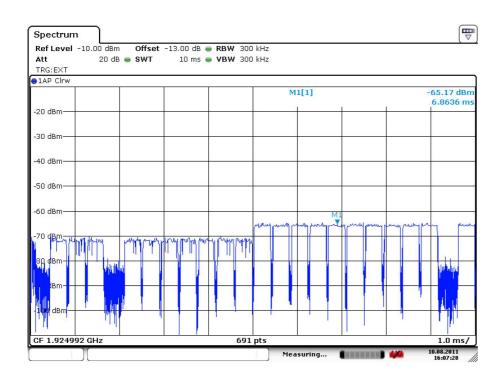
Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict
b) EUT is restricted to a single carrier f_1 for TDMA systems. The test is pass if the EUT can set up a communication link.	EUT can transmit	Pass
c) d) Transmission on interference-free receive time/spectrum window.	EUT transmits on interference free receive slot	Pass
e) f) Transmission on interference-free transmit time/spectrum window.	EUT transmits on interference free transmit slot	Pass
g) Transmission not possible on any time/spectrum window.	No connection possible	Pass

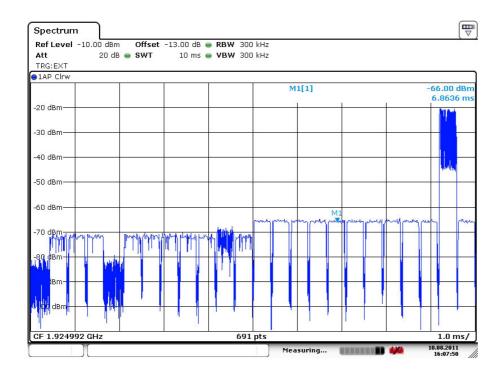

Comment: This test is only applicable for EUTs that can be an initiating device.

Limits: FCC 15.323(c)(10)

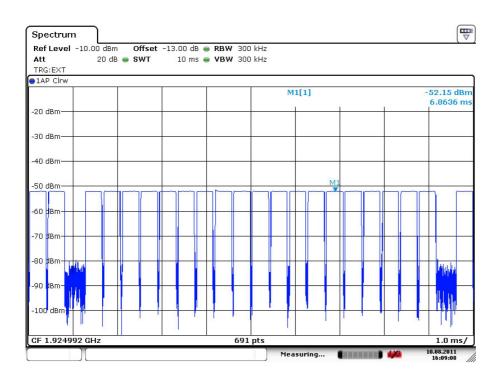

An initiating device may attempt to establish a duplex connection by monitoring both, its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

2011-08-29 Page 44 of 61


8.3.2c) EUT Transmits on Interference Free RECEIVE Slot, BEFORE


8.3.2c) EUT Transmits on Interference Free RECEIVE Slot, AFTER

2011-08-29 Page 45 of 61


8.3.2e) EUT Transmits on Interference Free TRANSMIT Slot, BEFORE

8.3.2e) EUT Transmits on Interference Free TRANSMIT Slot, AFTER

2011-08-29 Page 46 of 61

8.3.2g) No Connection

2011-08-29 Page 47 of 61

8.22 Alternative monitoring interval

Test procedure described in ANSI C63.17, clause 8.4.

This test is required if the EUT implements the provision of FCC 15.323(c)(11).

Test Result:

Not tested. The tested EUT does not implement this provision. See manufacturer's declaration.

8.23 Spurious Emissions (Radiated)

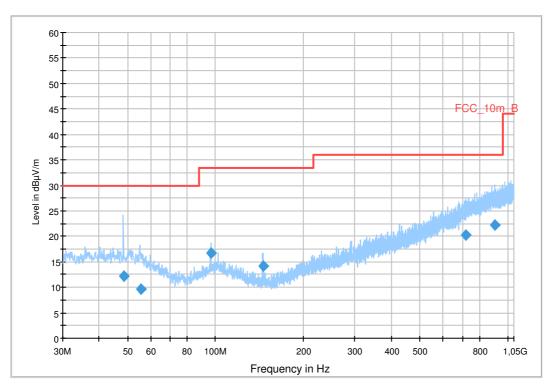
Measurement Procedure:

FCC 15.209, FCC 15.109

Test Result:

Tests for intentional radiators according to FCC 15.209 are not required when Out-of-Band Emission was tested conducted with a pass result.

Measurement Data:


See plots.

Requirement: FCC 15.109(b)

2011-08-29 Page 48 of 61

FCC_10m(B)

Final Result 1

mai ricsult i										
Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time	Bandwidt h	Height (cm)	Polarizatio n	Azimut h	Corr. (dB)	Margi n	Limit (dBµV/m)	Comment
(/	((ms)	(kHz)	(0111)		(deg)	(/	(dB)	(
48.386400	12.2	1000.0	120.000	143.0	V	86.0	13.3	17.8	30.0	
55.406250	9.6	1000.0	120.000	198.0	V	236.0	12.8	20.4	30.0	
96.760200	16.7	1000.0	120.000	134.0	V	181.0	11.5	16.8	33.5	
145.148100	14.2	1000.0	120.000	98.0	V	191.0	8.8	19.3	33.5	
720.998250	20.3	1000.0	120.000	370.0	Н	271.0	23.0	15.7	36.0	
902.306400	22.3	1000.0	120.000	400.0	V	4.0	25.2	13.7	36.0	

The radiated spurious emission of the unintentional radiator is below the indicated limit.

2011-08-29 Page 49 of 61

8.24 Receiver Spurious Emissions

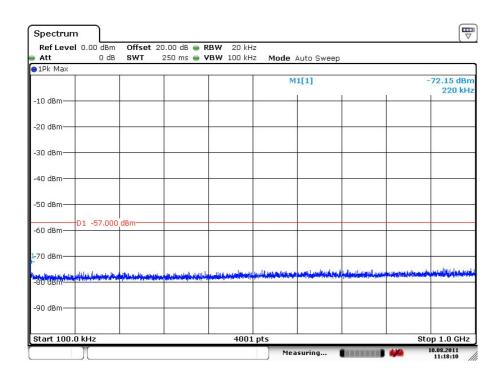
Measurement Procedure:

Industry Canada RSS-213 paragraph 6.8 and RSS-GEN paragraphs 4.8 and 6.

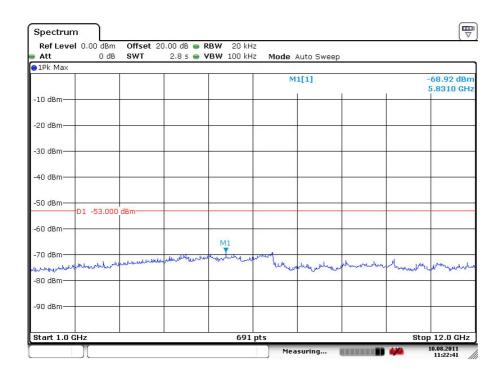
Test results:

Frequency MHz	Carrier No.	Measured Value Conducted dBm	Conducted Limit dBm	Margin dB
30 - 1000	all	-72.2	-57	15.2
> 1000	all	-68.9	-53	15.9

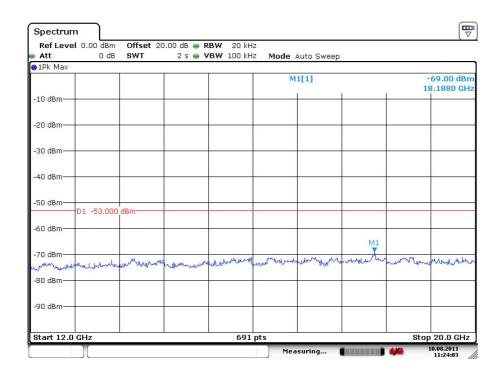
Requirements: RSS-GEN Issue 2, clause 6


The measurement can be performed either radiated or conducted.

When measured conducted: No spurious signals appearing at the antenna terminals shall exceed 2 nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nW above 1 GHz.


When measured radiated: See table 1 in RSS-GEN Issue2, clause 6.

2011-08-29 Page 50 of 61


Receiver Spurious Emissions, Conducted, 100 kHz - 1 GHz

Receiver Spurious Emissions, Conducted, 1 GHz - 12 GHz

2011-08-29 Page 51 of 61

Receiver Spurious Emissions, Conducted, 12 GHz – 20 GHz

2011-08-29 Page 52 of 61

9 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

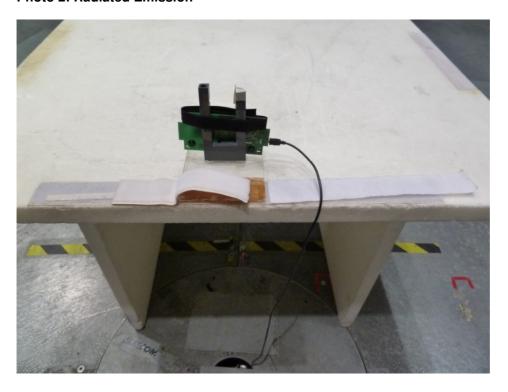
No.	Instrument/Ancillary	Manufacturer	Туре	Serial-No.	Internal identification		
	Radiated Emission						
F-1	Control Computer	F+W		FW0502032	300003303		
F-2	Trilog antenna	Schwarzbeck	VULB 9163	9163-295	- / -		
F-3a	Amplifier	Veritech Microwave Inc.	0518C-138	-/-	-/-		
F-4b	Switch	HP	3488A	-/-	300000368		
F-5	EMI Test receiver	R&S	ESCI	100083	300003312		
F-6	Turntable Controller	EMCO	1061 3M	1218	300000661		
F-7	Tower Controller	EMCO	1051 Controller	1262	300000625		
F-8	Tower	EMCO	1051 Tower	1262	300000625		
F-9	EMI Test receiver	R&S	ESU	- / -	300003555		
	Power Line Conducted Emission				100000000		
G-1	EMI Receiver	Hewlett Packard	8542 E	3617A0017 0	300000568		
G-2	V-ISN	Rohde & Schwarz	ESH 3-Z5	892475/017	300002209		
	V-ISN	Rohde & Schwarz	ESH 2-Z5	892602/024	300000587		
G-3	2-Wire ISN	Schaffner	ISN T200	19075	300003422		
G-4	4-Wire ISN	Schaffner	ISN T400	22325	300003423		
G-5	Shielded wire ISN	Schaffner	ISN ST08	22583	300003433		
G-6	Unshielded 8 wire ISN	Teseq	ISN T800	26113	300003833		
G-7	Unshielded 8 wire ISN	Teseq	ISN T8-Cat. 6	26374	300003851		
G-8	RF Current probe	FCC	F-33-4	46	300003257		
G-9	V-ISN	Schaffner	ISN PLC-150	21579	300003318		
G-10	V-ISN	Schaffner	ISN PLC-25-30	21584	300003319		
G 10a	PLC Filter	TESEQ	Filter PLC	23436	300003598		
G 10b	Coupling unit 75 Ohm	Fiedler	AC	- / -	300003272.0 4		
	Conducted						
L-1	Spectrum Analyzer	R&S	FSV30	100763	300003950		
L-2	Signal Generator	R&S	SMU200A	101633	300003496		
L-3	Oscilloscope	Tektronix	DPO 7254	B022702	300003573		
L-4	Signaling Unit	R&S	CMD 65	847527/005	300003611		
L-5	Combiner	R&S	1025.3400.02	- / -	- / -		
L-6	Combiner	Suhner	4901.19A	- / -	- / -		
L-7	Combiner	Weinschel	1515	KW438	- / -		
L-8	Detector	Hewlett Packard	HP 8473C	03690	- / -		
L-9	Attenuator	Narda	4779-50	9101	-/-		
L-10	Attenuator	Narda	4779-30	9305	-/-		
L-11	Attenuator	Narda	4779-20	9310	-/-		
L-12	Control PC	F+W	-/-	FW0712052	300003735		

2011-08-29 Page 53 of 61

10 Observations

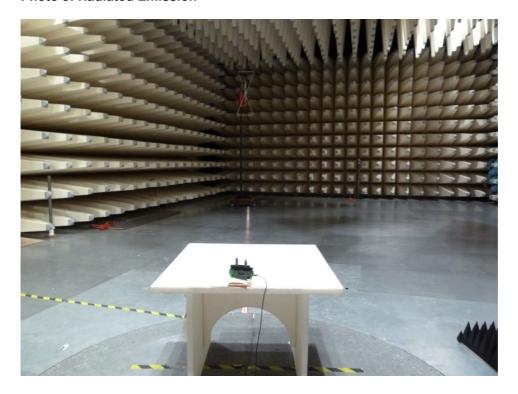
No observations exceeding those reported with the single test cases have been made.

2011-08-29 Page 54 of 61



Annex A: Photographs of the Test Set-up

Photo 1: Power Line Conducted Emission Test


Photo 2: Radiated Emission

2011-08-29 Page 55 of 61

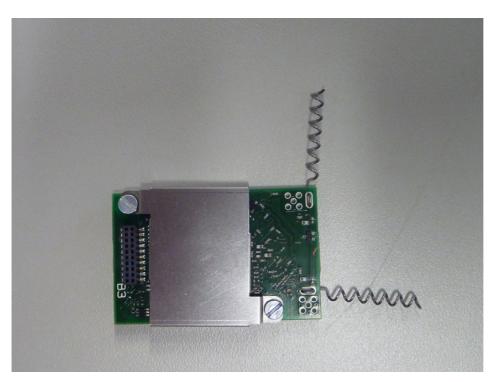
Photo 3: Radiated Emission

2011-08-29 Page 56 of 61

Annex B: External Photographs of the EUT

Photo 1:

Photo 2:



2011-08-29 Page 57 of 61

Annex C: Internal Photographs of the EUT

Photo 1:

Photo 2:

2011-08-29 Page 58 of 61

Photo 3:

2011-08-29 Page 59 of 61

Annex D: Document History

Version	Applied Changes	Date of Release
	Initial Release	2011-08-29

2011-08-29 Page 60 of 61

Annex E: Further Information

Glossary

DUT - Device under Test

EMC - Electromagnetic Compatibility

EUT - Equipment under Test

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - not applicable
S/N - Serial Number
SW - Software

2011-08-29 Page 61 of 61